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INSTRUCTION AUX AUTEURS

. La présente Série du Bulletin de la Société des Sciences et des Lettres de Lédz

comprend des communications du domaine des mathématiques, de la physique
ainsi que de leurs applications liées aux déformations au sense large.

. Toute communications est présentée a la séance d’'une Commission de la Société

par un des membres (avec deux opinions de spécialistes designés par la Ré-
daction). Elle doit lui étre adressée directement par ’auteur.

. L’article doit étre écrit en anglais, francais, allemand ou russe et débuté par

un résumé en anglais ou en langue de la communication présentée. Dans tous
les travaux écrits par des auteurs étrangers le titre et le résumé en polonais
seront préparés par la rédaction. Il faut fournir le texte original qui ne peut
contenir plus de 15 pages (plus 2 copies).

. Comme des articles seront reproduits par un procédé photographique, les au-

teurs sont priés de les préparer avec soin. Le texte tapé sur un ordinateur de
la classe IBM PC avec I'utilisation d’une imprimante de laser, est absolument
indispensable. Il doit étre tapé préférablement en AMS-TEX ou, exception-
nellement, en Plain-TEX ou LATEX. Apres I'acceptation de texte les auteurs
sont priés d’envoyer les disquettes (PC). Quelle que soient les dimensions des
feuilles de papier utilisées, le texte ne doit pas dépasser un cadre de frappe de
12.3 x 18.7 cm (0.9 cm pour la page courante y compris). Les deux marges
doivent étre de la méme largeur.

. Le nom de Pauteur (avec de prénom complet), écrit en italique sera placé a la

lere page, 5.6 cm au dessous du bord supérieur du cadre de frappe; le titre de
I’acticle, en majuscules d’orateur 14 points, 7.1 cm au dessous de méme bord.

. Le texte doit étre tapé avec les caracteres Times 10 points typographiques et

I'interligne de 14 points hors de formules longues. Les résumés, les rénvois,
la bibliographie et I’adresse de 'auteurs doivent étre tapés avec les petites
caracteres 8 points typographiques et l'interligne de 12 points. Ne laissez pas
de ”blancs” inutiles pour respecter la densité du texte. En commencgant le
texte ou une formule par l'alinéa il faut taper 6 mm ou 2 cm de la marge
gauche, respectivement.

. Les texte des théoremes, propositions, lemmes et corollaires doivent étre écrits

en italique.

. Les articles cités seront rangés dans ’ordre alphabétique et précédés de leurs

numéros placés entre crochets. Apres les références, 'auteur indiquera son
adress complete.

. Envoi par la poste: protégez le manuscript a ’aide de cartons.
10.

Les auteurs recevront 20 tirés a part a titre gratuit.
Adresse de la Rédaction de la Série:
Département d’Analyse complexe et Géométrie différentielle

de I'Institut de Mathématiques de 1’Académie polonaise des Sciences
BANACHA 22, PL-90-238 LODZ, POLOGNE



Name and surname of the authors

TITLE — INSTRUCTION FOR AUTHORS
SUBMITTING THE PAPERS FOR BULLETIN

Summary
Abstract should be written in clear and concise way, and should present all the main
points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIETE DES SCIENCES ET DES LETTRES
DE LODZ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Figl.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

(D

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 | Description 2 | Description 3 | Description 4 |

Row 1,Col 1 | Row 1, Col 2 | Row 1, Col 3 | Row 1, Col 4
Row 2, Col 1 | Row 2, Col 2 | Row 2, Col 3 | Row 2, Col 4

[4]



2.3. “Ghostwriting” and “guest authorship” are strictly forbiden

The printed version of an article is primary (comparing with the electronic version).
Each contribution submitted is sent for evaluation to two independent referees before
publishing.

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-
ment files sent to the address zofija@uni.lodz.pl. If a whole manuscript exceeds
2 MB composed of more than one file, all parts of the manuscript, i.e. the text
(including equations, tables, acknowledgements and references) and figures, should
be ZIP-compressed to one file prior to transfer. If authors are unable to send their
manuscript electronically, it should be provided on a disk (DOS format floppy or
CD-ROM), containing the text and all electronic figures, and may be sent by reg-
ular mail to the address: Department of Solid State Physics, University of
Lodz, Bulletin de la Société des Sciences et des Lettres de L6dz, Pomorska
149/153, 90-236 Lédz, Poland.
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Professor
Hans Grauert
* 8.2.1930 f 4.9.2011

Professor Hans Grauert (Gottingen), Member of our Editorial Board, will be sadly
missed for his extraordinarily inspiring intellect and individuality. He is worldwide
known for his works on several complex variables, complex manifolds, applications
of sheaf theory, algebraic geometry, complex spaces, and some physical concepts.
His passing away is a considerable loss.
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MONTEL’S TYPE RESULTS AND ZERO DISTRIBUTION
OF SEQUENCES OF RATIONAL FUNCTIONS

Summary
A new generalization of the classical result by Montel about normal families is provided.
As a application, a theorem of Picard’s type for rational functions is derived.

Given a domain D in the complex plane C, denote by A(D) the class of holo-
morphic (analytic and single valued) functions in the domain D; A(D) is endowed
with the uniform (max-)norm ||--- ||k on compact subsets K.

By the classical theorem of Montel (called also the Second Fundamental Theorem,
[1]), if F C A(D) is a family of functions with the following characteristics: there
are two distinct complex numbers a and b in C such that each function f € F omit
in D the value of a and takes the value of b at no more than N points, then the
family F is normal, i.e., from each sequence C F one can extract a subsequence
which converges locally uniformly inside D to infinity or to a finite function (in the
max-norm on compact subsets of D). Hence, if under the conditions of Montel’s
theorem, a sequence converges uniformly to a function f on some regular subset M
of D, then f admits an holomorphic continuation from M into D.

A natural question arises as to what happens if a family of holomorphic func-
tions omits merely one finite value in B. This question appears to make sense for
sequences of rational functions, armed with additional approximating properties. To
make things clear, we recall a classical result by S. N. Bernstein [2]: f — a continuous
and real valued function on I :=[—1,1] and €& — a Jukowski ellipse with foci at £1.
Assume that all polynomials P, with real coefficients of best uniform approximation
of f on I are nowhere zero in E. Then the sequence {P,,} forms a normal family in E.
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We remark that under the given conditions the function f admits an holomorphic
continuation from I into &.

As analogous results of Montel’s type, we quote the known result by Baker-
Graves-Morris [3] about normality of sequences of Padé approximants, as well as the
results by Blatt-Saff-Simkani/ Kovacheva about polynomials/rational functions with
fixed number of free poles of best uniform approximation on regular sets (see [4],
resp. [5]).

Before presenting a generalization of Montel’s theorem results, we introduce the
notations Ny := N{JO0 and, for a pair (n,m), n,m € Ny, the class Ry, := {r,r =
p/q,q Z 0}, p, ¢ — polynomaisl of degreesn,m respectively (p € II,,, ¢ € II,;,). Fur-
ther, given a function g and a set K, denote by v (g, K) the number of zeros of ¢ in
K.

Theorem 1. [6]. Given a domain D and a regular continuum S C D, suppose that
the sequence {fn}, fn € Run(NA(D), n=1,2,... converges uniformly on 0S to a
function f, f Z0 on S in such a way that

(1) limsup | £, — fIl5a < 1.
n—oo

Assume that

(2) v(fn, K)=o0(n) asn — oo

on compact subsets K of D. Then the sequence {fn} is normal in the domain D;
herewith, the function f admits a holomorphic continuation into D.

The advantage of this theorem lies in its applications to the subject of holomor-
phic continuation. We summarize the main result as follows: given a regular compact
set S, a function f € C(S) and a sequence of rational functions {r,} converging on
S geometrically to f, assume that {r,} are holomorphic and fulfill condition (2) in
a larger domain D that contains the set S. Under the named conditions, {f,} forms
a normal family in D; herewith, the function f is analytically continuable from S
into D. Now, in what follows, we listen cases to which such a statement applies:

— best rational uniform approximants 7, , = 7, ,(f, E) provided E° # § and
fe A(E)NC(E). (Given a compact set K in C, a function g € C(K) and a fixed
pair (n,m), n,m € Ny, let r,, ,,, be defined by:

g~ ramllsc == inf |f = rllx.

n,m

The function 7y, m = rm.m(f, K) is called a best uniform approximant of g on K in
the class Ry, m.) (see [6]);

— best L,— rational approximants r, ,(f,T') of f € L,(I'),p > 0 on a closed
analytic curve T', D DT (see [7]);

— best rational uniform approximants r,, ,,(f, A) of a real valued and continuous
function on a finite segment A C R (see [7]).
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We now pose the question whether an analogue of Theorem 1 is valid with respect
to meromorphic functions. To be exact, let us formulate the question: provided the
conditions of Theorem 1 are fulfilled with f,,n =1,2,--- being meromorphic in D,
do the sequence {f,} possess the normality in D (in he spherical metric?)

Before presenting the results, we introduce needed notations and definitions.
Given a set A in C, we set M(A) for the class of the meromorphic in A functions; as
usual, poles will be counted with their multiplicities. We mean by M,,,(A4), m € N,
functions in M (A) with no more that m poles in A. Given a function g € M(A4), we
engage the notation u(g, A) for the number of poles of g in A. Obviously, u(g, 4) :=
v(1l/g, A).

For our further purposes, we need the term of my-measure (cf. [8]). Given a set
e in C, we introduce

mq(e) := inf{Z|U,,|}

where the infimum is taken over all coverings {U, } of e by disks U, and |U,| is the
radius of the disk U,,.

Let D be a domain in C and ¢ a function defined in D with values in C. A
sequence of functions {¢, }, meromorphic in D, is said to converge to a function ¢
my-almost uniformly inside D if for any compact set K C D and any € > 0 there
exists a set K. C K such that mq(K \ K.) < € and the sequence {y,} converges
uniformly to ¢ on K.. The sequence {p,} converges mi— almost geometrically to
the a function ¢ on K, if for every € there exists a set K. C K such that m;(K;) < ¢
and

. 1
lim sup ||¢, — <p||K/<LKE <1

The next result provides an answer to the posed question.

Theorem 2. [9], [10]. Given a regular continuum S C C, suppose that {fn}, fn €
Rn,n=1,2--- is a sequence of rational functions which converges uniformly on
0S8 to a function f with f # 0 on some reqular subset of 0S at a speed of a geometric
progression, i.e.,
(1) limsup || f, — fll5a" < 1.

n—oo
Assume that there is a domain U D S and a number m, m € Ny such that each
fn € My (U) and, in addition,

(2" v(fn, K)=o0(n) asn — oo

on compact subsets K of U. Then the sequence {f,} converges mi — almost uni-
formly inside U; herewith f admits a continuation into U as a m — meromorphic
function.

We draw reader’s attention to the fact that for the case when m = 0, Theorem 2
coincides with Theorem 1. Theorem 2 establishes a m — meromorphic continuation
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into U but not as a function having exactly m poles in D. Consider, for instance,
the sequence

1

2~ 57

fu(2) = 21
=T

in the unit disk D. Notice that {f,} € M1(D). Satisfying the conditions of Theorem
2, it converges to mi— almost geometrically inside D to f = 1. Hence, in contrast
to Theorem 1, Theorem 2 does not imply a normality of the sequence {f,}, even in
the case when each f,, has exactly m poles in U.

Remark. Both theorems, the former and the latter, hold also for “dense enough”
sequences. Following the same line of reasoning, as in the proofs of Theorem 2/1,
one can show the validity of

Corollary 1. [9]. Given a regular continuum S, suppose that the sequence {f, },
fre € Ry, e < N1, k=1,2,... with
Nk+1

(3) lim sup < 00

ng—oo Nk
converges uniformly on 9S as ny — oo, to a function f, f £ 0 on S such that an
analogue of (1) holds, i.e.
(4) limsup | fu, — flg5" < 1.
k— o0
Assume further that there is a domain U D S and a fized number m (a zero or
an integer) such that f,, € M, U),k=1,2,--- and

(5) ving, K) = o(ny), ng — oo

on each compact subset K of U. Then the statements of Theorem 2/Theorem 1 hold
with {f,} replaced by {fn,} and f € My, (U) (resp. f € AU)).

The application of Theorem 2 and of the preceding corollary are of importance
in establishing theorems of Picard-type for sequences of rational functions. Before,
we introduce the term of an a — point. Given a set M, a function g € M(M) and
a number « € C, we introduce the notation v, (g, M) as the number of all of a—
points of g in M; e.g. vo(9, M) :=v(g — a, M). For a = oo, we set vy := u(g, M).

The main advantage of Theorem 2 is

Theorem 3. [10]. Let D be a domain in C, and {ry n}, rnn € Rnn that converges
m1 — almost geometrically to a function f on compact subsets of D. Let zy be a
boundary point of D that is not a point of regularity for f. Let a and b be two
distinct values in C. Then the following distribution result holds for the a-values
and the B-values in every neighborhood U of zg :

if Vo(rn,U)=0(n) as n—oo, then limsupvg(ry,U) = cc.

From Theorem 3, after involving all arguments of its proof, we obtain
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Corollary 2. Let D be a domain in C, and {rnn}, Tnhn € Run that converges my —
almost geometrically to a function f on compact subsets of D. Let zy be a boundary
point of D that is not a point of regularity for f. Let a and b be two distinct values
in C. Then the following distribution result holds for the a-values and the (-values
in every neighborhood U of zg :

either  limsup W >0

or limsupvg(r,,U) =00 as n— oco.

In the context of normal families, we see that no nonregular point of 9D is a
normal point for the sequence {r,}.

Corollary 3. Under the conditions of Theorem 3, assume that zg is a nonregular
boundary point of D. Then for any neighborhood U of zy and for all a € C, with at
most one exception,

lim sup v, (7, m,, , U) = 0.

Recalling the classical theorem of Picard concerning the behavior of a holomor-
phic function in a neighborhood of an isolated essential singularity, we can summa-
rize Corollary 2 by saying the the sequence {r, m,} has an “asymptotic essential
singularity” at each nonregular boundary point on 9D, provided m.,, = o(n).

Using now Corollary 1, one get an information about the denseness of the zeros,
resp. poles of the approximating rational functions around the nonpolar singularities.

Corollary 4. Under the conditions of Theorem 3, suppose that for the infinite se-
quence A := {ny} there holds
limsup vg(ry,,U) < oo.
Then
Nk+1

Vo (Tn,, U .
(6) either  limsup Va(rn,, U) >0 or limsup =00
N — 00 ng Nk

This observation is important for the case when m,, = o(n). If {r,, ,, } converges
geometrically to f mj;— almost uniformly inside D and zg € 9D is a nonregular
point of f, and if

lim sup vq (1, My o U) < o0
np€EA

for some neighborhood U and some infinite sequence A = {ny}, then A is necessarily
rare in the sense of (6).

Ezxamples. Let
° - .
f(z) = (z+)log(z + 1) + > ———, limsup |A;["/* = 1/2,|as] > 2

i=1 v
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with F := an open disk Dy(r), r < 1. Let m,, = o(n) as n — 00; set

N—"Mnp Mn

T (2 _Z+Z k(k +§:z—o¢z

It is easy to verify that the sequence {7, m, } converges to f uniformly inside

the unit disk at a speed of a geometric progression. At the point z = —1 lies a
nonregular singularity. Applying Theorem 3 and Corollary 4, we see that z = —1
attracts “almost all” zeros of ry, ,, as n — oco. If there is some sequence A := {ny}
which is running away then it should be necessarily rear in the sense of (6).

Theorems 1-3 and Corollaries do not provide an information about an asymp-
totical behavior of the zeros of the approximating sequences. Theorem 4 below gives
an information about for some classes of functions. Before stating it, we introduce
the concept of a radius of meromorphy. Let E be a regular compact set in C. We
denote by Gg(z,0) its Green function with (logarithmic) pole at infinity. Given a
number p > 1, we set E, := {z,Gp(z,00) < logp.} Let f € A(E). We define the
radius of meromorphy p(f) as follows:

p(f) = sup{p, f € M(E,).}

A sequence T, ., is called mazimal convergent to f if it converges mi— almost
geometrically inside E,;) and the speed of convergence on each compact subset K
equals exp ||Gg(z,00) ||k /p(f). In [11], a result of Jentzsch-Szegd type was proved:

Theorem 4. Let E be a regular compact set and f € A(E). Assume that
My <nymy, <Mpy1 <m, +1 and m, =0(n/logn).

Let {Tnm,}s Tnm, € Rnm, be mazimal convergent to f inside E, . If p(f) < oo
and if there exists a singularity of multivalued character of f on OE,y, then the
normalized zero counting measures vy, of the numerators of vy m, converge weakly
to the equilibrium distribution of Fp(f), at least for a subsequence A C N as n — oo
with n € A.

Examples to which Theorems 3/4 apply are Pade approximants and best uniform
rational approximants of a continuous real valued function on a finite segment on
the real axes.
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WYNIKI TYPU MONTELA I ROZKELEAD ZER DLA CIAGOW
FUNKCJI WYMIERNYCH

Streszczenie
Uzyskano nowe uogdlnienie klasycznego wyniku Montela dla rodzin normalnych. Jako
zastosowanie wyprowadzone jest twierdzenie typu Picarda dla rodzin normalnych.
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SOME QUESTIONS OF INTEGRAL COMPLEX GEOMETRY

Summary

A subject, which is treated in this report, combines in one bundle some questions of
complex analysis, geometry and probability theory. Our purpose is to give review of the
row of the open problems and known results. First investigations of geometric probabilities
were started from well known Buffoons needle problem and related Bertrand paradoxes.
The paper introduces original conjectures and results of the present author.

1. Probabilities paradoxes

Let a needle (real line) intersect the ball B C R2 What is probability that this
needle intersects the ball By ¢ B? (Fig.1)

B

Fig. 1.

Let R = rg = 2rp;. In this case the problem is equivalent to the following.
Find the probability, that a chord, chosen at random, be longer than the side of an
inscribed equilateral triangle.
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Let a needle be considered as a real line, and then the problem reduces to finding
some invariant measure of the set relative to movement (L.Santalo, G. Matheron,
R. Ambarcumian and other [1-3]). Then the sought probability is found as attitude
of the measures. It is well known that for convex sets the invariant measure is the
length of perimeter and

_ 2mr 1
P=9%Rr " R
For any connected set £ C R? the invariant measure is the length of perimeter of
the convex hull of E.

Generalizing this construction, the approach relies upon a consideration of a
family of linear submanifolds of an Euclidean space, which crosses the given set. In
the real case this question is well studied [2]. The case of complex and more general
space, as it is noted in [2], has not got the sufficient development yet. In the complex
case the following two classes will be a natural generalization of the class of convex
sets.

Definition 1. A set E C C™ is called linearly convex if for every point z € C* \ E
there exists a hyperplane [ such that z € I C C" \ E.

Ezample 1. All convex domains and compacts are linearly convex.

Example 2. The Cartesian product £ = Ey X Ey X ... X E, of arbitrary flat sets
E; C C is a linearly convex set, in particular, torus 7 = S x St x ... x S™.

Definition 2. A set E C C" is called C-convez if for every complex line =y sets yN E
and v\ v N E are connected.

For the first the concept of linear convexity in C? was introduced in 1935 in the
paper of Behnke and Peschl [4] and was used widely by Martino [5] and Aizenberg
[6] from the sixties of last century.

Linearly convex sets are very useful in complex analysis and in the questions of
the integral geometry and tomography. On the base of these sets in complex analysis
there is built linearly convex complex analysis, similar to real convex analysis. More
results of linearly convex analysis can be viewed in monographs [7-9] and in the
review article [10].

In spite of abundance of results, many unsolved problems remained concerning
topological characteristics of these sets, a part of them is possible to find in [7, 10,
11]. One of the problems, put in [11], is solved in the work [12].

