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PL-90-505 �Lódź, ul. M. Cuie-Sk�lodowskiej 11

tel. (42) 665 54 59, fax (42) 665 54 64
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daction). Elle doit lui être adressée directement par l’auteur.
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la classe IBM PC avec l’utilisation d’une imprimante de laser, est absolument
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1ère page, 5.6 cm au dessous du bord supérieur du cadre de frappe; le titre de
l’acticle, en majuscules d’orateur 14 points, 7.1 cm au dessous de même bord.
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TITLE – INSTRUCTION FOR AUTHORS
SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES
DE �LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4
Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

[4]



2.3. “Ghostwriting” and “guest authorship” are strictly forbiden

The printed version of an article is primary (comparing with the electronic version).
Each contribution submitted is sent for evaluation to two independent referees before
publishing.

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-
ment files sent to the address zofija@uni.lodz.pl. If a whole manuscript exceeds
2 MB composed of more than one file, all parts of the manuscript, i.e. the text
(including equations, tables, acknowledgements and references) and figures, should
be ZIP-compressed to one file prior to transfer. If authors are unable to send their
manuscript electronically, it should be provided on a disk (DOS format floppy or
CD-ROM), containing the text and all electronic figures, and may be sent by reg-
ular mail to the address: Department of Solid State Physics, University of
Lodz, Bulletin de la Société des Sciences et des Lettres de �Lódź, Pomorska
149/153, 90-236 �Lódź, Poland.
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MONTEL’S TYPE RESULTS AND ZERO DISTRIBUTION
OF SEQUENCES OF RATIONAL FUNCTIONS

Summary
A new generalization of the classical result by Montel about normal families is provided.

As a application, a theorem of Picard’s type for rational functions is derived.

Given a domain D in the complex plane C, denote by A(D) the class of holo-
morphic (analytic and single valued) functions in the domain D; A(D) is endowed
with the uniform (max-)norm ‖ · · · ‖K on compact subsets K.

By the classical theorem of Montel (called also the Second Fundamental Theorem,
[1]), if F ⊂ A(D) is a family of functions with the following characteristics: there
are two distinct complex numbers a and b in C such that each function f ∈ F omit
in D the value of a and takes the value of b at no more than N points, then the
family F is normal, i.e., from each sequence ⊂ F one can extract a subsequence
which converges locally uniformly inside D to infinity or to a finite function (in the
max-norm on compact subsets of D). Hence, if under the conditions of Montel’s
theorem, a sequence converges uniformly to a function f on some regular subset M
of D, then f admits an holomorphic continuation from M into D.

A natural question arises as to what happens if a family of holomorphic func-
tions omits merely one finite value in B. This question appears to make sense for
sequences of rational functions, armed with additional approximating properties. To
make things clear, we recall a classical result by S. N. Bernstein [2]: f – a continuous
and real valued function on I := [−1, 1] and E – a Jukowski ellipse with foci at ±1.
Assume that all polynomials Pn with real coefficients of best uniform approximation
of f on I are nowhere zero in E . Then the sequence {Pn} forms a normal family in E.
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We remark that under the given conditions the function f admits an holomorphic
continuation from I into E .

As analogous results of Montel’s type, we quote the known result by Baker-
Graves-Morris [3] about normality of sequences of Padé approximants, as well as the
results by Blatt-Saff-Simkani/ Kovacheva about polynomials/rational functions with
fixed number of free poles of best uniform approximation on regular sets (see [4],
resp. [5]).

Before presenting a generalization of Montel’s theorem results, we introduce the
notations N0 := N

⋃
0 and, for a pair (n,m), n,m ∈ N0, the class Rn,m := {r, r =

p/q, q �≡ 0}, p, q − polynomaisl of degreesn,m respectively (p ∈ Πn, q ∈ Πm). Fur-
ther, given a function g and a set K, denote by ν(g,K) the number of zeros of g in
K.

Theorem 1. [6]. Given a domain D and a regular continuum S ⊂ D, suppose that
the sequence {fn}, fn ∈ Rn,n

⋂A(D), n = 1, 2, . . . converges uniformly on ∂S to a
function f, f �≡ 0 on S in such a way that

lim sup
n→∞

‖fn − f‖1/n
∂S < 1.(1)

Assume that

ν(fn,K) = o(n) as n→ ∞(2)

on compact subsets K of D. Then the sequence {fn} is normal in the domain D;
herewith, the function f admits a holomorphic continuation into D.

The advantage of this theorem lies in its applications to the subject of holomor-
phic continuation. We summarize the main result as follows: given a regular compact
set S, a function f ∈ C(S) and a sequence of rational functions {rn} converging on
S geometrically to f , assume that {rn} are holomorphic and fulfill condition (2) in
a larger domain D that contains the set S. Under the named conditions, {fn} forms
a normal family in D; herewith, the function f is analytically continuable from S

into D. Now, in what follows, we listen cases to which such a statement applies:
– best rational uniform approximants rn,n = rn,n(f,E) provided Eo �≡ ∅ and

f ∈ A(E)
⋂
C(E). (Given a compact set K in C, a function g ∈ C(K) and a fixed

pair (n,m), n,m ∈ N0, let rn,m be defined by:

‖g − rn,m‖K := inf
r∈Rn,m

‖f − r‖K .

The function rn,m = rn,m(f,K) is called a best uniform approximant of g on K in
the class Rn,m.) (see [6]);

– best Lp− rational approximants rn,n(f,Γ) of f ∈ Lp(Γ), p > 0 on a closed
analytic curve Γ, D ⊃ Γ (see [7]);

– best rational uniform approximants rn,n(f,Δ) of a real valued and continuous
function on a finite segment Δ ⊂ R (see [7]).
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We now pose the question whether an analogue of Theorem 1 is valid with respect
to meromorphic functions. To be exact, let us formulate the question: provided the
conditions of Theorem 1 are fulfilled with fn, n = 1, 2, · · · being meromorphic in D,
do the sequence {fn} possess the normality in D (in he spherical metric?)

Before presenting the results, we introduce needed notations and definitions.
Given a set A in C, we set M(A) for the class of the meromorphic in A functions; as
usual, poles will be counted with their multiplicities. We mean by Mm(A), m ∈ N,

functions in M(A) with no more that m poles in A. Given a function g ∈ M(A), we
engage the notation μ(g,A) for the number of poles of g in A. Obviously, μ(g,A) :=
ν(1/g,A).

For our further purposes, we need the term of m1-measure (cf. [8]). Given a set
e in C, we introduce

m1(e) := inf

{∑
ν

|Uν |
}

where the infimum is taken over all coverings {Uν} of e by disks Uν and |Uν | is the
radius of the disk Uν .

Let D be a domain in C and ϕ a function defined in D with values in C. A
sequence of functions {ϕn}, meromorphic in D, is said to converge to a function ϕ

m1-almost uniformly inside D if for any compact set K ⊂ D and any ε > 0 there
exists a set Kε ⊂ K such that m1(K \ Kε) < ε and the sequence {ϕn} converges
uniformly to ϕ on Kε. The sequence {ϕn} converges m1− almost geometrically to
the a function ϕ on K, if for every ε there exists a set Kε ⊂ K such that m1(Kε) < ε

and
lim sup ‖ϕn − ϕ‖1/n

K\Kε
< 1.

The next result provides an answer to the posed question.

Theorem 2. [9], [10]. Given a regular continuum S ⊂ C, suppose that {fn}, fn ∈
Rn, n = 1, 2, · · · is a sequence of rational functions which converges uniformly on
∂S to a function f with f �≡ 0 on some regular subset of ∂S at a speed of a geometric
progression, i.e.,

(1′) lim sup
n→∞

‖fn − f‖1/n
∂S < 1.

Assume that there is a domain U ⊃ S and a number m, m ∈ N0 such that each
fn ∈ Mm(U) and, in addition,

(2′) ν(fn,K) = o(n) as n→ ∞
on compact subsets K of U . Then the sequence {fn} converges m1 – almost uni-
formly inside U ; herewith f admits a continuation into U as a m – meromorphic
function.

We draw reader’s attention to the fact that for the case when m = 0, Theorem 2
coincides with Theorem 1. Theorem 2 establishes a m – meromorphic continuation
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into U but not as a function having exactly m poles in D. Consider, for instance,
the sequence

fn(z) =
z − 1

2n

z − 1
3n

in the unit disk D. Notice that {fn} ∈ M1(D). Satisfying the conditions of Theorem
2, it converges to m1− almost geometrically inside D to f ≡ 1. Hence, in contrast
to Theorem 1, Theorem 2 does not imply a normality of the sequence {fn}, even in
the case when each fn has exactly m poles in U .
Remark. Both theorems, the former and the latter, hold also for “dense enough”
sequences. Following the same line of reasoning, as in the proofs of Theorem 2/1,
one can show the validity of

Corollary 1. [9]. Given a regular continuum S, suppose that the sequence {fnk
},

fnk
∈ Rnk

, nk < nk+1, k = 1, 2, . . . with

lim sup
nk→∞

nk+1

nk
<∞(3)

converges uniformly on ∂S as nk → ∞, to a function f, f �≡ 0 on S such that an
analogue of (1) holds, i.e.

lim sup
k→∞

‖fnk
− f‖1/n

∂S < 1.(4)

Assume further that there is a domain U ⊃ S and a fixed number m (a zero or
an integer) such that fnk

∈ Mm(U), k = 1, 2, · · · and

ν(nk,K) = o(nk), nk → ∞(5)

on each compact subset K of U . Then the statements of Theorem 2/Theorem 1 hold
with {fn} replaced by {fnk

} and f ∈ Mm(U) (resp. f ∈ A(U)).

The application of Theorem 2 and of the preceding corollary are of importance
in establishing theorems of Picard-type for sequences of rational functions. Before,
we introduce the term of an α – point. Given a set M, a function g ∈ M(M) and
a number α ∈ C, we introduce the notation να(g,M) as the number of all of α−
points of g in M ; e.g. να(g,M) := ν(g − α,M). For α = ∞, we set να := μ(g,M).

The main advantage of Theorem 2 is

Theorem 3. [10]. Let D be a domain in C, and {rn,n}, rn,n ∈ Rn,n that converges
m1 – almost geometrically to a function f on compact subsets of D. Let z0 be a
boundary point of D that is not a point of regularity for f. Let a and b be two
distinct values in C. Then the following distribution result holds for the α-values
and the β-values in every neighborhood U of z0 :

if να(rn, U) = o(n) as n→ ∞, then lim sup νβ(rn, U) = ∞.

From Theorem 3, after involving all arguments of its proof, we obtain
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Corollary 2. Let D be a domain in C, and {rn,n}, rn,n ∈ Rn,n that converges m1 –
almost geometrically to a function f on compact subsets of D. Let z0 be a boundary
point of D that is not a point of regularity for f. Let a and b be two distinct values
in C. Then the following distribution result holds for the α-values and the β-values
in every neighborhood U of z0 :

either lim sup να(rn,U)
n > 0

or lim sup νβ(rn, U) = ∞ as n→ ∞.

.

In the context of normal families, we see that no nonregular point of ∂D is a
normal point for the sequence {rn}.

Corollary 3. Under the conditions of Theorem 3, assume that z0 is a nonregular
boundary point of D. Then for any neighborhood U of z0 and for all a ∈ C, with at
most one exception,

lim sup νa(rn,mn , U) = ∞.

Recalling the classical theorem of Picard concerning the behavior of a holomor-
phic function in a neighborhood of an isolated essential singularity, we can summa-
rize Corollary 2 by saying the the sequence {rn,mn} has an “asymptotic essential
singularity” at each nonregular boundary point on ∂D, provided mn = o(n).

Using now Corollary 1, one get an information about the denseness of the zeros,
resp. poles of the approximating rational functions around the nonpolar singularities.

Corollary 4. Under the conditions of Theorem 3, suppose that for the infinite se-
quence Λ := {nk} there holds

lim sup νβ(rn, U) <∞.

Then

either lim sup
nk→∞

να(rnk
, U)

nk
> 0 or lim sup

nk+1

nk
= ∞.(6)

This observation is important for the case when mn = o(n). If {rn,mn} converges
geometrically to f m1− almost uniformly inside D and z0 ∈ ∂D is a nonregular
point of f, and if

lim sup
nk∈Λ

νa(rnk,mnk
, U) <∞

for some neighborhood U and some infinite sequence Λ = {nk}, then Λ is necessarily
rare in the sense of (6).

Examples. Let

f(z) := (z + 1) log(z + 1) +
∞∑

i=1

Ai

z − αi
, lim sup |Ai|1/i = 1/2, |αi| > 2
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with E := an open disk D0(r), r < 1. Let mn = o(n) as n→ ∞; set

rn,mn(z) := z +
n−mn∑
k=2

(−z)k

k(k − 1)
+

mn∑
i=1

Ai

z − αi
.

It is easy to verify that the sequence {rn,mn} converges to f uniformly inside
the unit disk at a speed of a geometric progression. At the point z = −1 lies a
nonregular singularity. Applying Theorem 3 and Corollary 4, we see that z = −1
attracts “almost all” zeros of rn,mn as n→ ∞. If there is some sequence Λ := {nk}
which is running away then it should be necessarily rear in the sense of (6).

Theorems 1–3 and Corollaries do not provide an information about an asymp-
totical behavior of the zeros of the approximating sequences. Theorem 4 below gives
an information about for some classes of functions. Before stating it, we introduce
the concept of a radius of meromorphy. Let E be a regular compact set in C. We
denote by GE(z,∞) its Green function with (logarithmic) pole at infinity. Given a
number ρ > 1, we set Eρ := {z,GE(z,∞) < log ρ.} Let f ∈ A(E). We define the
radius of meromorphy ρ(f) as follows:

ρ(f) := sup{ρ, f ∈ M(Eρ).}
A sequence rn,mn is called maximal convergent to f if it converges m1− almost
geometrically inside Eρ(f) and the speed of convergence on each compact subset K
equals exp ‖GE(z,∞)‖K/ρ(f). In [11], a result of Jentzsch-Szegö type was proved:

Theorem 4. Let E be a regular compact set and f ∈ A(E). Assume that

mn ≤ n,mn ≤ mn+1 ≤ mn + 1 and mn = 0(n/ logn).

Let {rn,mn}, rn,mn ∈ Rn,mn be maximal convergent to f inside Eρ(f). If ρ(f) < ∞
and if there exists a singularity of multivalued character of f on ∂Eρ(f), then the
normalized zero counting measures νn of the numerators of rn,mn converge weakly
to the equilibrium distribution of Eρ(f), at least for a subsequence Λ ⊂ N as n→ ∞
with n ∈ Λ.

Examples to which Theorems 3/4 apply are Pade approximants and best uniform
rational approximants of a continuous real valued function on a finite segment on
the real axes.

References

[1] J. L. Schiff, Normal families, Springer Verlag, 1991.

[2] S.N.Bernstein, On the distribuution of zeros of polynomials to a continuous functions
possitie on a real interval, Complex works, Vol. I. Acad. Nauk UdSSR, 1952, pp. 443–
451, in Russian.

[3] G.A.Baker Jr. and P.Graves-Morris, Pade Approximants, Part I, Encyclopedia,
Vol. 13, 14, Cambridge Univ. Press, Cambridge 1981.



Montel’s type results and zero distribution of sequences of rational functions 13

[4] H.-P.Blatt, E.B. Saff, and M. Simkani, Jentzsch-Szegő type theorems for the zeros of
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WYNIKI TYPU MONTELA I ROZK�LAD ZER DLA CIA̧GÓW
FUNKCJI WYMIERNYCH

S t r e s z c z e n i e
Uzyskano nowe uogólnienie klasycznego wyniku Montela dla rodzin normalnych. Jako

zastosowanie wyprowadzone jest twierdzenie typu Picarda dla rodzin normalnych.
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SOME QUESTIONS OF INTEGRAL COMPLEX GEOMETRY

Summary
A subject, which is treated in this report, combines in one bundle some questions of

complex analysis, geometry and probability theory. Our purpose is to give review of the
row of the open problems and known results. First investigations of geometric probabilities
were started from well known Buffoons needle problem and related Bertrand paradoxes.
The paper introduces original conjectures and results of the present author.

1. Probabilities paradoxes

Let a needle (real line) intersect the ball B ⊂ R2. What is probability that this
needle intersects the ball B1 ⊂ B? (Fig. 1)

Fig. 1.

Let R = rB = 2rB1. In this case the problem is equivalent to the following.
Find the probability, that a chord, chosen at random, be longer than the side of an
inscribed equilateral triangle.
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Let a needle be considered as a real line, and then the problem reduces to finding
some invariant measure of the set relative to movement (L. Santalo, G. Matheron,
R. Ambarcumian and other [1–3]). Then the sought probability is found as attitude
of the measures. It is well known that for convex sets the invariant measure is the
length of perimeter and

p =
2πr
2πR

=
r

R
.

For any connected set E ⊂ R2 the invariant measure is the length of perimeter of
the convex hull of E.

Generalizing this construction, the approach relies upon a consideration of a
family of linear submanifolds of an Euclidean space, which crosses the given set. In
the real case this question is well studied [2]. The case of complex and more general
space, as it is noted in [2], has not got the sufficient development yet. In the complex
case the following two classes will be a natural generalization of the class of convex
sets.

Definition 1. A set E ⊂ C
n is called linearly convex if for every point z ∈ Cn \ E

there exists a hyperplane l such that z ∈ l ⊂ Cn \ E.

Example 1. All convex domains and compacts are linearly convex.

Example 2. The Cartesian product E = E1 × E2 × . . . × En of arbitrary flat sets
Ei ⊂ C is a linearly convex set, in particular, torus T = S1 × S1 × . . .× S1.

Definition 2. A set E ⊂ C
n is called C-convex if for every complex line γ sets γ ∩E

and γ \ γ ∩ E are connected.

For the first the concept of linear convexity in C2 was introduced in 1935 in the
paper of Behnke and Peschl [4] and was used widely by Martino [5] and Aizenberg
[6] from the sixties of last century.

Linearly convex sets are very useful in complex analysis and in the questions of
the integral geometry and tomography. On the base of these sets in complex analysis
there is built linearly convex complex analysis, similar to real convex analysis. More
results of linearly convex analysis can be viewed in monographs [7–9] and in the
review article [10].

In spite of abundance of results, many unsolved problems remained concerning
topological characteristics of these sets, a part of them is possible to find in [7, 10,
11]. One of the problems, put in [11], is solved in the work [12].

It seems interesting for the author to formulate the following open problem of
the sphere.

Problem 1 (sphere problem). Is there a linearly convex compact in C
2, for which

all cohomology groups coincide with the corresponding cohomology group of the
two-dimensional sphere S2?
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Some of the problems of this theme are connected with the known Ulam problem
from the Scottish book [13].

2. Ulam problem

Let Mn be an n-dimensional manifold and every section of Mn by hyperplanes L
be homeomorphic to the (n − 1)-dimensional sphere Sn−1. Is it true that Mn is
n-dimensional sphere?

In the real case this problem is solved by Kosiński in 1962 [15]. The repetition
of this result was obtained by Montejano in 1990 [16]. In the complex a case similar
result was obtained by Zelinskǐı in 1993 [7].

Other problems of this group are to find: an estimation of the properties of a set
if we know the properties of its intersections with the families of some sets:

1) with the planes of a fixed dimension:
a) in the real case (Auman, Kosiński, Shchepin [15, 17, 18]);
b) in the complex case (Zelinskǐı [7]);

2) with a set of vertices of an arbitrary rectangle (Besicowitch, Danzer, Zam-
firescu, Tkachuk [19–22]).

The latter problem is known in literature as Mizel problem.

3. Mizel problem (characterization of a circle)

Let C ⊂ R2 be a convex Jordan curve with the following property:
For every rectangle abcd if any three vertices are on C, will the fourth vertex be

also on C? Is it true that C is a circle? This problem is solved by Besicovitch and
Danzer independently [19, 20].

In 1989 Zamfirescu [21] proved the similar result for a Jordan curve (not convex
à prioriy) and for a rectangle with an infinitesimal relation between sides:∣∣∣ac

ab

∣∣∣ ≤ ε > 0.

In 2006 my PhD student Tkachuk [22] obtained the most general result in this
area for compact C ⊂ R2, where R2 \C is not connected. Similar open problems in
the plane and in n-dimensional case appear in connection with the Mizel problem.
Further we shall bring the related known results for linearly convex sets.

Theorem 1. For convexity of a domain (compact) it is necessary and sufficient that
all sections of this domain (compact) k-plane for fixed k, 1 ≤ k ≤ n−1, are acyclic.

Theorem 2. A C-convex domain D ⊂ Cn is linearly convex.

Definition. By conjugate set to the a E ⊂ Cn we call the set

E∗ = {w|〈w, z〉 �= 1 for all z ∈ E} ,
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where w = (w1, w2, . . . wn), z = (z1, z2, . . . zn) are points in Cn and 〈w, z〉 = w1z1 +
w2z2 + . . .+ wnzn.

Theorem 3. Let E ⊂ Cn be a linearly convex set such that Cn \E is not connected.
Then E there is a cylinder formed by parallel to each other hyperplanes and base is
the set on line γ; moreover the set component γ \ Q corresponds one-to-one to the

set component of Cn \ E, but E∗ is on
0
γ \Q on the line passing through the initial

coordinates, where
0
γ = γ ∪ (∞).

Theorem 4. In Cn every linearly convex domain with connected smooth boundary
is homeomorphe to a ball.

Theorem 5. Let D ⊂ Cn be a linearly convex domain with smooth not connected
boundary. Then D is a cylinder formed by parallel to each other hyperplanes and
base is the flat domain Q with a smooth boundary, lying on a complex line l (the
additional subspace to form the cylinder). The number of components ∂Q coincides
with number the of components ∂D.

The conjugated compact D∗ consists of an union of flat 2-dimensional compacts
homeomorphe to circles and resting on line, getting through the initial coordinates.
The boundary of this compact is smooth in all point, with the exclusion of, possibly,
of that with the initial coordinates, on which can be crossed by some compact.

If we have a set E ⊂ Cn, θ = (0, 0, . . . , 0) ∈ E, and a point z0 ∈ Cn \ E, we
denote by Γ(z0) a set of points w ∈ Cn, such that the hyperplane {z|〈w, z〉 = 1}
passes through z0 and does not cross E.

4. The conjecture of Aizenberg

A bounded linearly convex domain D, θ ∈ D, is C-convex iff the sets Γ(z) are
connected for all z ∈ ∂D.

Theorem 6. Let K ⊂ C
n, θ ∈ K, be such compact that all sections K by tan-

gent hyperplanes are connected. Then each connected component of the set, K∗ is
a C-convex domain.

Our next results solve Aizenberg’s conjecture.

Theorem 7. [7]. A bounded domain D ⊂ Cn, is C-convex iff the sets Γ(z) are
nonempty and connected for all point z ∈ ∂D.

Theorem 8. Let K ⊂ Cn be C-convex compact; then its interior int K consists of
C-convex domains.
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Example 3. Let K be the union of two circles

K = {z|(|z − 1| ≤ 1) ∨ (|z + i| ≤ 1)} ⊂ C.

Obviously K is C-convex compact. Except for this the interior of compact int K is
not connected.

Fig. 2. Fig. 3.

Example 4. Let A = {z = (z1, z2)‖z| ≤ 1, Im z2 ≥ 0} be hemiball, but B = {z =
(z1, z2)‖z2− i| ≤ 1} be an open unlimited cylinder in C2. We shall consider compact
K = A \ B. Any section of compact K by line, different from z2 = const, is of the
form of intersection of two sets:

1) Halfline Im z2 ≥ 0 with the ball |z2 − i| < 1 thrown away and
2) the ball of the radius not more than 1; moreover if the ball completely lies in

halfline Im z2 ≥ 0, and its radius is less then 1.
Hence K is C-convex compact. Obviously int K consists of two components.

Remark. We shall notice that the equality D̄∗ = intD∗ used in the proof of Theorem
5 is true for any bounded (not only C-convex) domain, but for unbounded domain
it can be broken.

Example 5. Let D = D1 × Cn−1, n > 1, where D1 is a flat domain. Then

D∗ ≈
0

C \D1 ⊂ C but (D̄)∗ ≈
0

C \ D̄1 ⊂ C,

and, consequently, (D̄)∗ �= intD∗ = ∅.

Example 6. Let

D = {z = (z1, z2, . . . , zn) ∈ C
n|1 < |z1| < 2, z1 /∈ [1, 2]} .

It is easy to check that D is a C-convex domain, but D̄ is already not C-convex
compact.

Theorem 9. A domain or a compact, being Cartesian product is C-convex iff it is
convex.
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Theorem 10. Let E ⊂ Cn be a C-convex closed set being kept in some real hyper-
plane. Then either E is in one of the complex hyperplanes or it is a convex set.

Theorem 11. Let K ⊂ Cn be C-convex compact not lying in a real hyperplane;
then for projection K on an arbitrary line (with the exclusion of, possibly, one line)
int π(K) �= ∅, where π(K) is an image of compact at projections π.

Theorem 12. [23]. For an acyclic compact K ⊂ Rn it be convex it is necessary and
sufficient that all its sections by supporting m-planes for fixed m, 1 ≤ m ≤ n − 1,
are acyclic.

An example illustrating the need (minimality) imposed conditions may be as follows.

Example 7. Hemisphere

S− {(x1, x2, x3)|x2
1 + x2

2 + x2
3 = 1 x3 ≤ 0

}
.

The supporting plane x3 = 0 crosses it along the one-dimensional cycle (circle).
Intersection with any other supporting plane, such as L, is the only relevant point
of a hemisphere.

Fig. 4.

Theorem 13. [23]. For an acyclic compact K ⊂ Cn with not empty the interior to
be C-convex it is necessary and sufficient that all its sections by supporting complex
m-planes for fixed m, 1 < m < n− 1, are acyclic and in the case where m = n− 1,
that they are C-convex.

References

[1] G.Matheron, Random Sets and Integral Geometry, Wiley, New York 1975; Russian
transl.



Some questions of integral complex geometry 21

[2] L.A. Santalo, Integral Geometry and Geometric Probability, Vol. 1, Encyclopedia of
Mathematics and Its Applications, Ed. G.-C.Rota, Addison-Wesley Publishing Com-
pany, Massachusetts 1976; Russian transl.

[3] R.V.Ambarcumian, J. Mekke, and D.Shtojan, Introduction to Stochastical Geome-
try, Nauka, Moskva 1989, 400 pp. (in Russian).

[4] H.Behnke and E. Peschl, Zur Theorie der Funktionen mehrerer komplexer
Veränderlichen. Konvexität in bezug auf analytische Ebenen im kleinen und großen,
Math. Ann. 111, no. 2 (1935), 158–177.

[5] A.Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann.
163, no. 1 (1966), 62–88.

[6] L.A.Aizenberg, The expansion of holomorphic functions of several complex variables
in partial fractions, Siberian Math. J. 8, no. 5 (1967), 1124–1142 (in Russian).
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[23] Yu.B. Zelinskǐı, On some criteria of compact’s convexity, 63, no. 4 (2011), 466–471
(in Ukrainian).



