A Chironomidae-based reconstruction of the Saalian-Eemian transition (mis 6a–mis 5e) in a palaeolake from the “Parchliny 2016” profile, central Poland

Authors

  • Mateusz Płóciennik University of Lodz, Department of Invertebrate Zoology and Hydrobiology
  • Sylwia Łukawska Provincial Inspectorate of Plant Health and Seed in Lodz
  • Ewa Janowska University of Lodz, Department of Invertebrate Zoology and Hydrobiology
  • Dariusz Krzyszkowski University of Wrocław, Institute of Geography and Regional Development
  • Dariusz Wieczorek Polish Geological Institute – National Research Institute, Holy Cross Branch
  • Lucyna Wachecka-Kotkowska University of Lodz, Department of Geology and Geomorphology

DOI:

https://doi.org/10.26485/AGL/2023/113/7

Keywords:

non-biting midges, lacustrine sediments, climate change, palaeoecological analysis, Szczerców field

Abstract

Abstract. In the end of Saalian Glaciation (Wartanian Stadial, MIS 6a) there formed many glacial depressions, melt-out kettle holes and subglacial channels in central Poland’s ice-marginal zone. In these landforms, there developed a lakeland that existed  to the Early Weichselian (5d-a). Following excavation in 2016 on the eastern wall of the Szczerców field, lacustrine deposits were recognised in the Parchliny 2016 profile. A previous multi-proxy study of the Parchliny 2016 profile concerning a reconstruction of the palaeolake included analyses of pollen, plant macrofossils, wood macrofossils, diatoms, cladocerans, ostracods and molluscs. The present work presents the Chironomidae analysis for the above-mentioned section. The collected subfossils could be identified from the keys presenting modern Palaearctic fauna. The Chironomidae indicate a temperate climate in the region and favourable, meso/eutrophic conditions in the palaeolake during the Late Saalian (MIS 6a). The changes in subfossil numbers reveal that the Zeifen interstadial fells at 24.38–24.23 m core depth and the subsequent Kattegat stadial at 24.18– –23.83 m, but head capsule count is too low for quantitative temperature estimations. From the Eemian (MIS 5e) transition, they decline in the sediment and are represented only by two head capsules at the 23.33 m core depth below the ground surface. The increase in summer temperature, trophic status and stratification of the lake may have caused an oxygen depletion that eliminated sensitive taxa. However, no species are observed that are resistant to eutrophication and anoxia replacing sensitive ones in the assemblages. Sediment desiccation and compaction may have caused the decomposition of Chironomidae subfossils in the deposits from the Eemian interglacial, so their apparent decline in the ecosystem may be misleading.

References

Allen J.R.M., Forrest M., Hickler T., Singarayer J.S., Valdes P.J., Huntley B. 2020. Global vegetation patterns of the past 140,000 years. Journal of Biogeography 47(10): 2073-2090.

Allen P., Krzyszkowski D. 2008. Till base deformation and fabric variation in Lower Rogowiec (Wartanian, Younger Saalian) Till, Bełchatów outcrop, central Poland. Annales Societatis Geologorum Poloniae 78: 19-35.

Anderesen T., Cranston P., Epler J. 2013. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1 Larvae. Scandinavian Society of Entomology, Lund.

Antczak-Orlewska O., Okupny D., Pawłowski D., Kotrys B., Krąpiec M., Luoto T.P., Peyron O., Płóciennik M., Stachowicz-Rybka R., Wacnik A., Szmańda J.B., Szychowska-Krąpiec E., Kittel P. 2023. The environmental history of the oxbow in the Luciąża River valley – Study on the specific microclimate during Allerød and Younger Dryas in central Poland. Quaternary International 644--645: 178-195.

Armitage P.D., Cranston P.S., Pinder L.C.V. 1995. The Chironomidae. Biology and Ecology of Nonbiting Chironomids. London, Chapman&Hall.

