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Abstract

Background: Cointegration analysis has been part of the research literature for almost 40 years. 
However, other common features that cause disequilibrium of economic categories have so far 
attracted less attention. This leads to an interesting question about the degree to which studies in 
the alternative fields are substitutive or complementary, and what conditions must be met in order 
to undertake the appropriate analysis (cointegration, co-cyclical, co-autocorrelation or other, less 
frequently discussed co-behaviors) is purposeful. 
Research purpose: The purpose of this paper is the comparison of different types of common 
stochastic behaviors. The type of common factors and the resulting analysis of movements that 
should be chosen, naturally depends on the time horizon, which can be long, medium, or short, 
but a reliable study should not ignore any of these perspectives. This study tries to demonstrate that 
the key role in this choice is played by the reduced rank of the most important matrices that occur 
in the appropriate VAR model representations or the isomorphic representations thereof. Another 
research goal was to show that the above-mentioned analyses of stochastic co-movements are 
largely complementary.
Methods: Multidimensional dynamic econometrics based on VAR models was selected for the 
study because it contains tools that enable the different methods of analyzing common behaviors 
to be analyzed. Possible combinations of full and reduced cointegrating matrix ranks and the 
medium- and long-run relationships matrices were considered and economically interpreted. 
Relationships between the matrices have been identified, and the iterative mechanism that causes 
the system to return to equilibrium is described.
Conclusions: The study confirms that the analyzed investigations on common dominant 
components were essentially complementary. Extending the analysis to seasonal cointegration 
or deterministic co-trending would allow substitutive elements to be revealed. For example, 
a cointegration analysis using a relatively short time horizon is an alternative to co-trending 
(the stochastic trend expires only in a very long perspective), and an analysis that considers a more 
integrated process could be an alternative to co-deterministic cyclical analysis.
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1. Introduction

For many years, researchers analyzing co-movements have directed their 
attention to cointegration. Given its relationship with long-run economic 
equilibrium, it is admittedly the most important but not the only example of 
factors inherent in the common behaviors of data generating processes (DGPs). 

This work’s main focus is on the co-features and common features of the 
stochastic part of DGPs, i.e., cointegration, stochastic co-cyclicality and co-
autocorrelation. In the short-term (ST), under certain conditions, the co-MA 
(co-moving average) may become similar to cointegration au rebours. This 
cointegration type (considered only for the negative integration order d) is different 
from the classical type in that it is short-run and, primarily, as a result,  the 
random component integration order increases (not decreases) with respect to 
the variables’ integration order. Also, the medium-run cointegration from the I(2) 
analysis is more similar to stochastic co-cyclicality than to classical cointegration.

Due to editorial limitations, the research scope is limited to the time domain, 
so seasonal cointegration, which involves analysis in the non-zero frequency 
domain, is only mentioned without delving into it.

The paper is structured as follows. In section 2, co-movements are 
compared, while section 3 focuses on the importance of the ranks of full and 
reduced matrices that occur in vector autoregression (VAR) models. Section 
4 explores the adjustment mechanisms present in the more complex VAR models, 
especially the role of stocks, flows and accelerant shocks. Section 5 concludes.

2. Cointegration and other co-movements

Table 1 shows the different types of factors inherent in DGP. For simplicity’s sake, 
this table is incomplete. Notwithstanding, it makes it possible to examine other 
co-feature types not only in the long run, but also in the short and medium run.

TABLE 1: Common stochastic factors in DGP

Factor Long-run Medium-run Short-run
1 2 3 4

Stochastic I(1) trend 
(I(1) domain)

CI(1,1)

Stochastic I(2) trend CI(2,2), CI(2,1) CI(2,2)
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1 2 3 4
Stochastic cycle vanished CI(1,1) in I(2) domain
Nonstationary 
stochastic cycle 

cointegration in the 
non-zero frequency 
domain (wider discus-
sion in Gregoir and 
Laroque)*

seasonal cointegration

Switch in stochastic 
structure 

co-stochastic breaking
(common stochastic 
structural change)

I(0) autocorrelation co-serial correlation

MA component 
in DGP

co-MA

ARCH effect co-ARCH
Heteroscedasticity co-heteroscedasticity

E x p l a n a t i o n s:
* S. Gregoir, G. Laroque, Multivariate Time Series: A Polynomial Error Correction Repres- 
entation Theorem, Econometric Theory 1993/9/3, pp. 329–342.
S o u r c e: own study.

As Table 1 shows, stochastic co-factors are accompanied by many 
deterministic co-factors, which will not be dealt with in this paper. 
Seasonal  cointegration will not be considered either because of its special 
nature that combines cointegration and stochastic co-seasonality. Discussing it 
thoroughly would require extending the analysis to the frequency domain (the 
paper’s focus is on zero frequency).

For many years, traditional VAR models and their vector error correction 
model VECM transformations should contain additional components. Let us 
consider a simplified model that contains only stochastic components:
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wherein П(s) is the VAR model parameters:

(1) (2) ( )
1 2 ... S

t t t t S t      Y Π Y Π Y Π Y Σ (1a)

The Гs elements measure the transitory effects of changes in lagged variable 
values. П is the total impact multiplier matrix that, under joint stationarity, is 
non-singular; therefore, it has full column rank M (variable space dimension). 