22 Yu. Zelinskǐı
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O KILKU ZAGADNIENIACH GLOBALNEJ GEOMETRII
ZESPOLONEJ

S t r e s z c z e n i e
Temat pracy uwzglȩdnia jednocześnie pewne zagadnienia analizy zespolonej, geometrii

i rachunku prawdopodobieństwa. Naszym celem jest zarówno przegla̧d nierozwia̧zanych
problemów jak i niedawno rozstrzygniȩtych. Pierwsze badania prawdopodobieństw geo-
metrycznych rozpoczyna znany problem igie�lek Buffoona i zwia̧zane z nim paradoksy
Bertranda. Praca uwzglȩdnia oryginalne hipotezy i wyniki obecnego autora.
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IS TORSION NEEDED IN A THEORY OF GRAVITY?
A REAPPRAISAL II
THEORETICAL ARGUMENTS AGAINST TORSION

Summary
It is known that General Relativity (GR) uses a Lorentzian Manifold (M4; g) as a

geometrical model of the physical spacetime. The metric g is required to satisfy Einstein’s
equations. Since the 1960s many authors have tried to generalize this geometrical model of
the physical space-time by introducing torsion. In the second part of the paper we discuss
theoretical arguments against torsion. Our conclusion is that the general-relativistic model
of the physical spacetime is sufficient for the all physical applications and it seems to be
the most satisfactory.

5. Theoretical arguments against torsion

We begin this Section with the remark that if one utilizes the so–called “Ockham’s
razor” then torsion is needn’t for him in a theory of gravity because the wonderful,
the most simple and most symmetric Levi-Civita connection is sufficient for the
all physical requirements. By “Ockham’s razor” we mean a Philosophical Principle
which states: “Entities are not to be multiplied without necessity”.

The first our argument against torsion is given in the very important paper by
J. Ehlers, F. A. E. Pirani, and A. Schild [73]. These authors have showed that requir-
ing compatibility between conformal geometry C defined by rays of light and the
projective structure P of spacetime determined by trajectories of freely-falling test
particles leads to Weyl spacetime with a symmetric connection ω. Then, admitting
some, very natural axioms [73], we obtain Riemannian geometry.
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So, studying the rays of light and freely-falling particles, leads us to Riemannian
spacetime.

Now, let us pay our attention to the other, disadvantegeous properties of torsion
and metric-compatible spacetimes with torsion:

1. In a spacetime with torsion do not exist infinitesimal parallelograms [12,29] be-
cause the operation of invariant geometric addition of infinitesimal coordinate
segments is noncommutative. So, such spacetimes seem physically inadmissible
as this result is in direct conflict with the operational and epistemological basis
of our difference physics [30]. Besides, such spacetime cannot be approximated
locally by a flat, Minkowskian spacetime already on classical level.

2. Torsion is topologically trivial. This means that the topological invariants of
a real manifold M and characteristic classes of vector bundles over M , as
defined in [31–33] depend only on curvature and can be fully determined by
the curvature LCΩi

k of the Levi-Civita connection. Roughly speaking, one can
continuously deform any metric-compatible connection (or even general linear
connection) into Levi-Civita connection without changing topological invariants
and characteristic classes. So, torsion is not relevant for topological invariants
and characteristic classes. Some authors say that torsion which satisfies dif-
ferential field equations might be topologically non-trivial. But this seems to
be incorrect because one can still continuously deform the connection in the
case into torsionless Levi-Civita connection without changing topological in-
variants and characteristic classes. The field equations will, of course, change
during such deformation. So, it seems to us that one can say only that the tor-
sion which satisfies differential field equations might be physically non-trivial.
Of course, one cannot exclude that there exist other topological properties of
spacetime which can substantially depend on torsion.

3. Torsion is not relevant from the dynamical point of view either. Namely, one
can reformulate every metric theory of gravitation with a metric- compati-
ble connection ωi

k as a ”Levi-Civita theory”. Torsion is then treated as a
matter field. Such reformulation preserves the all dynamical properties of the
theory. An obvious example is given by ECSK theory in the so–called “com-
bined formulation” [34]. In this formulation ECSK theory is dynamically fully
equivalent to the ordinary GR [35].
In general, one can prove [36] that any total Lagrangian of the type

Lt = Lg(ϑi, ωi
k) + Lm(Ψ, DΨ)(7)

admits an unique decomposition into a pure geometric part L̃g(ϑi,LC ω
i
k) con-

taining no torsion plus a generalized matter Lagrangian

L̃m(Ψ,LC DΨ,Ki
k,LC DK

i
k)

which collects the pure matter terms and all the terms involving torsion

Lt = Lg + Lm = L̃g + L̃m.(8)
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Here LCD means the exterior covariant derivative with respect to the Levi-
Civita connection LCω

i
k.

From the Lagrangian

Lt = L̃g + L̃m(9)

there follow the Levi-Civita equations associated with Lt.
So, torsion can always be treated as a matter field. This point of view is pre-
ferred e.g. in [37,38] and it is supported by transfromational properties of tor-
sion: torsion transforms like a matter field i.e., it transforms as a tensor–valued
form.

4. A gravitational theory with torsion violates EEP, which has so very good
experimental evidence. It is because in a spacetime with torsion a tangent
space Tp(M) cannot be identified with Minkowskian spacetime, i.e., there do
not exist holonomic frames such that gik(P ) = ηik, Γi

kl = 0, and, in which
geometry, in an infinitesimal vicinity of the point P , is Minkowskian. P is here
a preselected point. So, a gravitational theory with torsion is not a covering
theory for SRT [54] and violates EEP (Strictly speaking, it violates LLI). A
correct relativistic theory of gravity should be a covering theory for the both
theories, SRT and Newton’s theory of gravity. Of course, GR satisfies this
condition.
We also lose Fermi coordinates [12, 39, 40, 77] in a Riemann-Cartan space-
time. Fermi coordinates realize in GR a local (freely-falling and non-rotating)
inertial frame along a curve in which SRT is valid.
Some authors [41,42,44] formulate EEP in a weaker form than the constructive
Will’s formulation, which we have adopted in this paper. Namely, in their
formulation this Principle reads: there exists (anholonomic for a connection
with torsion) normal frame {ϑi} such that in a preselected point P one has

Γi
kl(P ) = 0, gik(P ) = ηik.(10)

But this Equivalence Principle is a tautology because, as it was showed in
past [45], every linear connection on a metric manifold satisfies it.
Moreover, if the metric-compatible connection has torsion, then, the so-called
transposed connection (see, e.g., [4]) ω̂i

k(P ) := ωi
k(P ) + Qi

kl(P )ϑl, torsion
Qi

kl(P ) and the symmetric part Γi
(kl)(P ) of the connection ωi

k = Γi
lkϑ

l do
not vanish in P even, if in P , ωi

k(P ) = Γi
lk(P )ϑl = 0.

In consequence, even in a normal frame, the geometry of tangent space Tp(M)
is not Minkowskian i.e., the constructive Will’s formulation of the EEP is
violated. As we have already emphasized, Will’s formulation of the EEP has
very good experimental evidence.
The Equivalence Principle formulated in the form (10) needs holonomic frames
in order to efectively work. Namely, in the set of the holonomic frames it
chooses a symmetric, linear connection. Then, adding the most natural metric-
ity postulate (or Hamiltonian Principle for trajectories of the test particles)
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univocally leads us to (pseudo)-Riemannian geometry i.e., to the Levi-Civita
connection.

5. A connection having torsion can be determined neither by its own autoparal-
lells (paths) nor by geodesics [12]. So, one cannot determine unequivocally a
connection which has torsion by observation of the test particles (which could
move along geodesics or autoparallels).

6. Study of the Einsteinian strength of the field equations of the proposed gravity
theories favorize the purely metric theories of gravity (obtained with the help of
Hilbert variational principle) which use Levi-Civita connection, LCω, in com-
parison with competitive Palatini’s theories of gravity (apart from ECSK the-
ory) which use metric-compatible connection admitting torsion (see, e.g., [47].
Namely, the purely metric gravity theories have much more smaller strengths
(48 in four dimensions) and numbers of dynamical degrees of freedom (16 in
four dimenions) than the competitive Palatini’s PGT (120 and 40 in four
dimensions respectively).
Following Einstein, from the two competitive gravity theories this one is better,
which has smaller strength and smaller number dynamical degrees of freedom
because such theory determines gravitational field more precisely. More pre-
cisely in the sense: it admits a smaller number of arbitrary initial data (putting
in “by hand”) in the Cauchy problem, i.e., it admits smaller freedom in ob-
taining a solution to the field equations.

7. Reduction of the principal bundle of the linear frames L[Mn, GL(n; r), π] over
Mn to subbundle of the (pseudo)orthonormal frames O[Mn, O(n; k) π] (for
n = 4, k = 1 one has Lorentz group L) leads us univocally to the Levi-Civita
connection. Namely, we have the Theorem [76].
Theorem
Let [Mn, g] be a (pseudo)Riemannian manifold of an arbitrary signature, k,.
Then, there exists one and only one linear connection ω on L[Mn, GL(n; r), π]
with null torsion Θ = Dθ = 0 which can be reduced to the group O(n; k), i.e.,
to the connection ωR on the principial bundle [Mn, O(n; k), π].
Interestingly, that ω, and reduced connection ωR, are exactly the Levi-Civita
connection LCω for the metric g.
So, the fibre bundle approach suggests choosing of the symmetric and metric
Levi-Civita connection for the mathematical model M4(gl, Γ) of the physical
spacetime.

Torsion leads to ambiguities:

1. The Minimal Coupling Principle (MCP) differs from the Minimal Action
Principle (MAP) in a spacetime with torsion [48].
The MCP can be formulated as follows. In SRT field equations obtained from
the SRT Lagrangian density L = L(Ψ, ∂iΨ) we replace

∂i −→ ∇i, ηik −→ gik
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and get covariant field equations in (M4, g).
By the MAP we mean an application of the Minimal Action Principle (Hamil-
tonian Principle) to the covariant action integral

S =
∫
Ω

L(Ψ, DΨ)d4Ω, where L(Ψ, DΨ)

is a covariant Lagrangian density obtained from the SRT Lagrangian density
L(Ψ, ∂iΨ) by MCP.
It is natural to expect that the field equations in (M4, g) obtained by using
MCP on SRT equations should coincide with the Euler-Lagrange equations
obtained from L(Ψ, DΨ) by MAP. This holds in GR but not in the framework
of the Riemann-Cartan geometry. So, we have there an ambiguity of the field
equations. Axial torsion removes this ambiguity. By (M4, g) we mean here a
general metric manifold; not necessarily Riemannian.

2. In the framework of the ECSK theory of gravity we have four energy-moment-
um tensors for matter: Hilbert, canonical, combined, formal [34]. Which one is
more important?

3. Let us consider now normal coordinates NC(P) [12, 49–51] which are so very
important in GR (see, eg., [49–52]). In the framework of the Riemann-Cartan
geometry we have two NC(P): normal coordinates for the Levi-Civita part
of the Riemann-Cartan connection NC(LCω, P) and normal coordinates for
the symmetric part of the full connection NC(sω, P) [53]. Which one has a
greater physical meaning?
The above ambiguity of the normal coordinates leads us to ambiguities in
superenergy and supermomentum tensors [53]. Axial torsion removes this am-
biguity. Moreover, the obtained expressions are too complicated for practical
use. In fact, we lose here a possibility of effective use of the normal coordinates
which give a very powerful tool in GR to extract physical content hidden in
various non-covariant expressions.
Perhaps by use normal frames defined in [45,78] instead of normal coordinates
one could avoid these ambiguities and connected problems. This conjecture
will be studied in future.

4. In the framework of Riemann-Cartan geometry [12] there holds

R(ik)lm = Rik(lm) = 0,(11)

but

Riklm �= Rlmik.(12)

The last asymmetry leads to an ambiguity in construction of the so–called
“Maxwellian superenergy tensor” for the field Riklm [53]. This tensor is uniq-
uely constructed in GR owing to the symmetry Riklm = Rlmik and it is
proportional to the Bel-Robinson tensor [53]. In the framework of the Riemann-
Cartan geometry the obtained result depends on which antisymmetric pair of
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the Riklm, the first or second, is used in the construction.

5. In a Riemann-Cartan spacetime we have geodesics and autoparallells (paths).
Hamiltonian Principle demands geodesics as trajectories for the test parti-
cles [54]. Then, what about the physical meaning of the autoparallells? Axial
torsion removes this problem. One can also easily prove in the framework of
the ECSK theory that spinless test particles move along geodesics.

6. In a spacetime with torsion we have in fact three kinds of parallel displacement
defined by

dvk = (−)Γk
ijv

jdxi,(13)

dvk = (−)Γk
ijv

idxj ,(14)

and

dvk = (−)Γk
(ij)v

idxj ,(15)

and three different curvatures. These results follow from that three kinds of
covariant (and absolute) differentials

∇(L)
i vk = ∂iv

k + Γk
ilv

l,(16)

∇(R)
i vk = ∂iv

k + Γk
liv

l,(17)

∇(s)
i vk = ∂iv

k + Γk
(li)v

l.(18)

Authors usually use only one of the two first possibilities. What about the
others?
In a torsionless spacetime the above three possibilities coincide.
The ambiguities (13, 14)–(16, 17) arise from the two possibilities expanding of
the local connection forms ω̃i

k on the base space Mn in coordinate frames:

ω̃i
k = Γi

kldx
l, ω̃i

k = Γi
lkdx

l.(19)

In practice, one must consequently use one of the two above possibilities (or
conventions) in order to avoid mistakes.

5.1. Symmetry of the energy–momentum tensor of matter

In Special Relativity (SRT) the correct energy–momentum tensor for matter (elec-
tromagnetic field,continuous medium, dust, elastic body, solids) must be symmet-
ric [39, 55].

One can always get such a tensor starting from the canonical pair cT
ik,c S

ikl =
(−)cS

kil, where cT
ik �=c T

ki is the canonical energy-momentum tensor and cS
ikl —

the canonical spintensor. These two canonical tensors are connected by the equations

∂kcT
ik = 0, cT

ik −c T
ki = ∂lS

ikl.(20)
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By use of the Belinfante symmetrization procedure [34, 48, 56, 57] one can get the
most simple new pair

sT
ik =c T

ik − 1
2
∂j

(
c
Sikj −c S

ijk +c S
jki
)
,(21)

Sijk =c S
ijk −Ajki +Aikj = 0.(22)

Here

Aikj =
1
2
(

c
Sikj −c S

ijk +c S
jki
)
.(23)

The obtained new ”pair” (sT
ik, 0) is the most simple and the most symmetric. Note

that the symmetric tensor sT
ik =s T

ki gives complete description of matter because
the spin density tensor cS

ijk is entirely absorbed into sT
ik by the symmetrization

procedure.
Note also that the symmetric tensor sT

ik has 10 independent components and
this number is exactly the same as the number of integral conserved quantities in
an asymptotically flat closed system.

It is interesting that one can easily generalize the above symmetrization procedure
onto a general metric manifold (M4, g) [14, 34] by using the Levi-Civita connection
associated with the metric g. The generalized symmetrization procedure has the
same form as above with the replacement ηik −→ gik, ∂i −→LC ∇i.

So, one can always get on a metric manifold (M4, g) a symmetric energy-moment-
um tensor sT

ik =s T
ki for matter (then, of course, corresponding Sikj = 0). Observe

that the symmetric tensor sT
ik, like as in SRT, consists of the canonical tensors

cT
ik and cS

ikl.
The symmetric energy–momentum tensor for matter is unique, i.e., it is uniquely

determined by the matter equations of motion and reasonable boundary condi-
tions [58]. This fact is essential for the uniqueness of the gravitational field equations.
Moreover, the symetric energy–momentum tensor is covariantly conserved (a canon-
ical energy-momentum tensor is not conserved).

L. Rosenfeld has proved [59] that

sT
ik =

δLm

δgik
,(24)

where
Lm = Lm(Ψ, LCDΨ)

is a covariant Lagrangian density for matter. The tensor sT
ik given by (24) is the

source in the Einstein equations

Gik = χsTik,(25)

where
χ =

8πG
c4

.

Note that these equations geometrize both the canonical quantities cT
ik and

cS
ikl = (−)cS

kil in some equivalent way because the tensor sT
ik is built from these
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two canonical tensors.
So, it is the most natural and most simple to postulate that, in general, the correct

energy–momentum tensor for matter is the symmetric tensor sT
ik. This leads us to

a purely metric torsion-free theory of gravity with the field equations
δLg

δgik
=
δLm

δgik
.(26)

Then, if we take into account the dynamical universality of the Einstein equations
[38,60,61], we will end up with General Relativity (possibly with Λ �= 0) which will
have a sophisticated, symmetric energy-momentum tensor as a source.

5.2. Some remarks on the “teleparallel equivalent of general relativity”

After presenting the preliminary draft of the old our lectures in arXiv [80], we have
got critical remarks from some persons which are working on the so-called telepar-
allel equivalent of general relativity (TEGR) in the framework of the Weitzenböck
or teleparallel geometry [12,29,62]. Our reply was the following. This reply was con-
siderably extended and updated in the paper [81]. The Weitzenböck or teleparallel
connection and geometric structure on spacetime is determined by a tetrad (or other
anholonomic frame) field h(a)

b(x) and can always be introduced independently of the
geometric structure of the spacetime. Here (a), (b), ... are tetrad (= anholonomic)
indices and a, b, c, ... mean holonomic (= world) indices.

The fundamental formulas of the teleparallel geometry read

gik := η(a)(b)h
(a)

ih
(b)

k,(27)

Γi
kl := h i

(a) ∂kh
(a)

l,(28)

∇ih
(a)

k = 0,(29)

Γi
kl =LC Γi

kl +Ki
kl,(30)

Ki
kl := 1/2

(
T i

k l + T i
l k − T i

kl

)
,(31)

T i
kl := Γi

lk − Γi
kl,(32)

and

Ri
klm =LC Ri

klm +Qi
klm ≡ 0,(33)

where Qi
klm is a tensor written in terms of the contortion Ki

kl and its covariant
derivatives with respect to the Levi-Civita connection LCΓi

kl of the metric gik.
Here η(a)(b) means the interior metric (usually Minkowskian) of a tangent space

and the duals h i
(a) are defined by

h i
(a) h

(a)
k = δi

k.(34)

Those authors which work on TEGR, by use the formulas (27), (30), and (33)
of the teleparallel geometry rephrase, step-by-step, the all formalism of GR in terms
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of the Weitzenböck connection Γi
kl and its torsion T i

kl. Then, they call this formal
reformulation of GR in terms of the Weitzenböck geometry the teleparallel equivalent
of general relativity (TEGR) (What kind of “equivalence”?).

One can read in the papers [62] the following conclusion: “Gravitational interac-
tion, thus, can be described alternatively in terms of curvature, as is usually done in
GR, or in terms of torsion, in which case we have the so–called teleparallel gravity.
Whether gravitation requires a curved or torsional spacetime, therefore, turns out
to be a matter of convention”.

From the point of view of the TEGR, therefore, teleparallel torsion has funda-
mental physical meaning and it has been already detected.

We cannot agree with such statements. In our opinion, the ”teleparallel equivalent
of GR” is only formal and geometrically trivial rephrase of GR in terms of the
Weitzenböck geometry. Such rephrase is, of course, always possible not only with
GR but also with any other purely metric theory of gravity (see eg. [63]) but it has
no profound physical motivation. It is because, as one can easily show, the teleparallel
torsion is entirely expressed in terms of the Van Danzig and Schouten aholonomity
object Ω(a)

(b)(c) (see eg. [12, 29]). So, the torsion T i
kl of a teleparallel connection

describes only anholonomity of the used field of aholonomic frames h(a)
i(x); not

real geometry of the spacetime. Unless one can physically distinguish a tetrad field
(or other anholonomic field of frames) and give it a fundamental geometrical and
physical meaning. But we think that this could introduce a cristal–like structure
on spacetime and, therefore, it would contradict local Lorentz invariance. Contrary,
Levi-Civita part of a Weitzenböck connection can have (and has) geometrical (and
physical) meaning.

Resuming, it seems to us that TEGR is rather a mathematical curiosity which
gives, by no means, anything better than ordinary GR gives and one can doubt into
its physical meaning. Precise experimental confirmation of the EEP proved non-
zero curvature of physical spacetime [39,66] and supported ordinary GR. We think
that this fact excludes a physical motivation for rephrasing GR into TEGR. One
remark more is in order concerning TEGR: TEGR resulted in f(T ) theories where
T means the Lagrangian density [83] of the TEGR. In analogy to f(R) extension
of the Hilbert action of GR, the f(T ) theories are generalization of the action of
TEGR. It seems that the only one positive property of these theories is the fact
that they have 2-nd order field equations.

6. Concluding remarks

The GR model of the space-time has very good experimental confirmation in a weak-
field approximation (Solar System) and in the strong fields (binary pulsars). On the
other hand, torsion has no experimental evidence (at least in vacuum) and it is not
needed in a theory of gravity. Moreover, the introduction of torsion into the geometric
structure of space-time leads to many problems (apart from calculational, of course).



32 J. Garecki

Most of these problems are removed if only axial torsion Ai = 1
6ηiabcQ

abc, Q[abc] =
Qabc exists. So, it would be reasonable to confine themselves to the axial torsion
only (If one still want to keep on torsion). This is also supported by the important
fact that the matter fields (= Dirac’s particles) are coupled only to the axial part of
torsion in the Riemann-Cartan space-time.

However, if we confine to the axial torsion, then (if we remember the dynamical
triviality of torsion and the dynamical universality of the Einstein equations) we
effectively will end up with GR + additional matter fields. In the most important
case of the ECSK theory we will end up with GR + an aditional pseudovector
field Ai (or with an additional pseudoscalar field ϕ if the field Ai is potential, i.e., if
Ai = ∂iϕ) [48]. But GR with an additional dynamical pseudovector field Ai yields
local gravitational physics which may have both location and velocity-dependent
effects [19] unobserved up to now. Besides, GR with an additional pseudoscalar
field has a defect because there exist two distinguished frames, the Einstein frame
and the Jordan frame, which are not equivalent physically [67].

Additionally, we would like to emphasize that there exist very strong experimental
constraints on the components of the axial torsion: < 10(−15)m(−)1 [75].

So, we will finish with the conclusion that the geometric model of the space-time
given by ordinary GR and “wonderful” Levi-Civita connection seems to be the most
satisfactory.

Interestingly that this model has a very strong support from the field-theoretic
approach to gravity (see e.g., [68]).

It seems to us that the torsion was introduced into a theory of gravity in order to
get some link between theory of gravity and quantum fundamental particles theory
(It is commonly known that the role of the curvature in an atomic and smaller scale
is neglegible). But these trials were not successful (see, e.g., [75]). It also seems that
what we really need nowadays is a quantum model of the Riemannian geometry
and a quantum gravity which is based on this model. The recent papers given by
Ashtekhar [16–18,74] and co–workers on this problem seems to be very promissing.
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[57] W.Kopczyński and A. Trautman, Spacetime and Gravitation, PWN, Warsaw 1984
(in Polish); [English edition of this book: Space-Time and Gravitation, ed. J. Wiley,
New York 1992].

[58] V.D. Fock, The Theory of Space, Time and Gravitation, Pergamon Press, London
1969.

[59] L.Rosenfeld, Mem. Acad. Roy. Belg. Cl.Sc., fasc. 6 (1940).

[60] G.Magnano, et al., Gen. Rel. Grav. 19 (1987), 465.

[61] A.Borowiec, et al., Gen. Rel. Grav. 26 (1994), 637; A.Borowiec, et al., Class. Quan-
tum Grav., 15 (1998), 43 (arXiv:gr-qc/9611067); A.Borowiec, et al., Alternative La-
grangians for Einstein Metrics, arXiv: gr-qc/9806116.

[62] V.C. de Andrade, et al., Teleparallel gravity: an overview, arXiv:gr-qc/0011087;
V.C. de Andrade, et al., Teleparallel gravity and the gravitational energy-momentum
density, arXiv:gr-qc/0011097; V.C. de Andrade, et al., Teleparallel spin connection,
arXiv:gr-qc/0104102; R.Aldrovandi and J.G. Pereira, An introduction to teleparallel
gravity, Instituto de Fisica Teorica, UNESP Sao Paulo, Brazil 2007.

[63] J.Garecki and R. Schimming, Bull. Soc. Sci. Lettres �Lódź 52 Ser. Rech. Deform. 38
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CZY TORSJA JEST POTRZEBNA W TEORII GRAWITACJI?
NOWE SPOJRZENIE II
ARGUMENTY TEORETYCZNE PRZECIWKO TORSJI

S t r e s z c z e n i e
W pracy pokazano, że wprowadzenie skrȩcenia do modelu matematycznego fizycznej

czasoprzestrzeni nie jest ani konieczne, ani wskazane.
W drugiej czȩści pracy przedyskutowano argumenty teoretyczne przeciwko torsji. Model

matematyczny, który daje ogólna teoria wzglȩdności jest wystarczaja̧cy dla wszelkich po-
trzeb fizyki i, jak dota̧d, jest bardzo dobrze potwierdzony przez eksperymenty.
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MODERN HOMOPOLAR MOTORS

Summary
This paper aims to present a construction and operating principles of some types of

homopolar motors. These motors are characterized by the fact that the spinning of the
rotor occurs in the surrounding of only one of the poles of a permanent magnet. An early
demonstration of a homopolar motor is Barlow’s wheel. A few versions of such motors were
built using easily available and inexpensive materials, such as a neodymium magnet, piece
of copper wire and battery in a metal shell. These are motors with a rotating magnet, a
battery or a frame of wire. A detailed explanation of principles of operation of such motors
has also been provided.

1. Introduction

One of the earlest and simplest homopolar electrical motors to be built is Barlow’s
wheel. Known from literature, a classic model of the wheel comprises a conductive
disk of nonferromagnetic material [1, 2]. The disk is mounted on a conductive axle
and can rotate almost without friction. A constant magnetic field is applied perpen-
dicularly to the surface of the disk. Two resilient contact points which are connected
to a DC power source make contact with both the rim of the disk and its axle.
As a result an electric current passes over the disk in radial direction. Since the
passing current is perpendicular to the magnetic field, on the disk there act electro-
dynamic forces which are directed tangentially to the circumference of the wheel.
The momentum of these forces causes the disk to rotate.

A change in direction of the current flow, or a reversal of induction vector of
the applied magnetic field cause a reversal of the direction of the disk rotation. An
increase in amperage or induction value leads, in turn, to an increase in rotational
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speed of the disk. In some technical solutions the rim of the disk is dipped into
mercury contained in a small trough to which one pole of the electric source is
attached. This ensures good electrical contact at a fairly high amperage necessary
to cause the rotation of the disk.

At present, Barlow’s wheel is used in some special driving systems, or in elec-
tromagnetic generators/dynamos that have to operate at low amperage and high
current magnitude. In recent years among several household goods there appeared
on the market round batteries or battery cells in metal shells, as well as strong con-
ductive nickel coated neodymium magnets, and aluminum cans used as packaging
for beverages and deodorants. These articles allow us to easily build some simple
but interesting models of unipolar electric motors which constitute modern versions
of the earlier types. More examples of such motors will be demonstrated further on
in this paper. One good point about them, except their simplicity, is that they make
an excellent teaching tool.

2. Motor with a rotating magnet

A simple homopolar motor is very easy to build with the following components: a
nickel coated neodymium magnet in the shape of cylinder 1 – 2 cm in diameter and
1 cm thick, R6 battery cell in a metal shell, a piece of conductive wire with bare
ends 10 to 15 cm long, a two-inch steel nail or a drywall screw. If the copper wire is
isolated you need to remove the insulation. The flattened boss on the end of the nail
should be centered over the the flat surface of the cylindrical magnet. As a result of
magnetic attraction the nail will adhere firmly to the magnet, see Fig. 1. The point
of the nail, in turn, should be aplied to one of the terminals of the battery. Due to
its metal shell, the nail will also be attracted to the battery. The other end of the
battery should be held with the fingers of one hand and the bare end of the wire
should be pressed into it. The magnet and the nail become suspended vertically held
by the forces of magnetic attraction. The remaining bare end of the wire is to be
held with the fingers of the the other hand and applied to the side surface of the
magnet. It turns out then that the magnet and the nail begin to spin around their
vertical axis.