Asch N., Kloos M.E., Heiri O., Klerk P., Hoek W.Z. 2012. The Younger Dryas cooling in north-east Germany: summer temperature and environmental changes in the Friedländer Große Wiese region. Journal of Quaternary Science 27(5): 531-543.

Baraniecka M.D., Sarnacka, Z. 1971. Stratygrafia czwartorzędu i paleogeografia dorzecza Widawki. Biuletyn Instytutu Geologicznego 254: 157-269.

Bolland A., Kern O.A., Koutsodendris A., Pross J., Heiri O. 2022. Chironomid‐inferred summer temperature development during the late Rissian glacial, Eemian interglacial and earliest Würmian glacial at Füramoos, southern Germany. Boreas 51(2): 496-516.

Bova S., Rosenthal Y., Liu Z., Godad S.P., Yan M. 2021. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589: 548-553.

Brodersen K.P., Lindegaard C. 1999. Mass occurrence and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish lakes. Neo- and palaeolimnological records. Journal of Paleolimnology 22(1): 41-52.

Brooks S.J., Langdon P.G., Heiri O. 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.

Bruj M., Roman M. 2007. Zasięg pojezierza z interglacjału eemskiego w Polsce a pozycja stratygraficzna lądolodów zlodowaceń środkowopolskich. Biuletyn Państwowego Instytutu Geologicznego 425: 27-34.

Engels S., Lane Ch. S., Haliuc A., Hoek W.Z., Muschitiello F., Baneschi I., Bouwman A., Ramsey Ch.B., Collins J., Bruijn R., Heiri O., Hubay K., Jones G., Laug A., Merkt J., Müller M., Peters T., Peterse F., Staff R.A., Schure A.T.M., Turner F., Bos V., Wagner-Cremer F. 2022. Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe. Communications Earth & Environment 3(1): 130.

Forysiak J. 2012. Zapis zmian środowiska przyrodniczego późnego vistulianu i holocenu w osadach torfowisk regionu łódzkiego. Acta Geographica Lodziensia 99:1-164.

Forysiak J., Okupny D., Obremska M., Antczak-Orlewska O., Płóciennik M., Pawłowski D., Baradyn D., Kortys B., Luoto T.P., Nevalainen L., Borówka K.R. 2023. Changes in habitat conditions in a Late Glacial fluviogenic lake in response to climatic fluctuations (Warta River valley, central Poland). Geological Quarterly 67(1): 1-23.

Goździk J.S., Skórzak A. 2011. Zmienność akumulacji jeziorno-bagiennej od interglacjału do holocenu w obszarze odkrywki “Bełchatów". In: Przewodnik Sesji Terenowej Warsztatów Naukowych „Torfowiska w Krajobrazie Przekształconym”. Torfowiska Dorzecza Widawki. Wybrane Problemy i Przykłady. Łódź–Bełchatów: 19-32.

Hrynowiecka A., Stachowicz-Rybka R., Moskal-del Hoyo M., Niska M., Kotrys B., Karpińska-Kołaczek M., Lenarczyk J., Piątek J., Kołaczek P., Borówka R.K., Bąk M., Tarnawski D., Kadej M., Sobczyk A., Łabęcka K., Stachowicz K., Stefaniak K. In press. Multi-proxy environmental reconstruction of the Eemian and Early Vistulian – Before, during, and after the life of the forest rhino Stephanorhinus kirchbergensis (Jäger, 1839) from Gorzów Wielkopolski (NW Poland). Quaternary International.

Jastrzębska-Mamełka M. 1985. Interglacjał eemski i wczesny vistulian w Zgierzu-Rudunkach na Wyżynie Łódzkiej. Acta Geographica Lodziensia 5: 1-75.

Juggins S. 2007. C2: Software for ecological and palaeoecological data analysis and visualisation. User guide Version 1.5. Newcastle University.

