Changes in the structure of sandy and silty sediments after 1000 freeze-thaw cycles – preliminary results from laboratory experiment

Authors

  • Igor Śniady Uniwersytet im. Adama Mickiewicza, Poland

DOI:

https://doi.org/10.26485/AGL/2023/113/6

Keywords:

permafrost, cryoturbation, freeze-thaw cycles, laboratory experiment, grain reorganization

Abstract

The laboratory experiment included analysis of the changes in sediment structure resulting from the reorganization of sediment grains subjected to repeated freeze-thaw cycles. A freeze-thaw device operating in temperatures ranging from ˗5°C to +10 °C was used for this purpose. In five transparent plexiglass cylinders were placed, in order from bottom to top, the following sediments: coarse sand, fine sand, silt and again fine sand. The degree of sediment hydration differed for each of the cylinders. Observations of changes were made macroscopically on the basis of photographic documentation of the cylinders taken before the start of the experiment and after 250, 500, 750 and 1000 cycles of freezing and thawing. The highest grain reorganization was found for silty sediment and the lowest for coarse sand. In addition, the reorganization of grains was significantly affected by the sample hydration. The highest number of structures was formed at the boundaries between fine sand and silt in the cylinders with the highest hydration.

References

Ballantyne C.K. 2018. Periglacial Geomorphology. Wiley-Blackwell, Chichester: 11-22.

Bockheim J.G., Tarnocai C. 1998. Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81 (3–4): 281-293. DOI: 10.1016/S0016-7061(97)00115-8

Bryan K. 1946. Cryopedology, the study of frozen ground and intensive frost-action, with sug-gestions on nomenclature. American Journal of Science 244 (9): 622-642

DOI: 10.2475/ajs.244.9.622

Corte A.E. 1963. Particle Sorting by Repeated Freezing and Thawing. Science 142(3591): 499-501. DOI:10.1126/science.142.3591.499

Everett K.R. 1987. Cryoturbation structures. W: Structural Geology and Tectonics. Encyclope-dia of Earth Science. Springer: 177-183. DOI: 10.1007/3-540-31080-0_25

Flerchinger G.N., Lehrsch G.A., McCool D.K. 2005. Freezing and thawing processes. W: D. Hillel (red.). Encyclopedia of Soils in the Environment, Elsevier: 104-110.

DOI: 10.1016/B0-12-348530-4/00365-9

Frauenfeld O.W., Zhang T., Barry R.G., Gilichinsky D. 2004. Interdecadal changes in seasonal freeze and thaw depths in Russia. Journal of Geophysical Research 109 (D5): 1-12.

DOI: 10.1029/2003JD004245

French H.M. 2017. The Periglacial Environment. Fourth Edition. Wiley, Chichester.

Górska-Pawliczuk A. 2017. Grunty wysadzinowe – wyzwanie dla drogownictwa. Magazyn Au-tostrady 5: 116-122.

Górska M.E., Woronko B. 2022. Multi-stage evolution of frost-induced microtextures on the surface of quartz grains – An experimental study. Permafrost and Periglacial Processes 33(4): 470-489.

DOI: 10.1002/ppp.2164

Górska M.E., Woronko B., Kossowski T.M., Pisarska-Jamroży M. 2022. Micro-scale frost-weathering simulation – Changes in grain-size composition and influencing factors. Catena 212: 106106.

DOI: 10.1016/j.catena.2022.106106

Górska M.E., Skolasińska K., Świątek S., Pisarska-Jamroży M. 2023a. Frost-induced changes in the structure of sediments – results after 500, 1000, 1500 experimental freeze-thaw cycles. Catena 232: 107355. DOI: 10.1016/j.catena.2023.107355

Górska M.E., Woronko B., Kossowski T.M. 2023b. Factors influencing the development of mi-crotextures on cold-climate aeolian quartz grains revealed by experimental frost action. Permafrost and Periglacial Processes 34(2): 259-283. DOI: 10.1002/ppp.2179

Haberkorn A., Kenner R., Noetzli J., Phillips M. 2021. Changes in Ground Temperature and Dynamics in Mountain Permafrost in the Swiss Alps. Frontiers in Earth Science 9.