The observed rotation of the magnet can be explained as follows, see Fig. 2.
From the battery terminal that contacts the nail there flows an electric current
along the nail towards the centre of the magnet, and then in a radial direction
through the magnet to the wire end that makes contact with the side surface of
the magnet. The current contues to flow on to the other terminal of the battery.
In this way, the circuit is completed through the nickel coating of a neodymium
magnet. The current that is flowing radially through the magnet is in the mag-
netic field that is induced by the same magnet. The direction of induction vector of
the magnetic field is vertical, or perpendicular to the direction of a current. In such
a case, an electrodynamic force acts on the magnet which is directed horizontally and
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Fig. 1: Motor with a rotating magnet construction; 1 – a neodymium magnet, 2 – a steel
nail, 3 – R6 battery cell, 4 – the positive battery terminal, 5 – a thin resilient wire.

Fig. 2: Basic explanation of the working principle of operation of the motor with a rotating
magnet; I – the electric current intensity, B – magnetic field or magnetic induction, F –
electrodynamics force.
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tangentially to the circumference of the magnet. The momentum of the force sets
the magnet in rotation.

By turning the magnet over so that its other pole makes contact with the nail
head causes a change of direction of the magnet’s rotation to the opposite. The same
effect is obtained by changing the battery terminal in contact with the point of the
nail. Moreover, the speed of magnetic rotation is dependent on the place where the
end of the wire contacts the side surface of the magnet and is the highest where
the contact with the surface is at mid-height of the magnet. A drywall screw with a
pointed end can be used in place of a nail. In such a case the rotation will be more
observable. A bigger sized batteries, such as R14 or R20, can also be used. Batteries
of the type have lower internal resistance and can supply more current, which results
in a higher speed of magnet rotation, see Photo 1. The experiment comes off also
with smaller batteries of R3 type, see Photo 2.

Photo 1: The homopolar motor made with
the use of the smallest round R3 battery

cell, the so called pencil battery.

Photo 2: The homopolar motor in which
R20 battery cell was used.

A ferrite cylinder magnet can be used in place of a neodymium magnet, but then
it should be wrapped carefully in an aluminum foil, to allow a current to flow over the
surface of the magnet. The nail or screw cannot be too long and their cross-sectional
area should not be too small, otherwise it will not be attracted firmly enough to the
outer metal shell of the battery and will not be able to hold the weight of the magnet.
When rotating, the magnet is prone to sway slightly to the sides and the endpoint of
the wire may fail to contact the side surface of the magnet. Despite that, due to the
inertia effect the magnet continues to rotate. During rotation a pondermotoric force
is induced in the magnet which is oriented in the opposite direction to the electro-
motive force of the battery. As a result, the intensity of the current passing through
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the magnet becomes dicreased and a state of balance is achieved, which prevents the
motor from reaching the warming-up phase. Despite that, the battery works close
to the level of short circuit and a significant ammout of current is flowing through it
at the intensity level of up to a few amperes. This causes noticeable heating of the
motor components and excessive discharge of the battery.

To prevent the point of the nail from deviating off the centre of battery terminals,
which occurs during fast rotations of the motor, it is useful to make small dents at
the tops of the terminals with a nail or a slightly blunted point of a point chisel.
Attention should be paid not to go through the battery shell, otherwise in the case
of alkaline batteries this may cause a leak of electrolyte and the irrepareable damage
to the battery. Making such dents in the top of the battery also does the trick in
the case of motors to be described in the further parts of our paper. The point of
the nail should be applied to the opposite surface of the battery. By holding the nail
head and lifting it we check wheather the battery and magnet do not come off the
nail.

3. Motor with rotating battery and magnet

The motor is built from the same components as the one described earlier, but its
elements are arranged differently in relation to one another, see Fig. 3. Due to that,
the battery in the motor rotates together with the magnet while the nail remains
immobile, see Photo 3. Such a configuration of elements, unknown in literature, has
been proposed by one of the co-authors of this paper. To build the motor, the flat
surface of the neodymnium magnet should be applied to one of the surfaces of the
battery in a metal shell.

Fig 3: The motor with a rotating battery and
magnet; 1 – a neodymium magnet, 2 – R6

battery cell, 3 – a steel nail, 4 – the positive
battery terminal, 5 – a thin resilient wire.

Photo 3: The homopolar motor where
R3 battery rotates together with the

magnet.



44 S. Bednarek and T. Bednarek

If it does, a stronger magnet, or a shorter nail with a bigger cross section area is
needed. It should be remembered that the battery and magnet hold on better when
its wider end is in good contact with the flattened nail head, which constitutes the
negative terminal. The bare end of a copper wire is applied to the nail head and
pressed with a finger. The other bare end of the wire is to be held with the fingers
of the other hand and applied to the side surface of the neodymium magnet. A spin
of a magnet and a battery can be observed. The operation principle of the motor is
similar to the one described earlier. The same remarks apply also to the change in
the direction of the rotation of the motor and to using other battery options.

Let’s have a closer look at the dynamics of the motor. On the magnet and battery,
or the rotor there acts the momentum of electromagnetic force, getting ready to set
it in motion. In addition to that, on the magnet there acts the momentum of friction
of the end of the wire against its side surface, and the slight momentum of friction
of the magnet against the point of the nail. The momenta of friction counteract the
movement of the rotar. Assuming that the values of these momenta are constant and
the momentum of electrodynamic force is greater than the momenta of friction, then
the angular velocity of the rotor would be constant and its velocity could increase
indefinitely with the passing of time. As a result, it could lead to excessive velocity,
or the so-called warming up of the motor, resulting in its damage. However, this has
not been observed. Why is it so?

The momentum of friction of the air acts also on the rotor, which, in accordance
with Stokes’ theorem, is directly proportional to its velocity. In this situation, how-
ever, the momentum is rather insignificant. A really essential factor that curbs the
speed of the rotor is the aforementioned pondermotive force. The force increases
proportionally to the speed of rotation and decreases the intensity of a current, on
which there depends the momentum of electromagnetic force. Due to that, with
the passing of time, the resultant forces that act on the rotor and its acceleration
decrease and the angular velocity of the rotor approaches exponentially the estab-
lished critical value, Fig. 4. The critical value is dependent only on the parameters
that characterize the elements of the motor, for example, the mass and the size of a
magnet,or the electromotive force of a battery. The curve shown in Fig. 2 describes
an increase in the angular velocity of the rotor for an ideal motor in which the end
of the wire is in constant contact with the side surface of a magnet.

During experiments, it is easy to observe that the magnet deviates from a straight
line and contact between the wire ends and the magnet is lost. Severance of contact
leads to the disappearance of the momentum of the electrodynamics force that pro-
pells the rotor. Friction forces are still at work causing the angular velocity of the
rotor to decrease. Repeated engagement of the wire end with the surface of the mag-
net causes an increase in angular velocity. Such situations repeat, and a dependence
graph for angular velocity of the rotor on the time assumes the shape as shown in
Fig. 5. On breaking off the connection between the wire end and the magnet, little
sparks can be observed signifying a high intensity of the current flowing through the
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motor. Similar experiments can be carried out with the motor as with the motor
described in the previous paper, and so to reverse the battery terminals or the poles
on the magnet, to test the batteries and magnets of various sizes, or to apply the
wire end at different points over the surface of the magnet.

Fig 4: The dependence of an angular
velocity of the rotor ω on the time t for

an ideal motor.

Fig. 5: The dependence of an angular
velocity of the rotor ω on the time t for a

real motor.

4. Homopolar motor with a rotating battery

If you have a round R20 non-alkaline battery and a big enough neodymium magnet,
you can build a homopolar motor in which only a battery itself will rotate. In order
to do that the outer steel shell has to be removed. The metal sheet is bent back by
means of a screwdriver or a knife along the edge and pulled off with a pair of pliers.
A zinc case is the negative terminal, whereas the carbon rod with a metal cap is
positive. An alkaline battery is not fit for the experiment of this kind, as it has no
zinc case and the unbending of its shell may cause damage to the battery and the
spilling of electrolyte.

The next step will be putting a brass cap (recovered from the used battery) on
top of the carbon rod sticking out of R20 battery cell. In the centre of the metal cap
we make a slight dent with the point of a nail. If the R20 battery rod has too large a
diameter, to fit the metal cap we make it smaller by scraping it. The small cap will
serve as a resistant bearing for the motor and ensure the flow of a current. Close to
the end of a piece of non-ferromagnetic sheet we cut out a round hole with a pair
of scissors and finish off the edges with a file – of a diameter that is larger than the
outer diameter of the zinc case of R20 battery. Then we bend the strip twice at right
angle to form a bracket-like structure in the shape of letter C, as shown in Fig. 4.
The perpendicular arm of the bracket must be short – around 1 cm in length. At
the lower arm of the bracket a small hole is pierced through with the point through
which a thumb-tack will be pressed from the outside. The hole should be made under
the hole in the upper arm of the bracket.
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When the above components are prepared, we can go about carrying out the
experiment with the motor, see Fig. 6. The bracket is adjusted on top of a cylindrical
battery, right at its centre, and R20 round battery is stripped off the metal outer
shell and inserted into its opening from the top. Thanks to the ferromagnetic thumb-
tack, the bracket will be firmly drawn onto the magnet. One end of the battery with
the metal cap should be turned downwards so that it can rest on the point of a
thumb-tack put in the dent in the cap. A slow battery spinning can be observed, see
Photo 4. An electric current in the motor passes from the metal cap on the battery
positive terminal, then it flows on through the thumb-tack and the lower arm of the
bracket up to its vertical and upper arm and then over the surface of the battery
zinc case. The current inside the battery flows radially through the electrolyte to the
zinc case and then to the carbon rod. An electrolyte and an electric current are in
the strong vertical magnetic field that is directed perpendicularly. In this situation,
an electrodynamics force acts on the battery, which is directed horizontally and
tangentially to the battery. The momentum of the force gets the battery to spin
around its axis. In this type of a motor it is easy to change the direction of rotations
by reversing the battery or magnet polarity.

Fig 6: The construction of the motor with a
rotating battery cell only; 1 – a neodymium

magnet, 2 – a non-ferromagnetic bracket, 3 – a
thumb tack, 4 – a round battery, 5 – a brass cap.

Photo 4: The homopolar motor in
which only R20 battery rotates

slowly.
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5. Motors with rotating frames

The source of a magnetic field in the motors is a cylindrical neodymium magnet 1
coated with a protective layer of nickel, Fig. 7. The diameter of the magnet equals
or is greater than the diameter of the battery cell 2 to be used here. Any of the
aforementioned round battery cells of R6, R14 or R20 type can be effectively used.
The magnet should be 1 cm or more in height. A relevant battery in a metal shell is
placed co-axially on the magnet, and therefore it is strongly attracted by the magnet.
The battery can be placed either with the positive terminal 3 facing upwards, or the
other way round. A movable element in the motor is the frame made of a non-
ferromagnetic wire 1 mm in diameter. It can be a coper wire, brass or just a wire
coated with a thin layer of silver, the so called silver plating for applications in
electronics. Wires that are made from such materials are easy to bend and solder.

Some specific elements can be singled out in the frame. The bottom of the frame
has a ring 4, its inner diameter being slightly wider than that of the magnet. The
ring is obtained by bending a wire on the magnet which is wrapped up with a few
layers of paper to enlarge the diameter of the ring. On the opposite sides from the
ring along its diameter there diverge two horizontal segments of wire 5 which at
some distance from the battery are bent at right angle upwards forming vertical
segments 6 that jut out over the battery. The segments are bent again over the
battery and pass over into the horizontal section 7. At mid-length the last segment
has a vertical fragment 8 which is bent downwards, is pointed at the end and rests
on the terminal directed upwards. In sum, the frame comprises a horizontal ring
that is in contact with the side surface of the magnet, and a vertical rectangle that
encloses the battery. It takes no more than a few minutes to bend a frame shape
from a single length of wire and to join its segments together by soldering.

As soon as the frame is put over the battery, it begins to spin, Photo 5. The
direction of rotation of the frame can be reversed by reorienting the magnet and
battery polarities. Batteries of bigger sizes give more amperage and higher rotational
rate of the frame. The cause of rotation of the frame is the resultant momentum of
electromagnetic forces that act on the separate sides of its rectangular part, Fig. 8.
When the frame is put over the battery, the electric current flows through the vertical
bent section 8, and then it branches off into separate sides of the rectangular part of
the frame and runs into the ring contacting with the side surface of the magnet. The
current enters the other terminal of the battery through the protective, conductive
layer of nickel.

All of the segments of the rectangular part of the frame which exhibit conduc-
tivity are in the magnetic field whose induction vectors have, in general, a diagonal
orientation to that section. Due to that, each of the component vectors is perpen-
dicular to each other. Since an electric current passes through these segments, the
electromagnetic forces act on them in the direction of the circuit. Applied to the
opposite sides of the frame the forces have opposite directions and the same values,
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Fig 7: The motor with a rotating frame
construction; 1 – a neodymium magnet, 2
– R6 battery cell, 3 – the positive battery
terminal, 4 – a frame ring, 5 – the lower

section of the frame, 6 – the vertical
section of the frame, 7 – the upper section
of the frame, 8 – the pointed end of the

frame.

Fig 8: The explanation of the effects of
the frame in a magnetic field; I – the

electric current intensity, B1, B2, B3 – the
magnetic induction vectors on separate
sides of the frame, B1n, B2n, B3n – the
components of the magnetic induction

vectors parallel to the sides of the frame,
F1, F2, F3 – the electrodynamics forces

that act on the sides of the frame.

Photo 5: An example of a homopolar motor with a rotating non-ferromagnetic frame.
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or constitute pairs of forces. This leads to creating the momentum of forces that
rotate the frame. The frame undergoes a swinging motion and its ring need not
make contact with the side surface of the magnet all the time because whenever
there is no contact, the frame that has been set in motion will keep on rotating due
to its inertia. Similarly as in the case of the models described earlier, the battery
operates in the circuit mode and the amount of current of high intensity passing
through it, causes overheating of the motor elements and a fast battery wear. The
vertical section of the frame need not have any lower horizontal segments 5, Fig. 9a.
This part may be of a different shape than rectangular, for example, trapezium, or
it may take the form of a complex polygon, Fig. 9b.

Fig. 9: Examples of various shapes of frames; a) a rectangular frame, b) a zigzag frame.

6. Motors with rotating cans

The use of appropriately prepared cans in place of wire frames in the motors that
have been presented so far was an idea of one of the co-writes of this article, not
found in available literature, Fig. 10. In such motors, a neodymium magnet 1 with
a battery placed on it 2, its positive terminal 3 directed upwards, are the same as
in the models described earlier. A used aluminum deodorant can with a sawn-off
bottom 4 in an upside down position is placed over the battery. Both the diameter
and the length of the cut-off fragment of the can are matched in such a way that
the inner surface of the can makes a contact with the surface of the magnet, thus
ensuring a good electrical contact. To reduce friction and keep the can on the axis
of the system, a thumb-tack 5 or a short nail is driven through right at the centre
of the bottom.

When the can is put over the magnet and the battery, it begins to rotate quickly,
Photo 6. The principle of operation of this version of a motor is similar to that of
motors with frames. Here, an electric current flows from the battery cell terminal
through the thumb-tack, and then is dispersed radially over the bottom of the can
towards its side surface. Over this surface the current flows perpendicularly into a
lower edge of the can, through which it reaches the side surface of the magnet and
then further on into the other battery terminal. Within the area of the bottom of
the can and its side surface there is a perpendicular component of magnetic induction
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Fig 10: The external view of the motor
with a rotating can; 1 – a neodymium

magnet, 2 – a round battery cell, 3 – the
positive terminal of the battery, 4 – an

aluminum can, 5 – a thumb-tack.

Photo 6: A view of the homopolar motor
in which a deodorant can is rotating. The
image of a can is blurred due to a high

rotation rate.

Photo 7: The homopolar motor
constructed with usage of the most

popular aluminum can.

Photo 8: The homopolar motor with
rotating aluminum energy drink can.
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Photo 9: The homopolar motor with rotating aluminum beer can.

Fig. 11: A cross-section of the motor with
a rotating soft drink can – the denotations
of the elements are the same as in Fig. 10.

Fig. 12: A cross-section of the assembled
motor with a rotating beer can – the

denotations of the elements are the same
as in Fig. 10.
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vector of the magnetic field generated by the magnet. As a result, electromagnetic
forces act on the can, which are oriented in the direction of the circuit, their mo-
mentum causing the rotation of the can.

Apart from the used deodorant cans of a diameter slightly wider than that of the
magnet, aluminum cans for soft and energy drinks and beer with a volume of 330 ml,
200 ml and 500 ml, Photos 7, 8, 9 were successfully used for creating homopolar
motors. In the case of these cans, co-centered holes were cut out in their bottoms of
diameter slightly wider than that of a neodymium magnet. For that purpose, a pair
of curved scissors for nails was used, any rough edges being smoothed with a file. A
thumb tack was stuck in the centre of the can top. And the can thus prepared was
put over the battery which, in turn, was placed on the neodymium magnet, Fig. 11.
The edge of the hole in a can bottom was then in contact with the side surface of the
magnet. As for the beer and energy drinks tall cans, two battery cells were placed on
the magnet, one on top of the other. The battery terminals were oriented in such a
way that they were connected in series, Fig. 12, which ensured a proper adjustment
of the series-connected batteries to the height of a can and caused a higher intensity
of current required to set a heavier beer can in rotation.

7. Summary

Some interesting educational demonstration experiments described in the books sev-
eral years ago seem to have been forgotten. Very often some forbidden or hazardous
and inaccessible substances were used in the experiments, such as mercury in Bar-
low’s wheel. It turns out, however, that the appearance and availability of new ma-
terials, a wide range of packaging options for a variety of products or gadgets that
make our life easier allow us to conduct these already forgotten and once difficult ex-
periments in an easy and attractive way. The homopolar motors described here are a
good example of that. Their presentation in a new format was made possible thanks
to, among other things, the availability of strong neodymium magnets covered with
anti-corrosion coating of nickel, battery cell enclosed in a metal shell, which protects
electrical appliances from damage caused by a battery electrolyte leak, as well as the
appearance of new types of packaging materials, such as steel and aluminum bev-
erage cans. Obviously, for all that we also require some imaginative contrivance or
inventive skill, as well as coming to the realization that the laws of physics universal
in character as they are, they are also in operation with regard to these objects.
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WSPÓ�LCZESNE SILNIKI HOMOPOLARNE

S t r e s z c z e n i e
W pocza̧tkowej czȩści artyku�lu opisano krótko znane z literatury ko�lo Barlowa, jako

przyk�lad silnika elektrycznego homopolarnego, czyli jednobiegunowego. W nastȩpnych czȩś-
ciach przedstawione zosta�ly przyk�lady budowy takiego silnika przy użyciu wspó�lcześnie
dostȩpnych przedmiotów i materia�lów codziennego użytku, takich jak: okra̧g�le baterie,
magnes neodymowy, kawa�lek miedzianego drutu, gwoźdź stalowy oraz aluminiowe puszki
od napojów i dezodorantów. Opisane zosta�ly silniki wykonane z wymienionych przed-
miotów, w których elementami wiruja̧cymi sa̧: magnes neodymowy, bateria, druciana ramka
oraz aluminiowe puszki. Podano wskazówki techniczne oraz wyjaśnienie zasady dzia�lania
zbudowanych silników. Przyk�lady te sa̧ bardzo proste w realizacji i daja̧ widowiskowy
efekt. Ponadto dobrze nadaja̧ siȩ do stworzenia sytuacji problemowej, zachȩcaja̧cej osoby
ogla̧daja̧ce te silniki do lepszego zrozumienia praw fizyki.
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Summary
The regressive polynomials play an important role in analysis of empiric data re-

presented by the pair of finite sequences x and y. The linear dependence most common
in practice, expressed for example in physical and chemical laws, brings too much sim-
plification in searched dependence between the data. The generalized regression problem
considered in this paper leads to solution of a certain extremal problem, defined in a
finite-dimensional Hilbert space.

1. Formulation of the regression problem

In order to solve mentioned above extremal problem, we ought to recall first the
regression structure, cf. [3]. By the regression structure we maen a structure R :=
(A,B, δ, x, y) where

I.1 A,B are nonempty sets;

I.2 x : Ω1 → A, y : Ω2 → B for some nonempty sets Ω1 and Ω2;

I.3 δ : (Ω1 → B) × (Ω2 → B) → R̄.

Having desposed a regression structure R we may consider the functional model
of R, i.e. a nonempty subclass F of the class A→ B.
We will seek optimal theoretic functions f0 ∈ F which are the best fitted to empirical
data functions x and y with respect to the criterion δ, i.e. all functions f0 ∈ F
satisfying inequality
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F (f0) ≤ F (f), f ∈ F ,(1)

where F is the functional defined as follows

F � f → F (f) := δ(f ◦ x, y) ∈ R̄.(2)

The set of all functions satisfying (1) we will denote by Reg(F ,R).
From now we shall consider the family of regression structures R in the case,

that

II.1 B is the support of a complex (resp.real) Hilbert Space, which means that
B := (B,+, ·; 〈·|·〉B) is a complex (resp. real) Hilbert Space.

In order to make the mentioned above regression problem well defined on the ground
of Hilbert Spaces we have to make additional assumptions:

II.2 There exist a σ-field B of subsets of the cartesian product Ω1×Ω2 and a measure
μ : B → [0,+∞] such that the function δ satisfies the following equality for
every u : Ω1 → B, v : Ω2 → B

δ(u, v) :=
∫

Ω1×Ω2

‖ u(t1) − v(t2) ‖2
B dμ(t1, t2),(3)

provided the function Ω1 × Ω2 � (t1, t2) →‖ u(t1) − v(t2) ‖B is B-measureable
and δ(u, v) = +∞ otherwise.

II.3 The function Ω1 × Ω2 � (t1, t2) → y(t2) is B-measureable.

From now we confine ourselves to the case that B is a finite-dimensional Hilbert
Space. Lets us consider now the set L1(R) of all functions f : A → B such that
Ω1 × Ω2 � (t1, t2) →‖ f ◦ x(t1) ‖B is B-measureable and∫

Ω1×Ω2

‖ f ◦ x(t1) ‖2
B dμ(t1, t2) < +∞(4)

and the set L2(R) of all functions g : B → B such that Ω1 × Ω2 � (t1, t2) →‖
g ◦ y(t2) ‖B is B-measureable and∫

Ω1×Ω2

‖ g ◦ y(t2) ‖2
B dμ(t1, t2) < +∞.(5)

From the Schwarz inequality and the inequality |ab| ≤ 1
2 (a2 +b2), a, b ∈ R we obtain

|〈z|w〉B| ≤ 1
2

(‖ z ‖2
B + ‖ w ‖2

B), z, w ∈ B.(6)

Since the sum of two B-measureable functions is B-measureable we conclude from
(6) that the functional

L1(R) × L1(R) � (u, v) �→ 〈u|v〉� :=
∫

Ω1×Ω2

〈u ◦ x(t1)|v ◦ x(t1)〉Bdμ(t1, t2)(7)
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is well defined.
Hence 〈u|u〉� ≥ 0 for every u ∈ L1(R) and in consequence functional

L1(R) � u �→‖ u ‖�:=
√
〈u|u〉� =

⎛
⎝ ∫

Ω1×Ω2

‖ u ◦ x(t1) ‖2
B dμ(t1, t2)

⎞
⎠

1
2

(8)

is well defined.
Combining the inequality (6) with (4) and (5) we see that for every g ∈ L2(R)

functional

L1(R) � u �→ g�(u) :=
∫

Ω1×Ω2

〈u ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)(9)

is also well defined.

Lemma 1.1. The structure H(R) := (L1(R),+, ·; 〈·|·〉�) is a complex (resp. real)
p-Hilbert Space, i.e. (L1(R),+, ·) is a linear space and the following properties hold
for u, v, w ∈ L1(R) and α, β ∈ C (resp. α, β ∈ R).

〈αu + βv|w〉� = α〈u|w〉� + β〈v|w〉�
〈u|v〉� = 〈v|u〉�
〈u|u〉� ≥ 0

(10)

Moreover, every Cauchy sequence in L1(R) is convergent to a certain function
in L1(R) with respect to the norm ‖ · ‖�.

Proof. Without losing the generality we may confine ourselves to the complex case
only.
By the equality

‖ x+ y ‖2 + ‖ x− y ‖2= 2(‖ x ‖2 + ‖ y ‖2), x, y ∈ X

which holds for every Hilbert Space X , we get

‖ z + w ‖2
B≤ 2(‖ z ‖2

B + ‖ w ‖2
B), z, w ∈ B.(11)
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By (11) and (4) we see that for all λ1, λ2 ∈ C and u, v ∈ L1(R)

∫
Ω1×Ω2

‖ (λ1u+ λ2v) ◦ x(t1) ‖2
B dμ(t1, t2)

=
∫

Ω1×Ω2

‖ λ1u ◦ x(t1) + λ2v ◦ x(t1) ‖2
B dμ(t1, t2)

(11)

≤ 2
∫

Ω1×Ω2

‖ λ1u ◦ x(t1) ‖2
B dμ(t1, t2) + 2

∫
Ω1×Ω2

‖ λ2v ◦ x(t1) ‖2
B dμ(t1, t2)

= 2|λ1|2
∫

Ω1×Ω2

‖ u ◦ x(t1) ‖2
B dμ(t1, t2)

+2|λ2|2
∫

Ω1×Ω2

‖ v ◦ x(t1) ‖2
B dμ(t1, t2) < +∞.

Thus λ1u + λ2v ∈ L1(R) for all λ1, λ2 ∈ C and u, v ∈ L1(R). Therefore L1(R) is a
linear set.

From the properties of the inner product 〈·|·〉B and the formula (7) we obtain
the properties (10). Now we shall prove the completeness of H(R). The mapping
x : Ω1 → A induces the σ-field Bx := {V ∈ 2A : x−1(V ) × Ω2 ∈ B} and the measure
Bx � V → μx(V ) := μ(x−1(V ) × Ω2). Fix u ∈ L1(R). Since the function Ω1 × Ω2 �
(t1, t2) → u ◦ x(t1) is B-measureable we see that for every Borel set U ⊂ B:

x−1 ◦ (u−1(U)) × Ω2 = (u ◦ x)−1(U) × Ω2 ∈ B.

Hence u−1(U) ∈ Bx. Thus u is Bx-measureable as well. Moreover

‖ u ‖2
� =

∫
Ω1×Ω2

‖ u ◦ x(t1) ‖2
B dμ(t1, t2)(12)

=
∫
A

‖ u(t) ‖2
B dμx(t) =‖ u ‖2

2,

Since the space (B,+, ·) is finite dimensional space, there exist n ∈ N and the
orthornormal basis {e1, e2, . . . , en} ⊂ B. Hence

u(t) =
n∑

k=1

〈u(t)|ek〉Bek
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for t ∈ A, which together with (12) gives

‖ u ‖2
� =

∫
A

‖ u(t) ‖2
B dμx(t)(13)

=
∫
A

‖
n∑

k=1

〈u(t)|ek〉Bek ‖2
B dμx(t)

=
n∑

k=1

∫
A

|〈u(t)|ek〉B|2 dμx(t).