It seems interesting for the author to formulate the following open problem of
the sphere.

Problem 1 (sphere problem). Is there a linearly convex compact in C2, for which
all cohomology groups coincide with the corresponding cohomology group of the
two-dimensional sphere 52?



Some questions of integral complex geometry 17

Some of the problems of this theme are connected with the known Ulam problem
from the Scottish book [13].

2. Ulam problem

Let M,, be an n-dimensional manifold and every section of M™ by hyperplanes L
be homeomorphic to the (n — 1)-dimensional sphere S"~!. Is it true that M™ is
n-dimensional sphere?

In the real case this problem is solved by Kosiniski in 1962 [15]. The repetition
of this result was obtained by Montejano in 1990 [16]. In the complex a case similar
result was obtained by Zelinskii in 1993 [7].

Other problems of this group are to find: an estimation of the properties of a set
if we know the properties of its intersections with the families of some sets:

1) with the planes of a fixed dimension:

a) in the real case (Auman, Kosinski, Shchepin [15, 17, 18]);
b) in the complex case (Zelinskii [7]);

2) with a set of vertices of an arbitrary rectangle (Besicowitch, Danzer, Zam-
firescu, Tkachuk [19-22]).

The latter problem is known in literature as Mizel problem.

3. Mizel problem (characterization of a circle)

Let C' C R? be a convex Jordan curve with the following property:

For every rectangle abed if any three vertices are on C, will the fourth vertex be
also on C7? Is it true that C' is a circle? This problem is solved by Besicovitch and
Danzer independently [19, 20].

In 1989 Zamfirescu [21] proved the similar result for a Jordan curve (not convex
& prioriy) and for a rectangle with an infinitesimal relation between sides:

ac
—| <e>0.
‘ ab‘ =€
In 2006 my PhD student Tkachuk [22] obtained the most general result in this
area for compact C' C R?, where R? \ C' is not connected. Similar open problems in

the plane and in n-dimensional case appear in connection with the Mizel problem.
Further we shall bring the related known results for linearly convex sets.

Theorem 1. For convezxity of a domain (compact) it is necessary and sufficient that
all sections of this domain (compact) k-plane for fired k, 1 < k <n—1, are acyclic.

Theorem 2. A C-convex domain D C C" is linearly convez.

Definition. By conjugate set to the a E C C™ we call the set
E* ={w|{w,z) #1 forall ze€ E},
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where w = (w1, wa, ... wy), 2 = (21, 22, ... 2,) are points in C™ and (w, z) = wy2z1 +
Wozo + ...+ Wp2p-

Theorem 3. Let E C C™ be a linearly convex set such that C™*\ E is not connected.
Then E there is a cylinder formed by parallel to each other hyperplanes and base is
the set on line v; moreover the set component v\ @ corresponds one-to-one to the

set component of C* \ E, but E* is on % \ Q on the line passing through the initial

coordinates, where % =~y U (c0).

Theorem 4. In C" every linearly convexr domain with connected smooth boundary
is homeomorphe to a ball.

Theorem 5. Let D C C™ be a linearly conver domain with smooth not connected
boundary. Then D is a cylinder formed by parallel to each other hyperplanes and
base is the flat domain Q with a smooth boundary, lying on a complex line | (the
additional subspace to form the cylinder). The number of components 0Q coincides
with number the of components OD.

The conjugated compact D* consists of an union of flat 2-dimensional compacts
homeomorphe to circles and resting on line, getting through the initial coordinates.
The boundary of this compact is smooth in all point, with the exclusion of, possibly,
of that with the initial coordinates, on which can be crossed by some compact.

If we have a set E C C", § = (0,0,...,0) € E, and a point 20 € C" \ E, we
denote by I'(2Y) a set of points w € C", such that the hyperplane {z|(w,z) = 1}
passes through z° and does not cross E.

4. The conjecture of Aizenberg

A bounded linearly convex domain D, § € D, is C-convex iff the sets I'(z) are
connected for all z € 9D.

Theorem 6. Let K C C", 8 € K, be such compact that all sections K by tan-
gent hyperplanes are connected. Then each connected component of the set, K* is
a C-conver domain.

Our next results solve Aizenberg’s conjecture.

Theorem 7. [7]. A bounded domain D C C", is C-convex iff the sets T'(z) are
nonempty and connected for all point z € 0D.

Theorem 8. Let K C C" be C-convex compact; then its interior int K consists of
C-convex domains.
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Ezxample 3. Let K be the union of two circles
K={z(z—-1 <)V (z+i <1)} cC.

Obviously K is C-convex compact. Except for this the interior of compact int K is
not connected.

Fig. 2. Fig. 3.

Ezample 4. Let A = {z = (21,22)||2| < 1, Imz3 > 0} be hemiball, but B = {z =
(21, 22)||22 — i| < 1} be an open unlimited cylinder in C2. We shall consider compact
K = A\ B. Any section of compact K by line, different from zo = counst, is of the
form of intersection of two sets:

1) Halfline Im zo > 0 with the ball |z — 4| < 1 thrown away and

2) the ball of the radius not more than 1; moreover if the ball completely lies in
halfline Im zo > 0, and its radius is less then 1.
Hence K is C-convex compact. Obviously int K consists of two components.

Remark. We shall notice that the equality D* = int D* used in the proof of Theorem
5 is true for any bounded (not only C-convex) domain, but for unbounded domain
it can be broken.

Example 5. Let D = Dy x C*™ !, n > 1, where D; is a flat domain. Then

D* w(oj\Dl cC but (D)* w((oj\Dl cC,
and, consequently, (D)* # int D* = ().
Example 6. Let
D={z=(21,22,...,20) €C"1 < || <2, 21 ¢ [L,2]}.
It is easy to check that D is a C-convex domain, but D is already not C-convex

compact.

Theorem 9. A domain or a compact, being Cartesian product is C-convex iff it is
conver.
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Theorem 10. Let E C C" be a C-convex closed set being kept in some real hyper-
plane. Then either E is in one of the complex hyperplanes or it is a conver set.

Theorem 11. Let K C C" be C-convexr compact not lying in a real hyperplane;
then for projection K on an arbitrary line (with the exclusion of, possibly, one line)
int w(K) # 0, where 7(K) is an image of compact at projections .

Theorem 12. [23]. For an acyclic compact K C R™ it be convex it is necessary and
sufficient that all its sections by supporting m-planes for fited m, 1 < m <n —1,
are acyclic.

An example illustrating the need (minimality) imposed conditions may be as follows.

Ezxample 7. Hemisphere
ST {(IlaanxS)L’ﬂ% + x% + :U% =1 T3 < O} .

The supporting plane x3 = 0 crosses it along the one-dimensional cycle (circle).
Intersection with any other supporting plane, such as L, is the only relevant point
of a hemisphere.

Fig. 4.

Theorem 13. [23]. For an acyclic compact K C C™ with not empty the interior to
be C-convex it is necessary and sufficient that all its sections by supporting complex
m-planes for fited m, 1 <m < n — 1, are acyclic and in the case where m =n — 1,
that they are C-convez.
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O KILKU ZAGADNIENTIACH GLOBALNEJ GEOMETRII
ZESPOLONEJ

Streszczenie

Temat pracy uwzglednia jednoczesnie pewne zagadnienia analizy zespolonej, geometrii
i rachunku prawdopodobienstwa. Naszym celem jest zaréwno przeglad nierozwiazanych
problemoéw jak i niedawno rozstrzygnietych. Pierwsze badania prawdopodobienstw geo-
metrycznych rozpoczyna znany problem igielek Buffoona i zwigzane z nim paradoksy
Bertranda. Praca uwzglednia oryginalne hipotezy i wyniki obecnego autora.
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IS TORSION NEEDED IN A THEORY OF GRAVITY?

A REAPPRAISAL II
THEORETICAL ARGUMENTS AGAINST TORSION

Summary

It is known that General Relativity (GR) uses a Lorentzian Manifold (My;g) as a
geometrical model of the physical spacetime. The metric g is required to satisfy Einstein’s
equations. Since the 1960s many authors have tried to generalize this geometrical model of
the physical space-time by introducing torsion. In the second part of the paper we discuss
theoretical arguments against torsion. Our conclusion is that the general-relativistic model
of the physical spacetime is sufficient for the all physical applications and it seems to be
the most satisfactory.

5. Theoretical arguments against torsion

We begin this Section with the remark that if one utilizes the so—called “Ockham’s
razor” then torsion is needn’t for him in a theory of gravity because the wonderful,
the most simple and most symmetric Levi-Civita connection is sufficient for the
all physical requirements. By “Ockham’s razor” we mean a Philosophical Principle
which states: “Entities are not to be multiplied without necessity”.

The first our argument against torsion is given in the very important paper by
J.Ehlers, F. A. E. Pirani, and A. Schild [73]. These authors have showed that requir-
ing compatibility between conformal geometry C defined by rays of light and the
projective structure P of spacetime determined by trajectories of freely-falling test
particles leads to Weyl spacetime with a symmetric connection w. Then, admitting
some, very natural axioms [73], we obtain Riemannian geometry.
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So, studying the rays of light and freely-falling particles, leads us to Riemannian
spacetime.

Now, let us pay our attention to the other, disadvantegeous properties of torsion
and metric-compatible spacetimes with torsion:

1. In a spacetime with torsion do not ezist infinitesimal parallelograms [12,29] be-
cause the operation of invariant geometric addition of infinitesimal coordinate
segments is noncommutative. So, such spacetimes seem physically inadmissible
as this result is in direct conflict with the operational and epistemological basis
of our difference physics [30]. Besides, such spacetime cannot be approzimated
locally by a flat, Minkowskian spacetime already on classical level.

2. Torsion is topologically trivial. This means that the topological invariants of
a real manifold M and characteristic classes of vector bundles over M, as
defined in [31-33] depend only on curvature and can be fully determined by
the curvature 1, of the Levi-Civita connection. Roughly speaking, one can
continuously deform any metric-compatible connection (or even general linear
connection) into Levi-Civita connection without changing topological invariants
and characteristic classes. So, torsion is not relevant for topological invariants
and characteristic classes. Some authors say that torsion which satisfies dif-
ferential field equations might be topologically non-trivial. But this seems to
be incorrect because one can still continuously deform the connection in the
case into torsionless Levi-Civita connection without changing topological in-
variants and characteristic classes. The field equations will, of course, change
during such deformation. So, it seems to us that one can say only that the tor-
sion which satisfies differential field equations might be physically non-trivial.
Of course, one cannot exclude that there exist other topological properties of
spacetime which can substantially depend on torsion.

3. Torsion is not relevant from the dynamical point of view either. Namely, one
can reformulate every metric theory of gravitation with a metric- compati-
ble connection w’; as a "Levi-Civita theory”. Torsion is then treated as a
matter field. Such reformulation preserves the all dynamical properties of the
theory. An obvious example is given by ECSK theory in the so—called “com-
bined formulation” [34]. In this formulation ECSK theory is dynamically fully
equivalent to the ordinary GR. [35].

In general, one can prove [36] that any total Lagrangian of the type

(7) Ly = Ly(9",w",) + Ly (¥, DY)
admits an unique decomposition into a pure geometric part ﬂg(ﬂi,Lc wik) con-
taining no torsion plus a generalized matter Lagrangian
Ln(V,00 DU, K'Y, 1o DKY))
which collects the pure matter terms and all the terms involving torsion

(8) Li=Ly+ Ly =Ly + Ly,



Is torsion needed in a theory of gravity? A reappraisal 11 25

Here ;oD means the exterior covariant derivative with respect to the Levi-
Civita connection cw?.
From the Lagrangian

(9) Lt = -Z/g + -Z/m

there follow the Levi-Civita equations associated with Ly.

So, torsion can always be treated as a matter field. This point of view is pre-
ferred e.g. in [37,38] and it is supported by transfromational properties of tor-
sion: torsion transforms like a matter field i.e., it transforms as a tensor—valued
form.

. A gravitational theory with torsion wviolates EEP, which has so very good
experimental evidence. It is because in a spacetime with torsion a tangent
space T,(M) cannot be identified with Minkowskian spacetime, i.e., there do
not exist holonomic frames such that g;x(P) = nik, 'Yy, = 0, and, in which
geometry, in an infinitesimal vicinity of the point P, is Minkowskian. P is here
a preselected point. So, a gravitational theory with torsion is not a covering
theory for SRT [54] and violates EEP (Strictly speaking, it violates LLI). A
correct relativistic theory of gravity should be a covering theory for the both
theories, SRT and Newton’s theory of gravity. Of course, GR satisfies this
condition.

We also lose Fermi coordinates [12, 39,40, 77] in a Riemann-Cartan space-
time. Fermi coordinates realize in GR a local (freely-falling and non-rotating)
inertial frame along a curve in which SRT is valid.

Some authors [41,42,44] formulate EEP in a weaker form than the constructive
Will’s formulation, which we have adopted in this paper. Namely, in their
formulation this Principle reads: there exists (anholonomic for a connection
with torsion) normal frame {9} such that in a preselected point P one has

(10) I (P) =0, gi(P) = mir.

But this Equivalence Principle is a tautology because, as it was showed in
past [45], every linear connection on a metric manifold satisfies it.

Moreover, if the metric-compatible connection has torsion, then, the so-called
transposed connection (see, e.g., [4]) @ (P) = w',(P) + Q*;,;(P)¥', torsion
Q',;(P) and the symmetric part I‘i(kl)(P) of the connection w’, = I'';; ¥ do
not vanish in P even, if in P, w', (P) =T'",, (P)9' = 0.

In consequence, even in a normal frame, the geometry of tangent space Tp,(M)
is not Minkowskian i.e., the constructive Will’s formulation of the EEP is
violated. As we have already emphasized, Will’s formulation of the EEP has
very good experimental evidence.

The Equivalence Principle formulated in the form (10) needs holonomic frames
in order to efectively work. Namely, in the set of the holonomic frames it
chooses a symmetric, linear connection. Then, adding the most natural metric-
ity postulate (or Hamiltonian Principle for trajectories of the test particles)
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univocally leads us to (pseudo)-Riemannian geometry i.e., to the Levi-Civita
connection.

5. A connection having torsion can be determined neither by its own autoparal-
lells (paths) nor by geodesics [12]. So, one cannot determine unequivocally a
connection which has torsion by observation of the test particles (which could
move along geodesics or autoparallels).

6. Study of the Einsteinian strength of the field equations of the proposed gravity

theories favorize the purely metric theories of gravity (obtained with the help of
Hilbert variational principle) which use Levi-Civita connection, ycw, in com-
parison with competitive Palatini’s theories of gravity (apart from ECSK the-
ory) which use metric-compatible connection admitting torsion (see, e.g., [47].
Namely, the purely metric gravity theories have much more smaller strengths
(48 in four dimensions) and numbers of dynamical degrees of freedom (16 in
four dimenions) than the competitive Palatini’s PGT (120 and 40 in four
dimensions respectively).
Following Einstein, from the two competitive gravity theories this one is better,
which has smaller strength and smaller number dynamical degrees of freedom
because such theory determines gravitational field more precisely. More pre-
cisely in the sense: it admits a smaller number of arbitrary initial data (putting
in “by hand”) in the Cauchy problem, i.e., it admits smaller freedom in ob-
taining a solution to the field equations.

7. Reduction of the principal bundle of the linear frames L[M,,, GL(n;r), 7| over
M,, to subbundle of the (pseudo)orthonormal frames O[M,,, O(n;k) =] (for
n =4, k =1 one has Lorentz group L) leads us univocally to the Levi-Civita
connection. Namely, we have the Theorem [76].

Theorem

Let [M,, g] be a (pseudo)Riemannian manifold of an arbitrary signature, k,.
Then, there exists one and only one linear connection w on L[M,,, GL(n;r), 7|
with null torsion © = DO = 0 which can be reduced to the group O(n; k), i.e.,
to the connection wg on the principial bundle [M,,, O(n; k), «l.
Interestingly, that w, and reduced connection wg, are exactly the Levi-Civita
connection cw for the metric g.

So, the fibre bundle approach suggests choosing of the symmetric and metric
Levi-Civita connection for the mathematical model My(g;, T') of the physical
spacetime.

Torsion leads to ambiguities:

1. The Minimal Coupling Principle (MCP) differs from the Minimal Action
Principle (MAP) in a spacetime with torsion [48].
The MCP can be formulated as follows. In SRT field equations obtained from
the SRT Lagrangian density L = L(¥,0;¥) we replace

0i — Vi, ik — Gk
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and get covariant field equations in (My, g).
By the MAP we mean an application of the Minimal Action Principle (Hamil-
tonian Principle) to the covariant action integral

S = /L(q/, DW)d*Q, where L(¥, DV)
Q

is a covariant Lagrangian density obtained from the SRT Lagrangian density
L(V, 0;7) by MCP.

It is natural to expect that the field equations in (My, g) obtained by using
MCP on SRT equations should coincide with the Euler-Lagrange equations
obtained from L(¥, D¥) by MAP. This holds in GR but not in the framework
of the Riemann-Cartan geometry. So, we have there an ambiguity of the field
equations. Axial torsion removes this ambiguity. By (My, g) we mean here a
general metric manifold; not necessarily Riemannian.

. In the framework of the ECSK theory of gravity we have four energy-moment-
um tensors for matter: Hilbert, canonical, combined, formal [34]. Which one is
more important?

. Let us consider now normal coordinates NC(P) [12,49-51] which are so very
important in GR (see, eg., [49-52]). In the framework of the Riemann-Cartan
geometry we have two NC(P): normal coordinates for the Levi-Civita part
of the Riemann-Cartan connection NC(rcw, P) and normal coordinates for
the symmetric part of the full connection NC(sw, P) [53]. Which one has a
greater physical meaning?

The above ambiguity of the normal coordinates leads us to ambiguities in
superenergy and supermomentum tensors [53]. Axial torsion removes this am-
biguity. Moreover, the obtained expressions are too complicated for practical
use. In fact, we lose here a possibility of effective use of the normal coordinates
which give a very powerful tool in GR to extract physical content hidden in
various non-covariant expressions.

Perhaps by use normal frames defined in [45,78] instead of normal coordinates
one could avoid these ambiguities and connected problems. This conjecture
will be studied in future.

. In the framework of Riemann-Cartan geometry [12] there holds

(11) Riiryim = Rikam) = 0,
but
(12) Ririm # Rimik.-

The last asymmetry leads to an ambiguity in construction of the so—called
“Maxwellian superenergy tensor” for the field R;xiy, [53]. This tensor is uniq-
uely constructed in GR owing to the symmetry Rixim = Rimix and it is
proportional to the Bel-Robinson tensor [53]. In the framework of the Riemann-
Cartan geometry the obtained result depends on which antisymmetric pair of
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the R;kim, the first or second, is used in the construction.

5. In a Riemann-Cartan spacetime we have geodesics and autoparallells (paths).
Hamiltonian Principle demands geodesics as trajectories for the test parti-
cles [54]. Then, what about the physical meaning of the autoparallells? Axial
torsion removes this problem. One can also easily prove in the framework of
the ECSK theory that spinless test particles move along geodesics.

6. In a spacetime with torsion we have in fact three kinds of parallel displacement

defined by

(13) dvt = (—)Ffjvjd:vi,

(14) vt = (—)Ffjvid:vj,

and

15 dv* = (=), vida?,
(i5)

and three different curvatures. These results follow from that three kinds of
covariant (and absolute) differentials

(16) VZ(-L)vk = 9P + Thol,
(17) vk = g + Th!,

Authors usually use only one of the two first possibilities. What about the
others?

In a torsionless spacetime the above three possibilities coincide.

The ambiguities (13, 14)—(16, 17) arise from the two possibilities expanding of
the local connection forms &%, on the base space M, in coordinate frames:

In practice, one must consequently use one of the two above possibilities (or
conventions) in order to avoid mistakes.