Where at least one stochastic trend is present, the П rank is R < M. Hence, 
the following decomposition is possible:

TΠ AB ,	 (2)

where:

 1 2 *
... R M R

A α α α – full column rank weights (adjustment) matrix,

 1 2 *
... R M R

B β β β – full column rank matrix, which consists of the parameters

that define baseline (independent) cointegrating vectors.
Under a traditional approach, the П rank is determined by the B rank 

and, thereby, by the cointegrating space dimension because the cointegrating 
vectors that comprise the matrix are, by definition, linearly independent. 
The αmr elements are the weights that should be assigned to the r-th baseline 
cointegration relationship to explain its long-run impact on the m-th variable 
of the model. They do not have to be in the interval (0, 1) and do not have to 
add up to one. 

Only when the I(1) processes are “pure” random walks whose realizations 
(variables) change according to Brownian motion are their increments spherical. 
Accelerations of cumulative random walks vary in a purely random manner. 
Such processes are rare in economic practice; most economic variables are 
generated by DGPs that are not significantly different from processes integrated 
of corresponding integer order. Their properties differ from the “model” 
processes only asymptotically. From the perspective adopted by economic 
entities, such a simplification is fully justified. While a difference filter can free 
the process from stochastic trends, cycles, or both, it does not solve the DGP’s 
autocorrelation problem, the ARCH effect, or the moving average. The transfer 
of these effects from the DGP that generates the variables to random components 
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from the relationships between these variables has serious consequences. From 
the statistical properties perspective, the equilibrium dependences estimator 
in the system is super-consistent when the variables are cointegrated,1 and if 
the cointegration of variables concerns the I(2) system, it is even super-super-
consistent but not efficient. This means that although the estimation precision 
improves quickly (the I(1) system) or even very quickly (the I(2) system), it 
continues to be limited for a relatively long period. 

П rank R < M implies that the solution to models (1)–(4) for past and current 
shocks is not a relatively simple vector moving average model. It is necessary 
to use the Beveridge and Nelson2 decomposition, which can separate permanent 
shocks (stochastic trends) from transitory shocks (cf. Engle and Granger3).

1
( )

t

t i t
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L
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   Y C C , (3)

where:
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 C B A Γ I B A , (3a)

ija    A , ijb    B  – M * (M – R) are orthogonal complements of a A and B 
respectively; the full column rank of both matrices is assumed. Derivation (3a) 
is given by Johansen4 and Wróblewska.5

1	 J.H. Stock, Asymptotic Properties of Least-Squares Estimators of Co-integrating Vectors, 
Econometrica 1987/55, pp. 1035–1056.

2	 S. Beveridge, Ch. Nelson, A new approach to decomposition of economic time series into perma­
nent and transitory components with particular attention to measurement of the ‘business cycle’, 
North-Holland Publishing Company, Journal of Monetary Economics 1981/7, pp. 151–174.

3	 R.F. Engle, C.W.J. Granger, Cointegration and Error Correction: Representation, Estimation 
and Testing, Econometrica 1987/55, pp. 251–276.

4	 S. Johansen, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, 
Oxford University Press, Oxford 1995.

5	 J. Wróblewska, Bayesian Analysis of Weak Form Polynomial Reduced Rank Structures in 
VEC Models, Central European Journal of Economic Modelling and Econometrics 2012/4/4, 
pp. 253–267.
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Matrix A  contains coefficients that define M – R independent common 

stochastic trends which throw system 
1

t
T

i
i




A  off equilibrium. The system variables’ 

vulnerability to permanent shocks is described by 
11
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When the I(2) stochastic trends are present, it is more convenient to consider 
a VECM:

2
2 2

1 1
1

S

t t t s t s t
s



  


      Y ΠY Γ Y Ψ Y Σ (4)

where 
1

1

S

s
s





 Γ Γ I  is an M * M mean lag matrix that describes medium-run

relationships. In representation (4), 
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Vahid and Engle6 improved the VECM analysis by decomposing the short-
run relationships matrices Γs. For this operation to be possible, the Γs ranks 
must  be reduced and equal to M – N, which denotes the number of linearly 
independent short-run relationships between stationary I(0) first differences. 
The DGP for the differences is a stationary AR (not necessarily of order 1), 
while deviations from the short-run relationships are purely random. Their 
analysis focused on a system that contains only integrated processes of, at most, 
order one. The analysis of the desirability of such phenomena results is because 
classical random walks and near integrated or (first) difference stationary AR(p) 
processes of a higher order belong to the class of I(1) processes. Their increments 
are stationary but not always spherical.

