Lacustrine, fluvial and slope deposits in the wetland shore area in Serteya, Western Russia

  • Piotr Kittel University of Lodz, Faculty of Geographical Sciences, Department of Geology and Geomorphology https://orcid.org/0000-0001-6987-7968
  • Andrey Mazurkevich The State Hermitage Museum, Department of Archaeology of Eastern Europe and Siberia https://orcid.org/0000-0002-4947-0498
  • Alexander Alexandrovskiy Russian Academy of Sciences, Institute of Geography, Department of Soil Geography and Evolution
  • Ekaterina Dolbunova The State Hermitage Museum, Department of Archaeology of Eastern Europe and Siberia https://orcid.org/0000-0003-1843-9620
  • Mateusz Krupski Wrocław University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection https://orcid.org/0000-0001-7992-967X
  • Jacek Szmańda Pedagogical University of Cracow https://orcid.org/0000-0002-4058-8334
  • Renata Stachowicz-Rybka W. Szafer Institute of Botany, Polish Academy of Sciences
  • Katarzyna Cywa W. Szafer Institute of Botany, Polish Academy of Sciences https://orcid.org/0000-0003-0414-0927
  • Agnieszka Mroczkowska Polish Academy of Sciences, Institute of Geography and Spatial Organization https://orcid.org/0000-0002-3534-7843
  • Daniel Okupny University of Szczecin, Institute of Marine and Environmental Sciences https://orcid.org/0000-0002-8836-6044
Słowa kluczowe: sedimentology, micromorphology, micro- and macrofossils, geochemistry, palaeolake shore zone, archaeological layers

Abstrakt

The article presents the results of a study on sediment deposition processes in the palaeolake shore zone, at the multilayered Serteya II archaeological site in Western Russia. In recent years, geomorphological, palaeopedological and palaeoecological research was undertaken in strict cooperation with archaeological fieldwork. The Serteya II site occupies a substantial area of a kame terrace and biogenic plain within a palaeolake basin. From an archaeological point of view, the site is represented by few Mesolithic artefacts, but mostly by remnants of hunter–gatherer–fisher communities attributed in the Russian scientific tradition to the Neolithic period and dated from 6300 BC to 2000 BC. Later, the area was used by people in the Bronze Age, Early Iron Age and Early Middle Ages. The integration of archaeological and multidisciplinary palaeoenvironmental research allowed the natural and human induced deposition of mineral-organic and minerogenic sediments to be reconstructed, as well as the development of structures in the lake shore zone. The changes from lacustrine to fluvial system were documented and the human impact is recorded mostly in the acceleration of slope processes.

Bibliografia

Aleksandrovsky A.L., Aleksandrovskaya E.I. 2005. Evolyutsiya pochv i geograficheskaya sreda. Nauka, Moskva.

Andersen T., Cranston P., Epler J. 2013. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. Insect Syst. Evol. Suppl. 66, Scandinavian Entomology Ltd., Lund.

Barnett C. 2012. Additional specialist report “Environmental Wood charcoal” to the publication Suburban Life in Roman Durnovaria: Excavations at the Former County Hospital Site, Dorchester 2000-2001 by Mike Trevarthen, Wessex Archaeology; http://www.wessexarch.co.uk/files/ projects/dorchester_county_hospital/02_Char-coal.pdf [available at 25.02.2012].

Bengtsson L., Enell M. 1986. Chemical analysis. In: B.E. Berglund (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons ltd., Chichester: 423-451.

Benkova V.E., Schweingruber F.H. 2004. Anatomy of Russian Woods. Haupt Verlag, Wien.

Brooks S.J., Heiri O., Langdon P.G. 2007. The identification and use of palaearctic chironomidae larvae in palaeoecology. Quaternary Research Association, London.

Berggren G. 1969. Atlas of seeds and small fruits of Northwest-European plant species with morphological descriptions. Part 2. Cyperaceae. Swedish Nat. Sci. Res. Council, Stockholm.

Bjerring R., Becares E., Declerck S., Gross E.M., Hansson L.A., Kairesalo T., Nykänen M., Halkiewicz A., Kornijów R., Conde-Porcuna J.M., Seferlis M., Nõges T., Moss B., Amsinck S.L., Odgaard B.V., Jeppesen E. 2009. Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshwater Biology 54: 2401-2417.

Bugała W. 1991. Drzewa i krzewy dla terenów zieleni. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.

Bullock P., Fedoroff N., Jongerius A., Stoops G., Tursina T. 1985. Handbook for soil thin section description. Waine Research, Wolverhampton.

Buskens R. 1987. The chironomid assemblages in shallow lentic waters differing in acidity, buffering capacity and trophic level in the Netherlands. Entomologica Scandinavica, Suppl. 29: 217-224.