5.1. Symmetry of the energy—momentum tensor of matter

In Special Relativity (SRT) the correct energy—momentum tensor for matter (elec-
tromagnetic field,continuous medium, dust, elastic body, solids) must be symmet-
ric [39,55].

One can always get such a tensor starting from the canonical pair T, .S =
(—)eSki where T #, T* is the canonical energy-momentum tensor and .S —
the canonical spintensor. These two canonical tensors are connected by the equations

(20) O™ =0, 1% —, T =95,



Is torsion needed in a theory of gravity? A reappraisal 11 29

By use of the Belinfante symmetrization procedure [34,48,56,57] one can get the
most simple new pair

(21) T =, T — §aj (Cszkj —. Sk 4 Sjlm)7
(22) ik = gidk _ Adki 4 giki — )
Here

(23) Azk] — E(Cszkj — Szgk +o Sj]ﬂ).

The obtained new "pair” (T, 0) is the most simple and the most symmetric. Note
that the symmetric tensor ;7% =, T* gives complete description of matter because
the spin density tensor .S“* is entirely absorbed into ;T by the symmetrization
procedure.

Note also that the symmetric tensor ;7% has 10 independent components and
this number is exactly the same as the number of integral conserved quantities in
an asymptotically flat closed system.

It is interesting that one can easily generalize the above symmetrization procedure
onto a general metric manifold (My, g) [14,34] by using the Levi-Civita connection
associated with the metric g. The generalized symmetrization procedure has the
same form as above with the replacement n;x — gk, 0; —rc V.

So, one can always get on a metric manifold (My, g) a symmetric energy-moment-
um tensor (T =, T* for matter (then, of course, corresponding S*J = (). Observe
that the symmetric tensor T, like as in SRT, consists of the canonical tensors
T and .S

The symmetric energy—momentum tensor for matter is unique, i.e., it is uniquely
determined by the matter equations of motion and reasonable boundary condi-
tions [58]. This fact is essential for the uniqueness of the gravitational field equations.
Moreover, the symetric energy—momentum tensor is covariantly conserved (a canon-
ical energy-momentum tensor is not conserved).

L. Rosenfeld has proved [59] that
(24) ST = %,

09ik
where

Ly, = Ln(9, DY)

is a covariant Lagrangian density for matter. The tensor TF given by (24) is the
source in the Einstein equations

(25) Gir = XsTi,
where
_ 8nG
=

Note that these equations geometrize both the canonical quantities T and
SR = (—)CSW in some equivalent way because the tensor (7 is built from these
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two canonical tensors.

So, it is the most natural and most simple to postulate that, in general, the correct
energy-momentum tensor for matter is the symmetric tensor ,7°*. This leads us to
a purely metric torsion-free theory of gravity with the field equations
0Ly 0Ly,
8git  Ogik
Then, if we take into account the dynamical universality of the Einstein equations
[38,60,61], we will end up with General Relativity (possibly with A # 0) which will
have a sophisticated, symmetric energy-momentum tensor as a source.

(26)

5.2. Some remarks on the “teleparallel equivalent of general relativity”

After presenting the preliminary draft of the old our lectures in arXiv [80], we have
got critical remarks from some persons which are working on the so-called telepar-
allel equivalent of general relativity (TEGR) in the framework of the Weitzenbick
or teleparallel geometry [12,29,62]. Our reply was the following. This reply was con-
siderably extended and updated in the paper [81]. The Weitzenbick or teleparallel
connection and geometric structure on spacetime is determined by a tetrad (or other
anholonomic frame) field h(a)b(:v) and can always be introduced independently of the
geometric structure of the spacetime. Here (a), (b), ... are tetrad (= anholonomic)
indices and a, b, ¢, ... mean holonomic (= world) indices.
The fundamental formulas of the teleparallel geometry read

(27) gik = @y hhY,,

(28) Iy = h(a)iakh(a)IV

(29) vh'Y, =0,

(30) D' =10 Ty + Ky,

(31) Ky = 1/2(00 + 1'% — Thy),
(32) Ty = Fim Iy,

and

(33) Ry =10 Rl + Qi = 0,

where Q°,,, is a tensor written in terms of the contortion K, and its covariant
derivatives with respect to the Levi-Civita connection poI™ i of the metric g;x.

Here 7(q)(») means the interior metric (usually Minkowskian) of a tangent space
and the duals h(a)Z are defined by

Those authors which work on TEGR, by use the formulas (27), (30), and (33)
of the teleparallel geometry rephrase, step-by-step, the all formalism of GR in terms



Is torsion needed in a theory of gravity? A reappraisal 11 31

of the Weitzenbock connection I';; and its torsion T%,. Then, they call this formal
reformulation of GR in terms of the Weitzenbock geometry the teleparallel equivalent
of general relativity (TEGR) (What kind of “equivalence”?).

One can read in the papers [62] the following conclusion: “Gravitational interac-
tion, thus, can be described alternatively in terms of curvature, as is usually done in
GR, or in terms of torsion, in which case we have the so—called teleparallel gravity.
Whether gravitation requires a curved or torsional spacetime, therefore, turns out
to be a matter of convention”.

From the point of view of the TEGR,, therefore, teleparallel torsion has funda-
mental physical meaning and it has been already detected.

We cannot agree with such statements. In our opinion, the ”teleparallel equivalent
of GR” is only formal and geometrically trivial rephrase of GR in terms of the
Weitzenbock geometry. Such rephrase is, of course, always possible not only with
GR but also with any other purely metric theory of gravity (see eg. [63]) but it has
no profound physical motivation. It is because, as one can easily show, the teleparallel
torsion is entirely expressed in terms of the Van Danzig and Schouten aholonomity
object Q(a)(b)(c) (see eg. [12,29]). So, the torsion T, of a teleparallel connection

describes only anholonomity of the used field of aholonomic frames h(a)i(m); not
real geometry of the spacetime. Unless one can physically distinguish a tetrad field
(or other anholonomic field of frames) and give it a fundamental geometrical and
physical meaning. But we think that this could introduce a cristal-like structure
on spacetime and, therefore, it would contradict local Lorentz invariance. Contrary,
Levi-Civita part of a Weitzenbdck connection can have (and has) geometrical (and
physical) meaning.

Resuming, it seems to us that TEGR is rather a mathematical curiosity which
gives, by no means, anything better than ordinary GR gives and one can doubt into
its physical meaning. Precise experimental confirmation of the EEP proved non-
zero curvature of physical spacetime [39,66] and supported ordinary GR.. We think
that this fact excludes a physical motivation for rephrasing GR into TEGR. One
remark more is in order concerning TEGR.: TEGR resulted in f(T) theories where
T means the Lagrangian density [83] of the TEGR. In analogy to f(R) extension
of the Hilbert action of GR, the f(T) theories are generalization of the action of
TEGR. It seems that the only one positive property of these theories is the fact
that they have 2-nd order field equations.

6. Concluding remarks

The GR model of the space-time has very good experimental confirmation in a weak-
field approximation (Solar System) and in the strong fields (binary pulsars). On the
other hand, torsion has no experimental evidence (at least in vacuum) and it is not
needed in a theory of gravity. Moreover, the introduction of torsion into the geometric
structure of space-time leads to many problems (apart from calculational, of course).
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Most of these problems are removed if only axial torsion A; = %machabc, Qlabe —
Q¢ exists. So, it would be reasonable to confine themselves to the axial torsion
only (If one still want to keep on torsion). This is also supported by the important
fact that the matter fields (= Dirac’s particles) are coupled only to the axial part of
torsion in the Riemann-Cartan space-time.

However, if we confine to the axial torsion, then (if we remember the dynamical
triviality of torsion and the dynamical universality of the Einstein equations) we
effectively will end up with GR + additional matter fields. In the most important
case of the ECSK theory we will end up with GR + an aditional pseudovector
field A; (or with an additional pseudoscalar field ¢ if the field A; is potential, i.e., if
A; = 0;p) [48]. But GR with an additional dynamical pseudovector field A; yields
local gravitational physics which may have both location and velocity-dependent
effects [19] unobserved up to now. Besides, GR with an additional pseudoscalar
field has a defect because there exist two distinguished frames, the Finstein frame
and the Jordan frame, which are not equivalent physically [67].

Additionally, we would like to emphasize that there exist very strong experimental
constraints on the components of the axial torsion: < 10(=1%)m (=)t [75].

So, we will finish with the conclusion that the geometric model of the space-time
given by ordinary GR and “wonderful” Levi-Civita connection seems to be the most
satisfactory.

Interestingly that this model has a very strong support from the field-theoretic
approach to gravity (see e.g., [68]).

It seems to us that the torsion was introduced into a theory of gravity in order to
get some link between theory of gravity and quantum fundamental particles theory
(It is commonly known that the role of the curvature in an atomic and smaller scale
is neglegible). But these trials were not successful (see, e.g., [75]). It also seems that
what we really need nowadays is a quantum model of the Riemannian geometry
and a quantum gravity which is based on this model. The recent papers given by
Ashtekhar [16-18,74] and co—workers on this problem seems to be very promissing.
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CZY TORSJA JEST POTRZEBNA W TEORII GRAWITACJI?

NOWE SPOJRZENIE II
ARGUMENTY TEORETYCZNE PRZECIWKO TORSJI

Streszczenie

W pracy pokazano, ze wprowadzenie skrecenia do modelu matematycznego fizycznej
czasoprzestrzeni nie jest ani konieczne, ani wskazane.

W drugiej czesci pracy przedyskutowano argumenty teoretyczne przeciwko torsji. Model
matematyczny, ktéry daje ogdlna teoria wzglednosci jest wystarczajgcy dla wszelkich po-
trzeb fizyki i, jak dotad, jest bardzo dobrze potwierdzony przez eksperymenty.
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MODERN HOMOPOLAR MOTORS

Summary

This paper aims to present a construction and operating principles of some types of
homopolar motors. These motors are characterized by the fact that the spinning of the
rotor occurs in the surrounding of only one of the poles of a permanent magnet. An early
demonstration of a homopolar motor is Barlow’s wheel. A few versions of such motors were
built using easily available and inexpensive materials, such as a neodymium magnet, piece
of copper wire and battery in a metal shell. These are motors with a rotating magnet, a
battery or a frame of wire. A detailed explanation of principles of operation of such motors
has also been provided.

1. Introduction

One of the earlest and simplest homopolar electrical motors to be built is Barlow’s
wheel. Known from literature, a classic model of the wheel comprises a conductive
disk of nonferromagnetic material [1, 2]. The disk is mounted on a conductive axle
and can rotate almost without friction. A constant magnetic field is applied perpen-
dicularly to the surface of the disk. T'wo resilient contact points which are connected
to a DC power source make contact with both the rim of the disk and its axle.
As a result an electric current passes over the disk in radial direction. Since the
passing current is perpendicular to the magnetic field, on the disk there act electro-
dynamic forces which are directed tangentially to the circumference of the wheel.
The momentum of these forces causes the disk to rotate.

A change in direction of the current flow, or a reversal of induction vector of
the applied magnetic field cause a reversal of the direction of the disk rotation. An
increase in amperage or induction value leads, in turn, to an increase in rotational
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speed of the disk. In some technical solutions the rim of the disk is dipped into
mercury contained in a small trough to which one pole of the electric source is
attached. This ensures good electrical contact at a fairly high amperage necessary
to cause the rotation of the disk.

At present, Barlow’s wheel is used in some special driving systems, or in elec-
tromagnetic generators/dynamos that have to operate at low amperage and high
current magnitude. In recent years among several household goods there appeared
on the market round batteries or battery cells in metal shells, as well as strong con-
ductive nickel coated neodymium magnets, and aluminum cans used as packaging
for beverages and deodorants. These articles allow us to easily build some simple
but interesting models of unipolar electric motors which constitute modern versions
of the earlier types. More examples of such motors will be demonstrated further on
in this paper. One good point about them, except their simplicity, is that they make
an excellent teaching tool.

2. Motor with a rotating magnet

A simple homopolar motor is very easy to build with the following components: a
nickel coated neodymium magnet in the shape of cylinder 1 — 2 cm in diameter and
1 cm thick, R6 battery cell in a metal shell, a piece of conductive wire with bare
ends 10 to 15 cm long, a two-inch steel nail or a drywall screw. If the copper wire is
isolated you need to remove the insulation. The flattened boss on the end of the nail
should be centered over the the flat surface of the cylindrical magnet. As a result of
magnetic attraction the nail will adhere firmly to the magnet, see Fig. 1. The point
of the nail, in turn, should be aplied to one of the terminals of the battery. Due to
its metal shell, the nail will also be attracted to the battery. The other end of the
battery should be held with the fingers of one hand and the bare end of the wire
should be pressed into it. The magnet and the nail become suspended vertically held
by the forces of magnetic attraction. The remaining bare end of the wire is to be
held with the fingers of the the other hand and applied to the side surface of the
magnet. It turns out then that the magnet and the nail begin to spin around their
vertical axis.

The observed rotation of the magnet can be explained as follows, see Fig. 2.
From the battery terminal that contacts the nail there flows an electric current
along the nail towards the centre of the magnet, and then in a radial direction
through the magnet to the wire end that makes contact with the side surface of
the magnet. The current contues to flow on to the other terminal of the battery.
In this way, the circuit is completed through the nickel coating of a neodymium
magnet. The current that is flowing radially through the magnet is in the mag-
netic field that is induced by the same magnet. The direction of induction vector of
the magnetic field is vertical, or perpendicular to the direction of a current. In such
a case, an electrodynamic force acts on the magnet which is directed horizontally and
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Fig. 1: Motor with a rotating magnet construction; 1 — a neodymium magnet, 2 — a steel
nail, 3 — R6 battery cell, 4 — the positive battery terminal, 5 — a thin resilient wire.

Fig. 2: Basic explanation of the working principle of operation of the motor with a rotating
magnet; I — the electric current intensity, B — magnetic field or magnetic induction, F —
electrodynamics force.
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tangentially to the circumference of the magnet. The momentum of the force sets
the magnet in rotation.

By turning the magnet over so that its other pole makes contact with the nail
head causes a change of direction of the magnet’s rotation to the opposite. The same
effect is obtained by changing the battery terminal in contact with the point of the
nail. Moreover, the speed of magnetic rotation is dependent on the place where the
end of the wire contacts the side surface of the magnet and is the highest where
the contact with the surface is at mid-height of the magnet. A drywall screw with a
pointed end can be used in place of a nail. In such a case the rotation will be more
observable. A bigger sized batteries, such as R14 or R20, can also be used. Batteries
of the type have lower internal resistance and can supply more current, which results
in a higher speed of magnet rotation, see Photo1. The experiment comes off also
with smaller batteries of R3 type, see Photo 2.

Photo 1: The homopolar motor made with Photo 2: The homopolar motor in which
the use of the smallest round R3 battery R20 battery cell was used.
cell, the so called pencil battery.

A ferrite cylinder magnet can be used in place of a neodymium magnet, but then
it should be wrapped carefully in an aluminum foil, to allow a current to flow over the
surface of the magnet. The nail or screw cannot be too long and their cross-sectional
area should not be too small, otherwise it will not be attracted firmly enough to the
outer metal shell of the battery and will not be able to hold the weight of the magnet.
When rotating, the magnet is prone to sway slightly to the sides and the endpoint of
the wire may fail to contact the side surface of the magnet. Despite that, due to the
inertia effect the magnet continues to rotate. During rotation a pondermotoric force
is induced in the magnet which is oriented in the opposite direction to the electro-
motive force of the battery. As a result, the intensity of the current passing through
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the magnet becomes dicreased and a state of balance is achieved, which prevents the
motor from reaching the warming-up phase. Despite that, the battery works close
to the level of short circuit and a significant ammout of current is flowing through it
at the intensity level of up to a few amperes. This causes noticeable heating of the
motor components and excessive discharge of the battery.

To prevent the point of the nail from deviating off the centre of battery terminals,
which occurs during fast rotations of the motor, it is useful to make small dents at
the tops of the terminals with a nail or a slightly blunted point of a point chisel.
Attention should be paid not to go through the battery shell, otherwise in the case
of alkaline batteries this may cause a leak of electrolyte and the irrepareable damage
to the battery. Making such dents in the top of the battery also does the trick in
the case of motors to be described in the further parts of our paper. The point of
the nail should be applied to the opposite surface of the battery. By holding the nail
head and lifting it we check wheather the battery and magnet do not come off the
nail.

3. Motor with rotating battery and magnet

The motor is built from the same components as the one described earlier, but its
elements are arranged differently in relation to one another, see Fig. 3. Due to that,
the battery in the motor rotates together with the magnet while the nail remains
immobile, see Photo 3. Such a configuration of elements, unknown in literature, has
been proposed by one of the co-authors of this paper. To build the motor, the flat
surface of the neodymnium magnet should be applied to one of the surfaces of the
battery in a metal shell.

AR

Fig 3: The motor with a rotating battery and Photo 3: The homopolar motor where
magnet; 1 — a neodymium magnet, 2 — R6 R3 battery rotates together with the
battery cell, 3 — a steel nail, 4 — the positive magnet.
battery terminal, 5 — a thin resilient wire.
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If it does, a stronger magnet, or a shorter nail with a bigger cross section area is
needed. It should be remembered that the battery and magnet hold on better when
its wider end is in good contact with the flattened nail head, which constitutes the
negative terminal. The bare end of a copper wire is applied to the nail head and
pressed with a finger. The other bare end of the wire is to be held with the fingers
of the other hand and applied to the side surface of the neodymium magnet. A spin
of a magnet and a battery can be observed. The operation principle of the motor is
similar to the one described earlier. The same remarks apply also to the change in
the direction of the rotation of the motor and to using other battery options.

Let’s have a closer look at the dynamics of the motor. On the magnet and battery,
or the rotor there acts the momentum of electromagnetic force, getting ready to set
it in motion. In addition to that, on the magnet there acts the momentum of friction
of the end of the wire against its side surface, and the slight momentum of friction
of the magnet against the point of the nail. The momenta of friction counteract the
movement of the rotar. Assuming that the values of these momenta are constant and
the momentum of electrodynamic force is greater than the momenta of friction, then
the angular velocity of the rotor would be constant and its velocity could increase
indefinitely with the passing of time. As a result, it could lead to excessive velocity,
or the so-called warming up of the motor, resulting in its damage. However, this has
not been observed. Why is it so?

The momentum of friction of the air acts also on the rotor, which, in accordance
with Stokes’ theorem, is directly proportional to its velocity. In this situation, how-
ever, the momentum is rather insignificant. A really essential factor that curbs the
speed of the rotor is the aforementioned pondermotive force. The force increases
proportionally to the speed of rotation and decreases the intensity of a current, on
which there depends the momentum of electromagnetic force. Due to that, with
the passing of time, the resultant forces that act on the rotor and its acceleration
decrease and the angular velocity of the rotor approaches exponentially the estab-
lished critical value, Fig. 4. The critical value is dependent only on the parameters
that characterize the elements of the motor, for example, the mass and the size of a
magnet,or the electromotive force of a battery. The curve shown in Fig.2 describes
an increase in the angular velocity of the rotor for an ideal motor in which the end
of the wire is in constant contact with the side surface of a magnet.

During experiments, it is easy to observe that the magnet deviates from a straight
line and contact between the wire ends and the magnet is lost. Severance of contact
leads to the disappearance of the momentum of the electrodynamics force that pro-
pells the rotor. Friction forces are still at work causing the angular velocity of the
rotor to decrease. Repeated engagement of the wire end with the surface of the mag-
net causes an increase in angular velocity. Such situations repeat, and a dependence
graph for angular velocity of the rotor on the time assumes the shape as shown in
Fig.5. On breaking off the connection between the wire end and the magnet, little
sparks can be observed signifying a high intensity of the current flowing through the
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motor. Similar experiments can be carried out with the motor as with the motor
described in the previous paper, and so to reverse the battery terminals or the poles
on the magnet, to test the batteries and magnets of various sizes, or to apply the
wire end at different points over the surface of the magnet.

pw AW
0 t 0 t
Fig4: The dependence of an angular Fig. 5: The dependence of an angular
velocity of the rotor w on the time ¢ for velocity of the rotor w on the time ¢ for a
an ideal motor. real motor.