With I(1), the decomposition was proposed by Vahid and Engle7 or Engle 
and Kozicki8: 

1

0 1
1
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T T T
t t s t s t
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    Y WS B Y WS Y Σ (6)

where: 0
TA WS , T

s sΓ WS , s = 1,…, S – 1,
W is M * (M – N) weights matrix, which should be assigned to the baseline 
relationships that restore the random component white noise from the short-
run (“whitening”) relationships to explain the short-run fluctuations of the 
consecutive variables in the system. It has a full M – N column rank as do T

sS  
(s = 0,…, S – 1). From the basic rules on the matrix product rank, N < M – R. 
These weights (which measure adaptive reactions to deviations from short-run 
dependencies) stay invariant.
T
sS  (s = 0,…, S – 1) are M * (M – N) matrices of baseline short-run dependencies 

that ensure white-noise deviations from them. 0
TS  is also a basic short-run 

relationships matrix, as the adjustment reactions are also short-run.

6	 F. Vahid, R.F. Engle, Common Trends and Common Cycles, Journal of Applied Econometrics 
1993/8/4, pp. 341–360.

7	 Ibidem.
8	 R.F. Engle, S. Kozicki, Testing for Common Features, Journal of Business & Economic 

Statistics 1993/11/4, pp. 369–380.

https://econpapers.repec.org/article/jaejapmet/
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Cubadda9 and Wróblewska10 correctly observed that the short-run “cyclical” 
component cannot be identified with business cycles in the I(2) or even the 
I(1) domain. The N-dimensional centrifugal common features matrices 
(a term proposed by Engle and Kozicki,11 cf. Wróblewska12) related to the dual 
representation (the VECM solution in relation to past and current shocks, i.e., 
forces that disturb the system equilibrium) should be seen as clearly distinct 
from the M – N-dimensional co-features matrices (the term “co-features” was 
suggested by Engle and Kozicki13 and Hecq, Palm, and Urbain14) related to 
centripetal (adaptive) system behaviors. N refers to common movements and 
M – N to equilibrium adjustments, in contrast to long-run analysis. Some authors, 
such as Engle and Kozicki, use both “co-feature” and “common feature,” which 
is wise as their terminology concentrates on the similarities between DGP, not 
on the distinction between centrifugal and centripetal behaviors.

Engle and Kozicki suggest considering a reduced rank restriction for 

Γ in the I(1) system because with 
1

1

S

s
s





 Γ Γ I , the Γs rank is smaller than

its dimension (M * M), and so the Γ rank can be reduced. However, to fulfill 

a reduced rank restriction for Γ, an additional condition, 1 1
T S Γ 0 , is required. 

Consequently, Γ, known especially from I(2) analysis, plays an important role 
in simple short-run analysis in the case of I(1).

With the I(2) system, Ψs, which describes relationships between the second 
increments, should be decomposed, as the first increments are usually generated 
by I(1). If the matrices’ ranks are reduced (but positive), then the autocorrelation 
that is inherent in the first increments of the I(1) does not transfer to random 
components from short-run dependencies. Only when these ranks are equal 
to zero can the absence of short-run relationships be assumed. As a result of 
analyzing the short-run relationships, restrictions are imposed on Γs and/or A (in 
the I(2) systems, on Ψs and/or A, respectively) to obtain short-run dependencies 

9	 G. Cubadda, Common Serial Correlation and Common Business Cycles: A Caution Note, 
Empirical Economics 1999/24/3, pp. 529–535.

10	 J. Wróblewska, Analiza modelu realnego cyklu koniunkturalnego z wykorzystaniem bayesow­
skich modeli typu VEC, Przegląd Statystyczny 2017/LXIV/4, pp. 357–372.

11	 R.F. Engle, S. Kozicki, Testing for Common Features…, pp. 369–380.
12	 J. Wróblewska, Analiza modelu realnego cyklu koniunkturalnego..., pp. 357–372.
13	 R.F. Engle, S. Kozicki, Testing for Common Features…, pp. 369–380.
14	 A. Hecq, F. Palm, J.-P. Urbain, Common Cyclical Features Analysis in VAR Models with 

Cointegration, Journal of Econometrics 2006/132 (1), pp. 117–141.



Common stochastic features and their economic interpretation	 113

free of the random component autocorrelation. In the I(1) system, it is about the 
relationships between the first stocks increments, whereas in the I(2) system  between 
the second stocks increments and most often, these are relationships between the 
flows (for I(1)) and flow changes (accelerants) in the I(2) domain. 

Decomposition (6) for model (4) is written as:
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t t t s t s t
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where: T
s sΨ WS , s = 1,…, S – 2.

Alternatively, after capturing restrictions for the medium-run relationships 
(which can only be deduced from the cited authors’ deliberations on the I(1) 
system), it can be written:
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where: TΓ WS .

The orthogonal complement properties imply that
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This results in removing the short-run component from representation 
(3), as Vahid and Engle15 showed for I(1) that ( )T

tL  W C 0 . Thus, the 
representation of common stochastic trends becomes homogeneous (it describes 
only long-run shocks). 

