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Abstract

Among all two-dimensional algebras of the second rank with unit over the field of
complex numbers, we find the biharmonic algebra B, containing bases {e1, e2} such that
the B-valued "analytic" functions Φ(xe1 + ye2), where x and y are real variables, satisfy
a homogeneous partial differential equation of the fourth order with complex coefficients,
which has some characteristic of the third order. The set of pairs ({e1, e2},Φ) is described
in the explicit form. Particular solutions of this PDE are found.
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1 Statement of the problems
Let D be a domain of the Cartesian plane xOy, R is the field of real numbers, C is
the field of complex numbers, C+ := C \ {0}.

Consider the equation

Lu(x, y) :=
(
b1

∂4

∂y4
+ b2

∂4

∂x∂y3
+ b3

∂4

∂x2∂y2
+

+ b4
∂4

∂x3∂y
+ b5

∂4

∂x4

)
u(x, y) = 0 ∀(x, y) ∈ D, (1)

where b1 := 1, b2 := −(1+3i), b3 := 3(i−1), b4 := 3+ i, b5 := −i, i is the imaginary
complex unit, a solution (complex-valued) u : D −→ C is assumed be such that
functions

u1(x, y) := Reu(x, y), u2(x, y) := Imu(x, y) ∀(x, y) ∈ D, (2)



have continuous partial derivatives up to the fourth order.
The characteristic equation of (1) has the form

l (s) := b1s
4 + b2s

3 + b3s
2 + b4s+ b5 = 0 ∀s ∈ C, (3)

Take into account the equality l (s) = (s − i)3 (s− 1) for all s ∈ C, we go to
decision that all roots of Eq. (3) are

{b1,−b5} := ker l, (4)

here the root i = −b5 has the third multiplicity.
We call Equation (1) (a special case of) the generalized biharmonic equation (a

motivation of this name is given in [6, Sect. 4]).
Obvious, a function u(x, y) = u1(x, y) + iu2(x, y), uk : D −→ R, k = 1, 2, is a

solution of Equation (1) if and only if a pair (u1, u2) is a solution of the system of
partial differential equations{

LR u1(x, y) = LI u2(x, y),
LI u1(x, y) = −LR u2(x, y) ∀(x, y) ∈ D,

(5)

where LR and LI are operators of the type as in the left part in (1) with bk := Re bk
and bk := Im bk, k = 1, 4, respectively.

By B∗ we denote an associative algebra of the second rank with unit e and
commutative over the field of complex numbers C. Let {e1, e2} be a basis of B∗
satisfying the relation

L(e1, e2) := b1(e2)
4 + b2e1(e2)

3 + b3(e1)
2(e2)

2 + b4(e1)
3e2 + b5(e1)

4 = 0. (6)

We introduce the notation: µe1,e2 := {xe1 + ye2 : x, y ∈ R} (the linear span of
the vectors e1 and e2 over the field of real numbers R).

In what follows,

(x, y) ∈ D, ζ := x+ iy ∈ Dζ := {ζ = xe1 + ye2 : (x, y) ∈ D} ⊂ µe1,e2 ,

z := x+ iy ∈ Dz := {z = x+ iy : (x, y) ∈ D} ⊂ C.
In addition to conditions (6), we assume that the basis {e1, e2} also satisfies the

condition:

(∗) each nonzero element h ∈ µe1,e2 is invertible (i.e., there exists an inverse ele-
ment h−1 ∈ B∗ such that hh−1 = e).

We shall say that a basis {e1, e2} satisfies condition (mb) if it satisfies the con-
dition (6) and (∗) simultaneously.

For each required basis {e1, e2} satisfying condition (mb), we consider functions
monogenic in Dζ , i.e., functions Φ: Dζ −→ B∗ of the form

Φ(ζ) = U1(x, y) e1 + U2(x, y) ie1 + U3(x, y) e2 + U4(x, y) ie2 ∀ζ ∈ Dζ , (7)

having the classical derivative Φ′(ζ) at any point ζ in Dζ :

Φ′(ζ) := lim
h→0, h∈µe1,e2

(
Φ(ζ + h)− Φ(ζ)

)
h−1 .