4. Homopolar motor with a rotating battery

If you have a round R20 non-alkaline battery and a big enough neodymium magnet,
you can build a homopolar motor in which only a battery itself will rotate. In order
to do that the outer steel shell has to be removed. The metal sheet is bent back by
means of a screwdriver or a knife along the edge and pulled off with a pair of pliers.
A zinc case is the negative terminal, whereas the carbon rod with a metal cap is
positive. An alkaline battery is not fit for the experiment of this kind, as it has no
zinc case and the unbending of its shell may cause damage to the battery and the
spilling of electrolyte.

The next step will be putting a brass cap (recovered from the used battery) on
top of the carbon rod sticking out of R20 battery cell. In the centre of the metal cap
we make a slight dent with the point of a nail. If the R20 battery rod has too large a
diameter, to fit the metal cap we make it smaller by scraping it. The small cap will
serve as a resistant bearing for the motor and ensure the flow of a current. Close to
the end of a piece of non-ferromagnetic sheet we cut out a round hole with a pair
of scissors and finish off the edges with a file — of a diameter that is larger than the
outer diameter of the zinc case of R20 battery. Then we bend the strip twice at right
angle to form a bracket-like structure in the shape of letter C, as shown in Fig. 4.
The perpendicular arm of the bracket must be short — around 1cm in length. At
the lower arm of the bracket a small hole is pierced through with the point through
which a thumb-tack will be pressed from the outside. The hole should be made under
the hole in the upper arm of the bracket.
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When the above components are prepared, we can go about carrying out the
experiment with the motor, see Fig. 6. The bracket is adjusted on top of a cylindrical
battery, right at its centre, and R20 round battery is stripped off the metal outer
shell and inserted into its opening from the top. Thanks to the ferromagnetic thumb-
tack, the bracket will be firmly drawn onto the magnet. One end of the battery with
the metal cap should be turned downwards so that it can rest on the point of a
thumb-tack put in the dent in the cap. A slow battery spinning can be observed, see
Photo4. An electric current in the motor passes from the metal cap on the battery
positive terminal, then it flows on through the thumb-tack and the lower arm of the
bracket up to its vertical and upper arm and then over the surface of the battery
zinc case. The current inside the battery flows radially through the electrolyte to the
zinc case and then to the carbon rod. An electrolyte and an electric current are in
the strong vertical magnetic field that is directed perpendicularly. In this situation,
an electrodynamics force acts on the battery, which is directed horizontally and
tangentially to the battery. The momentum of the force gets the battery to spin
around its axis. In this type of a motor it is easy to change the direction of rotations
by reversing the battery or magnet polarity.

Fig 6: The construction of the motor with a Photo 4: The homopolar motor in
rotating battery cell only; 1 — a neodymium which only R20 battery rotates
magnet, 2 — a non-ferromagnetic bracket, 3 — a slowly.

thumb tack, 4 — a round battery, 5 — a brass cap.
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5. Motors with rotating frames

The source of a magnetic field in the motors is a cylindrical neodymium magnet 1
coated with a protective layer of nickel, Fig.7. The diameter of the magnet equals
or is greater than the diameter of the battery cell 2 to be used here. Any of the
aforementioned round battery cells of R6, R14 or R20 type can be effectively used.
The magnet should be 1 cm or more in height. A relevant battery in a metal shell is
placed co-axially on the magnet, and therefore it is strongly attracted by the magnet.
The battery can be placed either with the positive terminal 3 facing upwards, or the
other way round. A movable element in the motor is the frame made of a non-
ferromagnetic wire 1 mm in diameter. It can be a coper wire, brass or just a wire
coated with a thin layer of silver, the so called silver plating for applications in
electronics. Wires that are made from such materials are easy to bend and solder.

Some specific elements can be singled out in the frame. The bottom of the frame
has a ring 4, its inner diameter being slightly wider than that of the magnet. The
ring is obtained by bending a wire on the magnet which is wrapped up with a few
layers of paper to enlarge the diameter of the ring. On the opposite sides from the
ring along its diameter there diverge two horizontal segments of wire 5 which at
some distance from the battery are bent at right angle upwards forming vertical
segments 6 that jut out over the battery. The segments are bent again over the
battery and pass over into the horizontal section 7. At mid-length the last segment
has a vertical fragment 8 which is bent downwards, is pointed at the end and rests
on the terminal directed upwards. In sum, the frame comprises a horizontal ring
that is in contact with the side surface of the magnet, and a vertical rectangle that
encloses the battery. It takes no more than a few minutes to bend a frame shape
from a single length of wire and to join its segments together by soldering.

As soon as the frame is put over the battery, it begins to spin, Photo5. The
direction of rotation of the frame can be reversed by reorienting the magnet and
battery polarities. Batteries of bigger sizes give more amperage and higher rotational
rate of the frame. The cause of rotation of the frame is the resultant momentum of
electromagnetic forces that act on the separate sides of its rectangular part, Fig. 8.
When the frame is put over the battery, the electric current flows through the vertical
bent section 8, and then it branches off into separate sides of the rectangular part of
the frame and runs into the ring contacting with the side surface of the magnet. The
current enters the other terminal of the battery through the protective, conductive
layer of nickel.

All of the segments of the rectangular part of the frame which exhibit conduc-
tivity are in the magnetic field whose induction vectors have, in general, a diagonal
orientation to that section. Due to that, each of the component vectors is perpen-
dicular to each other. Since an electric current passes through these segments, the
electromagnetic forces act on them in the direction of the circuit. Applied to the
opposite sides of the frame the forces have opposite directions and the same values,
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Fig7: The motor with a rotating frame
construction; 1 — a neodymium magnet, 2
— R6 battery cell, 3 — the positive battery

terminal, 4 — a frame ring, 5 — the lower

section of the frame, 6 — the vertical
section of the frame, 7 — the upper section
of the frame, 8 — the pointed end of the
frame.

Fig8: The explanation of the effects of
the frame in a magnetic field; I — the
electric current intensity, B1, B2, B3 — the
magnetic induction vectors on separate
sides of the frame, Bi,, B2y, B3, — the
components of the magnetic induction
vectors parallel to the sides of the frame,
F1, Fa, F3 — the electrodynamics forces
that act on the sides of the frame.

Photo 5: An example of a homopolar motor with a rotating non-ferromagnetic frame.
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or constitute pairs of forces. This leads to creating the momentum of forces that
rotate the frame. The frame undergoes a swinging motion and its ring need not
make contact with the side surface of the magnet all the time because whenever
there is no contact, the frame that has been set in motion will keep on rotating due
to its inertia. Similarly as in the case of the models described earlier, the battery
operates in the circuit mode and the amount of current of high intensity passing
through it, causes overheating of the motor elements and a fast battery wear. The
vertical section of the frame need not have any lower horizontal segments 5, Fig. 9a.
This part may be of a different shape than rectangular, for example, trapezium, or
it may take the form of a complex polygon, Fig.9b.

a) b)

Fig. 9: Examples of various shapes of frames; a) a rectangular frame, b) a zigzag frame.

6. Motors with rotating cans

The use of appropriately prepared cans in place of wire frames in the motors that
have been presented so far was an idea of one of the co-writes of this article, not
found in available literature, Fig. 10. In such motors, a neodymium magnet 1 with
a battery placed on it 2, its positive terminal 3 directed upwards, are the same as
in the models described earlier. A used aluminum deodorant can with a sawn-off
bottom 4 in an upside down position is placed over the battery. Both the diameter
and the length of the cut-off fragment of the can are matched in such a way that
the inner surface of the can makes a contact with the surface of the magnet, thus
ensuring a good electrical contact. To reduce friction and keep the can on the axis
of the system, a thumb-tack 5 or a short nail is driven through right at the centre
of the bottom.

When the can is put over the magnet and the battery, it begins to rotate quickly,
Photo 6. The principle of operation of this version of a motor is similar to that of
motors with frames. Here, an electric current flows from the battery cell terminal
through the thumb-tack, and then is dispersed radially over the bottom of the can
towards its side surface. Over this surface the current flows perpendicularly into a
lower edge of the can, through which it reaches the side surface of the magnet and
then further on into the other battery terminal. Within the area of the bottom of
the can and its side surface there is a perpendicular component of magnetic induction
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5

Fig10: The external view of the motor Photo 6: A view of the homopolar motor
with a rotating can; 1 — a neodymium in which a deodorant can is rotating. The
magnet, 2 — a round battery cell, 3 — the image of a can is blurred due to a high
positive terminal of the battery, 4 — an rotation rate.

aluminum can, 5 — a thumb-tack.

Photo 7: The homopolar motor Photo 8: The homopolar motor with
constructed with usage of the most rotating aluminum energy drink can.
popular aluminum can.
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Photo 9: The homopolar motor with rotating aluminum beer can.
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Fig.11: A cross-section of the motor with Fig. 12: A cross-section of the assembled
a rotating soft drink can — the denotations motor with a rotating beer can — the
of the elements are the same as in Fig. 10. denotations of the elements are the same

as in Fig. 10.
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vector of the magnetic field generated by the magnet. As a result, electromagnetic
forces act on the can, which are oriented in the direction of the circuit, their mo-
mentum causing the rotation of the can.

Apart from the used deodorant cans of a diameter slightly wider than that of the
magnet, aluminum cans for soft and energy drinks and beer with a volume of 330 ml,
200ml and 500ml, Photos7, 8, 9 were successfully used for creating homopolar
motors. In the case of these cans, co-centered holes were cut out in their bottoms of
diameter slightly wider than that of a neodymium magnet. For that purpose, a pair
of curved scissors for nails was used, any rough edges being smoothed with a file. A
thumb tack was stuck in the centre of the can top. And the can thus prepared was
put over the battery which, in turn, was placed on the neodymium magnet, Fig. 11.
The edge of the hole in a can bottom was then in contact with the side surface of the
magnet. As for the beer and energy drinks tall cans, two battery cells were placed on
the magnet, one on top of the other. The battery terminals were oriented in such a
way that they were connected in series, Fig. 12, which ensured a proper adjustment
of the series-connected batteries to the height of a can and caused a higher intensity
of current required to set a heavier beer can in rotation.

7. Summary

Some interesting educational demonstration experiments described in the books sev-
eral years ago seem to have been forgotten. Very often some forbidden or hazardous
and inaccessible substances were used in the experiments, such as mercury in Bar-
low’s wheel. It turns out, however, that the appearance and availability of new ma-
terials, a wide range of packaging options for a variety of products or gadgets that
make our life easier allow us to conduct these already forgotten and once difficult ex-
periments in an easy and attractive way. The homopolar motors described here are a
good example of that. Their presentation in a new format was made possible thanks
to, among other things, the availability of strong neodymium magnets covered with
anti-corrosion coating of nickel, battery cell enclosed in a metal shell, which protects
electrical appliances from damage caused by a battery electrolyte leak, as well as the
appearance of new types of packaging materials, such as steel and aluminum bev-
erage cans. Obviously, for all that we also require some imaginative contrivance or
inventive skill, as well as coming to the realization that the laws of physics universal
in character as they are, they are also in operation with regard to these objects.
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WSPOLCZESNE SILNIKI HOMOPOLARNE

Streszczenie

W poczatkowej czesci artykulu opisano krétko znane z literatury kolo Barlowa, jako
przyktad silnika elektrycznego homopolarnego, czyli jednobiegunowego. W nastepnych czes-
ciach przedstawione zostaly przyklady budowy takiego silnika przy uzyciu wspédlczesnie
dostepnych przedmiotéow i materialéw codziennego uzytku, takich jak: okragle baterie,
magnes neodymowy, kawalek miedzianego drutu, gwozdz stalowy oraz aluminiowe puszki
od napojow i dezodorantéw. Opisane zostaly silniki wykonane z wymienionych przed-
miotéw, w ktérych elementami wirujacymi sa: magnes neodymowy, bateria, druciana ramka
oraz aluminiowe puszki. Podano wskazéwki techniczne oraz wyjasnienie zasady dzialania
zbudowanych silnikéw. Przyktady te sa bardzo proste w realizacji i daja widowiskowy
efekt. Ponadto dobrze nadaja sie do stworzenia sytuacji problemowej, zachecajacej osoby
ogladajace te silniki do lepszego zrozumienia praw fizyki.






PL ISSN 0459-6854

BULLETIN

DE LA SOCIETE DES SCIENCES ET DES LETTRES DE LODZ

2011 Vol. LXI
Recherches sur les déformations no. 3
pp. 5570

In memory of
Professor Roman Stanistaw Ingarden

Marek Stojecki

THE PROBLEM OF REGRESSION FOR THE HILBERT
SPACE-VALUED FUNCTIONS

Summary

The regressive polynomials play an important role in analysis of empiric data re-
presented by the pair of finite sequences x and y. The linear dependence most common
in practice, expressed for example in physical and chemical laws, brings too much sim-
plification in searched dependence between the data. The generalized regression problem
considered in this paper leads to solution of a certain extremal problem, defined in a
finite-dimensional Hilbert space.

1. Formulation of the regression problem

In order to solve mentioned above extremal problem, we ought to recall first the
regression structure, cf. [3]. By the regression structure we maen a structure R :=
(A, B,d,x,y) where

I.L1 A, B are nonempty sets;
1.2 z: Q1 — A, y: Qo — B for some nonempty sets 21 and Q;
L3 d: (9 — B) x(Q2 — B) —R.

Having desposed a regression structure R we may consider the functional model
of R, i.e. a nonempty subclass F of the class A — B.
We will seek optimal theoretic functions fo € F which are the best fitted to empirical
data functions x and y with respect to the criterion 4, i.e. all functions f, € F
satisfying inequality
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(1) F(fo) < F(f), [eF,
where F' is the functional defined as follows
(2) Fof—F(f):=6fox,y) €R.

The set of all functions satisfying (1) we will denote by Reg(F,R).
From now we shall consider the family of regression structures R in the case,
that

II.1 B is the support of a complex (resp.real) Hilbert Space, which means that
B :=(B,+,(:|")p) is a complex (resp. real) Hilbert Space.

In order to make the mentioned above regression problem well defined on the ground
of Hilbert Spaces we have to make additional assumptions:

I1.2 There exist a o-field B of subsets of the cartesian product 21 x5 and a measure
w: B — [0,400] such that the function § satisfies the following equality for
every u: 0 — B, v: Q3 — B

g Saw)i= [ lult) = olta) I dutr, ),

Q1 X0
provided the function Q4 x Qg 3 (t1,t2) —|| u(t1) — v(t2) | g is B-measureable
and d(u, v) = 400 otherwise.

I1.3 The function Q; x Qs 3 (t1,t2) — y(t2) is B-measureable.

From now we confine ourselves to the case that B is a finite-dimensional Hilbert
Space. Lets us consider now the set £1(R) of all functions f: A — B such that
Oy X Q2 3 (t1,t2) =] fox(ti) || is B-measureable and

@ [ 1ot I duter ta) < 400

Q1 xQ
and the set L£2(R) of all functions g: B — B such that Q; x Q2 > (¢1,t2) —|
goy(te) || is B-measureable and

(5) [ Ngoutt) I duttr,ta) < 4.
Ql XQQ
From the Schwarz inequality and the inequality |ab| < %(a2 +b?), a,b € R we obtain
1
(6) [(zlw)B| < §(||Z||23+||1H||23)7 z,w € B.

Since the sum of two B-measureable functions is B-measureable we conclude from
(6) that the functional

() L2(R) X L2(9) 3 (u,0) o (o), = / (w0 z(ty)|w o z(t)) pdu(ts, t2)
Q1 X0
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is well defined.
Hence (ulu), > 0 for every u € £1(R) and in consequence functional

1
2

@) Li1R) 3 uflu = viu|u) = / lwow(ty) [ du(ty ta)

1 X Q2

is well defined.
Combining the inequality (6) with (4) and (5) we see that for every g € L3(R)
functional

(9) L2(R) 5 u s g*(u) = / (w0 x(t1)]g 0 y(t2)) pdulty, o)
Q1 X0

is also well defined.

Lemma 1.1. The structure H(R) := (L1(R),+, 5 (:|)x) is a complex (resp. real)
p-Hilbert Space, i.e. (L1(MR),+,+) is a linear space and the following properties hold
for u,v,w € L1(R) and o, 8 € C (resp. a, f € R).

(au + Pv|w)y = alu]w), + B(v]w)4
(10) (ulv)x = (v]u)x
(ulu) =0

Moreover, every Cauchy sequence in L1(R) is convergent to a certain function
in L1(R) with respect to the norm || - ||«.

Proof. Without losing the generality we may confine ourselves to the complex case
only.
By the equality

le+y > +lle—yl>=20lz [P+ y]*, =zyeX
which holds for every Hilbert Space X, we get

(11) lz+wla<20lz 15 +1wlf), zweB.
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By (11) and (4) we see that for all Ay, Ay € C and u,v € £1(R)

| (A + Agv) o z(t1) || dpu(te, ta)

Ql><92
= [ Iawes(t) + devos(t) I duftr o)
Ql><92
(11) 5 9
<2 [ nweatt) [ dum) +2 [ wooa(n) I duterta
QlXQQ QIXQZ
92 / lwox(ts) |3 du(t, t2)
QlXQQ
W / | vow(t) || du(ts, ) < +oo.
QlXQQ

Thus AMu + Agv € L£1(R) for all Ay, A2 € C and u,v € L£1(R). Therefore £1(R) is a

linear set.

From the properties of the inner product (:|-)p and the formula (7) we obtain

the properties (10). Now we shall prove the completeness of H(9%). The mapping
x: Q1 — A induces the o-field B, := {V € 24: 271(V) x Q3 € B} and the measure
B>V — (V) :i= u(z=H(V) x Q). Fix u € £1(R). Since the function 2; x Q3 >

(t1,t2) — wo xz(ty) is B-measureable we see that for every Borel set U C B:
7 o (uHU)) x Qe = (uox) 1 (U) x N € B.

Hence u=1(U) € B,. Thus u is B,-measureable as well. Moreover

(12) |2 = / lwo(t) 3 dults, ts)

Ql XQQ

- / () 1% dua(t) = u |3,
A

Since the space (B,+,-) is finite dimensional space, there exist n € N and the

orthornormal basis {e1,es,... ,e,} C B. Hence

n

u(t) = (u(t)|ex) pex

k=1
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for t € A, which together with (12) gives

(13) nuM=/nwm%wm>
/HZ lexmer I3 dpa(t
= | |6 |dx()
kz::/ k)B| QA

Let N 3 n — u, € £1(MR) be a Cauchy sequence in the space H(R). From (13) we
have for any k € Z1

/|<un(t)|€z>B = (um (t)]er) 52 dpua (t)

A

[(tn (t) — v (t)]e2) 5 |*dpra(t)

L

IA
i

/mmwwwmmm%mw
A

(13)

| Un =t 2= 0 as n,m — oo.

By the completeness of L%(A,B,,u,) we deduce, that there exist functions @; €
L2(A, By, p12), | € Z1 p, such that

/|<un(t)|el>3 CaO)Pdu(t) = 0 as n—oo forall 1€Zqn.