The extension to the I(2) domain was performed by Paruolo.16 It remains 
the case that ( )T

tL  W C 0 , but not necessarily 1( )T
tL  W C 0. As regards the 

solution for common stochastic I(2) trends, the pseudo-cyclical component 
(short-term) can be removed, but not the stochastic cycles I(1), because, as 
15	 F. Vahid, R.F. Engle, Common Trends and Common Cycles…, pp. 341–360.
16	 P. Paruolo, Common Trends and Cycles in I(2) VAR Systems, Journal of Econometrics 

2006/132, pp. 143–168.
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Juselius17 observed, it is not possible to decompose the C1 in representation 
5 in an unambiguous, let alone economically interpretable way. The unfortunate 
term “cyclical component” is due to the fact that autocorrelation causes the 
common cyclical feature (there are N of them) to disappear. Representations 
(3) and (6) have a triple reduced-rank condition: for Π, Γs and A. The last 
reduced rank is a very large distinction from A full column rank equal to the 
cointegration rank R from traditional analysis. In representation (7), as many 
as five reduced rank conditions can be considered. Assuming that the system 
contains variables generated by I(2) processes, a reduced rank restriction  
(P1 < M – R) exists, where P1 denotes the I(1) stochastic cycles number) for 

T
 A ΓB . Engle and Kozicki’s results18 for an I(1) system concerning the 

conditions for Γ reduced rank restriction remain valid. However, instead of Γs, 
which does not explicitly appear in formula (4), a Ψs reduced rank analysis is 
advisable. For simplicity, it is assumed that all Γs and Ψs matrices have rank  
M – N, which is higher than R. 

From the identifiability viewpoint, in both the I(1) and I(2) domains, the 
long-run relationships are contained in B. The fact that the A rank is higher than 
R is not a problem. Because of the crucial features of the matrix product rank, 
the Π rank is still R.

The possibility of decomposing the adjustment matrix related to the reduced 
column rank 0

TA WS  has interesting economic interpretations. As T
s sΓ WS , 

in the case of a triple (and in the I(2) system, up to five times) reduced rank, 
two types of short-run behavior in the system (adaptive and strictly short-run) 
are not independent. Let us consider the αmr element of A (an error correction 
matrix):

1 1 2 2 , ,...mr m r m r m M N M N rw s w s w s     (9)

It is a short-run baseline “whitening” reactions function, meaning that 
adjusting the m-th system’s variable to deviations from the long-run equilibrium 
depends on the adjustments to short-run reactions. Therefore, formula (9) can 
be referred to as a sustained (or persistent) error correction model. Model (7) 
contrasts with the slightly mechanical representation (4) in that it allows not only 
the adjustment reaction itself to be analyzed but also the distribution of short-run 
17	 K. Juselius, Cointegrated VAR Model. Methodology and Applications, Oxford University 

Press, Oxford 2006.
18	 R.F. Engle, S. Kozicki, Testing for Common Features…, pp. 369–380.
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reaction times that necessitate long-run adjustments. A real-life example of this 
can be a less experienced investor’s hysterical reaction in the stock market or 
an insufficient or exaggerated reaction of the marginal propensity to consume 
(MPC) to changes in inflation. The adjustment reactions described by A with 
type (9) restrictions show the entire adjustment mechanism, including the 
factors that trigger it.

A very similar mechanism may be connected with the adjustment response 
to medium-run (co-cyclical) cointegration. 

The stochastic processes integrated of negative order interpretation is rarely 
discussed in the literature. It can be assumed that the negative integration order 
problem only concerns flows, accelerants in particular. The stocks I(0) (hence 
flows I(–1)) case was discussed by Majsterek19 in terms of public debt exceeding 
the cap set by the legislature. Interpretation is easier when the deficit is I(0), 
and its increment is I(–1). According to Table 2, this is the Π full rank case. An 
I(0), the deficit cannot cointegrate with other variables. However, controlling 
the short-run behavior of this fiscal policy key category is still possible, 
although only when residuals from the short-run relationships that explain 
deficit changes are stationary. Such a situation is possible only if the Γs rank is 
reduced, but not zero. This means that there are noninvertible MA(1) annihilation 
(co-moving average) processes, which can be described as cointegration au 
rebours. Paruolo20 does not see the co-moving average as a separate type of co-
feature and generalizes the cointegration concept for the negative d case. The 
co-MA occurrence involves not a reduction but an increase in the integration 
order of the process that generates residuals from the relationship between the 
variables. The crucial difference between the interdependence of noninvertible 
MA and classical cointegration is that the former concerns a short period. In 
contrast, classical cointegration is a long-run equilibrium relationship, in special 
cases only occurring in the medium-run (direct CI(2,2) or medium-run CI(1,1) 
in I(2) systems). 

Let us consider noninvertible MA(1), such as a budget deficit increase. The 
Γs ranks equalling zero may be interpreted as the tax authorities having control 
over the deficit level in the long run (undesirable shocks that increase the deficit 
are stationary, and so they are ineffective due to their “short memory”). However, 
the desirable shocks that reduce the deficit are also inefficient (according to 

19	 M. Majsterek, Zasoby i strumienie w kontekście analizy kointegracyjnej, Studia Prawno- 
-Ekonomiczne 2020/CXIV, pp. 273–293.