We also denote each component Uk : D −→ R in (7) by Uk [Φ], i.e., Uk [Φ(ζ)] :=
Uk(x, y), k ∈ {1, . . . , 4}.

If a monogenic function Φ has continuous derivatives Φ(k)(ζ) up to the k-th order,
inclusively, k ≥ 4, in the domain Dζ , then, according to the relations

LΦ(ζ) = L(e1, e2)Φ4(ζ) = 0 (8)

for any ζ ∈ Dζ (these relations are deduced by analogy with the corresponding
relations in [1, Sec. 6] for a special case of the operator L of the type (1)) and equality
(7), we conclude that the components Uk, k = 1, 4, satisfy the equation (1) in the
domain D, i.e, are its real-valued solutions. Thus, functions u(x, y) ≡ uk,m(x, y) :=
Uk(x, y) + iUm(x, y), k ̸= m; k,m ∈ 1, 4, are solutions of the equation (1).

Note that hypercomplex "analytic" functions Φ(xe1 + ye2) with values in finite-
dimensional algebras over the field of real (of dimension four) or complex (of dimen-
sion two) numbers whose components satisfy equations of the form (1) (mostly of
elliptic type) were considered, e.g., in [7, 8, 9, 10, 11, 12].

Despite the availability of numerous works, the complete description of the indi-
cated triples B∗, {e1, e2}, Φ (or similar objects for the other definitions of “mono-
geneity”) associated with Equation (1) has been unknown. Note, that the state-
ment of this problem for the biharmonic equation and its solution has been done by
I. P. Mel’nichenko in [13]; for the case b1 = b5 = 1, b2 = b4 = 0, b3 > 2 (in (1))
this problem was formulated and solved in [1]; for b1 = 1 = b5 = 1, b2 = b4 = 0,
−2 < b3 < 2, its partial solution was found in [3]; for b1 = 1, b5 = p2, b2 = b4 = 0,
b3 = p2+1, p > 0, p ̸= 1, its partial solution was found in [4]; the case when all four
roots of the equation (3) are simple is considered in [6].

2 Commutative and associative algebras of the sec-
ond rank and their bases associated with Equation
(1)

It is known (cf., e.g., [14]) that there exist (to within an isomorphism) two associa-
tive algebras of the second rank with unit e commutative over the field of complex
numbers C:

B := {c1e+ c2ρ : ck ∈ C, k = 1, 2}, ρ2 = 0, (9)

B0 := {c1e+ c2ω : ck ∈ C, k = 1, 2}, ω2 = e. (10)

The algenra B0 contains a basis of orthogonal idempotents {I1, I2}, where

I1 =
1

2
(e+ ω) , I2 =

1

2
(e− ω) , I1I2 = 0, (Ik)2 = Ik, k = 1, 2. (11)

It is obvious that
I1 + I2 = e, I1 − I2 = ω. (12)

An element A = c1e + c2ρ in B, ck ∈ C, k = 1, 2, is invertible if and only if
c1 ∈ C+. If this condition is satisfied, then the following equality is true for the



inverse element (see [15]):

A−1 =
1

c1
e− c2

(c1)2
ρ. (13)

The element w = c1I1 + c2I ∈ B0, ck ∈ C, k = 1, 2, is invertible if and only if
ck ∈ C+, k = 1, 2. If this condition is satisfied, then the following equality is true
for the inverse element (see [16, p. 38]):

w−1 =
1

c1
I1 +

1

c2
I2. (14)

The theorem presented below gives the description of all couples B∗, {e1, e2},
where a basis {e1, e2} satisfies condition (mb). In particular, it is established that
B∗ = B.

Theorem 2.1. The algebra B0 does not contain any basis {e1, e2} satisfying condi-
tion (mb).