Cappers R.T.J., Bekker R.M., Jans J.E.A. 2006. Digital seed atlas of the Netherlands. Barkhuis/Groningen University Library, Groningen.

Courty M., Goldberg P., Macphail R. 1989. Soils and Micromorphology in Archaeology. Cambridge University Press, Cambridge.

Cywa K. 2018. Uwarunkowania doboru surowca drzewnego w polskich grodach i ośrodkach wczesnomiejskich w średniowieczu – analiza ksylologiczna przedmiotów użytkowych. (Unpublished doctoral dissertation). Instytut Botaniki im. Władysława Szafera Polskiej Akademii Nauk, Kraków.

Danielewicz W. 2012. Drzewa leśne Polski. In: W. Matuszkiewicz, P. Sikorski, W. Szwed, M. Wierzba (eds) Zbiorowiska roślinne Polski. Lasy i zarośla. Ilustrowany przewodnik. Wydawnictwo Naukowe PWN, Warszawa: 21-62.

Deák J., Gebhardt A., Lewis H., Usai M.R., Lee H. 2017. Soils disturbed by vegetation clearance and tillage. In: C. Nicosia, G. Stoops (eds) Archaeological Soil and Sediment Micromorphology. Wiley-Blackwell: 233-264.

Dolukhanov P.M., Gey N.A., Miklyayev A.M., Mazurkevich A.N. 1989. Rudnya-Serteyska, A stratified dwellingsite in the upper Duna basin (a multidisciplinary research). Fennoscandia Archaeologica 6: 23-27.

Dolukhanov P., Shukurov K., Arslanov A.N., Mazurkevich L.A., Savel'eva E.N., Dzinoridze M.A., Kulkova M., Zaitseva G.I. 2004. The Holocene Environment and Transition to Agriculture in Boreal Russia (Serteya Valley Case Study). Internet Archaeology 17, http://in-tarch.ac.uk/journal/issue17

Frey D.G. 1986. Cladocera analysis. John Wiley & Sons Ltd.

Folk R.L., Ward W. 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27: 3-26.

Giłka W. 1999. Sezonowa dynamika pojawu wybranych gatunków ochotkowatych z plemienia Tanytarsini Pojezierza Kaszubskiego (Diptera: Chironomidae). Acta Entomologica Silesiana 7/8: 31-42.

Giłka W. 2011. Analiza różnorodności faunistycznej ochotkowatych z plemienia Tanytarsini w Europie (Diptera: Chironomidae). DIPTERON, 27: 11-31.

Ginzburg K.E. 1981. Fozfor osnovnykh tipov pochv SSSR. Nauka, Moskva.

Goldberg P., Macphail R. 2006. Practical and Theoretical Geoarchaeology. Wiley-Blackwell.

Grimm E.C. 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13-35.

Grimm E.C. 2016. TiliaIT. Available at https://www.til-iait.com/

Hamond F.W. 1983. Phosphate analysis of archaeological sediments. In: Landscape Archeology in Ireland. Oxford. BAR British Series. Vol. 116: 47-80.

Hantemirova E.V., Berkutenko A.N., Semerikov V.L. 2012. Systematics and gene geography of Juniperus communis inferred from isoenzyme data. Russian Journal of Genetics 48(9): 920-926.

Ismail-Meyer K. 2014. The potential of micromorphol-ogy for interpreting sedimentation processes in wetland sites: a case study of a Late Bronze–early Iron Age lakeshore settlement at Lake Luokesa (Lithuania). Vegetation History and Ar-chaeobotany 23: 367-382.

Ismail-Meyer K., Rentzel P., Wiemann P. 2013. Neo-lithic Lakeshore Settlements in Switzerland: New Insights on Site Formation Processes from Micromorphology. Geoarchaeology: An International Journal 28: 317-339.

Jeppesen E., Christoffersen K., Landkildehus F., Lau-ridsen T., Amsinck S. L., Riget F., Søndergaard M. 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329-337.

Johnson O. 2014. Przewodnik Collinsa Drzewa. Mul-tico Oficyna Wydawnicza, Warszawa.

Karkanas P., Pavlopoulos K., Kouli K., Ntinou M., Tsartsidou G., Facorellis Y., Tsourou T. 2011. Palaeoenvironments and Site Formation Processes at the Neolithic Lakeside Settlement of Dispilio, Kastoria, Northern Greece. Geoarchaeology: An International Journal 26: 83-117.

Karkanas P., Tourloukis V., Thompson N., Giusti D., Panagopoulou E., Harvati K. 2018. Sedimentology and micromorphology of the Lower Palaeolithic lakeshore site Marathousa 1, Megalopolis basin, Greece. Quaternary International 497: 123-136.