Let N � n → un ∈ L1(R) be a Cauchy sequence in the space H(R). From (13) we
have for any k ∈ Z1,n∫

A

|〈un(t)|el〉B − 〈um(t)|el〉B|2dμx(t)

=
∫
A

|〈un(t) − um(t)|el〉B |2dμx(t)

≤
n∑

k=1

∫
A

|〈un(t) − um(t)|ek〉B |2 dμx(t)

(13)
= ‖ un − um ‖2

�→ 0 as n,m→ ∞.

By the completeness of L2(A,Bx, μx) we deduce, that there exist functions ũl ∈
L2(A,Bx, μx), l ∈ Z1,n, such that∫

A

|〈un(t)|el〉B − ũl(t)|2dμx(t) → 0 as n→ ∞ for all l ∈ Z1,n.

Puting u(t) :=
n∑

k=1

ũk(t)ek we see that u ∈ L1(R) and

‖ un(t) − u(t) ‖2
�=‖

n∑
k=1

〈un(t)|ek〉Bek −
n∑

k=1

〈u(t)|ek〉Bek ‖2
�(14)

=‖
n∑

k=1

〈un(t) − u(t)|ek〉Bek ‖2
�

=
∫
A

n∑
k=1

|〈un(t) − u(t)|ek〉B|2dμx(t)

=
n∑

k=1

∫
A

|〈un(t)|ek〉B − ũk(t)|2dμx(t) → 0 as n→ ∞.

Hence the completeness is proved.
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Lemma 1.2. The structure (L2(R),+, ·) is a complex (resp. real) linear space.
Moreover, for each g ∈ L2(R) the functional g� defined in (9) is bounded on H(R)
and the supremum norm of g� satisfies the following inequality:

sup{|g�(f)| : f ∈ L1(R)(15)

and

‖ f ‖�≤ 1} ≤
⎛
⎝ ∫

Ω1×Ω2

‖ g ◦ y(t2) ‖2
B dμ(t1, t2)

⎞
⎠

1
2

Proof. From the inequality (11) and by (5) we have that for all λ1, λ2 ∈ C and
g, h ∈ L2(R) ∫

Ω1×Ω2

‖ (λ1g + λ2h) ◦ y(t2) ‖2
B dμ(t1, t2)

=
∫

Ω1×Ω2

‖ λ1g ◦ y(t2) + λ2h ◦ y(t2) ‖2
B dμ(t1, t2)

(11)

≤ 2
∫

Ω1×Ω2

‖ λ1g ◦ y(t2) ‖2
B dμ(t1, t2)

+ 2
∫

Ω1×Ω2

‖ λ2h ◦ y(t2) ‖2
B dμ(t1, t2)

= 2|λ1|2
∫

Ω1×Ω2

‖ g ◦ y(t2) ‖2
B dμ(t1, t2)

+ 2|λ2|2
∫

Ω1×Ω2

‖ h ◦ y(t2) ‖2
B dμ(t1, t2) <∞.

Thus

λ1g + λ2h ∈ L2(R)(16)

for all
λ1, λ2 ∈ C, g, h ∈ L2(R)

and so L2(R) is a linear set. Then the structure (L2(R),+, ·) is a linear space. From
the algebraic properties of Lebesque integral for all u, v ∈ L1(R), g ∈ L2(R) and
λ1, λ2 ∈ C we get

g�(λ1u+ λ2v) =
∫

Ω1×Ω2

〈(λ1u+ λ2v) ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)

=
∫

Ω1×Ω2

〈λ1u ◦ x(t1) + λ2v ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)
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=
∫

Ω1×Ω2

〈λ1u ◦ x(t1)|g ◦ y(t2)〉B + 〈λ2v ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)

=
∫

Ω1×Ω2

〈λ1u ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)

+
∫

Ω1×Ω2

〈λ2v ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)

= λ1

∫
Ω1×Ω2

〈u ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)

+ λ2

∫
Ω1×Ω2

〈v ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)

= λ1g
�(u) + λ2g

�(v)

so the functional g� is linear.

g�(λ1u+ λ2v) = λ1g
�(u) + λ2g

�(v)(17)

for u, v ∈ L1(R) and g ∈ L2(R).

Now using twice Schwarz inequality we shall evaluate the quantity |g�(f)| for all
f ∈ L1(R) and g ∈ L2(R). We have

|g�(f)| =

∣∣∣∣∣∣
∫

Ω1×Ω2

〈f ◦ x(t1)|g ◦ y(t2)〉Bdμ(t1, t2)

∣∣∣∣∣∣
≤

∫
Ω1×Ω2

|〈f ◦ x(t1)|g ◦ y(t2)〉B | dμ(t1, t2)

≤
∫

Ω1×Ω2

‖ f ◦ x(t1) ‖B · ‖ g ◦ y(t2) ‖B dμ(t1, t2)

≤
⎛
⎝ ∫

Ω1×Ω2

‖ f ◦ x(t1) ‖2
B dμ(t1, t2)

⎞
⎠

1
2

·
⎛
⎝ ∫

Ω1×Ω2

‖ g ◦ y(t2) ‖2
B dμ(t1, t2)

⎞
⎠

1
2

=‖ f ‖� ·
⎛
⎝ ∫

Ω1×Ω2

‖ g ◦ y(t2) ‖2
B dμ(t1, t2)

⎞
⎠

1
2

.
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Hence

sup{|g�(f)| : f ∈ L1(R)and ‖ f ‖�≤ 1} ≤
⎛
⎝ ∫

Ω1×Ω2

‖ g ◦ y(t2) ‖2
B dμ(t1, t2)

⎞
⎠

1
2

and the proof is complete.

Remark 1.4. Given a regression structure R := (A,B, δ;x, y) satisfying the properties
I.1 - I.3 we see that for each function g : B → B, Rg := (A,B, δ;x, g◦y) is a regression
structure too.

Let the sequence Z1,n � k → ek ∈ B be the orthogonal basis in B. In later
applications, the following definitions will be required. For every f ∈ F , g ∈ L1(R)
and k ∈ Z1,n we define

A � t → fk(t) :=
〈f(t)|ek〉B
‖ ek ‖2

B

,(18)

Fk := {A � t→ 〈f(t)|ek〉B
‖ ek ‖2

B

: f ∈ F},(19)

B � t→ gk(t) :=
〈g(t)|ek〉B
‖ ek ‖2

B

,(20)

Rk
g := (A,C, δ�;x, gk ◦ y),(21)

where

δ�(u, v) :=
∫

Ω1×Ω2

|u(t1) − v(t2)|2dμ(t1, t2) for every u : Ω1 → C, v : Ω2 → C.

The following lemmas hold:

Lemma 1.5. If F (F �= ∅) is a linear set in H(R) and the sequence Z1,n � k →
ek ∈ B is the orthogonal basis in B then the set Fk is a linear set in the linear space
(A→ C,+, ·) for every k ∈ Z1,n.

Proof. Fix k ∈ Z1,n. For every h1, h2 ∈ Fk exist h̃1, h̃2 ∈ F such that for t ∈ A

h1(t) =
〈h̃1(t)|ek〉B
‖ ek ‖2

B

, h2(t) =
〈h̃2(t)|ek〉B
‖ ek ‖2

B

.

For every λ1, λ2 ∈ C we get

(λ1h1 + λ2h2)(t) = λ1h1(t) + λ2h2(t)

=
〈λ1h̃1(t) + λ2h̃2(t)|ek〉B

‖ ek ‖2
B

=
〈(λ1h̃1 + λ2h̃2)(t)|ek〉B

‖ ek ‖2
B

By the linearity of set F we have λ1h̃1 + λ2h̃2 ∈ F . Then, by the (19 ) we get
λ1h1 + λ2h2 ∈ Fk, so Fk is a linear set in the space (A→ C,+, ·).
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Lemma 1.6. If F (F �= ∅) is a linear set in H(R) and the sequence Z1,n � k →
ek ∈ B is the orthogonal basis in B then the set Fk ⊂ L1(Rk

g) for every k ∈ Z1,n.

Proof. By (19) for every f ∈ Fk there exist f̃ ∈ F such that

f(t) =
〈f̃(t)|ek〉B
‖ ek ‖2

B

for t ∈ A.

Since F ⊂ L1(R) the function Ω1 × Ω2 � (t1, t2) → f̃ ◦ x(t1) is B-measureable and∫
Ω1×Ω2

‖ f̃ ◦ x(t1) ‖2
B dμ(t1, t2) <∞.(22)

From the continuity of the inner product 〈·|·〉B we conclude that the function f is
B-measureable and by (22)

∫
Ω1×Ω2

|f ◦ x(t1)|2dμ(t1, t2) =
∫

Ω1×Ω2

| 〈f̃ ◦ x(t1)|ek〉B
‖ ek ‖2

B

|2dμ(t1, t2)

≤
∫

Ω1×Ω2

‖ f̃ ◦ x(t1) ‖2
B dμ(t1, t2) <∞.

Lemma 1.7. If a function f : Ω1 × Ω2 → B is B-measureable, then the function
Ω1 × Ω2 � t→ 〈f(t)|e〉B is also B-measureable for every e ∈ B.

Proof. The functional B � x → F (x) := 〈x|e〉B is continuous. Let U be an open set
in C. Then the set F−1(U) is open in B. Since f : Ω1 × Ω2 → B is B-measureable,
then the set f−1(F−1(U)) = (F ◦ f)−1(U) is B-measureable. Hence the function
Ω1 × Ω2 � t→ 〈f(t)|e〉B is B-measureable.

2. Solution of the regression problem

The next lemmas enable us to reduce our regression problem to the simplest case
B = C (resp. B = R).

Lemma 2.8. If F (F �= ∅) is a linear set in H(R), g ∈ L2(R) and the sequence
Z1,n � k → ek ∈ B is the orthonormal basis in B, then for every f ∈ F and k ∈ Z1,n

holds

fk ∈ Reg(Fk,R
k
g) =⇒ f ∈ Reg(F ,Rg)(23)
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Proof. Fix h ∈ F . We have

δ(h ◦ x, g ◦ y) =
∫

Ω1×Ω2

‖ h ◦ x(t1) − g ◦ y(t2) ‖2
B dμ(t1, t2)(24)

=
∫

Ω1×Ω2

‖
n∑

k=1

hk ◦ x(t1)ek −
n∑

k=1

gk ◦ y(t2)ek ‖2
B dμ(t1, t2)

=
∫

Ω1×Ω2

‖
n∑

k=1

(hk ◦ x(t1) − gk ◦ y(t2))ek ‖2
B dμ(t1, t2)

=
∫

Ω1×Ω2

n∑
k=1

|(hk ◦ x(t1) − gk ◦ y(t2))|2 dμ(t1, t2)

=
n∑

k=1

∫
Ω1×Ω2

|(hk ◦ x(t1) − gk ◦ y(t2))|2 dμ(t1, t2)

=
n∑

k=1

δ�(hk ◦ x, gk ◦ y)

Hence we get the following equivalence:[
n∑

k=1

δ�(fk ◦ x, gk ◦ y) ≤
n∑

k=1

δ�(hk ◦ x, gk ◦ y)

]
(25)

⇐⇒
[
δ(f ◦ x, g ◦ y) ≤ δ(h ◦ x, g ◦ y)

]
for f, h ∈ F

Let’s assume now, that fk ∈ Reg(Fk,R
k
g) for k ∈ Z1,n. Then

δ�(fk ◦ x, gk ◦ y) ≤ δ�(hk ◦ x, gk ◦ y) for h ∈ F , k ∈ Z1,n.(26)

Hence
n∑

k=1

δ�(fk ◦ x, gk ◦ y) ≤
n∑

k=1

δ�(hk ◦ x, gk ◦ y) for h ∈ F .

From (24) we obtain

δ(f ◦ x, g ◦ y) ≤ δ(h ◦ x, g ◦ y) for h ∈ F ,(27)

which means, that f ∈ Reg(F ,Rg).

The converse implication is not true in general. If we wish to get equivalence in
(23) we should make additional assumptions. First we shall define a new notion.

Definition 2.2. A linear set G ⊂ (A→ B) is said to be linearly closed in the direction
of a vector e ∈ B if the condition holds:

f + h • e ∈ G for f ∈ G and h ∈ Pe(G),(28)
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where

A � t→ Pe(φ)(t) :=
〈φ(t)|e〉B
‖ e ‖2

B

(29)

and for all ψ : A→ C

A � t→ ψ • e(t) := ψ(t)e(30)

We have the following lemma:

Lemma 2.3. If Z1,n � k → ek ∈ B is an orthogonal basis in B and F (F �= ∅)
is the linearly closed in each direction ek ∈ B, k ∈ Z1,n, then for all f ∈ F and
k ∈ Z1,n holds

f ∈ Reg(F ,Rg) =⇒ fk ∈ Reg(Fk,R
k
g)(31)

Proof. Let f ∈ Reg(F ,Rg). By the equivalence (24) we obtain the condition (27). Fix
l ∈ Z1,n and h� ∈ Fl. Let’s consider the function h := f + h� • el. Since Pel

(F) = Fl

we conclude from the fact that F is linearly closed in each direction ek, k ∈ Z1,n,
that h ∈ F . From this observation we have

h =
n∑

k=1

fk • ek + h� • el = (fl + h�) • el +
n∑

l �=k=1

fk • ek.

Hence hl = fl + h� and hk = fk for k ∈ Z1,n\{l}. By (24) we have
n∑

k=1

δ�(fk ◦ x, gk ◦ y) ≤
n∑

k=1

δ�(hk ◦ x, gk ◦ y) for h ∈ F .

and so

δ�(fl ◦ x, gl ◦ y) ≤ δ�((fl + h�) ◦ x, gl ◦ y) for h� ∈ Fl.

This yields fl ∈ Reg(Fl,R
l
g), which completes the proof.

Lemma (2.3) together with lemma 2.8 gives the following theorem:

Theorem 1. Suppose that Z1,n � k → ek ∈ B is an orthogonal basis in B and F
(F �= ∅) is a linear set in H(R), which is linearly closed in each direction ek. Then
for every f ∈ Reg(F ,Rg) there exist a sequence

Z1,n � k �→ fk ∈ Reg(Fk,R
k
g)

such that

f =
n∑

k=1

fk • ek.(32)
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Conversely, for every sequence Z1,n � k ∈ Reg(Fk,R
k
g)

n∑
k=1

fk • ek ∈ Reg(F ,Rg)(33)

Remark 2.5 In the other words Theorem 1 states that

Reg(F ,Rg) =
n∑

k=1

{fk • ek : fk ∈ Reg(Fk,R
k
g)}.

Theorem 6. Suppose that Z1,n � k → ek ∈ B is an orthogonal basis in B and
F (F �= ∅) is a linear set in H(R), linearly closed in each direction ek.. Then
F :=

∑n
k=1 Fk • ek, where Z1,n � k → Fk ⊂ (A→ C) is a sequence such that Fk is

a linear set in (A→ C,+, ·).

Proof. Fix f, h ∈ F . By the definition of F there exists a sequence

Z1,n � k → fk ∈ Fk and Z1,n � k → hk ∈ Fk,

such that

f =
n∑

k=1

fk • ek, h =
n∑

k=1

hk • ek.(34)

Then for each l ∈ Z1,n and t ∈ A

f(t) +
〈h(t)|el〉B
‖ el ‖2

B

· el =
n∑

k=1

fk(t) · ek +
〈∑n

k=1 hk(t) · ek|el〉B
‖ el ‖2

B

· el

=
n∑

k=1

fk(t) · ek +
∑n

k=1〈hk(t) · ek|el〉B
‖ el ‖2

B

· el

=
n∑

k=1

fk(t) · ek +
n∑

k=1

hk(t)
〈ek|el〉B
‖ el ‖2

B

· el

=
n∑

k=1

fk(t) · ek + hl(t) · el =
n∑

k=1�=l

fk(t) · ek + (fl + hl)(t) · el.

Hence f+Pel
(h) =

∑n
k=1�=l fk •ek +(fl +hl)•el ∈ F because fl +hl ∈ Fl. Therefore

F is linearly closed in each direction el, as l ∈ Z1.n.
Conversely, suppose now, that F ⊂ (A ⊂ B) is a linear set linearly closed in each
direction el, as l ∈ Z1.n. For each k ∈ Z1,n we define

Fk := {Pek
(h) : h ∈ F}.

Fix f ∈ F . Since

f(t) =
n∑

k=1

〈f(t)|ek〉B
‖ ek ‖2

B

· ek, t ∈ A,
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we have

f =
n∑

k=1

Pek
(f) • ek ∈

n∑
k=1

Fk • ek.

This implies the following inclusion

F ⊂
n∑

k=1

Fk • ek.(35)

Given k ∈ Z1,n fix fk ∈ Fk. Then fk ∈ Pek
(f) for certain f ∈ F . Since F is linearly

closed in the direction ek and Θ, f ∈ F , we see that

fk • ek = Θ + fk • ek = Θ + Pek
(f) • ek ∈ F .

Thus Fk • ek ⊂ F and consequently
∑n

k=1 Fk • ek ⊂ F , because F is a linear set.
This inclusion together with the inverse one (35) gives the equality

F =
n∑

k=1

Fk • ek(36)

We can now apply the theory elaborated by D. Partyka and J. Zaja̧c.

Theorem 7. [Partyka, Zaja̧c, 2010] Given p ∈ N. Let Z1,p � k → hk ∈ F\Θ be a
sequence satisfying the following two conditions:

lin({hk : k ∈ Z1,p}) = F(37)

as well as

hk ⊥ hl, k, l ∈ Z1,p, k �= l.(38)

If y ∈ L2(R) then

Reg(F ,R) = (Θ ∩ F) +
p∑

k=1

y�(hk)
‖ hk ‖2

hk,(39)

where Θ := {h ∈ L1(R) : ‖ h ‖= 0}.

Corollary 1. Suppose that Z1,n � k → ek ∈ B is an orthogonal basis in B. Given a
sequence Z1,n � k → pk ∈ N. Let for each k ∈ Z1,n, Z1,pk

� l → hl,k ∈ L1(Rk) \ Θk

be an orthogonal sequence in H(Rk), i.e.

〈hl,k|hj,k〉 = 0 as l �= j(40)

Then for every sequence Z1,n � k → gk ∈ L2(Rk)

Reg(F ,Rg) = (Θ ∩ F) +
n∑

k=1

pk∑
l=1

g∗k(hk,l)
‖ hl,k ‖2

hl,k • ek(41)

where

Fk := lin({hk,l : l ∈ Z1,pk
), k ∈ Z1,n(42)
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F :=
n∑

k=1

Fk • ek(43)

g :=
n∑

k=1

gk • ek(44)

Proof. By Theorem 6 the set F , given by the formula (43), is linearly closed in each
direction ek, k ∈ Z1,n. Then Theorem 1 shows that

Reg(F ,Rg) =
n∑

k=1

Reg(Fk,R
k
g) • ek(45)

Applying now Theorem 7 we conclude from the assumption (40) that

Reg(Fk,R
k
g) = (Θk ∩ Fk) +

pk∑
l=1

g∗k(hk,l)
‖ hl,k ‖2

hl,k for k ∈ Z1,n(46)

Combining this with (45) we have

Reg(F ,Rg) =
n∑

k=1

[
(Θk ∩ Fk) +

pk∑
l=1

g∗k(hk,l)
‖ hl,k ‖2

hl,k

]
• ek(47)

=
n∑

k=1

(Θk ∩ Fk) • ek +
n∑

k=1

pk∑
l=1

g∗k(hk,l)
‖ hl,k ‖2

hl,k • ek.

Fix

f =
n∑

k=1

(Θk ∩ Fk) • ek.

Then

f =
n∑

k=1

fk • ek for Z1,n � k → fk ∈ Θk ∩ Fk.

Hence fk ∈ Fk and ‖ fk ‖= 0 as k ∈ Z1,n. Moreover

‖ f ‖2
�=

n∑
k=1

‖ fk ‖2‖ ek ‖2
B= 0 i.e. f ∈ Θ

Finally f ∈ Θ ∩ F which gives the following inclusion
n∑

k=1

(Θk ∩ Fk) • ek ⊂ Θ ∩ F(48)

Conversely, fix f ∈ Θ ∩ F . By (43)

f =
n∑

k=1

fk • ek
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for a sequence Z1,n � k → fk ∈ Fk. Since f ∈ Θ we have

0 =‖ f ‖2
�=

n∑
k=1

‖ fk ‖2‖ ek ‖2
B,

and so fk ∈ Θk as k ∈ Z1,n. Hence fk ∈ Θk ∩ Fk as k ∈ Z1,n. Therefore Θ ∩ F ⊂∑n
k=1(Θk ∩ Fk) • ek. This inclusion together with the inverse one (48) yields the

equality

Θ ∩ F =
n∑

k=1

(Θk ∩ Fk) • ek.(49)

Combining (47) with (49) we obtain the equality (41), which completes the proof.

Remark 2.9. The equality (41) holds under the ortogonality assumption. Otherwise
we imply the orthogonalization procedure.

Setting

h∗l,k := hl,k • ek for k ∈ Z1,n, l ∈ Z1,pk
(50)

we can rephrase Corollary 1 in the following form.

Corollary 10. Under assumption of Corollary 1 the equality holds

Reg(F ,Rg) = (Θ ∩ F) +
n∑

k=1

pk∑
l=1

g∗(h∗l,k)
‖ h∗l,k ‖2∗

h∗l,k.(51)

Proof. By (7) and (44) we see that

g∗(h∗l,k) = g∗k(hl,k) ‖ ek ‖2
B, k ∈ Z1,n, l ∈ Z1,pk

.(52)

By (6) and (50) we get

‖ h∗l,k ‖2
�=‖ hl,k • ek ‖2

∗=‖ hl,k ‖2‖ ek ‖2
B k ∈ Z1,n, l ∈ Z1,pk

(53)

Combining (50), (52) and(53) we deduce from (41) the equality (51), which is desired
conclusion.
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mission of the �Lódź Society of Sciences and Arts on December 15, 2011

PROBLEM REGRESJI DLA FUNKCJI O WARTOŚCIACH
W PRZESTRZENI HILBERTA

S t r e s z c z e n i e
Wielomiany regresyjne sa̧ istotne w analizie danych doświadczalnych reprezentowanych

przez parȩ cia̧gów x i y. Najczȩstsza w praktyce zależność liniowa, wyrażona np. przez
prawa fizyczne i chemiczne, prowadzi do zbyt znacznego uproszczenia w poszukiwanej
zależności miȩdzy danymi. Uogólniony problem regresji rozważany w tej pracy, prowadzi
do rozwia̧zania pewnego zagadnienia ekstremalnego, określonego w skończenie wymiarowej
przestrzeni Hilberta.
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P ab =
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⎦ ),% P eaeb

=
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⎣ ea1eb1 ea1eb2 ea1eb3

ea2eb1 ea2eb2 ea2eb3

ea3eb1 ea3eb2 ea3eb3
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*!)*
bT

l = bT P elel
= beT

b P elel
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b = bP elel
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bπ = b − P elel
b = I3b − P elel

b = (I3 − P elel
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bl =

∣∣∣∣∣∣
c2l1 cl1cl2 cl1cl3
cl2cl1 c2l2 cl2cl3
cl3cl1 cl3cl2 c2l3

∣∣∣∣∣∣
∣∣∣∣∣∣
b1
b2
b3

∣∣∣∣∣∣ , bπ =

∣∣∣∣∣∣
1 − c2l1 cl1cl2 cl1cl3
cl2cl1 1 − c2l2 cl2cl3
clzclx cl3cl2 1 − c2l3

∣∣∣∣∣∣
∣∣∣∣∣∣
b1
b2
b3

∣∣∣∣∣∣ .9�:

�!� 3� *�" �' *!� 3� *�" ."�%$ * �w = �a × �b +, *!� #.) � K3  ), 4� 1"+**�, +,
*!� '�"( �' *!� '����1+,< ()*"+ �#5 "�1 �"  ��$(, �,�#� �'

�w = �a × �b *!�, wT = aT P ∗
eb �" w = P ∗

aeb.9�:

�!� %7)%# P ∗
eb ),% P ∗

ae �' *!� 3� *�" ."�%$ * �w = �a×�b )"� ()*"+ �# �' *!� �,*"+�#

P ∗
eb =

[
pij =

3∑
k=1

{sgn[(i− j)(k − i)(k − j)]} bk
]

=

⎡
⎣ 0 −b3 b2
b3 0 −b1
−b2 b1 0

⎤
⎦ ,

9/:

P ∗
ae =

[
pij =

3∑
k=1

{sgn[(i− j)(k − i)(k − j)]} ak

]
=

⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ .

�!� ."�6� *+�, �' *!� 3� *�" �w �,*� *!� )8+# �l �' *!� $(4"���) +# *!� 3� *�" �wl =
(�w�el)�el ),% +*#  ��"%+,)*�# )"�  �,*)+,�% +, �,� �' *!� *1� ()*"+8 '�"(#5 *!� "�1
�" *!�  ��$(, �,�

wT
l = aT P ∗

ebP elel
�" wl = P elel

P ∗
aeb,9�:

1!�"�)# *!� 3� *�" �' ."�6� *+�, �wπ �' *!� 3� *�" �w �,*� *!� .�),� π �' *!� $(4"���)
),% *!� ()*"+8 �'  ��"%+,)*�# �' *!+# ."�6� *+�, !)3� *!� '�"(

�wπ = �w − �wl = �w − (�w�wl)�el,9	:

wπ = w − wl = P ∗
aeb − P elel

P ∗
aeb = (I3 − P elel

)P ∗
aeb.