All bases of the algebra B satisfying condition (mb) can be represented in the
form

e1 = α e+ β1 ρ, e2 = iα e+ β2 ρ, (15)

where α is arbitrary complex number, complex numbers β1 and β2 satisfy condition

β2 ̸= iβ1. (16)

Proof. We seek pairs of basis elements e1, e2 of the form

ek = αke+ βkρ, k = 1, 2, (17)

where the unknown complex coefficients αk, βk, k = 1, 2, satisfy the relation

∆e1e2 := α1β2 − α2β1 ̸= 0. (18)

It is easy to obtain formulas

(em)k = (αm)
k−1

(αme+ kβmρ) , k = 1, 4,m = 1, 2. (19)

Substituting (18) into (6) and taking into account (19), we get

L(e1, e2) = b1α
3
2 (α2e+ 4β2ρ) + b2 (α1e+ β1ρ)α

2
2 (α2e+ 3β2ρ)+

+b3α1α2 (α1e+ 2β1ρ) (α2e+ 2β2ρ) + b4α
2
1 (α1e+ 3β1ρ) (α2e+ β2ρ)+

+ b5α
3
1 (α1e+ 4β1ρ) = Ae e+Aρ ρ, (20)

where

Ae := b1α
4
2 + b2α

3
2α1 + b3α

2
2α

2
1 + b4α2α

3
1 + b5α

4
1, Aρ := (b2β1 + 4b1β2)α

3
2+

+(3b2β2 + 2b3β1)α1α
2
2 + (2b3β2 + 3b4β1)α

2
1α2 + α3

1 (b4β2 + 4b5β1) .



Hence, the required αk, βk, k = 1, 2, must satisfy the following system:

Ae = 0, Aρ = 0, ∆e1e2 ̸= 0. (21)

Consider the first equation in (21). According to inequality b1 ̸= 0, we get that
α1 ̸= 0 (otherwise, α1 = α2 = 0, which contradicts the third relation in (21)), and
the equality

α2

α1
= b∗ ∀b∗ ∈ ker l. (22)

holds. Dividing both sides of the second equation in (21) by α3
1 and using (22), we

get
− l◦(b∗)β1 + l ′ (b∗)β2 = 0, (23)

where
l◦(s) := −

(
b2s

3 + 2b3s
2 + 3b4s+ 4b5

)
∀s ∈ C,

l ′(b∗) is the value of the derivative of the polynomial l(s) from (3) for s = b∗.
Taking into account that b∗ ∈ ker l, we have two cases: 1) b∗ = b1, 2) b∗ = −b5.

Let b∗ = b1. Then (22) turns onto

α2 = α1 = α ∈ C+. (24)

Simple computation shows that

l◦ (b1) ≡ l ′ (b1) = −2 (1 + i) . (25)

Therefore, e1 = α e+β ρ ≡ e2 (α, β ∈ C+), which contradicts the linear independence
of the pair e1 and e2 over the field of complex numbers. Thus, we arrive at the
conclusion, that if b∗ = b1, then there is no required bases {e1, e2} in B.

Let b∗ = −b5. Then (22) turns onto

α2 = iα1 ≡ iα, α ∈ C+. (26)

Due to the fact that the root s = −b5 has the third multiplicity, we get l ′ (−b5) = 0.
Then it easy to show that l◦ (−b5) = 0. Therefore, the equation (23) is true for any
βk ∈ C, k = 1, 2.

Among the obtained couples {e1, e2}, it is necessary to select the set of linearly
independent couples. To this end, we check the validity of the third relation in system
(21). Substituting (26) to (17), and then the letter to (18), we obtain ∆e1,e2 =
α (β2 − iβ1) ̸= 0, α ∈ C+, if and only if β2 ̸= iβ1.

