Daily heat stress in Kraków in the warm period 2012–2022 based on hourly meteorological measurements and radiative fluxes derived from satellite systems
DOI:
https://doi.org/10.26485/AGL/2024/117/9Słowa kluczowe:
prolonged exposure to heat, mean radiant temperature, human heat load, urban climate, UTCIAbstrakt
This paper aims to present an assessment of the hourly structure of the thermal environment in the warm period of the year. Special attention was paid to the conditions potentially resulting in heat stress for citizens of Kraków’s central district. Two approaches were used to analyse the hourly data: 1) a criterion of thermal threshold >30°C, as potentially generating heat stress, which is included in meteorological warnings issued in Poland, and 2) a criterion based on physiological responses described by the value of the Universal Thermal Climate Index (UTCI) >32°C, which corresponds to conditions of strong heat stress for the human thermoregulatory system. The data of basic meteorological characteristics of one-hour timespan resolution from measurements in AGH station located at Reymonta Street in Kraków covering the period 2012–2022 were adopted in the study. Shortwave direct and diffuse and longwave radiation fluxes corresponding to the station's location grid were derived from the Eumetsat LSA SAF MSG satellite remote-sensing system and used for Mean Radiant Temperature (Tmrt) and UTCI hourly calculations. Thermal environment conditions expressed by Tair ≥30°C, which could lead to heat stress, occurred in less than 2% of hourly terms (931 from 47,044) in the months April–September in the 11-year period. Far more terms were assessed as “with adverse conditions leading to heat stress”: 2,215 cases when UTCI≥32°C. In view of the above, it is worth highlighting that more than half of the negative and oppressive weather conditions resulting in heat stress may be neglected in risk assessments and predictions using only the basic thermal criterion.
Bibliografia
Błażejczyk K., Kuchcik M. 2021. UTCI applications in practice (methodological questions). Geographia Polonica 94(2): 153-165.
Błażejczyk K., Twardosz J. 2023. Secular Changes (1826–2021) of Human Thermal Stress according to UCTI in Kraków (southern Poland). International Journal of Climatology 43(9): 4220-4230.
Błażejczyk K., Epstein Y., Jendritzky G., Staiger H., Tinz B. 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology 56: 515-535.
Błażejczyk K., Twardosz R., Wałach P., Czarnecka K., Błażejczyk A. 2022. Heat strain and mortality effects of prolonged central European heat wave-an example of June 2019 in Poland. International Journal of Biometeorology 66(1): 149-161.
Bokwa A. 2019. Rozwój badań nad klimatem lokalnym Krakowa. Acta Geographica Lodziensia 108: 7-20.
Bokwa A., Limanówka D. 2014. Effect of relief and land use on heat stress in Kraków, Poland. Die Erde 145(1–2): 34-48. DOI: 10.12854/erde-145-4
Bokwa A., Hajto M.J., Walawender J.P., Szymanowski M. 2015. Influence of diversified relief on the urban heat island in the city of Kraków, Poland. Theoretical and Applied Climatology 122: 365-382.
Bokwa A., Dobrovolný P., Gál T., Geletič J., Gulyás A., Hajto M.J., Holec J., Hollósi B., Kielar R., Lehnert M., Skarbit N., Šťastný P., Švec M., Unger J., Walawender J.P., Žuvelaaloise M. 2018. Urban climate in Central European cities and global climate change. Acta Climatologica 51–52: 7-35.
Bokwa A., Geletič J., Lehnert M., Žuvela-Aloise M., Hollósi B., Gál T., Skarbit N., Dobrovolný P., Hajto M., Kielar R., Walawender J., Šťastný P., Holec J., Ostapowicz K., Burianová J., Garaj M. 2019. Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy and Buildings 201: 53-69. DOI: 10.1016/j.enbuild.2019.07.023
Brimicombe Ch., Quintino T., Smart S.D., Di Napoli C. 2022. Calculating the Cosine of the Solar Zenith Angle for Thermal Comfort Indices. ECMWF Technical Memoranda (online: http://www.ecmwf.int/publications).
Bröde P., Fiala D., Błażejczyk K., Holmér I., Jendritzky G., Kampmann B., Tinz B., Havenith G. 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56(3): 481-94. DOI: 10.1007/s00484-011-0454-1
Bryś K., Ojrzyńska H. 2016. Bodźcowość warunków biometeorologicznych we Wrocławiu. Acta Geographica Lodziensia 104: 193-200.
Carrer D., Ceamanos X., Moparthy S., Vincent C., Freitas S., Trigo I.F. 2019. Satellite Retrieval of Downwelling Shortwave Surface Flux and Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF Program (Part 1: Methodology). Remote Sensing 11: 2532.
Danni Z., Chang L., Jiansheng W., Hongliang W. 2024. A satellite-based approach for thermal comfort simulation: A case study in the GBA. Urban Climate 53: 101776.
Di Napoli C., Pappenberger F., Cloke H.L. 2018. Assessing heat-related health risk in Europe via the universal thermal climate index (UTCI). International Journal of Biometeorology 62: 1155-1165.