Puting u(t Zuk )er we see that u € £1(R) and
k=1
(14) | un(t) = u(t) 3= Z un(t)|ex) pex — Z( (t)lex)sex |12
k=1

=1 (un () — ult)ler) ser |13

:/kz

[(un(t)
=1
/|<un(t)|€k>B — g (t)Pdps(t) = 0 as n — oo.
LTa

— u(t)lex) B *dpa (t)

k

Hence the completeness is proved.
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Lemma 1.2. The structure (L2(R),4+,:) is a complex (resp. real) linear space.
Moreover, for each g € Lo(R) the functional g* defined in (9) is bounded on H(R)
and the supremum norm of g* satisfies the following inequality:

(15) sup{lg”(f)]: | € L1(R)

and

2

| lh<1} < /‘ngoMmH@dMuJa

1 X Q2

Proof. From the inequality (11) and by (5) we have that for all A\, 2 € C and
9, he ;CQ(ER)

/ | (g + Aeh) o y(t2) I3 dultr, t2)
Ql XQQ

= [ Ihgoytta) + dshoy(ta) I duttr. )

Ql XQQ

(11
<9 /'nAmomwM%deJQ
Ql XQQ

+2 / | Aah o y(ts) 115 dpu(ta, t2)
Ql XQQ

:mhﬁ(/|mommw%mwhm
Ql XQQ

+ﬂ&Fu/IMnMMH%mm¢ﬂ<w~
Ql XQQ

Thus
(16) )\19—|—/\2h S /32(9‘{)

for all
/\1,/\2 E(C, g,heﬁg(%)

and so L2(fR) is a linear set. Then the structure (L2(R), +, -) is a linear space. From
the algebraic properties of Lebesque integral for all u,v € £1(R), g € L2(R) and
A1, A2 € C we get

g (Mu+ Av) = / ((Mru+ Aav) o z(t1)|g o y(t2)) pdp(ts, t2)
Q1 xXQo

= [ et + devoa(tr)lg o y(ta)) sdu(t 1)
Ql XQQ
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- / w0 (t1)lg 0 y(t2))5 + (Aow 0 2(t1)]g 0 y(t2)) pda(t, )

Ql XQQ

= / (Muox(ty)]|goy(tz)) pdu(ts, t2)

Ql XQQ
+ [ Owvoatnlgey(ta))sda(i )
Ql XQQ
—x [ twea(tlgoy(ta)) ndn(tr b
Ql XQQ
+he [ wosltlgoy(ta))sdu(n )
Ql XQQ
= Mg (u) + Aag™(v)
so the functional ¢g* is linear.
(17) 9" (Mu+ A2v) = Mg (u) + A2g™(v)

for w,v € L1(MR) and g€ L2(R).

Now using twice Schwarz inequality we shall evaluate the quantity |¢g*(f)| for all
f € Li(R) and g € L2(R). We have

lg*(f)l = L / (foz(t1)|goy(ta))du(ts, ta)

1 X Q2

< /Kﬁﬂﬂwﬂ@Mwm@)

Ql XQQ

< /nfmmeMwwmmwwm

Ql XQQ

<Qi|ﬁwmw@wmm)
'Q/IMW%W%MWM)

1 X Q2

=Mm~c/|mwww%wmm)

1 X Q2

1

)

2

2
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Hence

1

2

sup{lg™(f)]: f € Li(R)and || f [l,< 1} < (D / g oy(te) |5 du(ty, t2)

1 X822

and the proof is complete.

Remark 1.4. Given a regression structure R := (A4, B, §; x, y) satisfying the properties
I.1 - 1.3 we see that for each function g: B — B, R, := (A4, B, §; x, goy) is a regression
structure too.

Let the sequence Zy, > k — e, € B be the orthogonal basis in B. In later
applications, the following definitions will be required. For every f € F,g € £1(R)
and k € Z, , we define

(18) At — fult) == M
|| €k ||B
(19) kaZ{ABtﬂM:fefh
|| €k ||B
(20) Bt — gult) = m7
|| €k ||B
(21) 9—{]; = (A7(C’5*;x7gk o y)7
where

0 (u,v) := / lu(ty) — v(te)|*du(ty, ta) for every u: Qy — C,v: Qy — C.
Ql XQQ
The following lemmas hold:

Lemma 1.5. If F (F # 0) is a linear set in H(R) and the sequence Z1,, > k —
ex € B is the orthogonal basis in B then the set Fy, is a linear set in the linear space
(A— C,+,) for every k € Zy .

Proof. Fix k € Z; . For every hy, ho € F}, exist h~1, h~2 € F such that fort € A

(hi(t)lex) s (ha(t)lex)
[ ex 1% ler B

ha(t) = L helt) =

For every A\, Ay € C we get
(Mh1 + A2ho)(t) = Arha(t) + A2ha(t)
Al (t) + Aeha(B)lew)n _ (Aih + Aoha)()]ex)
lex II% lex I3

By the linearity of set F we have Aihy + Aoha € F. Then, by the (19 ) we get
Arhy + Aahe € Fi, so Fi is a linear set in the space (A — C, +,-).
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Lemma 1.6. If F (F # 0) is a linear set in H(R) and the sequence Zy,, > k —
ex € B is the orthogonal basis in B then the set Fy, C /Jl(,‘ﬁ];) for every k € Zy .

Proof. By (19) for every f € Fy, there exist f € F such that

FOlews o

te A
lex 1B

ft) =
Since F C £;(R) the function Q; x Qy 3 (t1,t5) — f o z(t;) is B-measureable and

(22) [ W7ot I duttt2) < .

Ql XQQ

From the continuity of the inner product (:|-)p we conclude that the function f is
B-measureable and by (22)

[ 1 outtnPautes ) = /Igﬁﬂﬂkﬂﬂﬁwmm)

e 15
Ql><QQ Ql><QQ
< /nfwmw@wmm<w
Ql XQz

Lemma 1.7. If a function f: Q1 x Qo — B is B-measureable, then the function
O xQa>t— (f(t)|e)p is also B-measureable for every e € B.

Proof. The functional B 3 x — F(x) := (z|e)p is continuous. Let U be an open set
in C. Then the set F~1(U) is open in B. Since f: Q; x Qs — B is B-measureable,
then the set f~1(F~1(U)) = (F o f)~}(U) is B-measureable. Hence the function
N x Q2 5t— (f(t)|e)p is B-measureable.

2. Solution of the regression problem

The next lemmas enable us to reduce our regression problem to the simplest case
B =C (resp. B=R).

Lemma 2.8. If F (F # 0) is a linear set in H(R), g € L2(R) and the sequence
Zyy 2 k — e, € B is the orthonormal basis in B, then for every f € F and k € Z1
holds

(23) fr € Reg(Fi, RE) = f € Reg(F,Ry)
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Proof. Fix h € F. We have

(24) S(hoz.goy) = / | how(t) — goy(ta) I3 du(tr, t2)

Ql XQQ

= / | th ox(t1)er — ng oy(ta)ex || du(ty, ta)

Q1 X k=1 k=1
- / 1S (i o () — ai o y(t))ex |3 dpu(tr, )
leﬁz =
/ S o 2(ta) — g o y(t2)) P dplta.ta)
way k=1

Q1 xXQ2

Z / hkol’(tl) _gkoy(t2))|2dﬂ(t17t2)
k=1

=Y o (how,gioy)
k=1

Hence we get the following equivalence:

(25) lz *(from,groy) <Y 6% (hxow,gpo y)]

k=1 k=1
<:>[5(fox,goy)§5(hox7goy)] for f,heF
Let’s assume now, that fi € Reg(fk,i)‘i’;) for k € Z; . Then
(26) *(frow,groy) <" (hgox,gpoy) for he F,keZin.

Hence

Y 0t (frow,groy) <Y 8 (hxomz,groy) for heF.
k=1 k=1

From (24) we obtain
(27) 0(fox,goy) <d(hom,goy) for heF,
which means, that f € Reg(F,R,).

The converse implication is not true in general. If we wish to get equivalence in
(23) we should make additional assumptions. First we shall define a new notion.

Definition 2.2. A linear set G C (A — B) is said to be linearly closed in the direction
of a vector e € B if the condition holds:

(28) f+heecG for feG and he P.(G),
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where

(29) A5t — PAS)(t) = %
and for all ¢ : A — C

(30) At pee(t) =p(t)e

We have the following lemma:

Lemma 2.3. If Z1, > k — e; € B is an orthogonal basis in B and F (F # 0)
is the linearly closed in each direction e, € B,k € 7, then for all f € F and
k € Z1,n holds

(31) f € Reg(F,Ry) = fi € Reg(Fi,R})

Proof. Let f € Reg(F,MRy). By the equivalence (24) we obtain the condition (27). Fix
| € Z1,, and h* € F;. Let’s consider the function h := f + h* e ¢;. Since P, (F) = F;
we conclude from the fact that F is linearly closed in each direction ey, k € Z; 5,
that h € F. From this observation we have

hZka'€k+h*'€l=(fz+h*)'€l+ka'ek-
k=1 I#£k=1
Hence h; = fi + h* and hy, = fi, for k € Z1 ,\{l}. By (24) we have

n

25*(fk0$,9k0y)§Z5*(hk0$,gkoy) for heF.

k=1 k=1

and so
(fiow,groy) <5 ((fi+h")ox,groy)  for h*eF.
This yields f; € Reg(Fy, ,‘Ré), which completes the proof.

Lemma (2.3) together with lemma 2.8 gives the following theorem:

Theorem 1. Suppose that Z1, > k — er € B is an orthogonal basis in B and F
(F #0) is a linear set in H(R), which is linearly closed in each direction ey,. Then
for every f € Reg(F,R,) there exist a sequence

Zin 3k fr € Reg(Fr, RE)

such that

(32) f=> freex
k=1
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Conversely, for every sequence Zy n, > k € Reg(Fr, 9‘{’;)

(33) Z fr ® e, € Reg(F,Ry)
k=1

Remark 2.5 In the other words Theorem 1 states that

Reg(F,Ry) = Y {fx o ex: fr € Reg(Fi, W)}

Theorem 6. Suppose that Zy , > k — er € B is an orthogonal basis in B and
F (F # 0) is a linear set in H(R), linearly closed in each direction ey.. Then
F = ZZ:l Fi @ ek, where Zy n 3 k — Fi, C (A — C) is a sequence such that Fy, is
a linear set in (A — C,+,-).

Proof. Fix f,h € F. By the definition of F there exists a sequence
Zin2k— freF, and Zi, 23k — hyeFy,
such that

n n
(34) f:kaoek, h:thoek.
k=1 k=1
Then for each [ € Z;,, and t € A

f#)+ LbLIE = i:fk(t) -ep + (g ha(®) - exler) s e

e |IB — e IB
n n
_(hi(t) - exler) B
:ka(t)~ek+ k71< ()2 I > e
2 Ter 1%
n
exle
_ ek—&—Zh yleslevs
2 Tet 1%
n
= > fr(t)-ex+ht Z Je(t) -en+ (fi +ho)(t) - e
k=1 k=11

Hence f+ P,,(h) = Zzzlﬂ froex+ (fi+hi))ee € F because f;+h; € F;. Therefore
F is linearly closed in each direction e;, as | € Z1 .

Conversely, suppose now, that 7 C (A C B) is a linear set linearly closed in each
direction e;, as [ € Zy ,,. For each k € Z; ,, we define

Fr :={P., (h): he F}.
Fix f € F. Since
n
t
f =y Wl ey

2 Ten T3
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we have

f:ZPek(f)oek € Z}"koek.
k=1

k=1
This implies the following inclusion

(35) FCY Freer

k=1
Given k € Z1 ,, fix fi, € Fi. Then fi, € P., (f) for certain f € F. Since F is linearly
closed in the direction e; and O, f € F, we see that

froe, =0+ froee, =0+ P, (f)ee, € F.

Thus Fj e e, C F and consequently ZZ:1 Fi ® e C F, because F is a linear set.
This inclusion together with the inverse one (35) gives the equality

(36) F = Z Freeg
We can now apply the theory elaborated by D. Partyka and J. Zajac.

Theorem 7. [Partyka, Zajac, 2010] Given p € N. Let Z1, > k — hi € F\O be a
sequence satisfying the following two conditions:

(37) lin({hi: k €Z1p})=F
as well as
(38) hi L hy, k,leZp k#L
If y € L3(R) then

=~ y*(hi)
(39) Reg(F,R) = (ONF) + Z e thk,

where © :={h € L1(R): || h ||=0}.

Corollary 1. Suppose that 71, > k — ey, € B is an orthogonal basis in B. Given a
sequence Z1, > k — pr € N. Let for each k € Z1 .y, Z1p, 31 — hyi € L1(RF)\ O
be an orthogonal sequence in H(RF), i.e.

(40) <hl,k|hj,k> =0 as l;é]
Then for every sequence Z1 p 3 k — gy € Lo(RF)

P hen)
(41) Reg(F,R,) = (6 N F) +ZZH9’;Z ’flllzhl,k.ek
k=1 1=1

where

(42) Fr =1in({hwy: | € Z1p,), k€ Zin
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(43) F = Z]:k ®CL
(44) g = ng e ¢y
k=1

Proof. By Theorem 6 the set F, given by the formula (43), is linearly closed in each
direction ey, k € Z1 5. Then Theorem 1 shows that

(45) Reg(F,R,) ZReg Fi, RE) 0 e

Applying now Theorem 7 we conclude from the assumption (40) that

Pk
< (h
(46) Reg(Fp, RE) = (Ou N Fi) + Y |’€h( ’“ﬁzh,k for k€ Zin
=1
Combining this with (45) we have
- o~ k()
(47) Reg(F,Ry) =Y (@mﬂHZ T ol *ee
k=1
s gn(hed)
_Z@kﬂ]:k .€k+zzgk lehl,k.ek
it | e
Fix
f= Z O N Fi) @ ey
k=1
Then

f:ka°ek for Zin 23k — fr € OpNFi.
k=1

Hence fi, € F and || fx ||=0 as k € Z; ,,. Moreover

HFIE=2 0 fe Pl en IB=0 ie. fe®
k=1

Finally f € © N F which gives the following inclusion

n

(48) Y (OrnFr)eercONF
k=1

Conversely, fix f € © N F. By (43)

fZka°6k
=1
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for a sequence Z1 , 3> k — fi € Fj. Since f € © we have

n
0=l £ 3= fu 1Pl e I,
k=1

and so f; € O as k € Z; ,,. Hence f;, € ©y, N Fj, as k € Zy . Therefore © N F C
> pe1(©k N Fy) @ ei. This inclusion together with the inverse one (48) yields the
equality

n
(49) ONF = (OkNFi)wey.
k=1
Combining (47) with (49) we obtain the equality (41), which completes the proof.

Remark 2.9. The equality (41) holds under the ortogonality assumption. Otherwise
we imply the orthogonalization procedure.

Setting
(50) hiy=hreer for ke€Zinl€Ziy,

we can rephrase Corollary 1 in the following form.

Corollary 10. Under assumption of Corollary 1 the equality holds

(51) Reg(F,R,) = (0N F) +22”

||2 i

k=11=1 Mg

Proof. By (7) and (44) we see that

(52) 9" (hix) = gi(huw) e By k € Ly, L € Lo p,.

By (6) and (50) we get

(53) IR 113=1 ko er [12=) hok [Pl ex B K € Zan,l € Zyp,

Combining (50), (52) and(53) we deduce from (41) the equality (51), which is desired
conclusion.
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PROBLEM REGRESJI DLA FUNKCJI O WARTOSCIACH
W PRZESTRZENI HILBERTA

Streszczenie

Wielomiany regresyjne sa istotne w analizie danych doswiadczalnych reprezentowanych
przez parg ciagéw x i y. Najczestsza w praktyce zaleznosé liniowa, wyrazona np. przez
prawa fizyczne i chemiczne, prowadzi do zbyt znacznego uproszczenia w poszukiwanej
zaleznosci migdzy danymi. Uogélniony problem regresji rozwazany w tej pracy, prowadzi
do rozwiazania pewnego zagadnienia ekstremalnego, okreslonego w skonczenie wymiarowej
przestrzeni Hilberta.
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MULTIPRODUCTS OF VECTORS IN DESCRIPTION OF

SPHERICAL MOTION I
VELOCITY, ACCELERATION, AND MASS MOMENTS OF INERTIA

Summary

In the paper a possibility of the application of vector and versor multiproducts for
the description of motion of a rigid spherical body has been presented. Both the classical
notation of vectors and the corresponding matrix notation, with the use of an outer product
of vectors, i.e. a dyad of a scalar product and a dyad of a vector product of two vectors
were employed. In the description of spherical motion a reference system, related to the
instantaneous axis of rotation, called an umbrella in the present work, has been used. In
the first part of the paper formulae for the velocity and acceleration of any point of a body,
and mass moments of inertia of a body for the umbrella system have been derived.

1. Introduction

In the present work two methods of notation of vectors and multiptoducts of vectors
have been applied. The classical notation, in which the vector of projection Bl of
the vector b onto any axis of a versor €; is determined by its coordinate on this
axis (i.e. the scalar product of the vector and versor of the axis) multiplied by the
versor of this axis; and the matrix notation, in which the coordinates of the vector
of projection b are entries of the column matrix b; (or of the row matrix b/) in the
orthogonal coordinate system adopted. In the matrix notation, dyads — i.e. matrices
of the outer product of two vectors or versors — were used, described in more detail
in work [3].
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Dyad, i.e. an outer product of two vectors @ and bin space K3 is a square matrix
Py, of the entries p;; = a;b; (4,7 = 1,2,3). The dyad is sensitive to the order of its
elements. A change in the order of the dyad vectors, i.e. when Py, = [b;a,], yields a
transposed matrix Py, = P’

Thus, the dyad of vectors @ and b and, by analogy, the dyad of versors €, and
€p have the following forms

arby  aiby aibs €al€pl €al€h2  €q1€b3
(1) Pop=| asbi agbs agbs and P, = | €q2€p1  €q2€p2  €q2€53
azby asby asbs €a3€b1l  €a3€h2  €a3€h3

For the multiproduct of vectors (3@)b defined in the matrix notation (v7a)b” or
b(a’v), a dyad replaces the non-multipliable product of the two matrices underlined,

shown below. Therefore, identifiably speaking, (v7a)b’ = vT P or b(aTv) =
Py,v, where both the identities are reciprocal transpositions.
Thus, the projection b; of the vector b onto the direction of the versor b; can be

expressed in the following manner — in the classical notation and as row and column
matrices of coordinates:

—

(2) b, = (b&))& = b(&,&))&

that

b/ =b"'P,,., =bel P, or  by=P.,b=>bP,e.

The system of three elements shown in Fig. 1, a pole S — a straight line [ — a plane
m; (where the straight line [ and the plane 7 are reciprocally perpendicular) has been
treated as a system of reference and named an umbrella [2, 3]. The umbrella system
thus defined will be the basis for the description of spherical motion of a rigid body
proposed in the present paper.

Fig. 1: An umbrella in a space K>.
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The position of an umbrella in the space K3 is determined by six coordinates:
— three coordinates of the vector-radius of the point S, ¥g; rs = [rs1752253)7 ,

— three coordinates of the versor €, e; = [ej1e12e3]7

The versor €; determines a positive sense of the axis SI, the direction of the
straight line [ and the position of the plane 7 in a space, thereby, it is simultaneously
the versor €; of the straight line and the versor €, of the plane, hence €, = €. An
umbrella forms in the space K2 a specific reference system in which — in a relatively
simple manner — one can describe any vector b and the vector product of two vectors
@ =@ x b. The projections of the vector b onto the elements of the umbrella in the

space K? are shown in Fig. 2.

X

\%

X

Fig. 2: Projections of the vector in the umbrella system in the space K°3.

Let vectors @ = a€, and b = be;, be described by the matrices of coordinates
T T T T T T
a’ = |araza3|’ = alcaicaacas|” b’ = |bibabs|" = blcpicraces|” .

The vector b projected onto the axis of the umbrella [ = lé; is a vector l_;l and can
be written in the matrix form b; by means of a dyad P, as

(3) El = (gél) él = b(ébél)él, bl = bPeleleb = Pelelb.