Joining results of cases 1) and 2) we obtain the formulas (15).
Let us find necessary bases in the algebra B0. It easy to show that elements

ek = αk I1 + βk I2, k = 1, 2, (27)

satisfy the equalities

enk = αn
k I1 + βn

k I2, n = 1, 4, k = 1, 2 (28)



Denote (ek)
0 := 1, k = 1, 2, λ0 := 1 for all real λ. Then

L(e1, e2) =
5∑

k=1

bk
(
α5−k
2 I1 + β5−k

2 I2
) (

αk−1
1 I1 + βk−1

1 I2
)
=

=

5∑
k=1

bk
(
α5−k
2 αk−1

1 I1 + β5−k
2 βk−1

1 I2
)
.

Thus, the required system for the coefficients of the basis elements ek, k = 1, 2, has
the form

Ae ≡
5∑

k=1

bkα
5−k
2 αk−1

1 = 0,

5∑
k=1

bkβ
5−k
2 βk−1

1 = 0, ∆e1e2 ≡ α1β2 − α2β1 ̸= 0. (29)

As in (21), we see that α1 ̸= 0. In a similar way, we consider the second equation
in (29) and the relation ∆e1e2 ̸= 0, as a result, we obtain that β1 ̸= 0. With the
use of elementary transformations we arrive at the conclusion that the system (29)
is equivalent to the system:

l
(
α2

α1

)
= 0, l

(
β2

β1

)
= 0, ∆e1e2 ̸= 0. (30)

All the solutions of the system (30) have the form:

α2

α1
= s̃1,

β2

β1
= s̃2 ∀ s̃k ∈ ker l, k = 1, 2, s̃1 ̸= s̃2. (31)

Then (27) takes the following form

e1 = α1 I1 + β1I2 e2 = s̃1α1 I1 + s̃2β1 I2.

Consider possible cases: 1) s̃1 = −b5 ≡ i; 2) s̃1 = b1 ≡ 1. In the first case we have
ζ = xe1 + ye2 ≡ α1 (x+ iy) I1 + β1 (x+ y) I2. By the formula (14), we see that the
inverse element ζ−1 does not exist for y = −x. Thus this basis {e1, e2} does not
satisfy the condition (mb). By the similar arguments we can prove that ζ−1 does
not satisfy the condition (mb) in the second case. This enables us to conclude that
the required bases do not exist in the algebra (10).

The Theorem is proved.

The equalities (15) yield relations

e =
β2 e1 − β1 e2
α (β2 − iβ1)

, ρ =
e2 − ie1
β2 − iβ1

, (32)

and the both equalities follow the multiplication table for the basis {e1, e2} in (15):

e21 =
α

β2 − iβ1
((β2 − 2iβ1) e1 + β1e2) ,

e22 =
α

β2 − iβ1
(β2e1 + (β1 + 2iβ2) e2) ,

e1e2 =
α

β2 − iβ1
(β1e1 + β2e2) .



3 Monogenic functions related to Equation (1)
We consider monogenic functions functions Φ: Dζ −→ B, where a basis {e1, e2}
has the form of (15). Each such function has four real components-functions Uk,
k = 1, 4, in (7).

As in the case where a biharmonic operator is considered instead of the operator
L (cf., e.g., [17, 18]), we establish the following theorem:

Theorem 3.1. function Φ: Dζ −→ B is monogenic in the domain Dζ if and only
if its components Uk : D −→ R, k = 1, 4, in decomposition (7) are differentiable in
the domain D and the following analog of the Cauchy–Riemann conditions is true:

∂Φ(ζ)

∂y
e1 =

∂Φ(ζ)

∂x
e2 ∀ ζ = xe1 + ye2 ∈ Dζ . (33)

Using (15) we have

ζ = xe1 + ye2 ≡ αz e+ (β1x+ β2y) ρ ∀ζ ∈ µe1,e2 . (34)

Similar to the proof of Theorems 1 and 2 in [18] with use of Theorem 3.1 and
the equality (34), we obtain an expression of monogenic functions via holomorphic
functions of complex variable z in the domain Dz.