Di Napoli C., Pappenberger F., Cloke H.L. 2019. Verification of heat stress thresholds for a health-based heat-wave definition. Journal of Applied Meteorology and Climatology 58: 1177-1194.
Di Napoli C., Hogan R.J., Pappenberger F. 2020. Mean radiant temperature from global-scale numerical weather prediction models. International Journal of Biometeorology 64: 1233-1245.
Di Napoli C., Barnard C., Prudhomme C., Cloke H.L., Pappenberger F. 2020. Thermal comfort indices derived from ERA5 reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.553b7518
Di Napoli C., Messeri A., Novak M., Rio J., Wieczorek J., Morabito M., Silva P., Crisci A., Pappenberger F. 2021. The Universal Thermal Climate Index as an Operational Forecasting Tool of Human Biometeorological Conditions in Europe. In: E.L. Krüger (ed) Applications of the Universal Thermal Climate Index UTCI in Biometeorology. Biometeorology 4. Springer, Cham.
European Commission, Peseta IV – Projection of Economic impacts of climate change in Sectors of the European Union based on bottom-up, Online: pesetaiv_summary_final_report.pdf (europa.eu)
Gal C., Kantor N. 2020. Modeling mean radiant temperature in outdoor spaces. A comparative numerical simulation and validation study. Urban Climate 32: 100571.
Geiger B., Carrer D., Franchistéguy L., Roujean J.L., Meurey C. 2008. Land surface albedo derived on a daily basis from Meteosat Second Generation observations. IEEE Transactions on Geoscience and Remote Sensing 46: 3841-3856.DOI:10.1109/TGRS.2008.2001798
Griffith B.D., Mckee T.B. 2016. Rooftop and Ground Standard Temperatures: A Comparison of Physical Differences (online: https://api.semanticscholar.org/CorpusID:12 7081326
Hogan R.J., Hirahara S. 2016. Effect of solar zenith angle specification in models on mean shortwave fluxes and stratospheric temperatures. Geophysical Research Letters 43: 482-488.
Hynčica M., Novák M., Procházková S. 2023. Trends and Climatology of UTCI in the Czech Republic. Environmental Sciences Proceedings 26(1): 31.
Jaafar H., Lakkis I., Yeretzian A. 2022. Impact of boundary conditions in a microclimate model on mitigation strategies affecting temperature, relative humidity, and wind speed in a Mediterranean city. Building and Environment 210: 108712.
Jendritzky G., de Dear R., Havenith G. 2012. UTCI – Why another thermal index? International Journal of Biometeorology 56: 421-428.
Kampmann B., Bröde P. 2022. Do one-hour exposures provide a valid assessment of physiological heat strain? Zeitschrift für Arbeitswissenschaft 76: 105-117.
Kántor N., Unger J. 2011. The most problematic variable in the course of human-biometeorological comfort assessment – the mean radiant temperature. Central European Journal of Geosciences 3: 90-100.
Katavoutas G., Founda D. 2019. Intensification of thermal risk in Mediterranean climates: evidence from the comparison of rational and simple indices. International Journal of Biometeorology 63: 1251-1264.
Kim B., Hwang S., Lee Y., Shin S., Kim K. Comparative analysis of environmental standards to install a rooftop temperature monitoring station. Scientific Reports 12(1): 22401.
Kossowska-Cezak U., Twardosz R. 2014. Niezwykle gorące miesiące i sezony letnie w Europie Środkowej i Wschodniej (1951–2010). Część II. Niezwykle gorące sezony letnie. Prace Geograficzne 136.
Krüger E.L., Di Napoli C. 2022. Feasibility of climate reanalysis data as a proxy for onsite weather measurements in outdoor thermal comfort surveys. Theoretical and Applied Climatology 149: 1645-1658.
Krüger E.L., Minella F.O., Matzarakis A. 2014. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. International Journal of Biometeorology 58: 1727-1737.
Krüger E.L., Tamura C.A., Bröde P., Schweiker M., Wagner A. 2017. Short- and long- term acclimatization in outdoor spaces: exposure time, seasonal and heatwave adaptation effects. Building and Environment 116: 17-29.
Kuchcik M. 2021. Mortality and thermal environment (UTCI) in Poland – long-term, multi-city study. International Journal of Biometeorology 65: 1529-1541.
Kuchcik M., Błażejczyk K., Halaś A. 2021. The stimuli of thermal environment defined according to UTCI in Poland. Geographia Polonica 94(2): 183-200. DOI:10.7163/GPol.0200
Landsaf. 2023. Online: https://landsaf.ipma.pt/en/ (last access: 30.12.2023).
Liang S., Cheng C., Jia K., Jiang B., Liu Q., Xiao Z., Yao Y., Yuan W., Zhang X., Zhao X., Zhou J. 2021. The Global Land Surface Satellite (GLASS) products suite. Bulletin of the American Meteorological Society 102(1): E323-E337.