�!� %7)% �' *!� 3�"#�"# P elel
),% *!� %7)%# �' *!� 3� *�" ."�%$ * P ∗

ae ),% P ∗
eb

�  $""+,< !�"� !)3� 4��, %�# "+4�% )4�3��

�� �� ��������
� �� ������
�� ������ �� � ����� ����

�.!�"+ )� (�*+�, +# "�*)"7 (�*+�, �' ) "+<+% 4�%7 1!�#� �,� .�+,* S5 *!�  �,*"� �'
#.!�"+ )� (�*+�,5 +# .�"(),�,*�7 #*)*+�,)"75 1!+ ! (�),# *!)* *!� 3� *�"# �' 3��� +*7
�vS ),% )  ���")*+�, �pS �' *!+# .�+,* �' *!� 4�%7 )"�  �,#*),*�7 C�"� 3� *�"#� �* !)#
4��, )##$(�% *!)* *!�  �,*"� �' #.!�"+ )� (�*+�,5 *!� .�+,* S5  �+, +%�# 1+*! *!�
 �,*"� �' *!� �"*!�<�,)�  ��"%+,)*� #7#*�( Ox1x2x3� �!� #.!�"+ )� (�*+�, �' ) 4�%7
 ), 4�  �,#+%�"�% )# ) "�*)*+�, )"�$,% *!� )8+# �' ) (�(�,*)"7 "�*)*+�,5 )�1)7#
.)##+,< *!"�$<! *!�  �,*"� �' (�*+�,5 *!� .�+,* S5 "�.�)*�%�7 �  $.7+,< ) %+D�"�,*
.�#+*+�, +, ) #.) �� �!� 3� *�" �ω �' *!� ),<$�)" 3��� +*7 �' #.!�"+ )� (�*+�, �+�# �,
*!+# )8+#� �!� .�+,* S +# *!� �"+<+, �'  ��"%+,)*� #7#*�( �' $(4"���) #7#*�( 9@+<� -:5
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�� ������ � /�

1!�#� )8+#  �+, +%�# 1+*! *!� )8+# �' (�(�,*)"7 "�*)*+�, ),% *!� 3� *�" �ω5 1!+ !
(�),# *!)* *!� .�#+*+�, �' *!� $(4"���) +, *!� #.) � +# %�*�"(+,�% 47 *!�  ��"%+,)*�#
�' *!� 3�"#�" �eω �' *!� ),<$�)" 3��� +*7 �ω = ω�eω �' *!� ()*"+8 eω = [eω1eω2eω3]T �

�!� 3��� +*7 �' ),7 .�+,* �' ) 4�%7 1!�#� .�#+*+�, +# %�*�"(+,�% 47 *!� ")%+$#

3� *�" �r5 r[x1x2x3]T 5 +# ) 3� *�" ."�%$ * �v = �ω × �r ),% *!� ()*"+ �# v �' +*#
 ��"%+,)*�# !)3� *!� '�"(

vT = ωT P ∗
er �" v = P ∗

ωer.9��:

���� $! �� ������ �� 
������� �	��	� 	� � ����� �	���

�!� 3� *�" �' ),<$�)" )  ���")*+�, +# ) 3� *�" %�"+3)*+3� �' *!� 3� *�" �ω

�ε =
d�ω

dt
=

d

dt
(ω�eω) =

dω

dt
�eω + ω

d�eω

dt
.9��:

�##$(+,< d( )
dt = (.) ),% )'*�" *)2+,< +,*�  �,#+%�")*+�,

d�eω

dt
= �ωu × �eω,

1!�"� �ωu +# 0 �7+,< +, *!� .�),� π �' *!� $(4"���) 0 *!� 3� *�" �' ),<$�)" 3��� +*7
�' *!� $(4"���)5 1� �4*)+,�%

�ε = ω̇�eω + ω�̇eω = ω̇�eω + ω�ωu × �eω = �εω + �επ.9��:

�!$#5 +, *!� $(4"���) #7#*�(5 *!� 3� *�" �ε +# ."�6� *�% �,*� *1� "� +."� )��7 .�"

.�,%+ $�)" %+"� *+�,#B �,*� *!� $(4"���) )8+# )# ) 3� *�" �εω = ω̇�eω ),% �,*� *!�
.�),� π �' *!� $(4"���) )# ) 3� *�" �επ = ω�ωu × �eω5 #$ ! *!)* �επ = �ε − �εω� �*  ),
4� ."�3�% *!)* 0 #+, � �ωu ),% �eω )"� �"*!�<�,)� 0 *!� 3� *�" �' ),<$�)" 3��� +*7 �'
*!� $(4"���) �ωu = ω−1�eω × (�ε − �εω) = ω−1�εω × �ε�



/� �� �	��

�!� )  ���")*+�, �p �' ),7 .�+,* �' ) 4�%75 *!� .�+,* 1!�#� .�#+*+�, +# %�*�"(+,�%
47 *!� ")%+$#
3� *�" �r +# ) 3� *�" %�"+3)*+3� �' *!� 3� *�" �' 3��� +*7 �v �' *!+# .�+,*

�p =
d�v

dt
=

d

dt
(�ω × �r) =

d�ω

dt
× �r + �ω × d�r

dt
= �ε × �r + �ω × �v.9�-:

@����1+,< *!� $#� �' 9��: ),% *"),#'�"()*+�,5 *!� '����1+,< 3� *�" �?$)*+�, 1)#
�4*)+,�%

�p = ω̇�eω × �r + (�ωu × �ω) × �r + �ω × (�ω × �r),9��:

1!+ !5 ()2+,< $#� �' *!� '����1+,< 2+,�()*+ ),% 3� *�" +%�,*+*+�#

ω̇�eω × �r =
ω̇

ω
�ω × �r =

ω̇

ω
�v;

�ω × (�ω × �r) = (�ω�r)�ω − (�ω�ω)�r = (�ω�r)�ω − ω2�r;

(�ωu × �ω) × �r = (�ωu�r)�ω − (�ω�r)�ωu

."�#�,*�% )# ) #$( �' A3�  �(.�,�,* 3� *�"# �' )  ���")*+�, �' *!� .�+,*

�p =
ω̇

ω
�v + (−ω2)�r + (�ω�r)�ω + (�ωu�r)�ω + (−�ω�r)�ωu,9��:

%�,�*�% #$  �##+3��7 )#

�p = �pt + �pr + �pπω + �puω + �pωu.

���� %! ���������	�
 	� � �	��� 	� � ����� �	���

�!� #$  �##+3�  �(.�,�,* 3� *�"# �' )  ���")*+�, +, ()*"+8 ,�*)*+�, !)3� *!� '�"(B
0 *!� *),<�,* )  ���")*+�, �pt �+�# �, *!� %+"� *+�, �' *!� 3��� +*7 3� *�" �' *!�

.�+,* $,%�"  �,#+%�")*+�,

�pt =
ω̇

ω
�v =

ω̇

ω
�ω × �r; pt =

ω̇

ω
v =

ω̇

ω
P ∗

ωer,
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0 *!�  �,*"+.�*)� )  ���")*+�, �pr �+�# �, *!� %+"� *+�, �' *!� ")%+$#
3� *�" �' *!�
.�+,* ),% +*# 3� *�" +# *$",�% *�1)"% *!�  �,*"� �' #.!�"+ )� (�*+�,;

�pr = −ω2�r; pr = −ω2r,

0 *!� )  ���")*+�, �pπω +# ) 3� *�" �7+,< +, .)")���� *� *!� 3� *�" �' ),<$�)" 3��� +*7
�ω �' #.!�"+ )� (�*+�,5 +��� +* +# .�".�,%+ $�)" *� *!� $(4"���) .�),� π ),% +*# #�,#�
+# *!� #)(� )# *!)* �' �ω;

�pπω = (�ω�r)�ω; pπω = P ωωr,

0 *!� )  ���")*+�, �puω +# )�#� ) 3� *�" .)")���� *� *!� 3� *�" �' ),<$�)" 3��� +*7
�ω �' *!� #)(� #�,#� )# *!)* �' �ω;

�puω = (�ωu�r)�ω; puω = P ωωur,

0 *!� )  ���")*+�, �pωu +# ) 3� *�" .)")���� *� *!� 3� *�" �ωu �' *!� ),<$�)" 3��� +*7
�' *!� $(4"���) .�),� π �' *!� #�,#� �..�#+*� *� *!� 3� *�" �ωu� �!$#5 +* �+�# +, *!�
.�),� .)")���� *� *!� .�),� π;

�pωu = −(�ω�r)�ωu; pωu = −P ωuωr.

E)3+,<  �,#+%�"�% *!� )4�3� ,�*)*+�,#5 *!� ()*"+8 p �' *!�  ��"%+,)*�# �' *!�
)  ���")*+�, 3� *�" �p 9��: !)# *!� '�"( �' *!� �?$)*+�,

p =
[
ω̇

ω
P ∗

ωe − ω2I3 + P ωω + P ωωu − P ωuω

]
r.9��:

�!� #$  �##+3�  �(.�,�,*# �' *!� 3� *�" �p �' )  ���")*+�, �' ) .�+,* )"� #!�1, +,
@+<� ��

�� ������� �� ������� �� � ���� �� �� 	������� ������

�!� )$*!�" $#�% *!� %�A,+*+�, �' (�(�,*# �' +,�"*+) �' ) "+<+% 4�%7 �' ) ()## m
"��)*+3� *� *!�  �,*"� �' #.!�"+ )� (�*+�,5 *!� .�+,* S(JS); "��)*+3� *� *!� $(4"���)
.�),� π, (Jπ); ),% "��)*+3� *� *!� )8+# �' "�*)*+�, ω, (Jω); �8."�##�% 47 ($�*+."�%$ *#
�' *!� ")%+$#
3� *�" �r %�*�"(+,+,< *!� .�#+*+�, �' *!� ���(�,*)"7 ()## dm �' ) 4�%7
),% *!� 3�"#�" �eω5 %�*�"(+,+,< *!� .�#+*+�, �' *!� )8+# �' "�*)*+�, ω ),%5 )* *!�
#)(� *+(�5 *!� $(4"���) .�),� π +, *!�  ��"%+,)*� #7#*�( )%�.*�%5 #!�1, +, @+<� -�
F�(�,*# �' +,�"*+) �' ) 4�%7 )"� #$(# �' (�(�,*# �' +,�"*+) �' )�� *!� ���(�,*)"7
()##�# dm �' *!+# 4�%7�

�!� (�(�,* �' +,�"*+) "��)*+3� *� *!� .�+,* S5

JS =
∫
m

�r2dm.9�/:

�!� (�(�,* �' +,�"*+) "��)*+3� *� *!� .�),� π5

Jπ =
∫
m

(�eω�r)2 dm.9��:



/� �� �	��

�!� (�(�,* �' +,�"*+) "��)*+3� *� *!� )8+# �' "�*)*+�, ω5

Jω =
∫
m

(�eω × �r)2 dm.9�	:

@"�( �)<"),<�G# 3� *�" +%�,*+*7 +* "�#$�*# *!)* #$4
+,*�<")� '$, *+�,# 9�	: #)*+#'7
*!�  �,%+*+�,

(�eω × �r)2 = �e2
ω�r

2 − (�eω�r)2 = �r2 − (�eω�r)2,

1!+ ! (�),# *!)* '�" ),7 $(4"���)5 (�(�,*# �' +,�"*+) �' ) 4�%7 "��)*+3� *� *!�
*!"�� ���(�,*# �' ), $(4"���)B *!� .���5 .�),� ),% *!� #*")+<!* �+,� )"� 4�$,% 47
*!� �?$)*+�, Jω = JS − Jπ5 !�, �

JS = Jω + Jπ.9��:

��� ������ �� ������� �� � ����� ���� �������� �� ��� ���� �
 �� �� �� ��� 
 � ��

������
 �� ������� �������� �� ��� ��!����!���� ��������! ��� �������
" ��� 
�������

���� ��� ��� ����� ��

��� ���� �� ���
 ����#

�, .)"*+ $�)"5 *!+#  �,%+*+�, +# #)*+#A�% '�" *!�  �,*"� �' #.!�"+ )� (�*+�, ),% *!�
)8+# �' (�(�,*)"7 "�*)*+�, ),% *!� .�),� π �' *!� $(4"���)5 #!�1, +, @+<� -�

�, *!� ()*"+8 ,�*)*+�,5 *!� (�(�,*# �' +,�"*+) 9�/0�	: !)3� *!� '�"(B
0 *!� (�(�,* �' +,�"*+) "��)*+3� *� *!� .�+,* S5 JS 9�/: !)# +*#  �""�#.�,%+,<

()*"+8

IS = JSI3,9��:

1!�"� I3 +# ) %+)<�,)� $,+* ()*"+8;
0 *!� (�(�,* �' +,�"*+) "��)*+3� *� *!� .�),� π5 Jπ 9��:5 )'*�" *!� +%�,*+*7

Jπ =
∫
m

(eωr)2dm =
∫
m

(eωr)(reω)dm = eT
ω

⎡
⎣∫

m

P rrdm

⎤
⎦eω = eT

ωIrreω

!)# 4��, *)2�, +,*�  �,#+%�")*+�,5 !)# +*#  �""�#.�,%+,< ()*"+8 ,�*)*+�,

Jπ = eT
ωIrreω,9��:

1!�"� Irr =
∫

m
P rrdm +# ) �����$ �� ����� ������
 �� ������� �� � ����5 ),%

+,*�<")�# �' *!� ���(�,*# �' *!� %7)% P rr )"� *!� �,*"+�# �' *!� ()*"+8�
�!� ()*"+8 Irr  �,*)+,# 0 )��,< *!� ()+, %+)<�,)� 0 (�(�,*# �' +,�"*+) "��)*+3�

*� *!� .�),�# �' *!� �"*!�<�,)�  ��"%+,)*� #7#*�( Sx1x2x35

J11 =
∫
m

x2
1dm "��)*+3� *� *!� .�),� Sx2x3,

J22 =
∫
m

x2
2dm ),% J33 +

∫
m

x2
3dm "��)*+3� *� Sx1x3 ),% Sx1x2,

"�#.� *+3��7� �!� �,*"+�# �' *!� ()*"+8 �7+,< �$*#+%� *!� ()+, %+)<�,)�  �,*)+, %�

3+)*+�, (�(�,*# �' +,�"*+) �' ) 4�%75
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J12 =
∫
m

x1x2dm, J13 =
∫
m

x1x3dm ),% J23 =
∫
m

x2x3dm,

"�#.� *+3��7�
�!� (�(�,* �' +,�"*+) "��)*+3� *� *!� )8+# �' (�(�,*)"7 "�*)*+�, ω5 Jω 9�	: !)#

+*#  �""�#.�,%+,< ()*"+8 ,�*)*+�,

Jω = eT
ωIeω,9�-:

+, 1!+ ! *!� ()*"+8 I +# ) �����$ �� ������
 �� ������� �� � ���� �' *!� �,*"+�#
"�#$�*+,< '"�( '�"($�) 9�	: ),% +%�,*+*7 9��:� �!� ()*"+8 �?$+3)��,* �' +%�,*+*7 9��:
+# *!� +%�,*+*7

JSI3 = Irr + I.9��:

�, *!� ()*"+8 �' (�(�,*# �' +,�"*+) �' ) 4�%7 I5 *!� �,*"+�# �7+,< )��,< *!�
()+, %+)<�,)� )"� (�(�,*# �' +,�"*+) "��)*+3� *� *!� #$  �##+3� )8�# �' *!� #7#*�(
Sx1x2x3;

J1 =
∫
m

(x2
2 + x2

3)dm "��)*+3� *� *!� )8+# Sx1,

J2 =
∫
m

(x2
1 + x2

3)dm ),% J3 =
∫
m

(x2
1 + x2

2)dm "��)*+3� *� Sx2 ),% Sx3,

"�#.� *+3��7�
�!�"�'�"�5 *!� ()*"+ �# �' +,�"*+) �' ) #��+% 4�%7 !)3� *!� '�"(

IS = JSI3; Irr =

⎡
⎣ J11 J12 J13

J21 J22 J23

J31 J32 J33

⎤
⎦ ; I =

⎡
⎣ J1 −J12 −J13

−J21 J2 −J23

−J31 −J32 J3

⎤
⎦9��:

),% +%�,*+*7 9��: !��%# '�" *!�(� �!� ()*"+8 I3 +# ) %+)<�,)� $,+* ()*"+8�

����������

& ' (�)
�*
��� ��������� 	
���� &+����� ,�������
'� �-.� -��
/���  001�

&"' ���	��� �� �	���� 	� ������� ��� ����� �	���� 	� � ��
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��� ,�������� 2���������� ��� �	� % 3"4456� "017$45�
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������	��� ����� ,�������
 ��� ,�������� 2���������� ��� �	� $ 3"4456� "4 7"40�

&%' 8������� ��� �� 9	����� ���	��� ��� ����������� ������	��� ����� �	�������

��������������� $� ��:� 3+��������� ��� ,���� -�

��
������� 116� 9��������
�����;8��������;.�� <	��  0=>�

&>' ?� ?�����@	�	��� ������	������	���  !  � "� ��:� 3A����B���� ��� ,	�	�������� ��
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�, ),0$�)" (�(�,*$( �' ) "+0+% 1�%2 / '�" ) 1�%2 (�3+,0 4+*! #.!�"+ )� (�*+�, )*
), ),0$�)" 3��� +*2 �ω5 �2+,0 �, *!� )6+# �' (�(�,*)"2 "�*)*+�, /  )� $�)*�% "��)*+3�
*� *!�  �,#*),* .��� S5 *!�  �,*"� �' #.!�"+ )� (�*+�,5 +# ) 3� *�"

�kS =
∫
m

�r × �vdm =
∫
m

�r × (�ω × �r)dm.7��8

�!� ()*"+6 kS �'  ��"%+,)*�# �' *!� ),0$�)" (�(�,*$( 3� *�" �kS !)# *!� 4���

9,�4, '�"(



�� "� #	��

kS = Iω,7�:8

4!�"� I +# ()*"+6 7��8 �' +,�"*+) �' ) 1�%25 4!+�� ω +# ) ()*"+6 �'  ��"%+,)*�# �' *!�
3� *�" �' *!� ),0$�)" 3��� +*2 �' #.!�"+ )� (�*+�,5 ω = |ω1ω2ω3|T �

�'*�" )..�2+,0 *!� +%�,*+*2

�a × (�b × �a) = (�a�a)�b − (�a�b)�a

*!� #$1
+,*�0")� �6."�##+�, �' �;$)*+�, 7��8  ), 1� 4"+**�, +, *!� '�"(

�kS =
∫
m

[(�r�r)�ω − (�r�ω)�r] dm.7��8

�!� <"#* �' +,*�0")�# 7��8 +# ) ��
������ (�����) ������ �� ��� ������� �������� �' )
1�%2 +, #.!�"+ )� (�*+�, �k '�" ), $(1"���) 4!�#� )6+#  �+, +%�# 4+*! *!� (�(�,*)"2
)6+# �' "�*)*+�,5 #$#.�,%�% +, *!� .��� S5∫

m

(�r�r)�ωdm = �ω

∫
m

r2dm = JS�ω, �k = JS�ω7�	8

+* "�#$�*# '"�( *!� '�"($�) *!)* *!� 3� *�" �' ),0$�)" (�(�,*$( �' #.!�"+ )� (�*+�,
�k �+�# �, *!� (�(�,*)"2 )6+# �' "�*)*+�,5 !)# *!� #)(� #�,#� )# *!)* �' *!� ),0$�)"
3��� +*2 �' (�*+�, ),% *!� 3)�$� �;$)� *� *!� ."�%$ * �' (�(�,* �' +,�"*+) JS �' )
1�%2 "��)*+3� *� *!�  �,*"� �' #.!�"+ )� (�*+�, ),% *!� 3� *�" �' *!� ),0$�)" 3��� +*2
�' #.!�"+ )� (�*+�, �ω� �, *!� ()*"+6 ,�*)*+�, *!� ()*"+6 k �' *!� 3� *�" �' ),0$�)"
(�(�,*$( �k !)# *!� '�"(

k = JSI3ω.7-�8

�!� #� �,% +,*�0")� 7��8  ), 1� 4"+**�, )#

�kP =
∫
m

(�r�ω)�rdm7-�8

),% +# ) 3� *�" �' ),0$�)" (�(�,*$( 4!+ !  ), 1�  )���% ) ����� ������� ��������
�kP 5 %$� *� *!� ') * *!)* +*# 3)�$� %�.�,%# �, *!� 3)�$�# �' .�),� (�(�,*# �' +,�"*+)
�' ) 1�%2 '�" *!� #)(� $(1"���) #2#*�(� �, *!� ()*"+6 ,�*)*+�,5 )'*�" $#+,0 +%�,*+*2
7��8 ),% +,*"�%$ +,0 ()*"+ �# �' .�),� (�(�,*# �' +,�"*+) Irr5 %�<,�% 12 �;$)*+�,
7��85 *!� ()*"+6 �'  ��"%+,)*�# �' *!� .�),� ),0$�)" (�(�,*$( kp !)# *!� '�"(

kP =
∫
m

P rrωdm = Iπω.7-�8

�!$#5 3� *�" �;$)*+�, 7��8  ), <"#* 1� 4"+**�, )# �kS = �k − �kP ),% *!�,5 )'*�"
*"),#'�"()*+�,5 )#

�k = �kS + �kp.7--8

�!+# +# ), �;$)*+�, �' *!� ),0$�)" (�(�,*$( �' ) "+0+% 1�%2 +, #.!�"+ )� (�*+�,
)1�$* *!�  �,*"� �' #.!�"+ )� (�*+�,5 *!� #*)*+�,)"2 .��� S5 )* ), ),0$�)" 3��� 

+*2 �ω5 4!�#� 3� *�" �+�# �, *!� (�(�,*)"2 )6+# �' "�*)*+�,5 *!� #*")+0!* �+,� Slω�
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� 0��(�*"+ )� +��$#*")*+�, �' ), �;$)*+�, �' ),0$�)" (�(�,*$( +# #!�4, +, =+0� ��
�!"�� 3� *�"# �' ),0$�)" (�(�,*$( �' �;$)*+�, 7--8 �+� +, *!�  �((�, .�),� �'
*!� ),0$�)" (�(�,*$(  �,*)+,+,0 *!� (�(�,*)"2 )6+# �' "�*)*+�, 7=+0� �8 ),% *!�+"
%+#*"+1$*+�, +# )�4)2# #$ ! *!)* *!� "�#$�*),* ),0$�)" (�(�,*$( �k �+�# �, *!� (�

(�,*)"2 )6+# �' "�*)*+�,5 4!+�� *!� "�#$�*),* ),0$�)" (�(�,*$( 7"��)*+3� *� *!� .���
S5 �kS ),% *!� .�),� ),0$�)" (�(�,*$(5 �kP 8 *+�* '"�( *!� )6+# �' "�*)*+�, #� *!)*
*!�+" ."�>� *+�,# �,*� *!� $(1"���) .�),� π 4+�� 1� "� +."� )��2 1)�), �%5 4!�"�)#
*!� ."�>� *+�,# �,*� *!� )6+# �' *!� $(1"���) Slω 4+�� 1� #$((�% ),%5  �,#�;$�,*�25
2+��% ) 3� *�" �' *!� "�#$�*),* ),0$�)" (�(�,*$( �k� ?�, �

�kSπ + �kpπ = 0, �k = �kS + �kP = �kSω + �kSπ + �kpω + �kpπ = �kSω + �kpω.7-�8

���� $% &���	�
 	� ��� ������ �	������ ��� ��� ������ �	������ �����

�+, � *!� ."�>� *+�, �' *!� "�#$�*),* ),0$�)" (�(�,*$( 3� *�" �,*� *!� $(1"���)
.�),� +# �;$)� *� @�"�5 *!� $,%�"�+,�% 3� *�"# �' ."�>� *+�,# �,*� *!� .�),� π "� +."�

 )��2 1)�), � �,� ),�*!�"� �!"�� �' *!� 3� *�"# �' �;$)*+�, 7-�8 �+� �, *!�  �((�,
%+"� *+�, 7=+0� �85 *!$# *!� 3� *�" �;$)*+�,

�k = �kSω + �kpω

 ), 1� "�.�) �% 4+*! *!� # )�)" �;$)*+�,

k = kSω + kpω .7-�8

�!� 3� *�"# �kSω ),% �kpω �' ."�>� *+�,# �' *!� ),0$�)" (�(�,*$( �kS ),% �kp �,*�
*!� %+"� *+�, �' *!� $(1"���) )6+#5 +��� *!� %+"� *+�, �' *!� 3�"#�" �eω5 )"� %�# "+1�%
12 *!� 3� *�" ),% ()*"+6 �;$)*+�,#
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�kSω = (�kS�eω)�eω, kSω = P eωeωkS ;7-�8

�kpω = (�kp�eω)�eω, kpω = P eωeωkp.7-:8

�'*�" #$1#*+*$*+,0 �;$)*+�, 7-�8 �kp =
∫
m

(�r�ω)�rdm +, �kpω ),% *!�, #$1#*+*$*+,0 ),

�6."�##+�, '�" *!� (�(�,* �' +,�"*+) Jπ �' ) 1�%2 "��)*+3� *� *!� $(1"���) .�),� π5

Jπ =
∫
m

(�eω�r)2dm = eT Irreω ,

) 3� *�" �' ."�>� *+�, �' *!� .�),� ),0$�)" (�(�,*$( �,*� *!� $(1"���) )6+# 4�"�
�1*)+,�%

�kpω = (�kp�eω)�eω =
∫
m

(�eω�r)2dm�ω = Jπ�ω ),% kpω = Jπω.7-�8

�, #$ ! )  )#�5 #+, � �k = �kSω +�kpω5 *!� 3� *�" �' ."�>� *+�, �' *!� ),0$�)" (�(�,

*$( "��)*+3� *� *!� .��� S �,*� *!� $(1"���) )6+# !)# *!� 3)�$�

�kSω = �k − �kpω = JS�ω − Jπ�ω = Jω�ω ),% kSω = Jωω7-	8

1� )$#�5 )  �"%+,0 *� 7��85 Jω + Jπ = JS �
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��4 # )�)" �;$)*+�, 7-�8 k = kSω + kpω  ), 1� 4"+**�, +, *!� '�"(

JSω = Jωω + Jπω ),% k = JSω,7��8

4!+�� 3� *�" �;$)*+�, 7-�8 �k = �kSω + �kpω  ), 1� ."�#�,*�% +, *!�  �)##+ )� ,�*)*+�,
�" *!�  �""�#.�,%+,0 ()*"+6 ,�*)*+�, )#

JS�ω = Jω�ω + Jπ�ω �" JSω = Jωω + Jπω.7��8

�!� 3� *�"# �' *!� ),0$�)" (�(�,*$( �+� +, *!� ),0$�)" (�(�,*$( .�),�5 .�".�,

%+ $�)" *� *!� $(1"���) )6+# ),%  �,*)+,+,0 *!� $(1"���) )6+#� �, =+0� � 1�*! .�),�#
),% *!�+" 3� *�"# .�".�,%+ $�)" *� *!�( )"� #!�4,A �eω 7'�" *!� $(1"���) .�),�8 ),%
�eκ 7'�" *!� ),0$�)" (�(�,*$( .�),�8�

B�*! .�),�# +,*�"#� * )��,0 *!�  �((�, �%0�5 *!� #*")+0!* �+,� Slλ5 .)##+,0
*!"�$0! *!� .��� S ),% %�*�"(+,�% 12 *!� 3�"#�" �eλ� �!"�� 3�"#�"#5 �eκ�eλ�eω %�<,�
*!� �"+�,*)*+�, �' *!� #.) � Sκλω ),% '�"( ), �"*!�0�,)�5 "+0!*
!),%�% "�'�"�, �
#2#*�(5 4!+ ! (�),# *!)* �eκ × �eλ = �eω�

�, )%%+*+�,5 *!� 3�"#�"# �' *!� ),0$�)" (�(�,*$( 3� *�" )"� #!�4, �eω, �eS , �ep

12 (�),# �' 4!+ ! "��)*+�,#!+.# 1�*4��, *!� ��,0*!# �' *!�#� 3� *�"# ),% *!�+"
0��(�*"+ )� .�#+*+�, +, *!� #.) � !)3� 1��, �6."�##�%

�k = k�eω, �kS = kS�eS , �kp = k�ep.7��8

�.�,%+,0 �, *!� .�#+*+�, �' *!� 3�"#�"#�eS ),% �eω +, *!� #.) � �,�  ), %�*�"(+,�
*!� .�#+*+�, �' *!� ),0$�)" (�(�,*$( .�),� 7+��� *!� 3�"#�" �eκ8 ),% *!� �%0� �'
+,*�"#� *+�, �' *!� .�),�#5 *!� #*")+0!* �+,� Slλ 7+��� *!� 3�"#�" �eλ8 +, *!+# #.) ��
�!�#� 3�"#�"# )"� %�*�"(+,�% 12 *!� 3� *�" ."�%$ *#

�eκ =
�eS × �eω

|�eS × �eω| =
�eS × �eω√
1 − (�eS�eω)2

7�-8

),%

�eλ = �eω × �eκ =
�eω × (�eS × �eω)

|�eS × �eω| =
(�eω�eω)�eS − (�eω�eS)�eω√

1 − (�eS�eω)2
.7��8

�' *!� ()*"+ �# �' *!�  ��"%+,)*�# eS ),% eω �' *!� 3�"#�" �eS ),% �eω !)3� *!�
'�"(

eS = |eS1eS2eS3|T ),% eω = |eω1eω2eω3|T ,
*!�, *!� ()*"+6 eκ �' *!� 3�"#�" �eκ +# *!� ()*"+6

eκ =
1√

1 − (eT
S eω)2

P ∗
eSeeω,7��8

4!+�� *!� ()*"+6 �' *!� 3�"#�" �' *!� #*")+0!* �+,� Slλ +#

eλ =
1√

1 − (eT
Seω)2

(
P eSeω − P T

eSeω

)
eω.7��8
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�!� ."�>� *+�,# �' *!�  �(.�,�,* 3� *�"# �' *!� ),0$�)" (�(�,*$( �,*� *!�
$(1"���) .�),� )"� %�*�"(+,�% 12 ($�*+."�%$ *# +, *!�  �)##+ )� ),% ()*"+6 '�"(

�kSπ = (�kS�eλ)�eλ, kSπ = P eλeλ
kS ,

�kpπ = (�kp�eλ)�eλ, kpπ = P eλeλ
kp.