Jyväsjärvi J., Hämäläinen H. 2014. Profundal benthic invertebrate communities in boreal lakes vary with climate fluctuation. Aquatic Sciences 77(2).

Kasse C., Woude A.D., Woolderink H.A.G., Schokker J. 2022. Eemian to Early Weichselian regional and local vegetation development and sedimentary and geomorphological controls, Amersfoort Basin, The Netherlands. Netherlands Journal of Geosciences 101: 1-22.

Kornijów R., Halkiewicz A. 2007. Are the larvae of Propsilocerus lacustris Kieffer 1923 (Dip-tera: Chironomidae) favored by nutrientrich lakes? Aquatic Insects 29(3): 187-194.

Kortys B., Płóciennik M., Sydor P., Brooks S.J. 2020. Expanding the Swiss-Norwegian chironomid training set with Polish data. Boreas 49(1): 89-107.

Krupiński K.M., Morawski W. 1993. Geological position and pollen analysis of Eemian interglacial sediments of Warsaw–Wawrzyszew. Acta Palaeobotanica 33: 5-42.

Kupryjanowicz M., Fiłoc M., Drzymulska D., Poska A., Suchora M., Żarski M., Mroczek P. 2021. Environmental changes of the stadial/interstadial type during the Late Saalian (MIS 6) – Multi-proxy record at the Wola Starogrodzka site, central Poland. Palaeogeography Palaeoclimatology Palaeoecology 100420: 1-14.

Larocque-Tobler I., 2014. The Polish subfossil chironomids. Palaeontologia Electronica 17(1).

Majecka A. 2014. The palynological record of the Eemian interglacial and Early Vistulian Glaciation in deposits of the Żabieniec Południowy fossil basin (Łódź Plateau, central Poland), and its palaeogeographic significance. Acta Palaeobotanica 54: 279-304.

Majecka A., Wachecka-Kotkowska L., Krzyszkowski D., Malkiewicz M., Mirosław-Grabowska J., Niska M., Rzodkiewicz M., Myśkow E., Tomaszewska K., Wieczorek D., Raczyk J., 2022. Environmental changes during the MIS 6a–MIS 5e transition: the Parchliny 2016 profile, central Poland. Geological Quarterly 66(4): 136-143.

Marks, L. 2011. Quaternary glaciations in Poland. Developments in Quaternary Science 15: 299-303.

Marks L., Bitinas A, Błaszkiewicz M., Börner A., Guobyte R., Rinterknecht V., Tylmann K., 2022. Glacial landscapes of Northern Central Europe. European Glacial Landscapes. Maximum Extent of Glaciations: 45-51.

McFarlin J. M., Axford Y., Osburn M.R., Lasher G.E., Kelly M.A., Osterberg E.C., Francis D.R., Farnsworth L.B. 2016. Eemian and Holocene interglacial climate in northwest Greenland inferred from insect assemblages, lipid δ2H, and chitin δ18O preserved in lake sediments. American Geophysical Union, Fall Meeting 2016, abstract (PP11C-2028).

Medeiros S.A., Chipman M.L., Francis D.R., Hamerlík L., Langdon P., Puleo P.J.K., Schellinger G., Steigleder R., Walker I.R., Woodroffe S., Axford Y. 2022. A continental-scale chironomid training set for reconstructing Arctic temperatures. Quaternary Science Reviews 294(3): 107728.

Mirosław-Grabkowska J., Niska M., Roman M. 2018. Long (MIS 5e-3) environmental history of a paleolake in central Poland recorded in the succession from Kubłowo. Quaternary International 467(2): 26-42.

Moller Pillot H.K.M. 2009. Chironomidae Larvae. Biology and Ecology of the Chironomini. KNNV Publishing, Zeist.

Moller Pillot H.K.M. 2013. Chironomidae Larvae of the Netherlands and Adjacent Lowlands, Biology and Ecology of the Aquatic Orthocladiinae, Prodiamesinae, Diamesinae, Bu-chonomyiinae, Podonominae, Telmatogetoninae. KNNV Publishing, Zeist.