Lindner-Cendrowska K., Baranowski J. 2023. Niepewność pomiarów średniej temperatury promieniowania za pomocą termometrów kulistych. Przegląd Geograficzny 95(3): 271-290.
Martins J.P.A., Trigo I., Ghilain N., Jimenez C., Goettsche F.M., Ermida S., Olesen F., Gellens-Meulenberghs F., Arboleda A. 2019. An All-Weather Land Surface Temperature Product based on MSG/SEVIRI observations. Remote Sensing 11: 3044.
Meade R.D., Notley S.R., Akerman A.P., McGarr G.W., Richards B.J., McCourt E.R., King K.E., McCormick J.J., Boulay P., Sigal R.J., Kenny G.P. 2023. Physiological responses to 9 hours of heat exposure in young and older adults. Part I: Body temperature and hemodynamic regulation. Journal of Applied Physiology 135(3): 673-687.
Ministry of the Environment, Urban Adaptation Plans for in cities with over 100 thousand inhabitants (online: http://44mpa.pl/miejskie-plany-adaptacji/; access 22.12.2023)
Miranda N.D., Lizana J., Sparrow S.N. Zachau-Walker M., Watson P.A.G., Wallom D.C.H., Khosla R., McCulloch M. 2023. Change in cooling degree days with global mean temperature rise increasing from 1.5 °C to 2.0 °C. Nature Sustainability 6: 1326-1330.
Niedźwiedź T., Obrebska-Starklowa B., Limanówka D., Mroczka A., Ustrnul Z. 1996. Zmienność bioklimatu Krakowa. Folia Geographica. Series Geographica-Physica 26–27: 89-105.
Okoniewska M. 2021. Daily and seasonal variabilities of thermal stress (based on the UTCI) in air masses typical for Central Europe: an example from Warsaw. International Journal of Biometeorology 65: 1543-1552.
Pecelj M.M., Lukić M.Z., Filipović D.J., Protić B.M., Bogdanović U.M. 2020. Analysis of the Universal Thermal Climate Index during heat waves in Serbia. Natural Hazards and Earth System Sciences 20: 2021-2036.
Peres L.F., DaCamara C.C. 2005. Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Transactions on Geoscience and Remote Sensing 43(8): 1834-1844.
ProClias Project. 2023. Online: https://proclias.eu/working-groups/wg3/tg3-11 (last access: 22.12.2023).
Romaszko J., Dragańska E., Jalali R., Cymes I., Glińska-Lewczuk K. 2022. Universal Climate Thermal Index as a prognostic tool in medical science in the context of climate change: a systematic review. Science of The Total Environment 828: 154492.
Rozbicka K., Rozbicki T. 2018. Variability of UTCI index in South Warsaw depending on atmospheric circulation. Theoretical and Applied Climatology 133: 511-520.
Sadeghi M., de Dear R., Morgan G., Santamouris M., Jalaludin B. 2021. Development of a heat stress exposure metric – impact of intensity and duration of exposure to heat on physiological thermal regulation. Building and Environment 200: 107947.
Spangler K.R., Liang S., Wellenius G.A. 2022. Wet-Bulb Globe Temperature, Universal Thermal Climate Index, and Other Heat Metrics for US Counties, 2000–2020. Scientific Data 9: 326.
Tomczyk A.M., Matzarakis A. 2023. Characteristic of bioclimatic conditions in Poland based on Physiologically Equivalent Temperature. International Journal of Biometeorology 67: 1991-2009.
Trigo I.F., Peres L.F., DaCamara C.C., Freitas S.C. 2008. Thermal Land Surface Emissivity Retrieved From SEVIRI/Meteosat, IEEE Transactions on Geoscience and Remote Sensing 46: 307-315.
Trigo I.F., Barroso C., Viterbo P., Freitas S.C., Monteiro I.T. 2010. Estimation of Downward Longwave Radiation at the Surface combining Remotely Sensed Data and NWP Data. Journal of Geophysical Research 115: D24118.
Twardosz R. 2023. Obciążenia cieplne człowieka podczas niezwykle ciepłych miesięcy letnich w Krakowie. Przegląd Geograficzny 95(3): 255-270.
Urban A., Huber V., Henry S., Plaza N.P., Dasgupta S. 2023. Do heat prevention measures reduce the risk of heat-related mortality in Europe? EMS Annual Meeting 2023, Bratislava, Slovakia, 4–8 Sepember 2023, EMS2023-133. https://doi.org/10.5194/ems2023-133, 2023.
Ville de Paris. 2023. Mission information et d’evaluation du conseil de Paris, Le rapport: Paris a 50°C https://cdn.paris.fr/paris/2023/ 04/21/paris_a_50_c-le_rapport-Jc4H.pdf (last access 22.12.2023).
Wang C., Zhan W., Liu Z., Li J., Li L., Fu P., Huang F., Lai J., Chen J., Hong F., Jiang S. 2020. Satellite-based mapping of the Universal Thermal Climate Index over the Yangtze River Delta urban agglomeration. Journal of Cleaner Production 277: 123830.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2024 Łódzkie Towarzystwo Naukowe
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.