7�:8

�!� 3�"#�"# eκ ),% eλ

[
eκ = |eκ1eκ2eκ3|T , eλ = |eλ1eλ2eλ3|T

]
*!$# %�*�"(+,�% )���4

�,� *� %�*�"(+,� ."�>� *+�,# �' *!� 3� *�"# �' ),0$�)" 3��� +*25 *!� 3� *�"# �' ),0$�)"
(�(�,*$( ),% *!� 3� *�"# �' (�(�,*# �' �$*�" '�" �# �,*� *!� �%0�# lκ ),% lλ�

��"� � �#���$% �&���$�� �' (! ��$%�� ���$��

$"+,0 (�*+�, *!� $(1"���) #2#*�( "�*)*�# )* ), ),0$�)" 3��� +*2 �ω )1�$* *!�
$(1"���) )6+# ),% )* ), ),0$�)" 3��� +*2 �ωu )1�$* *!� )6+# �2+,0 +, *!� $(1"���)
.�),�� �!� ),0$�)" (�(�,*$( .�),� 7=+0� : 8 "�*)*�# )1�$* *!� (�(�,*)"2 )6+#
�' "�*)*+�,5 *!� #*")+0!* �+,� Olω5 )* ), ),0$�)" 3��� +*2 �' #.!�"+ )� (�*+�, �ω ),%
.)"*+ +.)*�# +, *!� "�*)*+�,)� (�*+�, �' *!� $(1"���) )* ), ),0$�)" 3��� +*2 �' *!�
$(1"���) �ωu5 4!�#� 3� *�" �+�# +, *!� .�),� πω �' *!� $(1"���)� �, =+0� : *!� 3� *�"# �'
),0$�)" 3��� +*+�# �' *!� ),0$�)" (�(�,*$( .�),� )"� #!�4,� �!� "�#$�*),* 3��� +*2
�' *!� ),0$�)" (�(�,*$( .�),� +# ) 3� *�"

�ωk = �ω + �ωu.7��8

�!� ()*"+6 �'  ��"%+,)*�# �' *!� 3� *�" �ωk +, ) ,�, #*)*+�,)"2 #2#*�( �' )6�# Sκλω5
"��)*�% *� *!� ),0$�)" (�(�,*$( .�),�5 !)# *!� '�"(

ωk = |ωuκωuλω|T .7�	8

�!� <"#* *4�  ��"%+,)*�# �' *!� ()*"+6 7�	8 )"� ��,0*!# �' *!� ."�>� *+�,# �ωuκ ),%
�ωuλ �' *!� 3� *�" �' ),0$�)" 3��� +*2 �' *!� $(1"���) �ωu '"�( *!� $(1"���) .�),� π
�,*� *!� )6�# Sκ ),% Sλ5

ωuκ = |�ωuκ|, �ωuκ = (�ωu�eκ)�eκ ),% ωuλ = |�ωuλ|, �ωuλ = (�ωu�eλ)�eλ;
ωuκ = P eκeκωu ),% ωuλ = P eλeλ

ωu,
7��8

4!�"�)# *!� *!+"%  ��"%+,)*� +# ) ��,0*! 73)�$� ω8 �' *!� (�(�,*)"2 3��� +*2 �'
#.!�"+ )� (�*+�,�

=�" ) "+0+% 1�%2 (�3+,0 4+*! #.!�"+ )� (�*+�, ), �;$)*+�, �' ),0$�)" (�(�,*$(
7--8 �' *!� '�"( !)# 1��, +,*"�%$ �%A �k = �kS + �kP 5 4!+ ! / )'*�" %+C�"�,*+)*+�,
"��)*+3� *� *+(� / +# *"),#'�"(�% +,*�

�̇k = �̇kS + �̇kP .7��8

�!+# �;$)*+�, %�# "+1�# *!"�� 3� *�"# �' (�(�,*# �2+,0 +, �,� .�),��
="�( *!� *!��"�( )1�$* +, "�(�,* �' ),0$�)" (�(�,*$( D�E '�" *!� ),0$�)"

(�(�,*$( �' ) 1�%2 �kS "��)*+3� *� *!� #*)*+�,)"2 .��� S "�#$�*# *!)* �̇kS = �mS

4!�"� �mS +# *!� (�(�,* �' �$*�" '�" �# ) *+,0 �, *!� 1�%25  )� $�)*�% "��)*+3� *�
*!� .�+,* S� �!$#5 '"�( �;$)*+�, 7��8 �,�  ),  �, �$%� *!)* *!� "�()+,+,0 *4�
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3� *�"# �' +, "�(�,* �' *!� ),0$�)" (�(�,*$( )"� )�#� 3� *�"# �' (�(�,*# �' '�" �#
"��)*+3� *� *!+# .���� �!$#5 12 ),)��02 4+*! *!� *!��"�( )1�$* +, "�(�,* �' ),0$�)"
(�(�,*$(

�̇kS = �mS , �̇kp = �mp, ),% *!�+" #$( �̇k = �md7��8

4�"� +,*"�%$ �%�
�!� '����4+,0 4)# �1*)+,�%

�md = �mS + �mp,7�-8

4!�"� *!� 3� *�"# �' +, "�(�,* �' *!� ),0$�)" (�(�,*$( 4�"�  )���%A �mp / ���

������ �� ��� ����� ������5 �md / ��� ������ �� ��� ������� ������ �� 
��������

������5 "�#.� *+3��2�
�!� 3� *�" �' *!� (�(�,* �' �$*�" '�" �# �mS 5 *!� 3� *�" �' *!� .�),� (�(�,*

�mp ),% *!�+" "�#$�*),*5 *!� 3� *�" �' *!� %2,)(+ (�(�,* �md '�"( *!� .�),� �'
(�(�,*#�

�!� 3� *�" %�"+3)*+3� �̇r �' ),2 3� *�" �r = r�er +# �6."�##�% 12 *!� '�"($�)

�̇r = ṙ�er + r�̇er = ṙ�er + �ωr × �r

4!�"� �ωr +# ) 3� *�" �' ),0$�)" 3��� +*2 �' *!� 3� *�" �̇r� ?�, �5 *!� %�"+3)*+3� �'

*!� 3� *�" �' ),0$�)" (�(�,*$( �' #.!�"+ )� (�*+�, �̇k = k̇�eω + �ωk × �k / )'*�" *!�
 ��"%+,)*�# �' *!� 3� *�" �ωk 7�	8F ωk = |ωuκωuλω|T F ),% *!� 3� *�" �kF k = |0 0 k|T F
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*!� #2#*�( �' )6�# Sκλω 1�$,% 4+*! *!� ),0$�)" (�(�,*$( .�),�5 )"� *)9�, +,*�
 �,#+%�")*+�, / !)# *!� '�"(

�̇k = k̇�eω + ωuλk�eκ − ωuκk�eλ.7��8

�'*�" #$1#*+*$*+,0 *!� 3)�$� �' k = JSω 7��8 �' *!� "�#$�*),* ),0$�)" (�(�,*$(
�k ),% *)9+,0 +,*�  �,#+%�")*+�, k̇ = JSω̇ �;$)*+�, 7��8 )##$(�# *!� '�"(

�̇k = JS [ω(ωuλ�eκ − ωuκ�eλ) + ω̇�eω].7��8

�!� �6."�##+�, +, 1") 9�*# +# ), �6.),#+�, �' *!� �6."�##+�, �ε = �̇ω = ω̇�eω + �ωu × �ω5
4!+ ! +# *!� 3� *�" ,�*)*+�, �' *!� 3� *�" �' ),0$�)" )  ���")*+�, �ε �' ) "+0+% 1�%2
+, *!� ,�, #*)*+�,)"2 #2#*�( �' )6�# Sκλω5

�ε = ω̇�eω + ωωuλ�eκ − ωωuκ�eλ.7��8

�* "�#$�*# '"�( *!�  �(.)"+#�, �' *!� �;$)*+�,# �̇k = �md 7��85 7��8 ),% 7��8 *!)*
*!� 3� *�" %2,)(+ �;$)*+�, '�" ) "+0+% 1�%2 7=+0� �8 (�3+,0 4+*! #.!�"+ )� (�*+�,
)"�$,% *!� #*)*+�,)"2 .��� S �' *!� '�"(
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JS�ε = �md.7�:8

�!� ."�%$ * �' *!� 3� *�" �' ),0$�)" )  ���")*+�, �' ) "+0+% 1�%2 (�3+,0 4+*!
#.!�"+ )� (�*+�, ),% *!�  �,#*),* (�(�,* �' +,�"*+) �' *!+# 1�%25  )� $�)*�% "��)*+3�
*� *!� .��� / *!�  �,*"� �' #.!�"+ )� (�*+�, / +# �;$)� *� *!� 3� *�" �' %2,)(+ 
(�(�,*5  )� $�)*�% '�" *!+# .��� +, *!� #2#*�( �' �"*!�0�,)� )6�# #$#.�,%�% +, *!�
 �,*"� �' #.!�"+ )� (�*+�,�

�� �������

�!� (�(�,* �' �$*�" '�" �# �mS ) *+,0 �, ) 1�%2 (�3+,0 4+*! #.!�"+ )� (�*+�,

 )$#�# )  !),0� +, *!� 3� *�" �' ),0$�)" (�(�,*$( �̇kS �' *!+# 1�%25 ),% *!+#  !),0�

"�#$�*# +, )  !),0� +, *!� 3� *�" �' *!� .�),� ),0$�)" (�(�,*$( �̇kp5 4!+ !  !),0�
 ), 1�  )���% ) 3� *�" �' *!� .�),� (�(�,*5 �mp� �!� #$( �' 1�*! 3� *�"# �' (�

(�,*# 2+��%# ) 3� *�" �' %2,)(+ (�(�,*5 �md5 4!+ ! +, *$", / ."�.�"*+�,)��2 *�
*!�  �,#*),* 3)�$� �' *!� (�(�,* �' +,�"*+) �' ) 1�%25  )� $�)*�% "��)*+3� *� *!�
#*)*+�,)"2 .�+,*5 *!�  �,*"� �' #.!�"+ )� (�*+�, S / '�" �# )  !),0� +, *!� 3� *�"
�' ),0$�)" 3��� +*2 �ω +, *!� '�"( �' *!� 3� *�" �' ),0$�)" )  ���")*+�, �' #.!�"+ )�
(�*+�,

�ε = �̇ω =
1
JS

�md,

4!+ ! !)# *!� %+"� *+�, �' *!� 3� *�" �' %2,)(+ (�(�,*F  '� D�5 �5 �E�

��'����%�(
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!� #/0� /��
1��� )22'�

�3! "�#	��� �� �	���� 	� ������� ��� ����� �	���� 	� � ��
�� �	��� .�������

��� .�������� 4���������� ��� �	� 5 6377(8� 32'9:7(�
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 ��� .�������� 4���������� ��� �	� : 6377(8� 37)9372�
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 ��� 	�� �� ����	���� ������ �� � ��� ��	���� �� ��
���� 	�� 
	�	�

�� 	�� ����� �� 
	�� ����
� ��� ���� Si

T �� � 
������ ������ i, i = 1 �� i = 2� �	 	��
�����	 T �
 
�	 �� 	�� ������ �������� Si

T = ai · Si
T−1 + bi · Si

T−2� ai, bi ∈ R ����
������
 �� ����
 ���� 	�� �������
 �����	
 T − 1 ��� T − 2� ����� ��� 	�� ��	���
 ��
	�� ����	���� ������ �� � ��� ��	���� 	�� ��
	 ��	��� �������
 ��� ������	��� 	��
 ��	���
��� 	�� 
���� ��	��� �
 � ���	������ �������� ��� 
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�!+# .).�" 0�1+,# 2+*! ) "�(+,%�" �' #�(� ,�*+�,#  �,,� *�% 2+*! *!� ."+ +,1 �'
)  )�� �.*+�,�

�!�, 2� '�"($�)*� *!� ()+, ."�0��(�

���� ��� ������� � ! �!"" ��#��� �� ! ��� $#�� %�&�"� 
��&�#���$  �� ��
!�'�#�!�� �� #�� (�!���!" %!�)�#

3� #!)�� $#� #�(� ,�, #*),%)"% ,�*)*+�,#� 3� )##$(� *!)* *!�"� )"� �,�4 *2�
#� $"+*+�# +, *!� ()"5�*6 *!� 0),5 )  �$,* ),% *!� #*� 5� ��* S0 > 0 %�,�*� *!�
#*� 5 ."+ � )* *!� (�(�,* t0 = 06 S−1 > 0 / *!� ."+ � +, *!� ."�7+�$# %)46 ST / *!�
#*� 5 ."+ � )* *!� (�(�,* T � 3� )##$(� *!)* ST > 0 '�" ),4 T ∈ R ),% *!� #*� 5
."+ � ST )* *!� (�(�,* T *)5�# �,�4 �,� �' *2� .�##+0�� 7)�$�#8
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"��#$��"�� ��� %� %��"��

ST =
{
S1

T 2+*! ."0)0+�+*4 p
S2

T 2+*! ."0)0+�+*4 1 − p
,

),% +* #!�$�% 0� S1
T > K6 S2

T ≤ K6 '�" #�(� ,$(0�" K ∈ R+� �!� ."+ � �' *!�
�$"�.�),  )�� �.*+�, )* *!� (�(�,* T *�*)�# CT = (ST −K)+6 *!)* +#

CT =
{
S1

T −K =: C1
T 2+*! ."0)0+�+*4 p

0 =: C2
T 2+*! ."0)0+�+*4 1 − p

.

�, *!� ,�9* *2� #� *+�,# 2� ."�#�,* *2� (�*!�%# �' #�**+,1 *!� )"0+*")1� ."+ � �' *!�
�$"�.�),  )�� �.*+�, 2+*! *!� #*"+5� ."+ � K ),% *!� ()*$"+*4 *+(� T � 3� )##$(�
*!)* *!� +,*�"�#* ")*� �' *!� 0),5 )  �$,* :�"  "�%+*; '�" �,� .�"+�% +# r ∈ R� 3�
%�,�*� r̃ := erT �

������ �!�  )�� �.*+�, "�.�+ )*+�,

��* (αt, βt) 0� )  �(.�#+*+�, �' *!� +,7�#*�"<# .�"*'��+� )* *!� (�(�,* t6 2!�"�

αt / *!� ,$(0�" �' +,7�#*�"<# #!)"�# �' *!� #*� 5 αt ∈ R6

βt / *!� )(�$,* �' *!� 0),5 )  �$,* �" *!� )(�$,* �'  "�%+* 2!�, βt < 06 βt ∈ R6

Vt / *!� 7)�$� �' *!� .�"*'��+� )* *!� (�(�,* t�

�!� +,7�#*�" #��� *!�  )�� �.*+�, ),% ()5�# *!� .�"*'��+� '�" !�%1+,1 *!� �.*+�,� 3�
)##$(� *!)* *!� .�"*'��+� #�**+,1 )* *!� (�(�,* 0 2+�� ,�*  !),1� $,*+� *!� (�(�,*
T � �!� .�"*'��+� "�.�+ )*�# *!� �.*+�, 2!�, VT = CT � �!�, *!� 7)�$� �' *!� .�"*'��+�
)* *!� (�(�,* T #)*+#=�# *!� '����2+,1  �,%+*+�,#8{

α0 · S1
T + erT · β0 = C1

T ,

α0 · S2
T + erT · β0 = C2

T .
:�����;

�!$#

α0 =
S1

T −K

S1
T − S2

T

,

β0 = −α0
S2

T

r̃
= − S1

T −K

S1
T − S2

T

· S
2
T

r̃
.

�!�  �#* �' *!� "�.�+ )*+�, �' *!� �.*+�,6 2!+ ! +#  )���% +*# )"0+*")1� ."+ � �>$)�#

C0 = V0 = α0 · S0 + β0 =
S1

T · (r̃ · S0 − S2
T )

S1
T − S2

T

· 1
r̃
− S0r̃ − S2

T

S1
T − S2

T

· K
r̃
.

������ �!� ()"*+,1)�� ).."�) !

3� #�)" ! '�" ) ."�0)0+�+*4 P ∗ �' )..�)"+,1 *!� ."+ � ST = S1
T �" ST = S2

T *!)*
%+# �$,*+,1 #*� 5 ."+ �# '�"( *!� ()"*+,1)�� 2+*! "�#.� * *� *!� ."�0)0+�+*4 P ∗� ��*
S∗ 0� *!� "),%�( ."� �## �' %+# �$,*+,1 #*� 5 ."+ �#

S∗
0 = S0, S∗

T = r̃−1 · ST .
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�!� ()"*+,1)�� ."�.�"*4 �' *!� ."� �## S∗ +# )# '����2#8

S∗
0 = EP∗ [S∗

T ].

�!�,
S0 = r̃−1 · [p∗ · S1

T + (1 − p∗) · S2
T ].

?�, �

p∗ =
S0r̃ − S2

T

S1
T − S2

T

.

�!� %+# �$,*+,1 )"0+*")1� ."+ � �' *!�  )�� �.*+�, CT = (ST −K)+6 2!+ ! +# "�.�+

 )*�% 04 *!� #*")*�14 :�����;6 +# )�#� ) ()"*+,1)�� 2+*! "�#.� * *� *!� ."�0)0+�+*4
P ∗� �* (�),# *!)*

C0 =EP∗ [r̃−1 · CT ] = [r̃−1 · C1
T ] · p∗ + 0 · [1 − p∗]

=
S1

T · (r̃ · S0 − S2
T )

S1
T − S2

T

· 1
r̃
− S0r̃ − S2

T

S1
T − S2

T

· K
r̃
.

��*� ��� ���&�#���$  �� �� !�'�#�!�� �� #�� (�!���!" %!�)�#

�!� =,), +)� ()"5�* #)*+#=�# *!� ')(�$# ,� )"0+*")1�  �,%+*+�,# 2!�,

S2
T < S0r̃ < S1

T .

�!� '$,%)(�,*)� "�#$�* :�!��"�( ����; 1+7�# *!� ,� �##)"4 ),% #$@ +�,*  �,%+*+�,#
'�" *!� )0#�, � �' )"0+*")1� +, �$" �,� #*�. (�%�� +' �,�4 T +# �)"1�� �$ ! ,� )"0+*")1�
+# %�# "+0�% 04

lim
T→∞

S1
T

S0r̃
> 1 ∧ lim

T→∞
S2

T

S0r̃
< 1.
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� ���
��

�, *!+# #� *+�, 2� ."�#�,* *!� "� $"#+7� (�%�� �' #*� 5 ."+ �# ),% 2� 1�* ,� )"0+*")1�
 �,%+*+�,# )# *!� '$,%)(�,*)� "�#$�* �' *!+# .).�" :�!��"�( ����;�

*��� ��� "���!� ���+������, #�� �-!%�"� � #�� $#��) �����$

�, *!+# .).�" 2� )##$(� *!)* .�##+0�� #*� 5 ."+ �# S1
T 6 S2

T )"� %�=,�% 04 ) �+,

�)" "� $""�, �� ��2 2� "�(+,% ) %�=,+*+�, ),% ), �9.�+ +* '�"($�) '�" ) "� $"#+7�
#�>$�, �#�

��*  �,#+%�" ) �+,�)" %�.�,%�, �8

Sn = a · Sn−1 + b · Sn−2, a, b ∈ R, n ∈ N, n ≥ 2.

�!+#
x2 − a · x− b = 0

+#  )���% *!�  !)") *�"+#*+ �>$)*+�, '�" *!+# %�.�,%�, ��
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��* $# %�*�"(+,� ) '�"($�) '�" *!� n
*! *�"( �' *!� #�>$�, � (Sn) n≥2
n∈N

2!�,

+,+*+)� 7)�$�# S0 ),% S1 )"� 1+7�,�
3� !)7� *2�  )#�#8
�� Δ > 0 �" Δ < 06 *!+# +# a2 �= −4b�
�!�, *!� '�"($�) '�" *!� n
*! *�"( �' *!� #�>$�, � (Sn) n≥2

n∈N
+# �>$)� *�

Sn = c1 · rn
1 + c2 · rn

2 , c1, c2 ∈ C,

2!�"�

r1 =
a+

√
a2 + 4b
2

, r2 =
a−√

a2 + 4b
2

.

3� #�* c1 ),% c2 04 *!� '����2+,1 #4#*�( �' �>$)*+�,#8{
c1 + c2 = S0,

c1 · r1 + c2 · r2 = S1.

A+,)�,46 2� !)7�

Sn =

[
S1√
a2 + 4b

− S0√
a2 + 4b

·
(
a−√

a2 + 4b
2

)]
·
(
a+

√
a2 + 4b
2

)n

+

[
S0√
a2 + 4b

·
(
a+

√
a2 + 4b
2

)
− S1√

a2 + 4b

]
·
(
a−√

a2 + 4b
2

)n

.

�� Δ = 0 *!+# +# a2 = −4b�
�!�, *!� '�"($�) '�" *!� n
*! *�"( �' *!� #�>$�, � (Sn) n≥2

n∈N
+# �>$)� *�

Sn = c1 · rn
0 + n · c2 · rn

0 , c1, c2 ∈ C,

2!�"�
r0 =

a

2
.

3� #�* c1 ),% c2 04 *!� '����2+,1 #4#*�( �' �>$)*+�,#8{
c1 = S0,

c1 · r0 + c2 · r0 = S1.

�!$#

Sn =

⎧⎨
⎩

0 '�" a = 0,(
S0 + n · 2S1 − a · S0

a

)
·
(a

2

)n

'�" a �= 0.

�,  �, �$#+�,

Sn =

[
S1√
a2 + 4b

− S0√
a2 + 4b

·
(
a−√

a2 + 4b
2

)]
·
(
a+

√
a2 + 4b
2

)n

+

[
S0√
a2 + 4b

·
(
a+

√
a2 + 4b
2

)
− S1√

a2 + 4b

]
·
(
a−√

a2 + 4b
2

)n

'�" a2 �= −4b6



��� �������	� 
�����	 � � ���� 
��� �� ��� ��������� ���� � ���� 
����� 	�

Sn =
(
S0 + n · 2S1 − a · S0

a

)
·
(a

2

)n

'�" a2 = −4b ∧ a �= 06

Sn = 0

'�" a2 = −4b ∧ a = 0�
�, *!+# .).�" 2� %� ,�* )���2 '�" Δ < 06 0� )$#� +()1+,)"4 7)�$�  ), ,�* 0�

7)�$� �' (�,�4� 3� )"� ,�* +,*�"�#*�% +, *!�  )#� Sn = 0�
��*  �,#+%�" *!� '����2+,1 "� $"#+7� (�%�� �' #*� 5 ."+ �#8

St =
{
a1 · S1

t−1 + b1 · S1
t−2 =: S1

t 2+*! ."�0)0�+*4 p,
c1 · S2

t−1 + d1 · S2
t−2 =: S2

t 2+*! ."�0)0�+*4 1 − p,

2!�"�

(a1, b1) ∈ W1 :=
{

(a, b) ∈ R2 : ST > K
}
,

(c1, d1) ∈W2 :=
{

(c, d) ∈ R2 : 0 < ST ≤ K
}
, K ∈ R+.

�!�, *!� )"0+*")1� ."+ � +# �>$)� *�

C0 =
S1

T · (r̃ · S0 − S2
T )

S1
T − S2

T

· 1
r̃
− S0r̃ − S2

T

S1
T − S2

T

· K
r̃
.

2!�"�

S1
T =

[
S0√

a2
1 + 4b1

− S−1√
a2
1 + 4b1

·
(
a1 −

√
a2
1 + 4b1

2

)]
·
(
a1 +

√
a2
1 + 4b1

2

)T

+

+

[
S−1√
a2
1 + 4b1

·
(
a1 +

√
a2
1 + 4b1

2

)
− S0√

a2
1 + 4b1

]
·
(
a1 −

√
a2
1 + 4b1

2

)T

'�" a2
1 > −4b1,:�����;

S1
T =

(
S−1 + T · 2S0 − a1 · S−1

a1

)
·
(a1

2

)T

'�" a2
1 = −4b ∧ a1 �= 0,

S2
T =

[
S0√

c21 + 4d1

− S−1√
c21 + 4d1

·
(
c1 −

√
c21 + 4b1
2

)]
·
(
c1 +

√
c21 + 4b1
2

)T

+

+

[
S−1√
c21 + 4d1

·
(
c1 +

√
c21 + 4b1
2

)
− S0√

c21 + 4d1

]
·
(
c1 −

√
c21 + 4d1

2

)T

'�" c21 > −4d1,:�����;

S2
T =

(
S−1 + T · 2S0 − c1 · S−1

c1

)
·
(c1

2

)T

'�" c21 = −4d1 ∧ c1 �= 0.



	�  � !��
"��#$��"�� ��� %� %��"��

�������� �$..�#� *!)* ) #*� 5 S !)# ."+ � 100 �, ) (�,*! ),% 120 �, *!� ."�7+�$#
(�,*!� 3� )##�## *!)* *!� ."�0)0+�+*4 �' +, "�)#+,1 *!� ."+ � p +# 0.4 ),% %� "�)#+,1
*!� ."+ � +# 0.6� 3� #�* *!� )"0+*")1� ."+ � �' *!�  )�� �.*+�, 2+*! *!� �9�" +#� ."+ �
K = 100 ),% *!� ()*$"+*4 *+(� *�*)�# 6 (�,*!� �!� �,�4 *")%+,1 %)*�# )"� 0 ),%
T 6 #� *!)* *!� .�"*'��+� =9�% )* *+(� 0 +# !��% $,*+� *+(� T � 3� )##$(� *!)* *!�
+,*�"�#* ")*� '�" 6 (�,*! r )(�$,* *� 10B ),% +* %��# ,�*  !),1�� ��*

St =
{
S1

t−1 + 1
4 · S1

t−2 =: S1
t 2+*! ."�0)0+�+*4 0.4,

S2
t−1 − 1

4 · S2
t−2 =: S2

t 2+*! ."�0)0+�+*4 0.6.

�!� #*� 5 ."+ � +, *!� "� $"#+7� (�%�� 2!+ ! +# 1+7�, )0�7� )* *!� (�(�,* T = 6
+#8

�� '�" *!� +, "�)#+,1 (�%�� �' #*� 5 ."+ �#

S1
T =

[
50

√
2 − 30

√
2
(

1 −
√

2
)]

·
(

1 +
√

2
2

)6

+

(
60

1 +
√

2√
2

− 50
√

2

)(
1 −√

2
2

)6

=
[
20

√
2 + 60

]
·
(

1 +
√

2
2

)6

+
(

60 − 20
√

2
)
·
(

1 −√
2

2

)6

.