The projection b onto the plane 7 of the umbrella is a vector l;ﬁ. Since b = l;l + l_);r,
then b, = b — b, = b — (bé;)€;. The matrix b, of the coordinates of projection of
the vector b onto the plane 7 has the form

(4) b,=b—P..,b=I3sb— P, b= (13— P..,)b,

where I3 is a diagonal unit matrix of the third order.
The matrices b; (3) and b, (4) of the coordinates of projections of the vector b
onto the elements of the umbrella have, in the space K3, has the following form
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2 2
¢y cnciz cucs || b 1—c cuce cucgs by
_ 2 _ 2
(5) bi=|coen ¢y cgaz || ba|, br=| cocn 1—cp cpas bo
2 2
ci3Cil Ci3Cl2 Cig b3 cizClz  c3ciz 1—cjy || b3

The vector of the vector product @ = @ x b in the space K? can be written in
the form of the following matrices, row or column ones. If

6 Ww=adxb then wl =a’P* or w=P"b.
eb ae

The dyads P}, and P, of the vector product @ = @ x b are matrices of the entries

r 3 0 —bs by
= pij=Z{sgn[(i—j)(k—z‘)(k—j)]}bk] =t 0 b,
L k= ~by b1 0
(7)
r 3 0 —asz as
P = |pij = Z{sgn[(i—j)(k—i)(k—j)]}akl =la 0 —a
k=1 —a2 a1 0

The projection of the vector w onto the axis I of the umbrella is the vector W, =
(wé))é; and its coordinates are contained in one of the two matrix forms, the row
or the column one

T T p* *
(8) w; =a Pebpelel, or w; = PelelPaeb’

whereas the vector of projection @, of the vector @ onto the plane 7 of the umbrella
and the matrix of coordinates of this projection have the form

9) Wy =W — W = W — (WW;)é€,
w—w; =P, b— P, P. b= (13— P, )P..b.

The dyad of the versors P.,., and the dyads of the vector product P}, and P},
occurring here have been described above.

2. The kinematics of spherical motion of a rigid body

Spherical motion is rotary motion of a rigid body whose one point S, the centre of
spherical motion, is permanently stationary, which means that the vectors of velocity
Ug and acceleration pg of this point of the body are constantly zero vectors. It has
been assumed that the centre of spherical motion, the point S, coincides with the
centre of the orthogonal coordinate system Oz zox3. The spherical motion of a body
can be considered as a rotation around the axis of a momentary rotation, always
passing through the centre of motion, the point S, repeatedly occupying a different
position in a space. The vector & of the angular velocity of spherical motion lies on
this axis. The point S is the origin of coordinate system of umbrella system (Fig. 3),
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whose axis coincides with the axis of momentary rotation and the vector &, which
means that the position of the umbrella in the space is determined by the coordinates
of the versor €, of the angular velocity & = wé,, of the matrix e, = [e,1e02€w3]" -

The velocity of any point of a body whose position is determined by the radius-
vector ¥, r[rizex3]T, is a vector product ¥ = & x 7 and the matrices v of its
coordinates have the form

(10) vl =wl'P:, or v=P! r

Fig. 3: An umbrella in spherical motion of a rigid body.

The vector of angular acceleration is a vector derivative of the vector &

L, do  d, dw dé,
11 = - = — = — _—
(1) f=w T @ T gty
Assuming % = (*) and after taking into consideration
e _ X €,
T =Wy w»
dt

where &, is — lying in the plane 7 of the umbrella — the vector of angular velocity
of the umbrella, we obtained

(12) E = W8y + Wl = Wl + Wby X 8, = &y + En.

Thus, in the umbrella system, the vector & is projected onto two reciprocally per-
pendicular directions: onto the umbrella axis as a vector €, = wé, and onto the
plane 7 of the umbrella as a vector €, = wd, X €, such that &€, = & — &,,. It can
be proved that — since &,, and €, are orthogonal — the vector of angular velocity of
the umbrella &, = w™ 1€, x (€ —&,) =w™1&, x &
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The acceleration p of any point of a body, the point whose position is determined
by the radius-vector 7 is a vector derivative of the vector of velocity ¥ of this point
dv d,,  do _ _ dr _ .
:E:E(wxr)zﬁxr—&—wxazsxr—&—wxv.
Following the use of (12) and transformation, the following vector equation was
obtained

(13) p

(14) P=wé, X T+ (@y X D) X T+ & x (& x 7),

which, making use of the following kinematic and vector identities

—

G x (@ % 7) = (@F)& — (GG)F = (G7)& — w?

T

(By X @) X T = (0,7)& — (&7)D,,

presented as a sum of five component vectors of acceleration of the point
(15) p= gﬁ + (~w?)F + (BF)D + (BuF)@ + (—&F)@u,
denoted successively as

ﬁ:ﬁt +ﬁr+ﬁﬂw+ﬁuw+ﬁwu‘

pﬂ'{l)

linel,, x|

<l =S
n -
S

X

~

X,

Fig. 4: Accelerations of a point of a rigid body.

The successive component vectors of acceleration in matrix notation have the form:
— the tangent acceleration p, lies on the direction of the velocity vector of the
point under consideration

—

by =

€&

~ - w w
U=—0 X7 p,=—v=—P r
w w

ISR
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— the centripetal acceleration p,. lies on the direction of the radius-vector of the
point and its vector is turned toward the centre of spherical motion;

- 22

— . _ 2
P, =—wrmr, p,=—wr,

— the acceleration P, is a vector lying in parallel to the vector of angular velocity
& of spherical motion, i.e. it is perpendicular to the umbrella plane 7 and its sense
is the same as that of &J;

—

ﬁﬂ"w = (‘37—;)“)7 prrw = wa,r)

— the acceleration p,,, is also a vector parallel to the vector of angular velocity
& of the same sense as that of J;

—

ﬁuw = (Qu?)wv Puyw = wau,rv
— the acceleration P, is a vector parallel to the vector &,, of the angular velocity

of the umbrella plane m of the sense opposite to the vector &,,. Thus, it lies in the
plane parallel to the plane 7;

ﬁwu = _("‘_‘;F)‘Eua Puu = _Pwuwr'

Having considered the above notations, the matrix p of the coordinates of the
acceleration vector p (15) has the form of the equation

W
(16) p= ;Pwe — W I3+ P, +P,,, — P, .|

The successive components of the vector p of acceleration of a point are shown in
Fig. 4.

3. Moments of inertia of a body in an umbrella system

The author used the definition of moments of inertia of a rigid body of a mass m
relative to the centre of spherical motion, the point S(Jg); relative to the umbrella
plane 7, (J); and relative to the axis of rotation w, (J,,); expressed by multiproducts
of the radius-vector 7 determining the position of the elementary mass dm of a body
and the versor €,, determining the position of the axis of rotation w and, at the
same time, the umbrella plane 7 in the coordinate system adopted, shown in Fig. 3.
Moments of inertia of a body are sums of moments of inertia of all the elementary
masses dm of this body.
The moment of inertia relative to the point S,

(17) Jo = / 7 dm.

m

The moment of inertia relative to the plane T,

(18) T = / (€.7)2 dm.

m
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The moment of inertia relative to the axis of rotation w,

(19) J@:i/(aufodm.
m
From Lagrange’s vector identity it results that sub-integral functions (19) satisfy
the condition
(8, x 7)° = 87 — (8,7) = 7 — (E.7)7,
which means that for any umbrella, moments of inertia of a body relative to the

three elements of an umbrella: the pole, plane and the straight line are bound by
the equation J, = Jg — J, hence

(20) Js = Ju+ Jr.

The moment of inertia of a rigid body relative to any pole is equal to the sum of
moments of inertia relative to the reciprocally perpendicular elements, the straight
line and the plane passing through this pole.

In particular, this condition is satisfied for the centre of spherical motion and the
axis of momentary rotation and the plane 7 of the umbrella, shown in Fig. 3.

In the matrix notation, the moments of inertia (17-19) have the form:

— the moment of inertia relative to the point S, Jg (17) has its corresponding
matrix

(21) Is=JsIs,

where I3 is a diagonal unit matrix;
— the moment of inertia relative to the plane 7, J, (18), after the identity

I / e,r dm / w)dm = e /Prrdm e,—¢€ Irrew

has been taken into consideration, has its corresponding matrix notation
(22) J.=ell,e,,

where I, = fm P..dm is a matriz of plane moments of inertia of a body, and
integrals of the elements of the dyad P, are the entries of the matrix.

The matrix I, contains — along the main diagonal — moments of inertia relative
to the planes of the orthogonal coordinate system Sxjxoxs3,

Jii = /x%dm relative to the plane Szoxs,

m

Jggz/xgdm and J33+/:v§dm relative to Sxixz3 and Szixs,

m m

respectively. The entries of the matrix lying outside the main diagonal contain de-
viation moments of inertia of a body,
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J12 :/xlxgdm, Jig = /$1$3dm and Jog :/xgxgdm,
m m m

respectively.
The moment of inertia relative to the axis of momentary rotation w, J,, (19) has
its corresponding matrix notation

(23) Jo = BZIGW,

in which the matrix I is a matriz of moments of inertia of a body of the entries
resulting from formula (19) and identity (20). The matrix equivalent of identity (20)
is the identity

(24) JsIs =1, +1.

In the matrix of moments of inertia of a body I, the entries lying along the
main diagonal are moments of inertia relative to the successive axes of the system
Szizom3;

J1 = /(m% +22)dm relative to the axis Sy,

m

Jy = /(m% +a2)dm and J3 = /(m% +23)dm relative to Sz, and Szs,

respectively.
Therefore, the matrices of inertia of a solid body have the form
Jin o Jiz Jis Ji —Jiz —Jis
(25) Is=Jslz; Inp=| Jon Jao Jog |3 I=| —Jou Jo —Jos
J31 Jz2 Js3 —Js1 —Js2  J3

and identity (24) holds for them. The matrix I3 is a diagonal unit matrix.
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MULTIILOCZYNY WEKTOROW W OPISIE RUCHU
SFERYCZNEGO 1

PREDKOSC, PRZYSPIESZENIE I MASOWE MOMENTY BEZWELADNOSCI

Streszczenie

W pracy pokazano mozliwo$é zastosowania multiiloczynéw wektoréw oraz wersoréw dla
opisu ruchu sferycznego ciala sztywnego. Wykorzystano przy tym zaréwno klasyczny zapis
wektorowy, jak i odpowiadajacy mu zapis macierzowy, z uzyciem iloczynu zewnetrznego
wektoréw to jest diady iloczynu skalarnego oraz diady iloczynu wektorowego dwoéch wek-
tor6w. W opisie ruchu sferycznego uzyto ukladu odniesienia, nazwanego tu parasolem,
zwiazanego z osia chwilowego obrotu. W pierwszej czeéci pracy dla uktadu parasola wypro-
wadzono wzory na predkosé i przyspieszenie dowolnego punktu ciata oraz masowe momenty
bezwladnoéci ciata ruchu sferycznego.
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MULTIPRODUCTS OF VECTORS IN DESCRIPTION OF

SPHERICAL MOTION II
DYNAMIC EQUATION FOR SPHERICAL MOTION

Summary

In the paper a possibility of the application of vector and versor multiproducts for
the description of motion of a rigid spherical body has been presented. Both the classical
notation of vectors and the corresponding matrix notation, with the use of an outer product
of vectors, i.e. a dyad of a scalar product and a dyad of a vector product of two vectors
were employed. In the description of spherical motion a reference system, related to the
instantaneous axis of rotation, called an umbrella in the present work, has been used. In the
second part of the paper a dynamic equation for spherical motion for the umbrella system
has been derived.

For the first part of this paper, see [6].

4. Dynamics of spherical motion

4.1. Angular momentum and the angular momentum plane

An angular momentum of a rigid body — for a body moving with spherical motion at
an angular velocity &, lying on the axis of momentary rotation — calculated relative
to the constant pole S, the centre of spherical motion, is a vector

(26) Egz/Fxﬁdm:/Fx(QxF)dm.

The matrix kg of coordinates of the angular momentum vector ks has the well-
known form
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(27) ks = Tw,

where I is matrix (25) of inertia of a body, while w is a matrix of coordinates of the
vector of the angular velocity of spherical motion, w = |wwows|”.
After applying the identity

@ x (bx @)= (aa)b— (ab)a
the sub-integral expression of equation (26)

(28) ks = / [(FF)& — (F&)7] dm.

m

can be written in the form

The first of integrals (28) is a resultant (total) vector of the angular momentum of a
body in spherical motion k for an umbrella whose axis coincides with the momentary
axis of rotation, suspended in the pole S,

(29) / (FF)&Sdm = & / r2dm = Js&, k= Js&
m m

it results from the formula that the vector of angular momentum of spherical motion
k lies on the momentary axis of rotation, has the same sense as that of the angular
velocity of motion and the value equal to the product of moment of inertia Jg of a
body relative to the centre of spherical motion and the vector of the angular velocity
of spherical motion &. In the matrix notation the matrix k of the vector of angular
momentum k has the form

(30) k= Jslsw.

The second integral (28) can be written as

(31) kp = /(f*)ﬁdm

m
and is a vector of angular momentum which can be called a plane angular momentum
k p, due to the fact that its value depends on the values of plane moments of inertia
of a body for the same umbrella system. In the matrix notation, after using identity
(22) and introducing matrices of plane moments of inertia I,,, defined by equation
(22), the matrix of coordinates of the plane angular momentum k, has the form

(32) kp = /wadm =TI, w.

Thus, vector equation (28) can first be written as ks = k — kp and then, after
transformation, as

(33) E = Es + Ep.
This is an equation of the angular momentum of a rigid body in spherical motion

about the centre of spherical motion, the stationary pole S, at an angular veloc-
ity &, whose vector lies on the momentary axis of rotation, the straight line Si,,.
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A geometrical illustration of an equation of angular momentum is shown in Fig. 5.
Three vectors of angular momentum of equation (33) lie in the common plane of
the angular momentum containing the momentary axis of rotation (Fig. 5) and their
distribution is always such that the resultant angular momentum k lies on the mo-
mentary axis of rotation, while the resultant angular momentum (relative to the pole
S, ES and the plane angular momentum, k p) tilt from the axis of rotation so that
their projections onto the umbrella plane 7 will be reciprocally balanced, whereas
the projections onto the axis of the umbrella Si, will be summed and, consequently,
yield a vector of the resultant angular momentum k. Hence

(34)  ksr+kpr =0, k=ks+kp=Fksy+Esr+kpo + kpr = ks + kpo.

Fig. 5: Vectors of the angular momentum and the angular momentum plane.

Since the projection of the resultant angular momentum vector onto the umbrella
plane is equal to zero, the underlined vectors of projections onto the plane 7 recipro-
cally balance one another. Three of the vectors of equation (34) lie on the common
direction (Fig.6), thus the vector equation

k= Esy, + Kp.
can be replaced with the scalar equation
(35) k=ksw+ kpo.

The vectors Esw and Epw of projections of the angular momentum ES and Ep onto
the direction of the umbrella axis, i.e. the direction of the versor €., are described
by the vector and matrix equations
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Fig. 6: Versors of angular momenta, planes and edges of intersection.

(36) kSw = (kséw)éwv kS’w = Pewewks;

(37) Epo = (Kp.,)Ew,  kpw = Pe e kp.

After substituting equation (31) Ep = [(F&)Fdm in Epw and then substituting an
m

expression for the moment of inertia J, of a body relative to the umbrella plane m,

Jr = /(é’wF)zdm =e’'l, e,,

m
a vector of projection of the plane angular momentum onto the umbrella axis were
obtained

(38) Ep = (Kpé,)E, = / (E,7)2dmd = J,& and  ky, = Jrw.
m

In such a case, since k= Esw + EW, the vector of projection of the angular momen-
tum relative to the pole S onto the umbrella axis has the value

(39) ’;;Sw = ’;; - Epw == JS’Q_-; - Jﬂ—(.:’ = Jw(.:’ and ksw = Jyw

because, according to (20), J, + Jr = Js.
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Now scalar equation (35) k = kg, + kpo can be written in the form
(40) Jsw=J,w+Jyw and k= Jsw,

while vector equation (34) k= Esw + Epw can be presented in the classical notation
or the corresponding matrix notation as

(41) Js@b = J, b+ J&b or Jsw = Jyw+ Jrw.

The vectors of the angular momentum lie in the angular momentum plane, perpen-
dicular to the umbrella axis and containing the umbrella axis. In Fig. 6 both planes
and their vectors perpendicular to them are shown: €, (for the umbrella plane) and
€, (for the angular momentum plane).

Both planes intersect along the common edge, the straight line SIy, passing
through the pole S and determined by the versor €,. Three versors, €,,€,€, define
the orientation of the space SkAw and form an orthogonal, right-handed reference
system, which means that €, x €\, = €,,.

In addition, the versors of the angular momentum vector are shown €,, €gs, €,
by means of which relationships between the lengths of these vectors and their
geometrical position in the space have been expressed

(42) k=ké,, ks==ks€s, k,=ke,.

Depending on the position of the versors €g and €, in the space one can determine
the position of the angular momentum plane (i.e. the versor €;) and the edge of
intersection of the planes, the straight line SI) (i.e. the versor €)) in this space.
These versors are determined by the vector products

(43) g . €sx€ _  Esxés
" s x €] J/1- (€se.)?
and
(44) & — 8, x 6, = B X (Es x8y) _ (Eufu)es — (Buls)ey
e xE. -

|és X éw| N 1-— (éséw 2
If the matrices of the coordinates eg and e, of the versor €s and €, have the
form

T T
es = |lesies2ess|”  and e, = |eiewzens|’,

then the matrix e, of the versor €, is the matrix

1
(45) PR —

1 1l T 2 ese
(esew)

while the matrix of the versor of the straight line Si, is

1
(46) ey = ——— (Pesew — stew) €y-
1—(egew)?
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The projections of the component vectors of the angular momentum onto the
umbrella plane are determined by multiproducts in the classical and matrix form

Esx = (ksé))ér, ksx = Pe,c ks,

[N
(47)

kyr = (kpér)éx, kpr = Pe,c, k.
The versors e, and e), [e,i = lex1enzen3|t, ex = |e,\16>\ge)\3|T} thus determined allow
one to determine projections of the vectors of angular velocity, the vectors of angular

momentum and the vectors of moments of outer forces onto the edges [, and [y.

4.2. A dynamic equation of spherical motion

During motion the umbrella system rotates at an angular velocity & about the
umbrella axis and at an angular velocity &, about the axis lying in the umbrella
plane. The angular momentum plane (Fig.7 ) rotates about the momentary axis
of rotation, the straight line Ol,,, at an angular velocity of spherical motion & and
participates in the rotational motion of the umbrella at an angular velocity of the
umbrella &,,, whose vector lies in the plane 7, of the umbrella. In Fig. 7 the vectors of
angular velocities of the angular momentum plane are shown. The resultant velocity
of the angular momentum plane is a vector

(48) B =&+ Dy

The matrix of coordinates of the vector &y in a non stationary system of axes SkAw,
related to the angular momentum plane, has the form

(49) Wi = |wuxwaurw|T.

The first two coordinates of the matrix (49) are lengths of the projections &, and
Wy of the vector of angular velocity of the umbrella &, from the umbrella plane 7
onto the axes Sk and S,

Wyr = |a"un|; Jun = (a"ué'ﬁ)é'n and Wy = |‘3u)\|7 d"u)\ = (a"ué')\)é,)\;

(50) Wyr = Pe, e, w, and wur =P

6)\6)\“’”)

whereas the third coordinate is a length (value w) of the momentary velocity of
spherical motion.