Theorem 3.2. A function Φ: Dζ −→ B is monogenic in Dζ if and only if the
following equality is fulfilled

Φ(ζ) = F (z) e+

(
β1x+ β2y

α
F ′(z) + F0(z)

)
ρ ∀ζ ∈ Dζ , (35)

where F , F0 are some holomorphic functions of the complex variable z in the domain
Dz, F ′ is the derivative of F .

Remark 3.3. A particular case of Theorem 3.2 for e1 = e (α = 1, β1 = 0) fol-
lows also from the paper [11], where a “monogeneity” of function Φ is understud
as differentiable in the sense of Gateaux and continuous in the domain Dζ func-
tion Φ: Dζ −→ B. Note also that the existence of the basis (15) is postulated only
(coefficients at e and ρ in (15) are not found in the explicit form).

Corollary 3.4. Every monogenic function Φ: Dζ −→ B has continuous derivatives
Φ(n) of any order n, n = 1, 2, . . . in the domain Dζ . The components Uk = Uk [Φ],
k = 1, 4, are infinitely continuously differentiable functions in the domain D and
satisfy Equation (1) in this domain.

It follows from Theorems 3.1 and 3.2 that Uk = Uk [Φ], k = 1, 4 are infinitely
continuously differentiable functions in the domain D and, therefore, the equality
(8) is valid.

Substituting (32) into (35) and replacing F (z)
α(β2−iβ1)

onto F (z) and F0(z)
(β2−iβ1)

onto
F0(z), we obtain an expression of monogenic function Φ: Dζ −→ B with respect to
the basis {e1, e2} in (15):

Φ(ζ) = (β2F (z)− i (β1x+ β2y)F
′(z)− iF0(z)) e1+



+(−β1F (z) + (β1x+ β2y)F
′(z) + F0(z)) e2 ≡

≡ Ue1 [Φ(ζ)] e1 +Ue2 [Φ(ζ)] e2 ∀ζ ∈ Dζ . (36)

Consider notations:

V1(x, y) := ReUe1 [Φ(ζ)] , V2(x, y) := ImUe1 [Φ(ζ)] ,

V3(x, y) := ReUe2 [Φ(ζ)] , V4(x, y) := ImUe2 [Φ(ζ)] .

Corollary 3.5. For any complex numbers c1 and c2 functions

uc1,c2(x, y) := c1Ue1 [Φ(ζ)] + c2Ue2 [Φ(ζ)] ∀(x, y) ∈ D, (37)

are solutions of Equation (1).
For any real numbers ak, k = 1, 4, a function

ua1,a2,a3,a4(x, y) :=

4∑
k=0

akVk(x, y), (38)

is a real-valued solution of Equation (1).
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Funkcje monogeniczne o wartościach w algebrach drugiego rzȩdu nad
ciałem zespolonym i uogólnione równanie biharmoniczne z pewna̧ cha-
rakterystyka̧ trzeciego rzȩdu

S t r e s z c z e n i e
Wśród wszystkich dwuwymiarowych algebr drugiego rzȩdu z jedynka̧ nad ciałem

liczb zespolonych znajdujemy algebrȩ biharmoniczna̧ B zawieraja̧ca̧ bazy {e1, e2}
takie, że B-wartościowe funkcje "analityczne" Φ(xe1+ye2), gdzie x i y sa̧ zmiennymi
rzeczywistymi, spełniaja̧ jednorodne równanie różniczkowe cza̧stkowe czwartego rzȩdu
o współczynnikach zespolonych, które maja̧ charakterystykȩ trzeciego rzȩdu. Zbiór
par ({e1, e2},Φ) jest opisany w formie jawnej. Wyznaczono rozwia̧zania szczególne
tego równania różniczkowego cza̧stkowego.

Słowa kluczowe: przemienna algebra zespolona z jedynka̧, równania różniczkowe
cza̧stkowe, ze zespolonymi współczynnikami czwartego rzȩdu, funkcja monogeniczna

https://www.youtube.com/watch?v=zGqXTVuks5Q
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