�� '�" *!� %� "�)#+,1 (�%�� �' #*� 5 ."+ �#

S2
T = [120 + 6(200 − 120)] ·

(
1
2

)6

= 9.375.

�!�,

CT =
{
S1

T − 100 2+*! ."�0)0+�+*4 p,
0 2+*! ."�0)0+�+*4 1 − p.

3!�, 2� #��7� *!� '����2+,1 #4#*�( �' �>$)*+�,#8{
α0 · S1

T + 1.1 · β0 = S1
T − 100,

α0 · S2
T + 1.1 · β0 = 0,

2� 1�*

α0 =
5
√

2+15
16 (3 + 2

√
2)3 + 15−5

√
2

16 (3 − 2
√

2)3 − 100
5
√

2+15
16 (3 + 2

√
2)3 + 15−5

√
2

16 (3 − 2
√

2)3 − 9.375
,

β0 = −375
44

α0.

�!$# *!� )"0+*")1� ."+ � +# �>$)� *�

C0 =
4025
44

α0 ≈ 60.05.

��2 2� #�* *!� )"0+*")1� ."+ � 04 $#+,1 ) ()*+,1)�� ).."�) !� 3� !)7�

S0 = (1 + r)−1 · [p∗ · S1
T + (1 − p∗) · S2

T ].

�!�,

p∗ =
S0(1 + r) − S2

T

S1
T − S2

T

, C0 =
4025
44

α0 ≈ 60.05.
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*�*� ��� ���&�#���$  �� �� !�'�#�!�� �� #�� (�!���!" %!�)�# .��� "�.��
!�& +���� �����$ !�� &�(��& '/ #�� ���+������$

�, *!+# #� *+�, 2� #�*  �,%+*+�,# �, a1, b1, c1, d1, S0, S−16 '�" 2!+ ! *!� =,), +)�
()"5�* +# 2+*!�$* )"0+*")1� '�" �)"1� T � 3� ($#* ."�7� '�" 2!+ ! a1, b1, c1, d1, S0, S−1

2� 1�*

lim
T→∞

S1
T

S0r̃
> 1 ∧ lim

T→∞
S2

T

S0r̃
< 1,

2!�"� S1
T , S

2
T )"� 1+7�, 04 :�����; ),% :�����;�

�, *!� '$*$"� 2� )##$(� *!)*

(∗) a1 > 0, b1 > 0, c1 > 0, d1 > 0, S0 > S−1 · er.

�!+# )##$(.*+�, 1+7�# $# "�)#�,)0�� #+(.�+= )*+�,�
3�  �,#+%�" �,�4 *2�  )#�#�

�� a2
1 = −4b1, c21 = −4d1�

�!� �>$)�+*4 a2
1 = −4b1 )�2)4# +(.�+�#

lim
T→∞

S1
T

S0r̃
= lim

T→∞

S−1 +A · T
S0

( a1

2er

)T

,

2!�"�

A :=
2S0 − a1 · S−1

a1
.

��* ,�*+ � *!)* *!� =,), +)� ()"5�* +# 2+*!�$* )"0+*")1� 2!�,{
a1
2er > 1
A ≥ 0

�"

{
a1
2er = 1
A > 0

.

�"�7+%� '�" :D; 2� !)7�

er ≤ a1

2
≤ S0

S−1
.

�,)��1�$#�4 *!� �>$)�+*4 c21 = −4d1 +(.�+�#

lim
T→∞

S2
T

S0r̃
= lim

T→∞
S−1 +B · T

S0

( c1
2er

)T

,

2!�"�

B :=
2S0 − c1 · S−1

c1
.

3� !)7� ,� )"0+*")1� +, *!� =,), +)� ()"5�* +' �,�4

c1
2er

< 1 �"

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1
2er

= 1

B = 0

S−1

S0
< 1

.



	�  � !��
"��#$��"�� ��� %� %��"��

�"�7+%+,1 :D;6 2� 1�*
c1
2
< er.

��2 2�  �,#+%�" *!� #� �,%  )#��

��� a2
1 > −4b1, c21 > −4d1.

�!� +,�>$)�+*4 a2
1 > −4b1 )�2)4# +(.�+�#

lim
T→∞

S1
T

S0r̃
= lim

T→∞

[
1
S0

(
C ·
(
E

er

)T

+ D ·
(
F

er

)T
)]

,

2!�"�

C :=
S0√

a2
1 + 4b1

− S−1√
a2
1 + 4b1

·
(
a1 −

√
a2
1 + 4b1

2

)
,

D :=
S−1√
a2
1 + 4b1

·
(
a1 +

√
a2
1 + 4b1

2

)
− S0√

a2
1 + 4b1

,

E :=
a1 +

√
a2
1 + 4b1

2
,

F :=
a1 −

√
a2
1 + 4b1

2
.

3� 1�* ,� )"0+*")1� +, *!� =,), +)� ()"5�* 2!�,

{
E > er

C > 0
�"

⎧⎨
⎩

C = 0
F > er

D > 0,
�"

{
E = er

C > S0

�"�7+%+,1 :D;6 2� !)7�⎧⎪⎪⎨
⎪⎪⎩

a1 +
√
a2
1 + 4b1

2
> er

a1 −
√
a2
1 + 4b1

2
<

S0

S−1

�"
a1 −

√
a2
1 + 4b1

2
=

S0

S−1
<
a1 +

√
a2
1 + 4b1

2
�" ⎧⎪⎪⎨

⎪⎪⎩
a1 +

√
a2
1 + 4b1

2
= er

a1 −
√
a2
1 + 4b1

2
<

S0

S−1

(
1 −

√
a2
1 + 4b1

)
.

�!� +,�>$)�+*4 c21 > −4d1 +(.�+�#

lim
T→∞

S2
T

S0r̃
= lim

T→∞

⎡
⎣ 1
S0

⎛
⎝C̃ ·

(
Ẽ

er

)T

+ D̃ ·
(
F̃

er

)T
⎞
⎠
⎤
⎦ ,



��� �������	� 
�����	 � � ���� 
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����� 		

2!�"�

C̃ :=
S0√

c21 + 4d1

− S−1√
c21 + 4d1

·
(
c1 −

√
c21 + 4d1

2

)
,

D̃ :=
S−1√
c21 + 4d1

·
(
c1 +

√
c21 + 4d1

2

)
− S0√

c21 + 4d1

,

Ẽ :=
c1 +

√
c21 + 4d1

2
,

F̃ :=
c1 −

√
c21 + 4d1

2
.

�, *!+#  )#� *!� =,), +)� ()"5�* +# 2+*!�$* )"0+*")1� 2!�,

Ẽ

er
< 1 �"

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẽ

er
= 1

C

S0
∈ [0, 1)

.

�"�7+%+,1 :D;6 2� 1�*

c1 +
√
c21 + 4d1

2
< er �"

⎧⎪⎪⎨
⎪⎪⎩

c1 +
√
c21 + 4d1

2
= er

S0

S−1

(
1 −

√
c21 + 4d1

)
<
c1 −

√
c21 + 4d1

2

�,  �, �$#+�,6 2� !)7� *!� '����2+,1 *!��"�(�

������% *�*� �� ���  ��� ����� �� ��� 
���� �
 �� ��� �� ��� ������ ���!������

(2.1.1)"(2.1.2)# ���� ��� ��������� �$!�%������
 ��� 
��&

�� �' *!� %+# "+(+,),*# �'  !)") *�"+#*+ �>$)*+�,# �' *!� "� $""�, � )"� �>$)� *�
06 *!$# +' a2

1 = −4b16 c21 = −4d16 *!�, *!� '����2+,1  �,%+*+�,# )"� �>$+7)��,*8

(α) *!�"� +# ,� )"0+*")1� '�" �)"1� T

lim
T→∞

S1
T

S0r̃
> 1 ∧ lim

T→∞
S2

T

S0r̃
< 1;

(β)
c1
2
< er ≤ a1

2
≤ S0

S−1
.

��� �' *!� %+# "+(+,),*# �'  !)") *�"+#*+ �>$)*+�,# �' *!� "� $""�, � )"� #*"+ *�4
.�#+*+7�6 +��� a2

1 > −4b16 c21 > −4d16 *!�, *!� '����2+,1  �,%+*+�,# )"� �>$+7)��,*8

(α) *!�"� +# ,� )"0+*")1� '�" �)"1� T

lim
T→∞

S1
T

S0r̃
> 1 ∧ lim

T→∞
S2

T

S0r̃
< 1;



���  � !��
"��#$��"�� ��� %� %��"��

(β)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 +
√
c21 + 4d1

2
< er <

a1 +
√
a2
1 + 4b1

2

a1 −
√
a2
1 + 4b1

2
<

S0

S−1
�"

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 −
√
a2
1 + 4b1

2
<

S0

S−1

S0

S−1

(
1 −

√
c21 + 4d1

)
<
c1 −

√
c21 + 4d1

2
< er

=
c1 +

√
c21 + 4d1

2
<
a1 +

√
a2
1 + 4b1

2
�"

c1 +
√
c21 + 4d1

2
< er <

S0

S−1
=
a1 −

√
a2
1 + 4b1

2
<
a1 +

√
a2
1 + 4b1

2
�"

S0

S−1

(
1 −

√
c21 + 4d1

)
<
c1 −

√
c21 + 4d1

2
< er

=
c1 +

√
c21 + 4d1

2
<

S0

S−1

=
a1 −

√
a2
1 + 4b1

2
<
a1 +

√
a2
1 + 4b1

2

�"

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 +
√
c21 + 4d1

2
< er =

a1 +
√
a2
1 + 4b1

2

a1 −
√
a2
1 + 4b1

2
<

S0

S−1

(
1 −

√
a2
1 + 4b1

)

�� ������$
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+����� +�����
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�"�#�,*�% 04 �%)( �)#E5+�2+ E )* *!� ��##+�, �' *!� F)*!�()*+ )�
�!4#+ )� ��(

(+##+�, �' *!� �G%H �� +�*4 �' � +�, �# ),% �"*# �, ��7�(0�" ��6 ����

�������0�1� 12
��� �	
3� 1 �	��
��
� �������
23�2 ����� 
�� ��
3�

$ 	 � � 
 "  " � � � �
����� ���� A�
	 ��BC�"���� ��;� 	������ ����������� ��
���	����� � 	�� �C�����

��������A���� ���" ����� ��"����	��D���A ��A�� ��"��D��� ���
	����� ����� ��
��A�� ���� ��A� Si

T � i#	�� 
������
"�� i = 1 ��� i = 2� � ����� T "�
	�B� ��"��#
"��� � ������ � ������E �������AC� Si

T = ai · Si
T−1 + bi · Si

T−2� ai, bi ∈ R "���D�C� ��
�� ��A� " ��;� ����"����� ����
;�� 	A� � ����� T − 1 � ����� T − 2� +�"��
	������
��� 
��
��� ����	��D���A ����� ��A� ������ A���� ��"��C����� ��AC��� �������A� ��A��
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SOME EXTREMAL PROBLEMS ON NON-OVERLAPPING
DOMAINS WITH FREE POLES

Summary
Paper is devoted to extremal problems of geometric function theory with estimates

of functionals defined on systems of non-overlapping domains. In particular, the focus of
investigation is a well-known problem of V.N.Dubinin and generalization of some results
in this problem.

1. Introduction

In geometric function theory of a complex variable extremal problems on non-over-
lapping domains form a well-known classic direction and have a rich history (see
[1–14]). Paper [1] was the initial impetus for such direction, in which, it was first
proposed and solved the problem of maximizing the product of conformal radii for
two non-overlapping simply connected domains. Further, themes connected with the
study of problems on non-overlapping domains were developed in papers [1–14]. This
paper summarizes some results obtained in [?,?,?].

Let N, R be the set of natural and real numbers, respectively, C be the complex
plane, C = C

⋃{∞} be the one point compactification od C, and R+ = (0,∞).
Let r(B, a) be the inner radius of domain B ⊂ C, with respect to a point a ∈ B

(see [?,?, ?]) and χ(t) = 1
2 (t+ t−1).

Let n ∈ N. A set of points

An :=
{
ak ∈ C : k = 1, n

}
,

is called n–radial system iff
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|ak| ∈ R
+, k = 1, n, and 0 = arg a1 < arg a2 < . . . < arg an < 2π.

Denote
Pk(An) := {w : arg ak < argw < arg ak+1},

θk := arg ak, an+1 := a1, θn+1 := 2π,

αk :=
1
π

arg
ak+1

ak
, αn+1 := α1, k = 1, n.

This work is based on application of the piecewise-separating transformation
developed in [4–6]. For specific use of this method we consider a special system of
conformal mappings. By ζ = πk(w), k = 1, n we denote the unique branch of multi-
valued analytic function −i (e−iθkw

)1/αk , which performs univalent and conformal
mappings Pk(An) onto the right half-plane Re ζ > 0.

For an arbitrary n-radial system of points An = {ak} and γ ∈ R+ ∪ {0} we
assume that

L(γ)(An) :=
n∏

k=1

[
χ

(∣∣∣ ak

ak+1

∣∣∣ 1
2αk

)]1− 1
2γα2

k

·
n∏

k=1

|ak|1+ 1
4γ(αk+αk−1).

The class of n-radial systems of points for which L(γ)(An) = 1 automatically
includes all systems with n different points, located on the unit circle.

The main purpose of this work is to obtain exact upper estimates for the func-
tionals:

Jn(γ) = rγ (B0, 0)
n∏

k=1

r (Bk, ak) ,(1)

In(γ) = [r (B0, 0) r (B∞,∞)]γ
n∏

k=1

r (Bk, ak) ,(2)

where γ ∈ R+, An = {ak}n
k=1 is an n-radial system of points, a0 = 0, and {Bk}n

k=0 is
a system of non-overlapping domains (e.i. Bp ∩Bj = Ø if p �= j) such that ak ∈ Bk,
a∞ ∈ B∞, k = 0, n.

2. Main results

V. N. Dubinin in paper ([?], p. 68, 9.2) and his monograph ([?], p. 381, no. 16) for-
mulated the following

Problem. Prove that the maximum of functional (??) is attained for some domains
that have n-tuple symmetry, where B0, B1, B2,..., Bn, n ≥ 2 are non-overlapping
domains in C, a0 = 0, |ak| = 1, k = 1, n, r(Bj , aj) is a inner radius of the domain
Bj in point aj , (aj ∈ Bj), j = 0, n, and γ ≤ n.

This problem caused great interest and has been studied in different direc-
tions (see, for example, [?, ?, ?]). In 1988 Dubinin [?] completely solved problem
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for γ = 1, n ≥ 2 in the case when the points lie on the unit circle |ak| = 1,
but the result is also true for γ ∈ (0, 1] (this is implied from his method). Fur-
ther, G. V. Kuz’mina repeated this result for simply connected domains by another
method. In 1996 Kovalev [?] obtained solution to this problem, however not for an
arbitrary system of points, but for a subclass of systems satisfying the condition
0 < αk ≤ 2π/

√
γ, k = 1, n. Then Bakhtin in his monograph [?] extended the

ideas and methods of [?], and thus proved that the hypothesis is true for an arbi-
trary γ ∈ R+, but starting with some number n0(γ). Further, Bakhtin, Bakhtina,
and Podvysotskii [?] first showed that for n ≥ 5 we can get stronger results and
confirmed that the problem is valid for some γ > 1. We shall prove

Theorem 1. Let

n ∈ N, n ≥ 2, γ ∈ (0, γn], γn =

{
8
√
n, n = 2, 7

4
√
n, n ≥ 8

.

Then for any n-radial system of points An = {ak}n
k=1 such that L(γ) (An) = 1,

L(0)(An) ≤ 1 and any system of non-overlapping domains Bk, ak ∈ Bk ⊂ C, a0 =
0 ∈ B0, (k = 1, n) we have the inequality

Jn(γ) ≤ rγ (D0, 0)
n∏

k=1

r (Dk, dk) ,

where Dk, dk, k = 0, n, d0 = 0 are, respectively, poles and circular domains of the
quadratic differential

Q(w)dw2 = − (n2 − γ)wn + γ

w2(wn − 1)2
dw2.(3)

Theorem 1 generalizes the result of paper [?] on more general systems of points
of the complex plane.

Corollary 1. Let n ∈ N, n ≥ 2 γ ∈ (0, 1]. Then for any n-radial system of points
An = {ak}n

k=1 and any system of non-overlapping domains Bk, ak ∈ Bk ⊂ C,
k = 0, n, we have the inequality

Jn(γ) ≤ 4n+γ/nγγ/nnn

(n2 − γ)n+γ/n

(
n−√

γ

n+
√
γ

)2
√

γ

Rn+γ .

Equality in this inequality is attained when ak and Bk, k = 0, n are, respectively,
poles and circular domains of the quadratic differential

Q(w)dw2 = − (n2 − γ)wn +Rnγ

w2(wn −Rn)2
dw2,

where Rn+γ = L(γ) (An).
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In [?] Dubinin obtained an estimate for the functional (??) if γ = 1
2 and n ≥ 2

(|ak| = 1) by the method of symmetrization. Kuz’mina [?] used extremal-metric
approach and obtained estimate for (??) if γ ∈ (0, 1

8n
2
]

and n ≥ 2. In [?] Kuz’mina
also emphasized that the upper bound for γ is not the best possible. And the question
about the exact upper bounds for γ is still open. Note that when n = 2 evaluation
for the functional (??) in [?] coincides exactly with the estimate of work [?]. We
improved estimates for the functional (??) for n = 2, 3 on more general systems of
points.

Theorem 2. Let

0 < γ ≤ γ2, γ2 =
3
5
.

Then for any 2-radial system of points A2 = {ak}2
k=1 such that L(0) (A2) = 1 and

any system of non-overlapping domains B0, B1, B2, B∞ (a0 = 0 ∈ B0 ⊂ C, ∞ ∈
B∞ ⊂ C, a1 ∈ B1 ⊂ C, a2 ∈ B2 ⊂ C ) we have the inequality

[r (B0, 0) r (B∞,∞)]γ r (B1, a1) r (B2, a2)

(4)

≤ [r (Λ0, 0) r (Λ∞,∞)]γ r (Λ1, λ1) r (Λ2, λ2) ,

where domains Λ0, Λ∞, Λ1, Λ2 and points 0, ∞, λ1, λ2 are, respectively, circular
domains and poles of the quadratic differential

Q(w)dw2 = −γw
4 + (4 − 2γ)w2 + γ

w2(w2 − 1)2
dw2.(5)

Theorem 3. Let

0 < γ ≤ γ3, γ3 =
6
5
.

Then for any 3-radial system of points A3 = {ak}3
k=1 such that L(0) (A3) = 1 and

any system of non-overlapping domains B0, B1, B2, B3, B∞ (a0 = 0 ∈ B0 ⊂ C,
∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, 3 ) we have the inequality

[r (B0, 0) r (B∞,∞)]γ
3∏

k=1

r (Bk, ak)(6)

≤ [r (Λ0, 0) r (Λ∞,∞)]γ
3∏

k=1

r (Λk, λk) ,

where domains Λ0, Λ∞, Λ1, Λ2, Λ3 and points 0, ∞, λ1, λ2, λ3 are, respectively,
circular domains and poles of the quadratic differential

Q(w)dw2 = −γw
6 + (9 − 2γ)w3 + γ

w2(w3 − 1)2
dw2.(7)
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From Theorem 2 we have the following corollaries:

Corollary 2. Under the conditions of Theorem 2 we have the estimate

[r (B0, 0) r (B∞,∞)]γ r (B1, a1) r (B2, a2) ≤ 4 · γγ

|1 − γ|1+γ
·
∣∣∣∣1 −√

γ

1 +
√
γ

∣∣∣∣
2
√

γ

.(8)

Equality in (??) is attained when domains B0, B∞, B1, B2 and points 0, ∞, a1, a2

are, respectively, poles and circular domains of the quadratic differential (??).

Corollary 3. Let

0 < γ ≤ γ2, γ2 =
3
5
.

Then for any 2-radial system of points A2 = {ak}2
k=1 such that |ak| = 1, k ∈ {1, 2}

and any system of non-overlapping domains B0, B1, B2, B∞ (a0 = 0 ∈ B0 ⊂ C,
∞ ∈ B∞ ⊂ C, a1 ∈ B1 ⊂ C, a2 ∈ B2 ⊂ C ), we have inequality (??). Equality is
attained when domains Λ0, Λ∞, Λ1, Λ2 and points 0, ∞, λ1, λ2 are, respectively,
poles and circular domains of the quadratic differential (??).

The estimate in Corollary 3 is new for γ ∈ ( 1
2 ,

3
5

]
.

From Theorem 3 we can easy obtain the following statements:

Corollary 4. Under the conditions of Theorem 3 we have the estimate

[r (B0, 0) r (B∞,∞)]γ
3∏

k=1

r (Bk, ak) ≤ 43+2γ/3 · γ2γ/3

|9 − 4γ|3/2+2γ/3
·
∣∣∣∣3 − 2

√
γ

3 + 2
√
γ

∣∣∣∣
2
√

γ

.(9)

Equality in (??) is attained when domains B0, B∞, B1, B2, B3 and points 0, ∞,
a1, a2, a3 are, respectively, poles and circular domains of the quadratic differential
(??).

Corollary 5. Let

0 < γ ≤ γ3, γ3 =
6
5
.

Then for any 3-radial system of points A3 = {ak}3
k=1 such that |ak| = 1, k ∈ {1, 2, 3}

and any system of non-overlapping domains B0, B1, B2, B3, B∞ (a0 = 0 ∈ B0 ⊂ C,
∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, 3 ), we have inequality (??). Equality is attained
when domains Λ0, Λ∞, Λ1, Λ2, Λ3 and points 0, ∞, λ1, λ2, λ3 are, respectively,
poles and circular domains of the quadratic differential (??).

The estimate in Corollary 6 is new for γ ∈ (1, 125; 1, 2].

Proof of Theorem 1. Validity of this theorem for γ ∈ (0, 1] follows from the works
[?, ?]. Consider first the case γ = 4

√
n. We use the method due to Bakhtin [?, ?],

and properties of separating transformation (see [?, ?, ?, ?, ?]). We make separating
transformation of domains {Bk}n

k=1. Suppose



108 I.V. Denega

Pk := Pk(An) := {w : θk < argw < θk+1}.
Consider the introduced system of functions ζ = πk(w) = −i (e−iθkw

)1/αk , k =
1, n.

Let Ω(1)
k , k = 1, n be a domain of the plane Cζ obtained by combining the

connected component πk(Bk

⋂
P k) containing a point πk(ak), with its symmetrical

reflection with respect to the imaginary axis. By Ω(2)
k , k = 1, n, we denote the domain

of the plane Cζ , obtained by combining the connected component πk(Bk+1

⋂
P k),

containing the point πk(ak+1), with its symmetrical reflection with respect to the
imaginary axis, Bn+1 := B1, πn(an+1) := πn(a1). Besides, by Ω(0)

k we denote the
domain of Cζ , obtained by combining the connected component πk(B0

⋂
P k), con-

taining the point ζ = 0, with its symmetrical reflection with respect to the imaginary
axis. Denote πk(ak) := ω

(1)
k , πk(ak+1) := ω

(2)
k , k = 1, n, πn(an+1) := ω

(2)
n .

The definition of πk implies that

|πk(w) − ω
(1)
k | ∼ 1

αk
|ak|

1
αk

−1 · |w − ak|, w → ak, w ∈ Pk,

|πk(w) − ω
(2)
k | ∼ 1

αk
|ak+1|

1
αk

−1 · |w − ak+1|, w → ak+1, w ∈ Pk,

|πk(w)| ∼ |w| 1
αk , w → 0, w ∈ Pk.

Then, using results of papers [?]– [?], [?] we obtain inequalities

r (Bk, ak) ≤
⎡
⎣ r
(

Ω(1)
k , ω

(1)
k

)
· r
(

Ω(2)
k , ω

(2)
k

)
1

αk
|ak|

1
αk

−1 · 1
αk−1

|ak|
1

αk−1
−1

⎤
⎦

1
2

,(10)

k = 1, n, Ω(2)
0 := Ω(2)

n , ω
(2)
0 := ω(2)

n ,

r (B0, 0) ≤
[

n∏
k=1

rα2
k

(
Ω(0)

k , 0
)] 1

2

.(11)

Repeating arguments given in [?] in the proof of Theorem 5.2.1 and taking into
account the introduced sets of domains {Pk}n

k=1, functions {πk}n
k=1, and numbers

{θk}n
k=1, we obtain an inequality for the investigated functional (??):

Jn(γ) ≤
n∏

k=1

[
r
(

Ω(0)
k , 0

)]α2
k
2 γ

·
n∏

k=1

⎡
⎣r
(

Ω(2)
k−1, ω

(2)
k−1

)
r
(

Ω(1)
k , ω

(1)
k

)
1

αk−1·αk
|ak|

1
αk−1

−1 · |ak|
1

αk
−1

⎤
⎦

1
2

=

=
n∏

k=1

αk ·
n∏

k=1

|ak|
|akak+1|

1
2αk

·
[

n∏
k=1

rγα2
k

(
Ω(0)

k , 0
) n∏

k=1

r
(

Ω(1)
k , ω

(1)
k

)
r
(

Ω(2)
k , ω

(2)
k

)] 1
2

.

(12)
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Expression (??) in parentheses of the latter formula is a product of the functional
rβ2

(Ω(0)
k , 0)r(Ω(1)

k , ω
(1)
k )r(Ω(2)

k , ω
(2)
k ) on triples of domains

(
Ω(0)

k ,Ω(1)
k ,Ω(2)

k

)
of the

plane Cζ .
It is known [?] that the functional

Y3(σ1, σ2, σ3) =
rσ1(D1, d1) · rσ2 (D2, d2) · rσ3 (D3, d3)

|d1 − d2|σ1+σ2−σ3 · |d1 − d3|σ1−σ2+σ3 · |d2 − d3|−σ1+σ2+σ3
,

σk ∈ R+, dk ∈ Dk ⊂ C, Dk

⋂
Dp = ∅, k = 1, 2, 3, p = 1, 2, 3, k �= p, is invariant

under all conformal automorphisms of the complex plane C.
With this relation in mind, the following estimate holds:

Jn(γ) ≤
(

n∏
k=1

αk

)
·

n∏
k=1

|ak|
|akak+1|

1
2αk

×

×
⎧⎨
⎩

n∏
k=1

rγα2
k

(
Ω(0)

k , 0
)
· r
(

Ω(1)
k , ω

(1)
k

)
· r
(

Ω(2)
k , ω

(2)
k

)
|ω(1)

k · ω(2)
k |γα2

k |ω(1)
k − ω

(2)
k |2−γα2

k

⎫⎬
⎭

1
2

×

×
[

n∏
k=1

|ω(1)
k · ω(2)

k |γα2
k |ω(1)

k − ω
(2)
k |2−γα2

k

] 1
2

.

Note that |ω(1)
k | = |ak|

1
αk , |ω(2)

k | = |ak+1|
1

αk , |ω(1)
k − ω

(2)
k | = |ak|

1
αk + |ak+1|

1
αk .