For a rigid body moving with spherical motion an equation of angular momentum
(33) of the form has been introduced: k = ks + kp, which — after differentiation
relative to time — is transformed into

(51) k=ks+kp.
This equation describes three vectors of moments lying in one plane.
From the theorem about increment of angular momentum [1] for the angular

momentum of a body ES relative to the stationary pole S results that ES = Mg
where mg is the moment of outer forces acting on the body, calculated relative to
the point S. Thus, from equation (51) one can conclude that the remaining two
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angular
momentum /g
plane f

Fig. 7: Angular velocities of the angular momentum plane.
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vectors of increment of the angular momentum are also vectors of moments of forces

relative to this pole. Thus, by analogy with the theorem about increment of angular

momentum

(52)

—

ks =mg, k,=m,, and their sum k=my

were introduced.
The following was obtained

(53)

Mg =mgs + My,

where the vectors of increment of the angular momentum were called: m, — the
vector of the plane moment, my — the vector of the dynamic moment of spherical
motion, respectively.

The vector of the moment of outer forces mg, the vector of the plane moment
m, and their resultant, the vector of the dynamic moment m4 form the plane of

moments.

The vector derivative 7 of any vector ¥ = ré, is expressed by the formula

T =76 + 1€ =76 + W, XT

where &, is a vector of angular velocity of the vector 7. Hence, the derivative of

the vector of angular momentum of spherical motion k= ké, + &, x k — after the
coordinates of the vector &y (49); wi = |wurwurw|T; and the vector k; k = [0 0 k|7
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Fig. 8: A dynamic equation of spherical motion.

the system of axes SkAw bound with the angular momentum plane, are taken into
consideration — has the form

(54) k = ké, + wur k€. — wuekéy.

After substituting the value of k = Jsw (40) of the resultant angular momentum
k and taking into consideration k = Jg& equation (50) assumes the form

(55) k= Js [W(Wur€r — Wur€yr) + WE,].

The expression in brackets is an expansion of the expression € = G = Wy + @By X @,
which is the vector notation of the vector of angular acceleration € of a rigid body
in the non stationary system of axes SkAw,

(56) € = We, + Wwy € — WWwyk€ax.
It results from the comparison of the equations k = g (52), (55) and (56) that

the vector dynamic equation for a rigid body (Fig. 8) moving with spherical motion
around the stationary pole S of the form
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(57) Js€ = 1hha.

The product of the vector of angular acceleration of a rigid body moving with
spherical motion and the constant moment of inertia of this body, calculated relative
to the pole — the centre of spherical motion — is equal to the vector of dynamic
moment, calculated for this pole in the system of orthogonal axes suspended in the
centre of spherical motion.

5. Summary

The moment of outer forces mg acting on a body moving with spherical motion
causes a change in the vector of angular momentum ks of this body, and this change

results in a change in the vector of the plane angular momentum Ep, which change
can be called a vector of the plane moment, 12,. The sum of both vectors of mo-
ments yields a vector of dynamic moment, 14, which in turn — proportionally to
the constant value of the moment of inertia of a body, calculated relative to the
stationary point, the centre of spherical motion S — forces a change in the vector
of angular velocity & in the form of the vector of angular acceleration of spherical
motion 1
E=w= J—Sﬁzd,
which has the direction of the vector of dynamic moment; cf. [1, 4, 5].
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MULTIILOCZYNY WEKTOROW W OPISIE RUCHU
SFERYCZNEGO II

ROWNANIE DYNAMICZNE RUCHU SFERYCZNEGO

Streszczenie

W pracy pokazano mozliwo$é zastosowania multiiloczynéw wektoréw oraz wersoréw dla
opisu ruchu sferycznego ciala sztywnego. Wykorzystano przy tym zaréwno klasyczny zapis
wektorowy, jak i odpowiadajacy mu zapis macierzowy, z uzyciem iloczynu zewnetrznego
wektoréw to jest diady iloczynu skalarnego oraz diady iloczynu wektorowego dwoéch wek-
torow. W opisie ruchu sferycznego uzyto ukladu odniesienia, nazwanego tu parasolem,
zwigzanego z osig chwilowego obrotu. W drugiej czesci pracy dla uktadu parasola wyprowa-
dzono rownanie dynamiczne ruchu sferycznego.
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THE ARBITRAGE PRICING OF A CALL OPTION
IN THE RECURSIVE MODEL OF STOCK PRICES

Summary

The aim of this paper is connecting two theories: the discrete modeling in this the
recursive sequences and the no arbitrage pricing of a call option. We consider two states
in the model of stock prices. The price S% in a scenario number i, i = 1 or ¢ = 2, at the
moment T is set by the linear recurrence S&% = a; - S&_; 4+ b; - S%_5, a;,bi € R which
depends on prices from two previous moments T'— 1 and T'— 2. There are two methods of
the arbitrage pricing of a call option: the first method provides for replicating this option
and the second method is a martingale approach. Two states of the model mean that we
consider one period in the classical model of CRR.

1. Introduction

This paper begins with a reminder of some notions connected with the pricing of
a call option.
Then we formulate the main problem.

1.1. The pricing of a call option in a one step model. Conditions for no
arbitrage in the financial market

We shall use some non standard notations. We assume that there are only two
securities in the market, the bank account and the stock. Let Sy > 0 denote the
stock price at the moment ¢ty = 0, S_; > 0 — the price in the previous day, St — the
stock price at the moment 7. We assume that Sy > 0 for any 7" € R and the stock
price St at the moment T takes only one of two possible values:
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G Sk with prbability p
= 52 with prbability 1 —p ’
and it should be S} > K, S2 < K, for some number K € R,. The price of the
European call option at the moment T totals Cp = (Sp — K)*, that is
Op = Sk — K =:Ck with prbability p
0=:C% with prbability 1 —p
In the next two sections we present two methods of setting the arbitrage price of the

European call option with the strike price K and the maturity time 7. We assume

that the interest rate of the bank account (or credit) for one period is r € R. We

denote 7 := ¢"T.

1.1.1. The call option replication

Let (ax, 3¢) be a composition of the investor’s portfolio at the moment ¢, where
oy — the number of investor’s shares of the stock oy € R,
(¢ — the amount of the bank account or the amount of credit when 3; < 0, §5; € R,
Vi — the value of the portfolio at the moment ¢.

The investor sell the call option and makes the portfolio for hedging the option. We
assume that the portfolio setting at the moment 0 will not change until the moment
T. The portfolio replicates the option when Vi = Cp. Then the value of the portfolio
at the moment T satisfies the following conditions:

ao.S%—&—@TT.ﬁO:C%’
1.1.1
( ) {O&o-S%-‘r@TT'ﬁo:C%.
Thus
Sk K
TS sy
502—0405—%2—75%_[( S—%
G SL—S2

The cost of the replication of the option, which is called its arbitrage price equals
SLo(7F-So—S2) 1 Sof—S2 K

Co=Vo=aoSotfo="—gr o 7 L5 7

1.1.2. The martingale approach

We search for a probability P* of appearing the price Sy = Si. or Sy = SZ that
discounting stock prices form the martingale with respect to the probability P*. Let
S* be the random process of discounting stock prices

S: =S, Sp=7"- 5.
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The martingale property of the process S* is as follows:

Sy = Ep«[ST).
Then
So=7""-[p*- S+ (1—p")- SF).
Hence
« _ Sof — S2
TS s

The discounting arbitrage price of the call option Cr = (St — K)™T, which is repli-
cated by the strategy (1.1.1), is also a martingale with respect to the probability
P*. It means that

Co=Ep-[Ft-Cr]=[F1-Ck-p*+0-[1—p*

_S7-(F-S9—53) 1 Sor — 57 K

SL—s2 7 Sh-%2 T

1.2. The conditions for no arbitrage in the financial market

The financial market satisfies the famous no arbitrage conditions when
52 < SoF < S
The fundamental result (Theorem 2.2.) gives the necessary and sufficient conditions

for the absence of arbitrage in our one step model if only 7" is large. Such no arbitrage
is described by

. Sk - 52
lim =L >1 A lim —L < 1.
T—o00 So?” T—o0 OgT

2. The linear recurrence. The recursive model of stock prices

In this section we present the recursive model of stock prices and we get no arbitrage
conditions as the fundamental result of this paper (Theorem 2.2.).

2.1. The linear recurrence, the example of the stock prices

In this paper we assume that possible stock prices S, S2 are defined by a lin-
ear recurrence. Now we remind a definition and an explicit formula for a recursive
sequences.
Let consider a linear dependence:
Sn=a-S,_1+b-S,_o, a,be R, neN, n>2.
This
> —a-x—-b=0

is called the characteristic equation for this dependence.
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Let us determine a formula for the n-th term of the sequence (Sn)’nzﬁ when
initial values Sy and Sy are given. "

We have two cases:

1. A >0or A <0, this is a® # —4b.

Then the formula for the n-th term of the sequence (S,) »>2 is equal to
neN

Sp=ci -1 +c2-13, c1,c2 € C,
where
a++vVa?+4b a—+va?+4b
rN = r9o — ——————— .
1 2 ) 2 2
We set ¢; and co by the following system of equations:
c1+c2 = So,
cL-T1+cCa- 19 =57,

Finalny, we have

n

S1 B So ) a—+va?+4b
Va2 +4b Va2 +4b 2

So . a+ Va2 + 4b B S1
va? + 4b 2 va? + 4b

. <a—|—\/a2 +4b)n
2

. <a— va? +4b>n

2

2. A = 0 this is a? = —4b.
Then the formula for the n-th term of the sequence (S,) »>2 is equal to
neN

Sp=c1-14+n-ca-71y, c1,co € C,
where
a
To — <.
2

We set ¢; and ¢y by the following system of equations:

C1 :SOa
c1-ro+ca-ro =51
Thus
0 for a =0,

QSl—a-So> . (a

Sn — n
. 5) for a # 0.

(So+n~

In conclusion

Sy =

<a+ Va2 +4b>n
2

S1 B So a—+va?+4b
Va2 +4b a2 +4b 2

So . a+ Va2 + 4b B St
va? +4b 2 va? +4b

. (a— \/a2+4b>n

2

for a? # —4b,
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Sp = <50+n. w> . (%)L

for a® = —4bAa # 0,

Sp=0

for a> = —4bAa = 0.

In this paper we do not allow for A < 0, because imaginary value can not be
value of money. We are not interested in the case S,, = 0.

Let consider the following recursive model of stock prices:

g ] a St +b1-St,=:5! with probablity p,
K c1-S? ,+dy-S? ,=:5? with probablity 1 — p,

where
(a1,b1) € Wy = {(a,b) €R?:Sr> K},
(Cl,dl)EWQZZ{(C,d)€R2:O<ST§K}, K€R+.

Then the arbitrage price is equal to

Co_ St (FSo—57) 1 Suf-Sp K
0 SL—S2 PooSL—82
where
T
gl — So B S_1 . a1 — \/a% + 4b, . a1 + \/a% + 4by n
T Vei b aT b 2 2

2

" S_1 ) a1 + +/ a% + 4by B So
Vai + 4by 2 Vai +4b;

(2.1.1)  for a? > —4by,

T
) <a1—\/a%+4b1>

250 —ar - S_ T
S%:(S—1+T'w)'(%) for a?=—4bAay #0,
1

83 =

T
So S_1 ((31 — \/C%+4bl>1 . (Cl—‘r C%—‘r4bl> "

JE+4d,  JE+4d, 2 2

S faty c? + 4by B So
\/C%+4d1 2 \/C%+4d1

(2.1.2)  for & > —4d;,

T
. <Cl —\/C%+4d1>

2

_ . T
S%:<51+T.M>.(%) for c%:—4d1/\017$0.

C1
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Ezample. Suppose that a stock S has price 100 on a month and 120 on the previous
month. We assess that the probability of increasing the price p is 0.4 and decreasing
the price is 0.6. We set the arbitrage price of the call option with the exercise price
K = 100 and the maturity time totals 6 month. The only trading dates are 0 and
T, so that the portfolio fixed at time 0 is held until time 7. We assume that the
interest rate for 6 month r amount to 10 % and it does not change. Let
S, — { St;l + % : Sé% =: Sé W%th probab%l%ty 0.4,
Si 1 — 3 Sio=:5; with probability 0.6.
The stock price in the recursive model which is given above at the moment 7' = 6
is:
1. for the increasing model of stock prices

1++2 ‘ 1++2 1-vz\"
5 >+<60 7 —50@)(—2 )

= [20v2+60] - (H 2>6+ (60 - 20v2) - <1_2‘/§>6

2

SL— [50\/5—30\/5 (1_\/5)} . <

2. for the decreasing model of stock prices
6
1
S2Z = [120 + 6(200 — 120)] - <§> — 9.375.

Then
O — S1. — 100 with probability p,
7o with probability 1 — p.

When we solve the following system of equations:

(XoS%—Fllﬁo = S%—lOO,
(XoS%—Fllﬁo = O,
we get
5\/?6“5(3 + 2\/5)3 + 15—12\/5(3 _ 2\/5)3 ~ 100
Qo = ;
SVZHI5 (3 4 2./2)3 4 10=5v2(3  9,/2)3 — 9.375
375
Bo = —EO&@
Thus the arbitrage price is equal to
4025
Co = ——agp ~ 60.05.

44
Now we set the arbitrage price by using a matingale approach. We have

So=1+7r)""[p*-Sp+ (1 —p*) - S7).

Then
. So(l+7r)— S% 4025

S

ap ~ 60.05.
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2.2. The conditions for no arbitrage in the financial market when lower
and upper prices are defined by the recurrences

In this section we set conditions on ai,bq,cq,d1,So, S_1, for which the financial
market is without arbitrage for large T'. We must prove for which a1, b1, ¢1,d1, So, S—1

we get
Sk S/
lim =L >1 A Iim =L <1,
T—oo S0T T—oo ST

where Sk, S2 are given by (2.1.1) and (2.1.2).
In the future we assume that

(*) a1 >0, b1 >0, >0, dp >0, So>5_1- e’

This assumption gives us reasonable simplification.
We consider only two cases.

1. a% = —4b1, C% = —4d1

The equality a? = —4b; always implies
1 A-T T
@1§§=lngii———eg),
T—oo SOT T—o00 SO 2e”
where
A= 25’0—&1'5_1.

ai
Let notice that the financial market is without arbitrage when

g > 1 or e =
A>0 A>0

Provide for (*) we have

e < a < i
-2 -5,
Analogously the equality ¢ = —4d; implies
—— 82 S +B-T /e \T
lim —~— = lim ——— (—) ,
T—oo Soif  T—oo So 2e”
where
B .= 250—61'571.
C1

We have no arbitrage in the financial market if only
C1

1
2er
i<1 or B=0
2e”
S_1
— <1
So
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Providing (*), we get

Now we consider the second case.
Il a3 > —4by, 3 > —4d;.

The inequality a? > —4b; always implies

1
lim =L = lim

T—oo0 Q0T T—o00

where

1 ENT F
S—Q(o-(;) 05

)
S

C:= 50 _ 5 .
\/af +4b1 \/a% +4b1 2 ’
S_l a1+\/a%+4b1 So
NCETT ( 2 ) VA

p..® + /a2 + 4b;
- 2
Fo— a; — \/a§+4b1

2

We get no arbitrage in the financial market when

or E=e"
C > 5

E>e" CZOT
C>0 or F>e
D >0,

Providing (*), we have
ar + /a3 + 4by o e
2
a; — \/a%—|—4b1 < i

2 S_1
or

al—\/a%+4b1 _ & < a1+\/a%+4b1
2

2 S_1

or

ai + +/a? + 4by e
— =
al—\/a%+4b1 < So

2 S_1
The inequality ¢? > —4d; implies

(1~ varTam).
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where

C’:: So B S_1 ) c1 — \/C%+4d1
VE+4d, 3+ 4d; 2 ’

D': 571 ) c1 + \/C%+4d1 . SO
\/C%+4d1 2 \/C%+4d1

.Gt Vet
=
F'_ Cc1 — \/C%+4d1

2

In this case the financial market is without arbitrage when
— <1 or

Providing (*), we get

c1++/ci+4d; o
R
_ 244
o (1= yE T ) < AmYIE
-1

In conclusion, we have the following theorem.

atvatia 'C%+4d1 <e" or
2

Theorem 2.2. If the final price of the stock is defined by the linear recurrence
(2.1.1)~(2.1.2), then the following equivalences are set.

I. If the discriminants of characteristic equations of the recurrence are equal to

0, thus if a? = —4b;, ¢? = —4d,, then the following conditions are equivalent:

(o) there is no arbitrage for large T

Sk S
lim =L >1 A lim =% < 1;

T—00 or T—o0 07:
c1 Gl So
—<e < =< —.
B) 3 <359,

II. If the discriminants of characteristic equations of the recurrence are strictly
positive, i.e. a? > —4by, ¢ > —4dy, then the following conditions are equivalent:

(a) there is no arbitrage for large T

Sk - 52
lim =L >1 A lim =X < 1;
T—o00 So?” T—o0 So?”
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Cl+\/0%+4d1 co < a1 + \/a%—|—4b1
2 2
(B)
0,1—\/0,%—"-4171 <i
2 S_1
or
al—\/a%—&—élbl So
- Y - < -
2 S_1
/ — /2 +4d
i 1— C%+4d1 < w < e’
S_q 2
a4/ +4d; _at Va2 +4b;
N 2 2
or
cl+\/c%+4d1 e < & _ al—\/a%+4b1 < a1+\/a%+4b1
2 S_1 2 2
or
S — 2 1+ 4d
5_0(1_,/c§+4d1) cazvarih .
-1
_atVa+dd _ So
2 S_1
a1 — \/a%+4b1 < a1+\/a%+4b1
N 2 2
or
c1 4/ +4d; L + /a3 +4b;
2 N 2
- 2 1 4b Y
a1 —v/aj +4b vg1+1 < (1 _Ja +4b1)
-1
References

[1] J.Jakubowski, A.Palczewski, M. Rutkowski, and L. Stettner, Matematyka finansowa.
Instrumenty pochodne, Wydawnictwa Naukowo-Techniczne, Warszawa 2006, 320 pp.

[2] A. Weron and R. Weron, Inzynieria finansowa, Wydawnictwa Naukowo-Techniczne,
Warszawa 1998.

[3] R.J.Elliott and P. E. Kopp. Mathematics of Financial Markets, Springer-Verlag, New
York 2005.



The arbitrage pricing of a call option in the recursive model of stock prices 101

Faculty of Mathematics and Informatics ~ Faculty of Organization and Management

University of Lodz Technical University of £.6dz
Banacha 22, PL-90-238 %.6dz Piotrkowska 266, PL-90-924 ¥.6dz
Poland Poland

e-mail: emilaf@math.uni.lodz.pl e-mail: marczak_m@wp.pl

Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Com-
mission of the Y.6dz Society of Sciences and Arts on November 24, 2011

ARBITRAZOWA WYCENA OPCJI W OPARCIU
O REKURENCYJNY MODEL CEN AKCJI

Streszczenie

Celem pracy jest polaczenie dwoch teorii: modelowania dyskretnego, w tym ciagami
rekurencyjnymi oraz wyceny bezarbitrazowej opcji. Rozwazono dwustanowy model cen
akcji. Cena akcji S4 w i-tym scenariuszu, 5 = 1 lub i = 2, w chwili T’ zostata wyzna-
czona w oparciu o liniowa rekurencje S = a; - S5_q + b; - Sh_,, ai,bi € R zalezna od
cen akcji z dwoch poprzednich okresow, tj. w chwili 7" — 1 i chwili 7" — 2. Przedstawiono
dwa sposoby arbitrazowej wyceny opcji kupna: jeden uwzglednia pojecie replikacji opcji,
drugi za$ metode martyngatowa. Dwustanowosé modelu oznacza rozpatrywanie klasycznego
modelu jednookresowego CRR. Jedynie gorna i dolna zmiana cen akcji jest modelowana w
bardziej skomplikowany sposéb.
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SOME EXTREMAL PROBLEMS ON NON-OVERLAPPING
DOMAINS WITH FREE POLES

Summary

Paper is devoted to extremal problems of geometric function theory with estimates
of functionals defined on systems of non-overlapping domains. In particular, the focus of
investigation is a well-known problem of V.N. Dubinin and generalization of some results
in this problem.