20	 P. Paruolo, Common trends and cycles in I(2) VAR systems…, pp. 143–168.
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Hamilton,21 they increase the next period’s deficit). With reduced but non-zero 
Γs ranks, the deficit is still resistant to long-run shocks. However, it can be 
controlled, at least in the short run, using economic policy instruments. 

Let us note that the short-run interrelationships of MA processes do not 
need to be related to classical cointegration if they concern invertible MA (which 
are, by definition, always stationary). In such a case, only the “whitening” of 
the residual process in short-run relationships occurs. The process invertibility 
(consider the simplest MA(1), which means that a given variable is influenced by 
a current and past shock combination, the latter being less forceful). The current 
shock can be represented as an infinite-degree MA with respect to the current and 
past values of economic variables on which affects or affected:

2 3
1 2 3

0
... ( )it t t t t t i

i
y y y y y



   


           	 (10)

where κ is the standard MA(1) parameter 1t t ty    .

Formula (10) can be interpreted in economic terms. If an economic entity 
plans to send a shock to a given economic variable for benevolent or malevolent 
reasons (e.g., a speculative attack on a currency), it seems logical to design 
such shock, taking into account the size of the target variable. Also, a negative 
dependence on the previous size of this variable is a common smoothing 
mechanism. The MA non-invertibility that generates variables in the system 
prevents decision-makers from finding an algorithm to generate optimal shocks 
(if they intend to cause them) or predict shocks to properly prepare the economic 
system for further shocks. Naturally, all these deliberations are irrelevant with 
purely random shocks, or shocks generated by a process with a long memory 
(for a wider discussion, see Majsterek22). 

All foregoing deliberations were guided by the implicit assumption on 
a strong form common factor (SFCF). Hecq, Palm and Urbain23 relaxed Vahid 
and Engle’s24 assumptions and proposed a weak-form reduced-rank structure 
21	 J.D. Hamilton, Time Series Analysis, Princeton University Press, Princeton 1994.
22	 M. Majsterek, Cointegration Analysis in the Case of I(2) – General Overview, Central 

European Journal of Economic Modelling and Econometrics 2012/4/4, pp. 215–252.
23	 A. Hecq, F. Palm, J.-P. Urbain, Separation, Weak Exogeneity, and P–T Decomposition 

in Cointegrated VAR Systems with Common Features, Econometric Reviews 2002/21 (3),  
pp. 273–307.

24	 F. Vahid, R.F. Engle, Common Trends and Common Cycles…, pp. 341–360.

https://ideas.repec.org/a/taf/emetrv/v21y2002i3p273-307.html
https://ideas.repec.org/a/taf/emetrv/v21y2002i3p273-307.html
https://ideas.repec.org/s/taf/emetrv.html
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(also referred to as a weak-form common factor (WFCF)). Their analysis only 
included double (I(1) system) or triple (I(2) system) reduced Π and Γs ranks 
for the I(1) domain, and Π, T

 A ΓB  and Ψs for the I(2) domain. Thus, the 
adjustment responses to the long- and medium-run relationships were treated as 
independent again. Under the WFCF, N > M – R is possible. Formula 5 should be 
replaced by

1

1
1
( )

S
T T

t t s t s t
s



 


    Y AB Y WS Y Σ (11)

where: T
s sΓ WS , s = 1,…, S – 1.

The consequence is again the A full column rank, i.e., R, so the additional 
identifiability problem does not occur. However, this WFCF, unlike the SFCF, 
does not allow us to track the long-run adjustment forces mechanism establishing.

For I(2):
2

2 2
1 1

1
( )

S
T T

t t t s t s t
s



  


      Y AB Y Γ Y WS Y Σ (12)

where: T
s sΨ WS , s = 1,…, S – 2.

Representation (10) means that, again, the long- and medium-run adjustments 
are independent of the short-run ones.

There may be an intermediate form between SFCF and WFSF:

2
2 2

1 1
1

( ) ( )
S

T T T
t t t s t s t

s



  


      Y AB Y WS Y WS Y Σ  	 (13)

where: TΓ WS , T
s sΨ WS , s = 1,…, S – 2,

but representation (13) has not yet been considered in the literature.
This paper assumes that co-autocorrelation is of order (1,1), which takes 

place when deviations from the short-run dependencies are AR(0), which is 
white noise, and first differences  (s = 1,…, S – 1) are stationary AR(1). In 
general, they are stationary AR(p) (p ≥ 2). Co-serial correlation (again, by 
analogy to cointegration) may include all cases where deviations from the short-
run dependencies are stationary AR(v) (0 ≤ v < p).25

25	 A. Hecq, F. Palm, J.-P. Urbain, Common Cyclical Features Analysis…, pp. 117–141.



118	 Michał MAJSTEREK

3. The role of full and reduced ranks in economics

Table 2 summarizes the role of common stochastic features in DGP and VAR 
models. Random walk is the “purest,” although a somewhat theoretical I(1) 
case.  Most economic processes have long but not absolute memory, which 
means that most economic variables are generated by “near-random walk” 
processes.26