Niska M. 2008. Interpretacja zmian środowiska jeziornego w interglacjale eemskim na podstawie analizy kopalnych Cladocera. Akademia Pomorska w Słupsku.

Niska M. 2012. Fossil Cladocera remains in the Eemian sediments – preservation, frequency and dominant species. Studia Quaternaria 29: 31-43.

Pawłowski D., Borówka K.R., Kowalewski G., Luoto T.P., Milecka K., Nevalainen L., Okupny D., Płóciennik M., Woszczyk M., Tomkowiak J., Zieliński T. 2016. The response of flood-plain ecosystems to the Late Glacial and Early Holocene hydrological changes: A case study from a small Central European river valley. Catena 147: 411-428.

Plikk A., Engels S., Luoto T.P., Nazarova L., Salonen J.S.& Helmens K.F. 2019. Chironomid-based temperature reconstruction for the Eemian Interglacial (MIS 5e) at Sokli, north-east Finland: Journal of Paleolimnology 61(1): 355-371.

Płóciennik M., Self A.E., Birks H.J.B., Brooks S.J. 2011. Chironomidae (Insecta: Diptera) successsion in Żabieniec bog and its palaeolake (central Poland) through the Late Weichselian and Holocene. Palaeogeography Palaeoclimatology Palaeoecology 307(1–4): 150-167.

Płóciennik M., Kruk A., Michczyńska D.J, Birks J.B. 2015. Kohonen Artificial Neural Networks and the IndVal Index as Supplementary Tools for the Quantitative Analysis of Palaeoecological Data. Geochronometria 42(1): 189-201.

Płóciennik M., Kittel P., Borówka R.K., Cywa K., Okupny D., Obremska M., Pawłowski D., Stachowicz-Rybka R., Szperna R., Witkowski A. 2016. Warunki paleoekologiczne subkopalnego koryta Kolonia Bechcice na tle hydrologii środkowego odcinka doliny Neru. Acta Geographica Lodziensia 105: 107-124.

Płóciennik M., Pawłowski D., Vilizzi L., Antczak-Orlewska O. 2020. From oxbow to mire: Chironomidae and Cladocera as habitat palaeoindicators. Hydrobiologia 847(15): 3257-3275.

Płóciennik M., Jakiel A., Forysiak J., Kittel P., Płaza D.K., Okupny D., Pawłowski D., Obremska M., Brooks S.J., Kotrys B., Luoto T.P. 2021. Multi-proxy inferred hydroclimatic conditions at Bęczkowice fen (central Poland); the influence of fluvial processes and human activity in the stone age. Acta Geographica Lodziensia 111: 135-157.

Płóciennik M., Zawiska I., Rzodkiewicz M., Noryśkiewicz A., Słowiński M., Müller D., Brauer A., Antczak-Orlewska O., Kramkowski M.A., Peyron O., Nevalainen L., Luoto T.P., Kortys B., Seppa H., Camuera J., Rudna M., Mielczarek M., Zawisza E., Janowska E., Błaszkiewicz M. 2022. Climatic and hydrological variability as a driver of the Lake Gościąż biota during the Younger Dryas. Catena 212: 106049.

Polkowski T., Mroczkowska A., Kotrys B., Górecki A., Hrynowiecka A., Słowiński M. In preparation. Non-biting midges as a proxy for the reconstruction of summer temperatures from the Eemian and Holstein interglacial – central European sites perspective.

Quinlan R., Smol J.P. 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327-342.

Roman M. 2016. Pojezierze eemskie: uwagi o genezie i zaniku jezior polodowcowych centralnej Polski. Acta Geographica Lodziensia 105:11-25.