Kittel P., Mazurkevich A., Dolbunova E., Kazakov E., Mroczkowska A., Pavlovskaia E., Piech W., Płóciennik M., Sikora J., Teltevskaya Y., Wieckowska-Lüth M. 2018. Palaeoenvironmental reconstructions for the Neolithic pile-dwelling Serteya II site case study, Western Russia. Acta Geographica Lodziensia 107: 191-213.

Kittel P., Mazurkevich A., Wieckowska-Lüth M., Pawłowski D., Dolbunova E., Gauthier E., Krąpiec M., Maigrot Y., Danger M., Mroczkowska A., Okupny D., Płóciennik M., Szmańda J., Thiebaut E., Słowiński M. 2020 (in press.) On the border between land and water: the environmental conditions of the Neolithic occupation from 4.3 until 1.6 ka BC at Serteya, Western Russia. Geoarchaeology an Interdisciplinary Journal.

Koster E.H. 1978. Transverse rib: their characteristics, origin and paleohydrologic significance. In: A.D. Miall (ed.) Fluvial sedimentology. Cana-dian Society of Petroleum Geologists Memoir 5: 161-186.

Krupski M., Kabala C., Sady A., Gliński R., Wojcieszak J. 2017. Double- and triple-depth digging and Anthrosol formation in a medieval and modern-era city (Wrocław, SW Poland). Geoarchaeological research on past horticultural practices. Catena 153: 9-20.

Kühn P., Aguilar J., Miedema R., Bronnikova M. 2018. Textural Pedofeatures and Related Horizons. In: G. Stoops, V. Marcelino, F. Mees (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier: 377-423.

Macphail R.I., Allen M.J., Crowther J., Cruise G.M., Whittaker J.E. 2010. Marine inundation: Effects on archaeological features, materials, sediments and soils. Quaternary International 214: 44-55.

Marguerie D., Hunot J.Y. 2007. Charcoal analysis and dendrology: data from archaeological sites in north-western France. Journal of Archaeological Science 34: 1417-1433.

Mazurkevich A.N., Dolbunova E.V., Maigrot Y., Hookk D. 2010. Results of underwater excavations of Serteya II and research of pile-dwellings in Northwest Russia. Archaeologia Baltica 14: 47-64.

Mazurkevich A., Dolbunova E., Kittel P., Fassbender J., Maigrot Y., Mroczkowska A., Płóciennik M., Sikora J., Słowiński M., Sablin M., Shirobokov I. 2017. Multi-disciplinary research on the Neolithic pile-dwelling Serteya II site (Western Russia) and the landscape reconstruction. In: A. Marciniak-Kajzer, A. Andrzejewski, A. Golański, S. Rzepecki (eds) Nie tylko krzemienie. Not only flints. Instytut Archeologii Uniwersytetu Łódzkiego, Łódzka Fundacja Badań Naukowych, Stowarzyszenie Naukowe Archeologów Polskich Oddział w Łodzi, Łódź: 103-128.

Mazurkevich A., Kittel P., Maigrot Y., Dolbunova E., Mroczkowska A., Wieckowska-Lüth M., Piech W. 2020. Natural and anthropogenic impact on the formation of archaeological layers in a lake shore area: case study from the Serteya II site, Western Russia. Acta Geographica Lodziensia 110: 81-102.

Moller Pillot H.K.M. 2009. Chironomidae larvae. Bi-ology and Ecology of the Chironomini. KNNV Publishing, Zeist.

Mycielska-Dowgiałło E., Ludwikowska-Kędzia M. 2011. Alternative interpretations of grainsize data from Quaternary deposits. Geologos 17,4: 189-203.

Nalepka D., Walanus A. 2003. Data processing in pol-len analysis. Acta Palaeobotanica 43: 125-134.

Nicosia C., Stoops G. (eds) 2017. Archaeological Soil and Sediment Micromorphology. John Wiley & Sons, Oxford.

Nolte U. 1989. Observations on neotropical rainpools (Bolivia) with emphasis on Chironomidae (Diptera). Studies on Neotropical Fauna and Environment 24: 105-120.

Økland K.A., Økland J. 2000. Freshwater bryozoans (Bryozoa) of Norway: Distribution and ecology of Cristatella mucedo and Paludicella articulata. Hydrobiologia 421(1–3): 1-24.

Passega R. 1964. Grain size representation by CM patterns as a geological tool. Journal of Sedimentary Petrology 34: 830-847.

Passega R., Byramjee R. 1969. Grain size image of clastic deposits. Sedimentology 13: 830-847.

Pawłowski D., Gruszka B., Gallas H., Petera-Zganiacz J. 2013. Changes in the biota and sediments of glacial Lake Koźmin, Poland, during the late Saalian (Illinoian). Journal of Paleolimnology 49: 679-696.

Pawłowski D., Borówka R.K., Kowalewski G.A., Luoto T.P., Milecka K., Nevalainen L., Okupny D., Zieliński T., Tomkowiak J. 2016. Late Weichselian and Holocene record of the paleoenvironmental changes in a small river valley in Central Poland. Quaternary Science Review 135: 24-40.