TABLE 2: Full and reduced ranks in VAR models 

Matrices ranks System features
1 2

Full rank of Π
Full rank of Γs

variables generated by purely random processes; 
a completely stagnant system

Full rank of Π
Zero rank of Γs

DGP – generating variables may contain stationary AR; 
variables are unrelated even in the short run

Full rank of Π
Reduced, non-zero rank of Γs

DGP – generating variables may contain stationary AR, 
but co-autocorrelation means that they do not translate 
into deviations from relationships between variables

Full rank of T
 A ΓB

Zero rank of Π
Full rank of Γs

variables are generated by non-cointegrated I(1), and its 
increments are generated by purely random processes; 
there are only short-run relationships between variables

Full rank of T
 A ΓB

Zero rank of Π
Reduced, non-zero rank of Γs

variables are generated by non-cointegrated I(1), 
and there are only short-run relationships between 
variables; the DGP – generating variables contain 
stationary AR, which does not translate into deviations 
from relationships between variables due to co-
autocorrelation

Full rank of T
 A ΓB

Zero rank of Π
Zero rank of Γs

variables are generated by non-cointegrated I(1), and 
there are no even short-run relationships between 
variables; the DGP – generating variables contain 
stationary AR, which is not annihilated due to the short-
run dependencies absence

Full rank of T
 A ΓB

Reduced, non-zero rank of Π
Full rank of Γs

variables are generated by cointegrated I(1), and its 
increments are purely random; there are long-run 
equilibria between variables, from which deviations are 
whitened

26	 A. Banerjee et al., Co-integration, Error Correction and the Econometric Analysis of Non-
stationary Data, Oxford University Press, Oxford 1993.
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1 2

Full rank of T
 A ΓB

Reduced, non-zero rank of Π
Reduced, non-zero rank of Γs

variables are generated by cointegrated I(1), so its 
increments are purely random; there are long-run 
equilibria between variables, from which deviations are 
whitened, although the DGP – generating increments in 
the system’s variables may contain stationary AR 

Full rank of T
 A ΓB

Reduced, non-zero rank of Π
Zero rank of Γs

variables are generated by cointegrated I(1), and its 
increments are purely random; there are long-run 
equilibria between variables, and deviations from these 
equilibria are stationary AR; no short-run relationships

Reduced, non-zero rank of T
 A ΓB

Zero rank of Π
Full rank of Γs

variables are generated by non-cointegrated I(1) and I(2); 
there are medium- and short-run relationships between 
the system’s variables, and the deviations from these 
relationships are purely random

Reduced, non-zero rank of T
 A ΓB

Zero rank of Π
Reduced, non-zero rank of Γs

variables are generated by non-cointegrated I(1) and I(2); 
there are medium- and short-run relationships between 
the system’s variables, the deviations of which are purely 
random; the DGP – generating increments in the system’s 
variables contain stationary AR in the error term 

Reduced, non-zero rank of T
 A ΓB

Zero rank of Π
Zero rank of Γs

variables are generated by non-cointegrated I(1) and I(2); 
there are medium-run relationships between the system’s 
variables, and deviations of these relationships are 
stationary AR; absence of short-run dependencies 

Reduced, non-zero rank of T
 A ΓB

Reduced, non-zero rank of Π
Full rank of Γs

variables are generated by cointegrated I(1) and I(2); 
there are medium- and short-run relationships between 
the system’s variables, the deviations from these 
relationships are purely random

Reduced, non-zero rank of T
 A ΓB

Reduced, non-zero rank of Π
Reduced, non-zero rank of Γs

variables are generated by cointegrated I(1) and I(2); there 
are medium- and short-run relationships between the 
system’s variables, and deviations from these relationships 
are purely random; the DGP – generating increments in the 
system’s variables contain stationary AR 

Reduced, non-zero rank of T
 A ΓB

Reduced, non-zero rank of Π
Zero rank of Γs

variables are generated by cointegrated I(1) and I(2); 
there are medium-run relationships between the system’s 
variables, and deviations from these relationships are 
stationary AR; absence of short-run dependencies

Zero rank of T
 A ΓB

Zero rank of Π
Full rank of Γs

variables are generated by non-cointegrated I(2); 
there are short-run relationships between the system’s 
variables, and deviations from these relationships are 
purely random; no medium-run dependencies
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1 2

Zero rank of T
 A ΓB

Zero rank of Π
Reduced, non-zero rank of Γs

variables are generated by non-cointegrated I(2); 
there are short-run relationships between the system’s 
variables, and deviations from these relationships are 
purely random; the DGP – generating increments in the 
system’s variables contain stationary AR; no medium-run 
dependencies

Zero rank of T
 A ΓB

Zero rank of Π
Zero rank of Γs

variables are generated by non-cointegrated I(2); as the 
system does not contain any long-, short- or medium-run 
dependencies, it makes no economic sense

Zero rank of T
 A ΓB

Reduced, non-zero rank of Π
Full rank of Γs

variables are generated by cointegrated I(2); there are 
short-run relationships between the system’s variables, 
and deviations from these relationships are purely 
random; no medium-run dependencies

Zero rank of T
 A ΓB

Reduced, non-zero rank of Π
Reduced, non-zero rank of Γs

variables are generated by cointegrated I(2); there are 
short-run relationships between the system’s variables, 
and deviations from these relationships are purely 
random; the DGP – generating increments in the 
system’s variables contain stationary AR; no medium-run 
dependencies 

Zero rank of T
 A ΓB

Reduced, non-zero rank of Π
Zero rank of Γs

variables are generated by cointegrated I(2); there are 
short-run relationships between the system’s variables, 
and deviations from these relationships are stationary 
AR; no medium-run dependencies 

S o u r c e: created by the author.