DOI: 10.3389/feart.2021.626686

Hallet B., Walder J.S., Stubbs C.W. 1991. Weathering by segregation ice growth in micro-cracks at sustained subzero temperatures: verification from an experimental study using acoustic emission. Permafrost and Periglacial Processes 2(4): 283-300. DOI: 10.1002/ppp.3430020404

ISSMFE. 1989. International Society of Soil Mechanics and Foundation Engineering. Work re-port 1985–1989. W: Proceedings of International Symposium On Frost in Geotechnical En-gineering, 13–15.03.1989. VTT Symposium 94, Technical Committee on Frost, TC-8, Saariselka, Finlandia: 15-70.

Lai Y., Yang Y., Chang X. 2010. Strength criterion and elasto-plastic constitutive model of fro-zen silt in generalized plastic mechanics. International Journal of Plasticity 26(10): 1461-1484. DOI:10.1016/j.ijplas.2010.01.002010.01.007

Lewkowicz A.G., Bonnaventure P.P., Smith S.L., Kuntz Z. 2012. Spatial and thermal character-istics of mountain permafrost, northwest Canada. Geografiska Annaler: Series A, Physical Geography 94(2): 195-213. DOI: 10.1111/j.1468-0459.2012.00462.x

Liu J., Chang D., Yu Q. 2016. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Engineering Geology 210: 23-32. DOI: 10.1016/j.enggeo.2016.05.019

Luetschg M., Lehning M., Haeberli W. 2008. A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps. Journal of Glaciology 54(187): 696-704.

DOI:10.3189/002214308786570881

Matsuoka N. 1995. Rock weathering process and landform development in the Sør Rondane Mountains, Antarctica. Geomorphology 12 (4): 323-339. DOI: 10.1016/0169-555X(95)00013-U

Matsuoka N. 2001. Direct observations of frost weathering in alpine bedrock. Earth Surface Processes and Landforms 26(6): 601-614. DOI: 10.1002/esp.208

Matsuoka N. 2005. Temporal and spatial variations in periglacial soil movements on alpine crest slopes. Permafrost and Periglacial Processes 30(1): 41-58. DOI: 10.1002/esp.1125

Matsuoka N. 2011. Climate and material controls on periglacial soil processes: Toward improv-ing peri-glacial climate indicators. Quaternary Research 75(2): 356-365. DOI: 10.1016/j.yqres.2010.12.014

Matsuoka N., Hirakawa K., Watanabe T., Moriwaki K. 1997. Monitoring of periglacial slope processes in the Swiss Alps: the first two years of frost shattering, heave and creep. Perma-frost and Periglacial Processes 8(2): 155-177.

DOI: 10.1002/(SICI)1099-1530(199732)8:2<155::AID-PPP248>3.0.CO;2-N

McFadden L.D., Eppes M.C., Gillespie A.R., Hallet B. 2005. Physical weathering in arid land-scapes due to diurnal variation in the direction of solar heating. Geological Society of Amer-ica Bulletin 117(1–2): 161-173. DOI: 10.1130/B25508.1

Mekonnen M.A., Riley W.J., Grant R.F., Romanovsky V.E. 2021. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Envi-ronmental Research Letters 16: 024008. DOI: 10.1088/1748-9326/abc444

Migoń P. 2012. Geomorfologia. Wyd. Naukowe PWN, Warszawa: 329-347.

Murton J.B., Coutard J.P., Lautridou J.P., Ozouf J.C., Robinson D.A., Williams R.B.G., Guil-lemet G., Simmons P. 2000. Experimental design for a pilot study on bedrock weathering near the permafrost table. Earth Surface Processes and Landforms 25(12): 1281-1294.

DOI: 10.1002/1096-9837(200011)25:12<1281::AID-ESP137>3.0.CO;2-U

Nicholson D.T. 2008. Rock control on microweathering of bedrock surfaces in a periglacial en-vironment. Geomorphology 101(4): 655-665. DOI: 10.1016/j.geomorph.2008.03.009

Pan Z., Yang G., Ye W., Liu H., Liang B., Yang Q., Li G. 2023. Effect of Freeze-Thaw Cycles and Initial Water Content on the Pore Structure and Mechanical Properties of Loess in Northern Shaanxi. Sustainability 15(14): 10937. DOI: 10.3390/su151410937

Schwamborn G., Schirrmeister L., Frütsch F., Diekmann B. 2012. Quartz Weathering In Freeze-Thaw Cycles: Experiment And Application To The El'gygytgyn Crater Lake Record For Tracing Siberian Permafrost History. Geografiska Annaler: Series A – Physical Geography 94(4): 481-499.