Pinder L.C.V. 1983. The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic region-Keys and diagnoses. Chironomidae of the Holarctic Region. Keys and Diagnoses, 1. Larvae, Entomol. Scand. Suppl. 19: 149-294.

Pleskot K., Tjallingii R., Makohonienko M., Nowaczyk N., Szczuciński W. 2018. Holocene paleohydrological reconstruntion of Lake Strzeszyńskie (western Poland) and its implications for the central European climatic transition zone. Journal of Paleolimnology 59: 443-459.

Podbielkowski Z. 2002. Fitogeografia części świata, Europa, Azja, Afryka, tom 1. Wydawnictwo Naukowe PWN, Warszawa.

Pukienė R. 2008. Vilniaus Žemutinės pilies XIII – XVI a radinių medienos rūšys. Lietuvos pilys 4: 95-111.

Rühle E. (ed.) 1973. Metodyka badań osadów czwartorzędowych. Wydawnictwo Geologiczne, Warszawa.

Schweingruber F.H. 1978. Mikroskopische Holzanatomie. Zürcher AG, Zug.

Scott A.C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 11-39.

Sinkiewicz M. 1995. Przeobrażenia rzeźby terenu i gleb w okolicy Biskupina wskutek denudacji antropogenicznej. In: W. Niewiarowski (ed.) Zarys zmian środowiska geograficznego okolic Biskupina pod wpływem czynników naturalnych i antropogenicznych w późnym glacjale i holocenie. Oficyna Wydawnicza "Turpress", Toruń: 281-290.

Sinkiewicz M. 1998. Rozwój denudacji antropogenicznej w środkowej części Polski północnej. Uniwersytet Mikołaja Kopernika, Toruń.

Sly P.G., Thomas R.L., Pelletier B.R. 1983. Interpretation of moment measures derived from waterlain sediments. Sedimentology 30: 219-233.

Stahlschmidt M.C., Miller C.E., Ligouis B., Goldberg P., Berna F., Urban B., Conard N.J. 2015. The depositional environments of Schöningen 13 II-4 and their archaeological implications. Journal of Human Evolution 89: 71-91.

Stochlak J. 1978. Struktury i tekstury młodoplejstoceńskich osadów deluwialnych. Biuletyn Instytutu Geologicznego 306: 115-174.

Stochlak J. 1996. Osady deluwialne nieodłączny efekt procesu spłukiwania i propozycja ich podziału. In: A. Józefciuk (ed.) Ochrona agroekosystemów zagrożonych erozją: ogólnopolskie sympozjum naukowe. Puławy - Lublin - Zwierzyniec, 11-13 września 1996 r., Prace Naukowe, Część 2, Puławy: 111-132.

Stoops G. 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison.

Sundborg A. 1967. Some Aspects on Fluvial Sediments and Fluvial Morphology I. General Views and Graphic Methods. Landscape and Processes: Essays in Geomorphology. Geografiska Annaler 49(2-4): 333-343.

Szeroczyńska K., Sarmaja-Korjonen K. 2007. Atlas of subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society.

Środoń A. 1983. Jodła pospolita w historii naszych lasów. In: S. Białobok (ed.) Jodła pospolita Abies alba Mill. Nasze Drzewa Leśne 4. Insty-tut Dendrologii, Polska Akademia Nauk, Państwowe Wydawnictwo Naukowe, Warszawa-Poznań: 9-39.

Tarasov P.E., Savelieva L.A., Long T., Leipe C. 2019. Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quaternary International 516: 21-41.

Teisseyre A.K. 1988. Mady dolin sudeckich. Cz. III: Subarealnie i subakwalnie deponowane osady pozakorytowe w świetle eksperymentu terenowego (1977-1979). Geologia Sudetica 23,2: 1-55.

Velichkevich F.Yu., Zastawniak E. 2006. Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 1 – Pteridophytes and monocotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Velichkevich F.Yu., Zastawniak E. 2008. Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 2 – Herbaceous dicotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Velleste L. 1952. Analiz fosfatnykh soyedineniy pochvy dlya ustanovleniya mest drevnikh poseleniy. Kratkiye Soobshcheniya Instituta Istorii Material'noy Kul'tury AN SSSR 42: 135-140.

Vepraskas M.J., Lindbo D.L., Stolt M.H. 2018. Redoximorphic Features. In: G. Stoops, V. Marcelino, F. Mees (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier: 425-445.

Vrydaghs L., Ball T., Devos Y. 2016. Beyond redundancy and multiplicity. Integrating phytolith analysis and micromorphology to the study of Brussels Dark Earth. Journal of Archaeological Science 68: 79-88.
Opublikowane
2020-12-24
Dział
Artykuły