The Γs rank is largely independent of the rank of other matrices and is 
dependent on whether or not co-autocorrelation is present. This co-autocorrelation 
may not affect the cointegration of processes. The Π full rank excludes the 

T
  A ΓB 0reduced rank problem. Additionally, because both A and B are M * M, 

then by definition T
  A ΓB 0 . Summing up, a double or even triple reduced rank 

problem may occur. Π is associated with long-run CI(2,2), CI(2,1), and CI(1,1), 
the last of which may be present in both an I(1) system and, less frequently, in an 
I(2) system. T

  A ΓB 0 is assigned to the medium-run relationships. This CI(1,1) 
type is closer to stochastic co-cyclicality than to classic long-run cointegration.  
Γs are responsible for the short-run relationships measure.

To ensure the transparency of Table 2, the Γs zero ranks were associated with 
stationary but serially-correlated deviations from the short-run relationships. 

TABLE 2 (cont.)
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However, other types of not purely random stationary deviations, such as 
heteroscedasticity or ARCH, are also possible. To keep Table 2 simple, the 
reduced but nonzero Π rank was not further decomposed in the I(2) domain 
(hence, with an T

  A ΓB 0 reduced rank). If the Π rank is R0 (the number of 
CI(2,2)), stocks achieve equilibrium as soon as the flows accumulating to these 
stocks reach equilibrium. If the Π rank is R1 (the number of CI(2,1)), stocks 
achieve equilibrium later than the flows accumulating to these stocks (the former 
only in the long run, and the latter even in the medium run). CI(2,1) seems to 
better describe adjustment in the economy. 

4. Achieving gradual equilibrium

The polynomial cointegration mechanism can be described as follows (cf. Figure 1). 
In the medium run:
1) CI(2,2) equilibrium is achieved between some stocks only and continues in the

long run. It is associated with R0 linearly independent dependencies directions. 
2) CI(2,1) equilibrium is achieved between flows (but not yet between stocks).

It is associated with R1 linearly independent dependencies directions.
3) CI(1,1) “equilibrium” 1 1

T
t B Y  between stock increments is achieved, but 

this equilibrium is not permanent. This medium-run cointegration can be tre-
ated more as eliminating stochastic co-cycles rather than stochastic trends. It
is associated with P1 linearly independent dependencies directions.
In the long run, the second step of polynomial cointegration involves

eliminating those deviations from the equilibrium that were not eliminated in 
the medium run. These are: 
a) R1 deviations between I(2) stock levels that are still nonstationary (I(1)),
b) P2 dependencies directions that cannot be interpreted as cointegrating

( 2 1
T

t B Y ), i.e., stock increments (flows) that are not yet stationary but 
still I(1).
I(1) flows mentioned in point b) are not mutually cointegrated. In contrast

to 1 1
T

tB Y , the 1 1
T

t B Y  relationship clearly suggests that the respective 
variable levels are not cointegrated. However, the flows mentioned above 
can cointegrate in the CI(1,1) dependencies with deviations from the 1 1

T
tB Y

stocks relationships, which are obviously I(1). These deviations catalyze stock 
equilibrium in the system. 

The last question is distinguishing between unlimited shocks in the  
M – R-dimensional non-cointegrated shocks space and mutually cointegrated 
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shocks, which is R. The R0 are shocks caused by either flows or stocks generated 
by I(1) processes, and the “full” equilibrium is achieved very quickly. The R1 stock 
shocks cointegrate more slowly. First, flows adjustment is achieved, followed later 
by stock equilibrium. The latter case is known as classic polynomial cointegration.27

FIGURE 1: Equilibrium achievement mechanism in model I(2)

S o u r c e: created by the author.

The co-autocorrelation can be treated as the complementary stage to achieve 
stationary and whitened deviations from equilibrium.

5. Conclusions

The study demonstrated the purposefulness of a comprehensive analysis of co-
features that occur in DGP–generating economic variables. Research has mostly 
focused on long-run shifts and less frequently on medium-run shifts, polynomial 
cointegration, or short-run relationships. Short-run relationships are usually 

27	 S. Johansen, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, 
Oxford University Press, Oxford 1995; N. Haldrup, An Econometric Analysis of I(2) 
Variables, Journal of Economic Surveys 1998/12, pp. 595–650.
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considered separately from adjustment mechanisms that drive the system 
toward long-run equilibrium. The paper sought to determine how these common 
stochastic behaviors, particularly shifts that cause white noise deviations from 
the causal relationships that occur in the economy, are linked. The findings go 
beyond statistical importance. Super-consistency (or in I(2) domain super-super 
consistency) are important estimator features, but in the short-term analysis, 
estimator efficiency (ensured only by a correctly conducted analysis of the 
problems discussed in the paper) is more important. The benefits of the additional 
interpretative possibilities presented in the article are as important. Defining the 
mechanisms behind adjustments to the long- and medium-run equilibrium as 
a short-run reactions function allowed us to look at adjustment processes from 
a different angle and, importantly, capture their dynamics.