DOI: 10.1111/j.1468-0459.2012.00472.x

Szopińska M., Dymerski T., Polkowska Ż., Szumińska D., Wolska L. 2016a. The chemistry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part II. Spatial trends and possible sources of organic composition. Sedimentary Geology 340: 84-95.

DOI: 10.1016/j.sedgeo.2016.03.001

Szopińska M., Szumińska D., Polkowska Ż., Machowiak K., Lehmann S., Chmiel S. 2016b. The chemi-stry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations. Sedimentary Geology 340: 74-83.

DOI: 10.1016/j.sedgeo.2016.03.004

Świątek S., Belzyt S., Pisarska-Jamroży M., Woronko B. 2023. Sedimentary records of liquefac-tion: Implications from field studies. Journal of Geophysical Research: Earth Surface 128: e2023JF007152. DOI: 10.1029/2023JF007152

Tarnocai C. 2009. Arctic Permafrost Soils. W: R. Margesin (red.) Permafrost Soils. Soil Biology 16: 3-16. DOI: 10.1007/978-3-540-69371-0_1

Vandenberghe J. 1988. Cryoturbations. W: M.J. Clark (red.) Advances in Periglacial Geomor-phology. Wiley, Chichester: 179-198.

Vandenberghe J. 1992. Cryoturbations: A sediment structural analysis. Permafrost and Perigla-cial Processes 3(4): 343-352. DOI: 10.1002/ppp.3430030408

Vandenberghe J. 2013. Cryoturbation structures. Encyclopedia of Quaternary Science 3: 430-435.

Vandenberghe J. 2016. The reconstruction of past permafrost: recent results, presentday gaps and future challenges. W: F. Günther, A. Morgenstern (red.) XI International Conference On Permafrost – Book of Abstracts, 20-24.06.2016, Poczdam, Niemcy. Bibliothek Wissenschaftspark Albert Einstein: 338. DOI: 10.2312/GFZ.LIS.2016.001

Van Vliet‐Lanoë B. 1988. The significance of cryoturbation phenomena in environmental re-construction. Journal of Quaternary Science 3(1): 85-96. DOI: 10.1002/jqs.3390030110

Van Vliet-Lanoë B. 1991. Differential frost heave, load casting and convection: Converging mechanisms; a discussion of the origin of cryoturbations. Permafrost and Periglacial Pro-cesses 2 (2): 123-139. DOI: 10.1002/ppp.3430020207

Wang D., Ma W., Yonghong N., Chang X., Wen Z. 2007. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Region Science Technology 48(1): 34-43.

DOI: 10.1016/j.coldregions.2006.09.008

Wang T.L., Liu Y.J., Yan H., Xu L. 2015. An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles. Cold Regions Science and Techno-logy 112: 51-65.

DOI: 10.1016/j.coldregions.2015.01.004

Wentworth C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30(5): 377-392.

Wright J.S. 2000. The spalling of overgrowths during experimental freeze-thaw of a quartz sand-stone as a mechanism of quartz silt production. Micron 31(6): 631-638.

DOI: 10.1016/S0968-4328(99)00074-8

Xie S., Qu J., Xu X., Pang Y. 2017. Interactions between freeze-thaw actions, wind erosion des-ertification, and permafrost in the Qinghai–Tibet Plateau. Natural Hazards 85: 829-850.

DOI: 10.1007/s11069-016-2606-4

Zhai J., Zhang Z., Melnikov A., Zhang M., Yang L., Jin D. 2021. Experimental Study on the Effect of Freeze-Thaw Cycles on the Mineral Particle Fragmentation and Aggregation with Different Soil Types. Minerals 11: 913. DOI: 10.3390/min11090913

Zhou Z., Ma W., Zhang S., Mu Y., Li G. 2018. Effect of freeze-thaw cycles in mechanical be-haviors of frozen loess. Cold Region Science and Technology 146: 9-18.

DOI: 10.1016/j.coldregions.2017.11.011

Downloads

Published

2024-01-08

How to Cite

Śniady, I. (2024). Changes in the structure of sandy and silty sediments after 1000 freeze-thaw cycles – preliminary results from laboratory experiment. Acta Geographica Lodziensia, 113, 103–114. https://doi.org/10.26485/AGL/2023/113/6

Issue

Section

Articles