Roman M., Mirosław-Grabowska J., Niska M. 2021. The Eemian Lakeland of the central Polish Plain: Environmental changes and palaeogeography. Palaeogeography Palaeoclimatology Palaeoecology 561: 110087.

Self A.E., Brooks S.J., Birks H.J.B., Nazarova L., Porinchu D., Odland A., Yang H., Jones V.J. 2011. The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia. Quaternary Science Reviews 30(9): 1122-1141.

Słowiński M., Marcisz K., Płóciennik M., Obremska M., Pawłowski D., Okupny D., Słowińska S., Borówka K.R., Kittel P., Forysiak J., Michczyńska D.J., Lamentowicz M. 2016. Drought as a stress driver of ecological changes in peatland – A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland. Palaeogeography Palaeoclimatology Palaeoecology 461: 272-291.

Suchora M., Kultys K., Stachowicz-Rybka R., Pidek I.A., Hrynowiecka A., Terpiłowski S., Łabęcka K., Żarski M. 2022. Palaeoecological record of long Eemian series from Kozłów (Central Poland) with reference to palaeoclimatic and palaeohydrological interpretation. Quaternary International 632(7843): 36-50.

Telford R.J. 2019. Review and test of reproducibility of subdecadal resolution palaeoenviron-mental reconstructions from microfossil assemblages. Quaternary Science Reviews 222.

Twardy J., Żurek S., Forysiak J. 2010. Torfowisko Żabieniec: warunki naturalne, rozwój i zapis zmian paleoekologicznych w jego osadach. Bogucki Wyd. Naukowe, Poznań.

Vallenduuk, H.J., Moller Pillot, H.K.M. 2007. Chironomidae Larvae. Tanypodinae: General Ecology and Tanypodinae, vol. 1. KNNV Publishing, Zeist.

Wachecka-Kotkowska, L. 2015. Development of land relief between Piotrków Trybunalski, Radomsko and Przedbórz in the Quaternary. Wyd. Uniwersytetu Łódzkiego, Łódź.

Wachecka-Kotkowska L., Krzyszkowski D., Krzymińska J., Drzewicki W. 2017. Short-term changes in a Saalian glacial lake – The Parchliny C site, central Poland. Catena 157: 299-309.

Wachecka-Kotkowska L., Krzyszkowski D., Malkiewicz M., Mirosław-Grabowska J., Niska M., Krzymińska J., Myśkow E., Raczyk J., Wieczorek D., Stoiński A., Rzodkiewicz M. 2018. An attempt to reconstruct the late Saalian to Plenivistulian (MIS 6–MIS 3) natural lake environment from the Parchliny 2014 section, central Poland. Quaternary International 467: 5-25.

Wachecka-Kotkowska L., Krzyszkowski D., Wieczorek D., Boswell S., Myśkow E. 2021. Lithopetrographic and geochemical features of the Saalian tills in the Szczerców outcrop (Poland) in various deformation settings. Open Geosciences 13: 1-15.

Wieczorek D., Stoiński A. 2019. Detailed Geological Map of Poland on a scale of 1:50,000, Szczerców sheet (735) with explanations, reworks – electronic document. Polish Geological Institute – National Research Institute, Warsaw.

Żarski M., Winter H., Kucharska M. 2018. Palaeoenvironmental and climate changes recorded in the lacustrine sediments of the Eemian interglacial (MIS 5e) in the Radom Plain (Central Po-land). Quaternary International 467: 147-160.

Downloads

Published

2024-01-17

How to Cite

Płóciennik , M., Łukawska , S., Janowska , E., Krzyszkowski , D., Wieczorek , D., & Wachecka-Kotkowska , L. (2024). A Chironomidae-based reconstruction of the Saalian-Eemian transition (mis 6a–mis 5e) in a palaeolake from the “Parchliny 2016” profile, central Poland. Acta Geographica Lodziensia, 113, 115–127. https://doi.org/10.26485/AGL/2023/113/7

Issue

Section

Articles