As regards short-run relationships, the actual space dimension of adaptive 
reactions that represent their special form can be (and usually is) different from 
the cointegration space dimension. The pattern is similar to the polynomial 
cointegration from the I(2) domain. Some stationary cointegration relationships 
are “whitened” to the extent that the deviations from them immediately become 
white noise. However, some adjustments combine mean-reversion with long-
run equilibrium and short-run quasi-equilibrium. When the I(2) processes are 
present, the medium-run relationships cannot be ignored in the analysis.

Classical polynomial cointegration is a stock categories dependence with 
flow categories (more precisely, first increments in stock categories with “zero” 
increments in flow variables), but is a strictly CI(1,1) flow cointegration, which 
occurs in the medium horizon and becomes permanent in the long run. Therefore, 
in the polynomial cointegration relationship (the flows equilibrium persists to 
the stocks equilibrium). For  dependency, the opposite situation occurs: only 
increases in stock categories (flows) cointegrate. The flows cointegration 
does not always lead to the relatively faster cointegration of stock categories 
(eliminating the I(1) stochastic trends still residing in them).

Because of editorial restrictions and the lack of appropriate software, many key 
issues could not be presented in-depth, so they were only outlined. They include the 
deterministic co-features, the seasonal cointegration full analysis, and the extension 
of co-autocorrelation and co-MA to higher degrees of AR or MA processes.
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Michał MAJSTEREK

WSPÓLNE CZYNNIKI STOCHASTYCZNE I ICH INTERPRETACJA EKONOMICZNA

Abstrakt

Przedmiot badań: Analiza kointegracyjna jest znana w literaturze od blisko 40 lat. Nieco mniej 
miejsca poświęca się innymi wspólnym czynnikom wytrącającym kategorie ekonomiczne ze 
stanu równowagi. W szczególności interesujące jest spojrzenie, w jakim stopniu wspomniane 
badania są względem siebie alternatywne, a w jakim komplementarne. Jakie warunki muszą być 
spełnione, aby podjęcie odpowiedniej analizy (kointegracyjnej, współcykliczności, współauto-
skorelowania czy innych, rzadziej stosowanych) było celowe.
Cel badań: W oczywisty sposób wybór rodzaju analizy wspólnych czynników (niekoniecznie) 
dominujących czy wynikającej z tego analizy współprzesunięć zależy od wyboru horyzontu anali-
zy (długo-, średnio- czy krótkookresowej). Z drugiej strony rzetelne badanie nie powinno a priori 
pomijać żadnej z tych perspektyw. Starano się dowieść, że kluczową rolę odgrywają tu zreduko-
wane rzędy najważniejszych macierzy, występujących w odpowiednich reprezentacjach VAR lub 
ich izomorficznych reprezentacjach. Innym celem badawczym było wykazanie, że wspomniane 
analizy współprzesunięć stochastycznych są w dużej mierze komplementarne względem siebie. 
Metoda badawcza: Wybór metody badawczej wynikał z postawionej tezy. Wielowymiarowa 
ekonometria dynamiczna oparta na modelach VAR pozwoliła dostarczyć narzędzi służących po-
równaniu różnych metod analizy wspólnych czynników.
Wyniki: Rozpatrzone i zinterpretowane ekonomicznie zostały możliwe kombinacje pełnych 
i zredukowanych rzędów macierzy kointegrującej oraz macierzy związków średnio- i długookre-
sowych. Ukazane zostały powiązania pomiędzy tymi macierzami. Rozrysowany został iteracyjny 
mechanizm powrotu systemu do równowagi. Potwierdzono, że rozważane analizy wspólnych 
czynników dominujących są w dużej mierze uzupełniające względem siebie, choć w znacznym 
stopniu wynika to z ograniczenia się (ze względu na przyjęte limity objętości) do dziedziny czasu 
oraz czynników stochastycznych. Rozszerzenie analizy o np. kointegrację sezonową czy współ-
trendowość deterministyczną z pewnością pozwoliłoby pokazać elementy substytucyjne. Przy-
kładowo, analiza kointegracyjna w relatywnie ograniczonym horyzoncie czasowym może być 
alternatywą współtrendowości (trend stochastyczny wygasa dopiero w bardzo długiej perspek-
tywie), również analiza uwzględniająca proces o wyższym stopniu zintegrowania mogłaby być 
alternatywą kointegracji sezonowej.
Słowa kluczowe: kointegracja, współautoskorelowanie, równowaga i mechanizmy dostosowaw-
cze, szoki.
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