Taking into account these equalities we obtain

Jn(γ) ≤
(

n∏
k=1

αk

)
·

n∏
k=1

|ak|
|akak+1|

1
2αk

×

×
(

n∏
k=1

|ω(1)
k − ω

(2)
k |
)(

n∏
k=1

|ω(1)
k · ω(2)

k |
|ω(1)

k − ω
(2)
k |

) γα2
k

2

×

×
⎧⎨
⎩

n∏
k=1

rγα2
k

(
Ω(0)

k , 0
)
· r
(

Ω(1)
k , ω

(1)
k

)
· r
(

Ω(2)
k , ω

(2)
k

)
|ω(1)

k · ω(2)
k |γα2

k |ω(1)
k − ω

(2)
k |2−γα2

k

⎫⎬
⎭

1
2

=

= 2
n−γ

2

n∑
k=1

α2
k ·
(

n∏
k=1

αk

)
·

n∏
k=1

[
χ

(∣∣∣ ak

ak+1

∣∣∣ 1
2αk

)]1− γα2
k

2

×

×
n∏

k=1

|ak|1+ 1
4γ(αk+αk−1)×

×
⎧⎨
⎩

n∏
k=1

rγα2
k

(
Ω(0)

k , 0
)
· r
(

Ω(1)
k , ω

(1)
k

)
· r
(

Ω(2)
k , ω

(2)
k

)
|ω(1)

k · ω(2)
k |γα2

k |ω(1)
k − ω

(2)
k |2−γα2

k

⎫⎬
⎭

1
2

.
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For each k = 1, n we can easily define the conformal automorphism ζ = Tk(z) of
complex numbers of the plane C such that

Tk(0) = 0, Tk

(
ω

(s)
k

)
= (−1)s · i, G(q)

k := Tk

(
Ω(q)

k

)
, k = 1, n, s = 1, 2, q = 0, 1, 2.

Then, using results of [7–11] we obtain

Jn(γ) ≤ 2
n−γ

2

n∑
k=1

α2
k ·
(

n∏
k=1

αk

)
· L(γ) (An)×

×
n∏

k=1

⎧⎨
⎩
rα2

kγ
(
G

(0)
k , 0

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)
22−γα2

k

⎫⎬
⎭

1
2

=

= 2
n− γ

2

n∑
k=1

α2
k

(
n∏

k=1

αk

)
· L(γ)(An) · 2

−n+γ
2

n∑
k=1

α2
k×

×
[

n∏
k=1

rα2
kγ
(
G

(0)
k , 0

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)] 1
2

.

Hence

Jn(γ) ≤
(

n∏
k=1

αk

)
·
[

n∏
k=1

rα2
kγ
(
G

(0)
k , 0

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)] 1
2

.(13)

As a result of the calculations the initial problem is reduced to an upper estimate
of the functional rx2

(B0, 0)r(B1, i)r(B2,−i) in the class of triples of disjoint domains
{B0, B1, B2} such that 0 ∈ B0, i ∈ B1, −i ∈ B2, Bk ⊂ C, k = 0, 1, 2.

Following the paper [?] we have

rx2
(B0, 0)r(B1, i)r(B2,−i) ≤ F (x) =

= 2x2+6 · xx2
(2 − x)−

1
2 (2−x)2 · (2 + x)−

1
2 (2+x)2 , x ∈ [0, 2].

Kovalev [?] proved that inequality (??) is true if αk
√
γ ≤ 2, k = 1, n and n ≥ 5.

Therefore it remains to prove that it holds under the condition α0
√
γ > 2, where

α0 = max
k

αk. Further we use the method proposed in [?] (p. 255) by Bakhtin. From

Theorem 5.2.3 in [?] if α0
√
γ > 2 there is a chain of inequalities

Jn(γ) ≤
n∏

k=1

[r(B0, 0)r(Bk, ak)]
γ
n

[
n∏

k=1

r(Bk, ak)

]1− γ
n

≤

≤
[

n∏
k=1

|ak|2
] γ

n

·
[

2n
n∏

k=1

αk · L(0)(An)

]1− γ
n

≤
[

2n
n∏

k=1

αk

]1− γ
n

≤

≤
[

2nα0

(
2 − α0

n− 1

)n−1
]1− γ

n

=
[
2nα0(2 − α0)n−1(n− 1)−(n−1)

]1− γ
n

,
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where

α0 = max
k

αk, and α0 ≥ 2√
γ
.

On the other side, from the results of [?] (p. 257) and properties of separating trans-
formation we obtain

J0
n(γ) = rγ (D0, 0)

n∏
k=1

r (Dk, dk) =
(

4
n

)n

·

(
4γ
n2

) γ
n

(
1 − γ

n2

)n+ γ
n

·

⎛
⎜⎝1 −

√
γ

n

1 +
√
γ

n

⎞
⎟⎠

2
√

γ

,

where Dk, dk, k = 0, n, d0 = 0, are, respectively, poles and circular domains of the
quadratic differential (??). Estimate the value

On(γ) =
rγ(B0, 0)

n∏
k=1

r(Bk, ak)

rγ(D0, 0)
n∏

k=1

r(Dk, dk)
≤

≤
[
2 · 2n−1 · α0(2 − α0)n−1(n− 1)−(n−1)

]1− γ
n

(
4
n

)n−1−γ(1− 1
n )

·
(

4
n

)γ+1− γ
n

·
(

4γ
n2

) γ
n

·
(

1 − γ

n2

)−n− γ
n ·
(

1 −
√

γ

n

1 +
√

γ

n

)2
√

γ
≤

≤
[n

4

]γ+1

·
[
1 − 1√

γ

]n−1−γ n−1
n

·
(
n

γ

) γ
n

·
(

1 − γ

n2

)n+ γ
n ×

×

⎛
⎜⎝1 +

√
γ

n

1 −
√
γ

n

⎞
⎟⎠

2
√

γ

·
(

4√
γ

)1− γ
n

·
(

n

n− 1

)n−1−γ n−1
n

if γ = 4
√
n for n ≥ 3.

Uncomplicated estimates, as in paper [?], show that On( 4
√
n) < 1, n ≥ 8 and

On( 8
√
n) < 1, n = 2, 7. It is not difficult to show by standard methods that the

function Qn(γ) on interval γ ∈ (1; 4
√
n ] is monotonically increasing with respect

to γ. It follows that for these configurations maximum is not attained that is the
assertion of Theorem 1 if α0

√
γ > 2 is proved. Thus it remains to consider the case

α0
√
γ ≤ 2.

Then according to the method of works [?, ?], we turn to the function F (x) and
from these works as a result of the calculations we obtain the inequality Theorem 1
for the functional (??). Theorem 1 is proved.

Proof of Theorem 2. We retain all notation for separating transformation of do-
mains introduced in the proof of Theorem 1 for domains Bk, k = 0, n. By Ω(∞)

k

we denote the domain of plane Cζ , obtained by combining the connected compo-
nent πk(B∞

⋂
Ek) containing the point ζ = ∞ with its symmetrical reflection with
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respect to the imaginary axis. The family{
Ω(∞)

k

}n

k=1

is a result of separating transformation of an arbitrary domain B∞, ∞ ∈ B∞ ⊂ C

with respect to families {Ek}n
k=1 and {πk}n

k=1 at the point ζ = ∞.
By Theorem 2 in [?] we have

r(B∞,∞) ≤
[

n∏
k=1

rα2
k

(
Ω(∞)

k ,∞
)] 1

2

.(14)

Using (??), (??), (??), we obtain

J2(γ) ≤
2∏

k=1

(
r
(

Ω(0)
k , 0

)
r
(

Ω(∞)
k ,∞

)) γα2
k

2 ×

×

⎛
⎜⎝r
(

Ω(1)
k , ω

(1)
k

)
· r
(

Ω(2)
k , ω

(2)
k

)
(

1
αk

)2

(|ak||ak+1|)
1

αk
−1

⎞
⎟⎠

1
2

.

Further, considering the methods of works [?, ?] from the latter relation we have

J2(γ) ≤ 4

(
2∏

k=1

αk

)
·

2∏
k=1

χ

(∣∣∣ ak

ak+1

∣∣∣ 1
2αk

)
|ak|×

×
2∏

k=1

⎧⎪⎨
⎪⎩
r
(

Ω(1)
k , ω

(1)
k

)
· r
(

Ω(2)
k , ω

(2)
k

)
(
|ak|

1
αk + |ak+1|

1
αk

)2

(
r
(

Ω(0)
k , 0

)
r
(

Ω(∞)
k ,∞

))γα2
k

⎫⎪⎬
⎪⎭

1
2

,

|ω(1)
k | = |ak|

1
αk , |ω(2)

k | = |ak+1|
1

αk , |ω(1)
k − ω

(2)
k | = |ak|

1
αk + |ak+1|

1
αk .

Each expression in the braces of the last inequality is the value of the functional

Kτ = [r (B0, 0) r (B∞,∞)]τ
2 · r (B1, a1) r (B2, a2)

|a1 − a2|2(15)

on the system of non-overlapping domains {Ω(0)
k ,Ω(1)

k ,Ω(2)
k ,Ω(∞)

k } and corresponding
system of points {0, ω(1)

k , ω
(2)
k ,∞} (k ∈ {1, 2}). Estimate of functional (??) in the

case of fixed poles was first obtained by Dubinin [?].
Basing on Theorem 4.1.1 in [?] and invariance of the functional (??) we obtain

an estimate
Kτ ≤ Φ(τ), τ ≥ 0,

where Φ(τ) = τ2τ2 |1 − τ |−(1−τ)2(1 + τ)−(1+τ)2 . Then

J2(γ) ≤ 4
γ
·
[

2∏
k=1

(
τ

2τ2
k+2

k · |1 − τk|−(1−τk)2 · (1 + τk)−(1+τk)2
)] 1

2

,(16)

where τk =
√
γ · αk, k = 1, 2.
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Consider in detail the function

Ψ(x) = x2x2+2|1 − x|−(1−x)2(1 + x)−(1+x)2 .

Ψ(x) is logarithmically convex on the interval [0, x0], where x0 ≈ 0, 88441, Ψ(x0) =
0, 07002. On interval [0, x1] (x1 ≈ 0, 58142 is the maximum of function Ψ(x), Ψ(x1) ≈
0, 08674) the function is increasing from Ψ(0) = 0 to Ψ(x1), and decreases on the
interval (x1,∞].

Consider case γ = γ2. We shall show that for any τ1, τ2 such that τ1 +τ2 = 2
√
γ2,

the following inequality holds:

Ψ(τ1) · Ψ(τ2) ≤ Ψ2(
√
γ2).(17)

For τ1, τ2 ∈ (0, x0] the statement (??) follows from the logarithmic convexity of
the function Ψ(x).

Let now τ2 ∈ (x0,∞), τ1 ∈ (0, x0]; then

Ψ(τ2) · Ψ(τ1) ≤ Ψ(x0) · Ψ(x1) < Ψ2(
√
γ2)

(because Ψ(x0) · Ψ(x1) ≈ 6, 0735 · 10−3 and Ψ2(
√
γ2) ≈ 6, 123 · 10−3).

From this follows that the statement (??) is true for all τ1, τ2. Taking into account
the above considerations we conclude that (??) is also true for γ ∈ (0, γ2]. Together
with the inequalities (??), (??), (??) and (??) we obtain the inequality (??). Theorem
2 is proved.

Proof of Theorem 3 repeats the arguments presented in the proof of Theorem 2,
taking into account some peculiarities in the case n = 3.
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PEWNE ZAGADNIENIA EKSTREMALNE
NA NIEZACHODZA̧CYCH NA SIEBIE OBSZARACH
ZE SWOBODNYMI BIEGUNAMI

S t r e s z c z e n i e
Praca jest poświȩcona zagadnieniom ekstremalnym w geometrycznej teorii funkcji

z oszacowaniami funkcjona�lów określonych na uk�ladach niezachodza̧cych na siebie ob-
szarów. W szczególności, k�ladziemy nacisk na znany problem V.N.Dubinina i uogólnienia
pewnych wyników w zakresie tego problemu.



PL ISSN 0459-6854

B U L L E T I N
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THE DIAGONAL FORM OF THE HAMILTONIAN
IN A ZWANZIG-TYPE CHAIN

Summary
In this paper we review the general procedure of the diagonalisation of Hamiltonian in

the model of ferromagnetic thin films. In our work, we concentrate on the case when the
considered sample is a simple linear chain of atoms, cutted from the ferromagnetic thin
film structure in the direction perpendicular to the surface. The Hamiltonian of the system
under study is written in the approximate second quantization approach.

1. Preliminaries

The theoretical and experimental study of spin wave resonance (SWR) in ferromag-
netic thin films started nearly 60 years ago. The first who predicted the possibility
of observing the SWR in such a structure was Kittel [1]. In 1958 Seavey and Tan-
nenwald [2] experimentally confirmed the theory of Kittel (resonance standing spin
waves). Next, research of many authors got the basic characteristic of SWR in thin
samples of pure ferromagnetic metals e.g. Fe, Ni or Co and ferrites e.g. NiFe2O4

[3]. During the last half of century the theory of SWR was intensively investigated,
complemented and corrected in many kind of materials.

In the process of SWR an important role is played mesaurement of power adsorp-
tion function. The shape of adsorbed power function P (ω) fitting to the experimental
data can give us the information about the surface by possibility of finding the values
of such parameters as e.g. the demagnetizing factor and its dispersion (the theory
includes the inhomogeneity of demagnetizing fields).
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The ferromagnetic sample is submerged in a static magnetic film H = (0, 0, Hz)
and the energy is absorbed from an external magnetic field hx(t) oscillating perpen-
dicularly to H = (0, 0, Hz). The nature of the shape of curve of power adsorption
function is determined by the peaks. Each peak corresponds to an excitation of a
distinct spin wave. The first who pointed out the theoretical possibility of the oc-
curence of a surface peak of SWR was Wolf [4]. Sokolov et. all [5, 6], Puszkarski [7, 8]
independently researched a method of identifying such a peak in the SWR spectrum.
In theoretical considerations concerned with very thin films they proved that posi-
tions of peaks are independent to thickness, whereas the thinner ones it should shift
towards growing field strengths with decreasing thickness. Important influence for
the theoretical study of SWR have the models with assumptions regarding the sur-
face anisotropy in the magnetic field H , studied by many researchers e.g. [9,10, 11].
From the experimental point of view that models was discussed and their properties
are reviewed [12]. Various experiments on SWR show that the resonance spectrum
depends on the crystallographic structure of the sample and its surface roughness.

From the viewpoint of the vibrational problem of a thin film the specific as-
pects can be describing in terms of coupled oscillators in relation to their boundary
conditions. The fundamentals of the theory of oscillators in various applications in
different aspects have been reviewed in the available literature [e.g. 13, 14].

The propose of this article is to review some of the key of the method used for
the diagonalisation of Hamiltonian in the model in the ferromagnetic thin films. We
shall consider a simple linear chain of atoms, which is cutted from the ferromagnetic
thin films in the perpendicular to the surface, with assumptions proposed in [15].

2. Linear harmonic Zwanzig’s chain

Let us consider the sample which is a ferromagnetic thin film interacting with the rf
magnetic field. We divide the sample of thickness d = Na into N monoatomic, two-
dimensional layers parallel to the surface planes of sample, which shall be numbered
by ν, (ν = 1, 2, ..., N). The position of each atom localized at the crystallographic
lattice site is determined by the vector −→j . The sample is characterized by the mag-
netization M(t, z) in the plane of the surface with respect to the easy magnetisation
axes parallel to the quantization direction. The rf magnetic field hx(t) is perpendicu-
lar to the constant magnetic field H = (0, 0, Hz). We will restrict our considerations
to interactions between nearest neighbours (Fig.1).

The Hamiltonian of above system takes the form

H =
1
2

∑
ν

px
ν

M
+

1
2

∑
(ν,ν′ )

Kν

(
xν′ − xν

)2
,(1)

where Kν denote the harmonic forces and M is mass of the atom localized in the
position ν, the symbol

∑
( , ) denotes a sum containing each pair of atoms once only.
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Fig. 1: The way of form one dimensional chain of atoms cutted from the ferromagnetic
sample in accordance with assumptions of Zwanzig.

The equations of motions

ṗx
ν = − ∂

∂xν
H, ẋx

ν = − ∂

∂px
ν

H(2)

read

ṗx
ν = Kν

∑
ν′

(
xν′ − xν

)
, ẋν =

1
M
ṗx

ν(3)

and, consequently

ẍν =
Kν

M

∑
ν′∈ν

(
xν′ − xν

)
.(4)

Now, assuming the boundary conditions and the effective external force κν , the
Hamiltonian (1) reads

H =
1
2

∑
ν

px
ν

M
+

1
2

∑
(ν,ν′ )

Kν

(
xν′ − xν

)2 +
∑

ν

κνxν .(5)

In order to describe the magnons properties we use the spin operator varialbles
Sx

ν , S
y
ν , S

z
ν . The use of Zwanzig approach to the spin waves resonance is based on the

analogy between spin operators described in the harmonic approximation and the
harmonic operators which refer to the model of lattice vibrations.
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Using this analogy, we can see that the spin operators (according to the Holstein-
Primakoff transformation in the harmonic approximation)

Sx
ν =

√
2S(a+

ν + a−ν ), Sy
ν =

√
2S(a+

ν − a−ν )

express by the magnon creation a+
ν and annihilation a−ν operators in the harmonic

approximation, correspond to the lattice vibration operators, it means, the position
operator denoting the displacement of the considered atom from its equilibrium
position related to the lattice site j on the layer ν

Xν =
1
2

(a+
ν + a−ν ),

and momentum operator

Pν =
1
2i

(a+
ν − a−ν ),

which is canonically conjugated to Xν . The quantum-mechanical equations of motion
for the spin vibrations considered in the direction perpendicular to the chain axes
take the following form

i�Ṡx
r = [Sx

r ,H], −i�Ṡy
r = [Sy

r ,H],(6)

Here we assume that 〈Sx
ν 〉 ⇔ Xν , 〈Sy

ν 〉 ⇔ Pν , 〈Sz
ν 〉 ⇔ S.

In the original consideration performed by Zwanzig [7] we can recall his Hamilto-
nian to the form (5) and his equations of motions for the phonon operator Xν , Pν .

We obtain
dXν

dτ
=

1
2
u2ν , Rν −Rν+1 = u2ν+1 for ν = 0, 1, 2, ...,(7)

with
dX0

dτ
=

1
2μ
F (X1),

dX2

dτ
= − 1

2μ
(F (X1) +X3)(8)

and the resolvent function

Θ(z, τ) =
[
exp

1
2
(
z − z−1

)
τ

]
Θ(z, 0) +

1
2

∫ τ

0

[
exp

1
2
(
z − z−1

)
(τ − s)

]
ds×

×{(1 − z2)u1(s) + zu0(s) − z2F [u1(s)]
}
,(9)

where μ, τ and F denote the reduced mass, reduced time and reduced force, respec-
tively.

3. Diagonalisation of the Hamiltonian

In the case of application of Zwanzig model we start from the Hamiltonian contains
three parts

H = Hex + Hanis + HZ.(10)
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The first term denotes the exchange term, namely

Hex = −J
∑

(ν,ν′ )

�Sνj
�Sν′ j ,(11)

where J is twice the exchange integral corresponding to two nearest neighbours. The
anisotropy term of the Hamiltonian takes the form

Hanis = −
∑
νj

A0
νjS

z
νj
Sz

νj
−
∑
νj

As
νjS

z
νj ,(12)

where A0
νj corresponding to the homogenous volume anisotropy and As

νj correspond-
ing to the surface anisotropy. As for the Zeeman term, it can be written

HZ = −μBH
∑
νj

Sz
νj ,(13)

where H = Hz is the component of the magnetic field H = (0, 0, Hz) in the di-
rection od easy magnetization axes. Taking into account, according to the Holstein-
Primakoff theory, the spin operators are related to the creation and annihilation
operators by the relations

S+
r =

√
2Sa−r , S−

r =
√

2Sa+
r , Sz

r = S − a+
r a

−
r , for r = (ν−→j )

or, in more general case

S±
r =

√
2Sfa±r with f =

√
1 − a+

r a
−
r

2S
.

In the harmonic approximation, f may be replaced by 1. Next, according to the
procedure of Corciovei [16], the Hamiltonian become

H0 = −J
∑
(r,r′)

(
Sz

rS
z
r′ +

1
2

(S+
r S

−
r′ + S−

r S
+
r′)
)
−
∑
νj

A0
νS

z
rS

z
r −

∑
νj

(AS
ν + μBH)(S − a+

r a
−
r )

and, in the terms of creation and annihilation operators

H0 = −J
∑
r,r′

(
S − a+

r a
−
r

)
(S − a+

r a
−
r ) − J1/2

∑
r,r′

2S2(a−r a
+
r′ + a+

r a
−
r′)

−
∑

r

A0
r(S − a+

r a
−
r )(S − a+

r a
−
r ) −

∑
r

(AS
r + μBH)(S − a+

r a
−
r ).

Further, by easy calculations, we obtain

H0 = −J
∑
r,r′

(
S2 − S(a+

r a
−
r + a+

r′a
−
r′)
)− JS

∑
r,r′

(2a+
r a

−
r′)

−
∑

r

A0
r

(
S2 − 2Sa+

r a
−
r

)−∑
r

(
AS

r + μBH
) (
S − a+

r a
−
r

)
.

Finally,

H1
0 =

∑
r

(
μBH +AS

r + 2SA0
r + 2JSz(r)

)∑
q,q′

TqrTq′ra
+
q a

−
q′

−2JS
∑

r,r′,r �=r′

∑
qq′

TqrTq′r′a+
q a

−
q′ ,(14)
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where z(r) is the number of nearest neighbours of any atom in the same layer. Here
we introduced the following notations

|1q〉 = a+
q |0〉 =

∑
r

Tqra
+
r |0〉

a+
q =

∑
r

Tqra
+
r ,

where |1q〉 is defined in the space [q = (τ, h)] of quantum numbers τ, h by means of
the linear combination of the localized states

|1νj 〉 = | ↑↑↓ ... ↑〉
with the following commutation relations

a+
q a

−
q′ − a−q′a

+
q = δqq′ , 〈1q|1q′〉 = δqq′ , 〈1r|1r′〉 = δrr′ .

Performing the calculations, the Hamiltonian (14) takes the shape

H1
0 =

∑
q

∑
q′

[∑
r

Tqr

(
μBH +AS

r + 2SA0
r + 2JSz(r)

)
Tq′r

− 2JS
∑

r,r′,r �=r′
Tq′r′

⎤
⎦ a+

q a
−
q′ ,(15)

If we introduce the following notation(
μBH +AS

r + 2SA0
r + 2JSz(r)

)
Tq′r − 2JS

∑
r �=r′

Tq′r′ = ωq′Tq′r(16)

the Hamiltonian can be written in the form

H1
0 =

∑
q

∑
q′

∑
r

Tqrωq′Tq′ra
+
q a

−
q′ .

Taking into account the fact that
∑

r TqrTq′r = δqq′ we see that H1
0 =

∑
q ωqa

+
q a

−
q′ .

The classical approach consists in the digitalization procedure of the Hamiltonian
[16, 17] by means of the transformation

a±r =
∑

τ

Tτra
±
τ(17)

determining the spectrum of eigenvalues for the magnons in the space of the wave
vector τ. The transformation coefficients Tτr play the role of the spin waves ampli-
tudes. They can satisfy the equation applied by the diagonalisation of equation (16),
namely

ΩrTrτ − 2JS
∑
r′
Tr′τ = ωτTrτ(18)

where ωτ are the eigenfrequencies of magnons with the wave vectors characterised
by τ and

Ωr = μBH +AS
r + 2SA0

r + 2JSz(r).
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Taking into account the temporal behaviour of 〈aτ 〉 (c.g. [17]) we obtain the
adsorption power proportional to the expresion

P (ω) ∼
∑

τ

Tτδ(ω − ωτ )(19)

where the eigenfrequencies ωτ are given by (16) and

Tτ =

(∑
r

Trτ

)2

(20)

determines the power adsorbed by the mode τ.
In the case of Zwanzig’s model we calculate directly the value of the temporal

derivative of the magnetisation deviation Mx
r (t). In order to apply this model we in-

troduce the canonically conjugated operators Pr and Qr which show the coincidence
with the spin component operators

Pr ⇐⇒ Sy
r , Qr ⇐⇒ Sx

r .(21)

The Hamiltonian (10) takes its form

H =
1
2

∑
r

ΩrP
2
r − JS

∑
r, r′

PrPr′ +
1
2

∑
r

ΩrQ
2
r − JS

∑
r, r′

QrQr′ − μBh
√
S
∑

r

Qr

(22)

which is convenient for consideration of the solutions for Qr in terms of Zwanzig’s
approach equivalent to the magnetization component Sx

r appearing in the formula
(19).

The effective solution is discussed in the model in which the off-diagonal terms
PrPr′ for r′ �= r are neglected. (The general case where the terms mentioned are not
neglected will be studied in a subsequent paper. They will cause the appearance of
terms with 〈Sx

r 〉2 in the differential equation (7) below, complicating considerably
the method used by a necessity of using a proper perturbation procedure.)

Therefore the effective Hamiltonian takes the form

H =
1
2

∑
r

ΩrP
2
r − JS

∑
r, r′

QrQr′ +
1
2

∑
r

ΩrQ
2
r − μBh

√
S
∑

r

Qr,(23)

from which the equation of motion can be written as

d2

dt2
〈Sx

r 〉 = Ωr

(
Ωr〈Sx

r 〉 − JS
∑
r′

〈Sx
r′〉
)

−QrμBh
√
S(24)

and it allows us to apply the procedure proposed by Zwanzig and used in the paper
[18, 19]. According to the considerations of the extended method [17] we can see
that

d

dt
〈Sx

r 〉 = u2r(25)
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where the solution for u2r found in [20, 21] can be applied to the formula (19) in the
present paper.

4. Conclusions

An essential aim of this article was the review the method used for the diagonalisation
of the Hamiltonian. We applied usual steps of diagonalisation procedure described
in the many papers [e.g. 7, 8, 16] for the case of thin films with the Zwanzig’s
assumptions [15]. The procedure contains the following two important steps:

1) we introduced the creation and annihilation operators of spin waves in the
Holstein - Promakoff approximation,

2) we transform the creation and annihilation operators by relation (17).

The coefficient Tτr are determined by the following difference equation [16] (structure
is assumed with orientation (100))

−xτTτr + Tτ+1,r + Tτ−1,r = 0,

with boundary conditions

(1 − x− τ)T1r + T2r = 0,

(1 − x− τ)Tnr + Tn−1,r = 0.

In this meaning, we can consider the the power function P (ω) for adsorption of the
magnetic field in the terms of functions Tτr, namely [20]

P (ω) =
μB

π
ω
∑

r

h0

(∑
q

Tτr

)
1
T

∫ T/2

−T/2

d〈Sx
r 〉

dt
cos(ωt)dt,

where the brackets 〈 〉 denotes the statistical average value of the spin component
operator Sx

r in lattice site while μB stands for the Bohr magneton multiplied by the
gyromagnetic factor.
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DIAGONALNA POSTAĆ HAMILTONIANU W �LAŃCUCHACH
TYPU ZWANZIGA

S t r e s z c z e n i e
Praca przedstawia przegla̧d metody diagonalizacji Hamiltonianu zaproponowanej w pra-

cy Corcioveia (1963) w przypadku kiedy rozważamy cienkie warstwy, w szczególności
z uwzglȩdnieniem za�lożeń Zwanziga [15]. W pierwszym kroku wyrażamy Hamiltonian uk�la-
du za pomoca̧ operatorów kreacji i anihilacji stosuja̧c przekszta�lcenia Holsteina-Primakoffa.
Nastȩpnie w celu otrzymania postaci diagonalnej Hamiltonianu, to znaczy jego postaci
jako sumy Hamiltonianw opisuja̧cych niezależne oscylatory wprowadzamy konieczne prze-
kszta�lcenia zgodnie z [16].
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