1. Introduction

In geometric function theory of a complex variable extremal problems on non-over-
lapping domains form a well-known classic direction and have a rich history (see
[1-14]). Paper [1] was the initial impetus for such direction, in which, it was first
proposed and solved the problem of maximizing the product of conformal radii for
two non-overlapping simply connected domains. Further, themes connected with the
study of problems on non-overlapping domains were developed in papers [1-14]. This
paper summarizes some results obtained in [?,7,7?].

Let N, R be the set of natural and real numbers, respectively, C be the complex
plane, C = C|J{oc} be the one point compactification od C, and R* = (0, 00).

Let 7(B, a) be the inner radius of domain B C C, with respect to a point a € B
(see [2,2,7]) and x(¢) = $(t +t71).

Let n € N. A set of points

Api={ar€C: k=T1n},

is called n-radial system iff
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lax| € RY, k=T1,n, and 0=arga; < argas <...< arga, < 2m.
Denote
Py(Ay) == {w:arga, < argw < argag41},
O := argak, any1 = a1, Opq1 1= 2,

1 Qpt1
Qg = —arg o Qnt1 :=a1, k=1,n.
k

7r
This work is based on application of the piecewise-separating transformation
developed in [4-6]. For specific use of this method we consider a special system of
conformal mappings. By ¢ = m,(w), k = 1,n we denote the unique branch of multi-
valued analytic function —i (e‘wk w)l/ak, which performs univalent and conformal
mappings Py (A, ) onto the right half-plane Re¢ > 0.
For an arbitrary n-radial system of points A, = {ax} and v € RT U {0} we

assume that
n
B 1;[ [ (‘ak-&-l

The class of n-radial systems of points for which £)(4,,) = 1 automatically
includes all systems with n different points, located on the unit circle.

1 lféfyai n
2a 1
) e,

k=1

The main purpose of this work is to obtain exact upper estimates for the func-

tionals:
(1) Jn(v) =17 (Bo,0) H (B, ak) ,
(2) I’n(’Y) = [T‘ (BOaO)T(BOOaOO)]A/ Hr(Bkaak)a

k=1
where v € R, A,, = {a;}}_; is an n-radial system of points, ag = 0, and {Bj}}_, is
a system of non-overlapping domains (e.i. B, N B; = @ if p # j) such that a;, € By,
Uso € Boo, kE=0,n.

2. Main results

V.N.Dubinin in paper ([?], p. 68, 9.2) and his monograph ([?], p. 381, no. 16) for-
mulated the following

Problem. Prove that the maximum of functional (??) is attained for some domains
that have n-tuple symmetry, where By, By, Bo,..., B,, n > 2 are non-overlapping
domains in C, ag = 0, |ax| = 1, k = T,n, 7(Bj,a;) is a inner radius of the domain
Bj; in point aj, (aj € B;), j =0,n, and v < n.

This problem caused great interest and has been studied in different direc-
tions (see, for example, [?,?,7]). In 1988 Dubinin [?] completely solved problem



Some extremal problems on non-overlapping domains with free poles 105

for v = 1, n > 2 in the case when the points lie on the unit circle |ag| = 1,
but the result is also true for v € (0,1] (this is implied from his method). Fur-
ther, G.V.Kuz'mina repeated this result for simply connected domains by another
method. In 1996 Kovalev [?] obtained solution to this problem, however not for an
arbitrary system of points, but for a subclass of systems satisfying the condition
0 < ap < 2n/\/7, k = 1,n. Then Bakhtin in his monograph [?] extended the
ideas and methods of [?], and thus proved that the hypothesis is true for an arbi-
trary v € RT, but starting with some number ng (). Further, Bakhtin, Bakhtina,
and Podvysotskii [?] first showed that for n > 5 we can get stronger results and
confirmed that the problem is valid for some ~ > 1. We shall prove

Theorem 1. Let

In, n=2,7
Yn, n>8
Then for any n-radial system of points A, = {ar}}_, such that LY (A,) =1,

LO(A,) <1 and any system of non-overlapping domains By, ar, € By, C C, ag =
0 € Bo, (k=1,n) we have the inequality

TLEN, TZZQ, 76(077'@]7 WTL:{

Y

J (’7) < 7‘7 Do, H Dk,dk

where Dy, di, k = 0,n, dg = 0 are, respectively, poles and circular domains of the
quadratic differential

2 (2w n+7 w2,

Theorem 1 generalizes the result of paper [?] on more general systems of points
of the complex plane.

Corollary 1. Let n € N, n > 2 ~ € (0,1]. Then for any n-radial system of points
A, = {ar}}_, and any system of non-overlapping domains By, ap € By C C,
k =0,n, we have the inequality

grir/nyy/ngn (0 — A\ Ry
(n? —y)nt/m \n+ /4 '

Equality in this inequality is attained when ay and By, k = 0,n are, respectively,
poles and circular domains of the quadratic differential

Jn('Y) <

(nQ _ ,Y)wn + R"

T2
wQ(wn _ Rn)2 dw ?

Q(w)dw? = —

where R"7 = L) (A,,).
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In [?] Dubinin obtained an estimate for the functional (??) if v = J and n > 2
(lak] = 1) by the method of symmetrization. Kuz’'mina [?] used extremal—metrlc
approach and obtained estimate for (??) if v € (0, 4n?| and n > 2. In [?] Kuz'mina
also emphasized that the upper bound for « is not the best possible. And the question
about the exact upper bounds for - is still open. Note that when n = 2 evaluation
for the functional (??) in [?] coincides exactly with the estimate of work [?]. We
improved estimates for the functional (??) for n = 2,3 on more general systems of
points.

Theorem 2. Let

3

0 <y <, "=
Then for any 2-radial system of points Ay = {ay}3_, such that LO) (Ay) =1 and
any system of non-overlapping domains By, By, Ba, Beo (a9 =0 € By C C, o0 €

By C @, a1 € B cC,ay€ By C @) we have the inequality
[ (Bo,0) 7 (Boo,00)]” 7 (B1,a1) 7 (Ba,az)

(4)
S [T (Ao, O) r (Aoo; OO)]A/ r (Ah )\1) r (AQa )‘2) )

where domains Ny, Ao, A1, Ao and points 0, 0o, A1, \o are, respectively, circular
domains and poles of the quadratic differential

yul+ (A =—29)w’+y o
w?(w? — 1)2

(5) Q(w)dw? = —

Theorem 3. Let
6
O<y=ns 1m=g
Then for any 3-radial system of points Az = {ax}3_, such that LO) (A3) =1 and
any system of non-overlapping domains By, By, Ba, B3, Bso (a9 =0 € By C C,

00 € Boo CC, ap € By CC, k=1,3) we have the inequality

(6) [r (Bo,0)r (Boo, )] HT By, ax)

3
< [r (A0, 0)7 (Ase,00)]” [ 7 (Aks Me) s
k=1

where domains Ay, Ao, A1, A, A3 and points 0, co, A1, A2, A3 are, respectively,
circular domains and poles of the quadratic differential

Bl Gl i P S
dw
w?(wd — 1)2

(7) Q(w)dw? =
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From Theorem 2 we have the following corollaries:

Corollary 2. Under the conditions of Theorem 2 we have the estimate

19 1=y
I Lo | b S VT
Equality in (?7) is attained when domains By, Bs, B1, Ba and points 0, 0o, a1, as
are, respectively, poles and circular domains of the quadratic differential (7).

207
(8) [r (Bo,0) 7 (Beo,0)]" r (B1,a1) r (Bs,az2) <

Corollary 3. Let
3
0<v=72 m2=g
Then for any 2-radial system of points As = {ay}s_, such that |ax| =1, k € {1,2}
and any system of non-overlapping domains By, By, Bz, Beo (ag = 0 € By C C,
00 € Boo CC, a1 € By CC,ay € By C @), we have inequality (?7). Equality is
attained when domains Ao, Ao, A1, A and points 0, 0o, A1, A2 are, respectively,
poles and circular domains of the quadratic differential (?7).
The estimate in Corollary 3 is new for v € (%, %]
From Theorem 3 we can easy obtain the following statements:

Corollary 4. Under the conditions of Theorem 3 we have the estimate
43—&-27/3 2fy/3 3 — 2\/7
EETEEE ‘3 +2V7

Equality in (?7?) is attained when domains By, Be, B1, B2, Bs and points 0, oo,
a1, asz, az are, respectively, poles and circular domains of the quadratic differential

(27).

207

(9)  [r(Bo,0)r (B, )] Hr (Bg,ax) <

Corollary 5. Let

O<y=ns 1m=g
Then for any 3-radial system of points Az = {ax}3_, such that lay| =1, k € {1,2,3}
and any system of non-overlapping domains By, By, Ba, B3, Bs (ag =0 € By C C,
00 € Boo CC, ay € By CC, k=1,3), we have inequality (??). Equality is attained
when domains Ao, A, A1, Ao, Ag and points 0, co, A1, A2, A3 are, respectively,
poles and circular domains of the quadratic differential (?7).

The estimate in Corollary 6 is new for v € (1,125; 1, 2].

Proof of Theorem 1. Validity of this theorem for v € (0, 1] follows from the works
[7,7]. Consider first the case v = /n. We use the method due to Bakhtin [?, 7],
and properties of separating transformation (see [?,7,7,7,7]). We make separating
transformation of domains {By}}!_,. Suppose
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P = Pp(An) i={w: O <argw < Oiy1}.

Consider the introduced system of functions ¢ = mp(w) = —i (e‘wkw) 1/%, k=

1,n.

Let Qg), k = 1,n be a domain of the plane C; obtained by combining the
connected component 7, (B, () Py) containing a point 7y (ay), with its symmetrical
reflection with respect to the imaginary axis. By Q,f , k =1, n, we denote the domain
of the plane C¢, obtained by combining the connected component 7y (Bg11 () Pk),
containing the point 7 (ag+1), with its symmetrical reflection with respect to the
imaginary axis, B,41 := Bi1, mp(an+1) := 7 (a1). Besides, by Q,(CO) we denote the
domain of C¢, obtained by combining the connected component mx(Bo () Py), con-
taining the point ¢ = 0, with its symmetrical reﬂection with respect to the imaginary
axis. Denote mi(ay) := w,g ), T (aky1) == wk ck=1,n, mp(ans1) = w,(f).

The definition of 7 implies that

1 1 _
|7rk(w)_wl(gl)|’\’a_k|ak|”’° “w—ar], w—ap, webP;,

2 1 € 1 I

[ (w) — w| ~ o e — gl w = g, we B

a1 —
“w, w—0, we Py

| (w)] ~ |w
Then, using results of papers [?]- [?], [?] we obtain inequalities

) r (Q,(Cl),w,(cl)) - (Q;c ),w,(f)) 3
<

= 1 I | k|—°”c n 1 ’

(10) T (Bk,ak

_aluk .
aklk Qg1

k=1n, Q(()2) = 97(12), w(()z) = wff),

(11) r (Bo, 0) [Hr%( , )]

Repeating arguments given in [?] in the proof of Theorem 5.2.1 and taking into
account the introduced sets of domains {Py}}_,, functions {7 }}_,, and numbers
{0k}, we obtain an inequality for the investigated functional (?7?):

1
(o) (004

o< T[0T 11

P g a7
(12)
n n |a, I n 5 n %
= ap - 7’6; . [H (s (Q;CO), 0) H T (Q,(Cl),w,(cl)) T (Q,(f),w,(f))] .
k=1 k=1 akars R (5 k=1
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Expression (??) in parentheses of the latter formula is a product of the functional
A (Q,(CO),O)T(Qg),wg))r(ﬂf),w,iz)) on triples of domains (Q;O),Qg),ﬂgf)) of the
plane Ce.

It is known [?] that the functional

7ot (Dl, dl) - o2 (DQ, dg) -9 (Dg, dg)
|d1 — d2|01+02—03 . |d1 — d3|01—02+03 . |d2 — d3|—01+02+03’
or ERT, d, € D, CC, Dy(\D, = @, k=1,2,3, p=1,2,3, k # p, is invariant
under all conformal automorphisms of the complex plane C.
With this relation in mind, the following estimate holds:

() e

k=1 |akag 1] 2on

Y3(0170—230—3) =

1
n_ el (Q<o> 0) (Qg)’wg)).r(gl(f)’w;z>) 2

|w](€1) . w](f)ryai |w](€1) _ w](f)|2—’yai

X
k=1

2

[Tt ol -]
k=1

Note that |w,(€1)| = |ak|%’“7 |W1(€2)| = |ak+1|%’“7 |Wl(cl)

Taking into account these equalities we obtain

( ) |
[Tow 'H =%
kel |akapg1| %
2

k
n
O @ jwi |
X<H'w’“ o ') (H o ‘2>|> "
k=1

nprer (Q(O) ) - (Q,(Cl),w,(cl)) -7 (Q,(f),w,(f))

(1) . ka)l'ya}zC |w](€1) _ w](j)|27'yak

1 1
W] = Ja| ™% + |agt] 7.

[N

k=1 |wy
2
no o
3%t [ - =\
= (T T x

k=1 k=1 Ak+1

n

« H |ak|1+%’}’(ak+ak—l)x

k=1

o et (90,0) 1 (9 wl) -7 (22, ?) | |

1) wl(f)"yaawlgl) _ w£2)|27'yai

k=1 |Wk
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For each k = 1,n we can easily define the conformal automorphism ¢ = Ty (z) of
complex numbers of the plane C such that

T(0) = 0, T} (w,(j)) = (-1)* i, G =T, (Q,S”) k=T, s=1,2¢=0,1,2.

Then, using results of [7-11] we obtain

n-3 3 o [
Jn(’y) S 2 k=1 : (H ak) : ‘C(’Y) (An) X

1 (69,0) - (6,4 - r (62.1)

N

k=1
n—3 i ai n n+yg i af
=2 ‘ix <H ak) CLO(A) =1 T
k=1
n 2
X R G(O),O -7 G(l),—z a? ]
NEICIMCEDRCS

Hence

0 = (TToc) [T (600) (60 o (62)
k=1 k=1

As a result of the calculations the initial problem is reduced to an upper estimate
of the functional 7 (Bo, 0)r(B1,4)r(Bsz, —i) in the class of triples of disjoint domains
{Bo,BhBQ} such that 0 € By, i € Bl, —1 € BQ, By C @7 k=0, 1,2.

Following the paper [?] we have

# (Bo, 0)r(By, i)r( B, —i) < F(z) =
=200 g% (2 — ) THCOT (9 4 )R g [0, 2],

Kovalev [?] proved that inequality (?7) is true if ax/y <2, k = 1,n and n > 5.
Therefore it remains to prove that it holds under the condition ag,/y > 2, where
Qo = max . Further we use the method proposed in [?] (p. 255) by Bakhtin. From

Theorem 5.2.3 in [7] if ag,/¥ > 2 there is a chain of inequalities

_
1 n
l

[7(Bo, 0)r(Bg, ar)]™ lHT By, ax) <

:]:

Jn(7) <

1

< [ﬁ |ak|2] [27L H ag - ﬁ(O)( )
k=1

k=1

3R TIT‘

1—-X

n

n 1_%
< l2" 11 akl <
k=1

n 2—ayp nt B n n—1 —(n—1) -3
< |2"ag :[2 ao(2 — o)™ (n — 1) } ,
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where

aozmkaxak, and ag > —.

ﬁ

On the other side, from the results of [?] (p.257) and properties of separating trans-
formation we obtain

&) oy
n 4n ﬁ — X
0 _ _ n
k=1 (1__2) 1+ X
n n

where Dy, dy, k = 0,n, dg = 0, are, respectively, poles and circular domains of the
quadratic differential (?7). Estimate the value

s

T’Y(B(h 0) T(Bk; Clk-,)
On(vy) = <

(Do, 0) [ r(Dedi)

E
I
—

o B

E
I
—

1—

2R

[2-277 1 ag(2 — ap)" " Y(n — 1)~ (D)

<
4 n—1-v(1-%) 4 YH1I-3 4ry = (1 v )—n—% 1-— g ad
n n n? n? 142

S 1 n—1—~2=1
B -]
4 VY

<

.@).@_%) "
y n

2,7
Vi : .
s (L) n)”l”“
1_ﬂ val n—1
n

if y = ¥n for n > 3.

Uncomplicated estimates, as in paper [?], show that O,(¥/n) < 1, n > 8 and
On(¥/n) < 1, n = 2,7. Tt is not difficult to show by standard methods that the
function @, () on interval v € (1;+/n | is monotonically increasing with respect
to . It follows that for these configurations maximum is not attained that is the
assertion of Theorem 1 if o,/ > 2 is proved. Thus it remains to consider the case
Oéoﬁ < 2.

Then according to the method of works [?, 7], we turn to the function F(z) and
from these works as a result of the calculations we obtain the inequality Theorem 1
for the functional (??). Theorem 1 is proved.

Proof of Theorem 2. We retain all notation for separating transformation of do-
mains introduced in the proof of Theorem 1 for domains By, k = 0,n. By Q,(;’O)
we denote the domain of plane C;, obtained by combining the connected compo-
nent 7 (Boo [ Ex) containing the point ¢ = oo with its symmetrical reflection with
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respect to the imaginary axis. The family

{2,

is a result of separating transformation of an arbitrary domain B, oo € By, C C
with respect to families {Ej};_; and {m};_, at the point ¢ = ooc.
By Theorem 2 in [?] we have
1

(14) 7(Boo,0) < [H ro (Q(Oo) )1

Using (?7), (?7), (??), we obtain

a2

< T (- (92.0)r (94.) *
4wmw¢@wwqé
A

(2) Gaellaxa

Further, considering the methods of works [?,7] from the latter relation we have
2
(7)< 4 (Hak> Hx(\ i ) axlx
k=1
[ (0 o) - (0 ) 2
) ) 0 00 VX
XH - — (T(Q;c),O)T(Q}EC ),oo)) ,

e (|ak S+ |ak+1|”k)

Ak+1

1 1
|W/(c1) ok A+ |agya|ow.

1 2 1 2
wx, Jwi?| = Jagga|x, — | = |ax

1
| = la
Each expression in the braces of the last inequality is the value of the functional

(15) Ky = [ (Bo,0)r (Buo, o0)] " - -\ BLa) 7 (B2, a2)

lar — az?

,(cl), Q,(f), Q,(COO)} and corresponding

on the system of non- overlapping domains {Q;O), Q
system of points {0, wk ,w,(f), oo} (k € {1,2}). Estimate of functional (??) in the
case of fixed poles was first obtained by Dubinin [?].
Basing on Theorem 4.1.1 in [?] and invariance of the functional (??) we obtain
an estimate
KT < @(7)7 T > 0)
where ®() = 727 |1 — 7|~0=7(1 + 7)=(147* Then

1
2 2

4 -2
(16) Jo(v) < 5 lH (T,f L Tk)_(1+7k)2)]
k=1

where 7, = /7 - ap, k=1,2.
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Consider in detail the function
‘I’(l‘) — J,1,23;-2_1,_2|1 _ x|—(1—x)2(1 + x)—(l—‘,—;c)Z.

U(z) is logarithmically convex on the interval [0, zg], where z¢ & 0, 88441, ¥(xg) =
0,07002. On interval [0, 21] (21 & 0, 58142 is the maximum of function ¥(x), ¥(z1) ~
0,08674) the function is increasing from ¥(0) = 0 to ¥(x1), and decreases on the
interval (z1, c0].

Consider case v = 2. We shall show that for any 71, 72 such that 7 + 71 = 2,/72,
the following inequality holds:

(17) U(ry) - W(r) < W2 (y/72).
For 71,72 € (0, 0] the statement (??) follows from the logarithmic convexity of

the function ¥(z).
Let now 75 € (x0,00), 11 € (0, x0]; then

U(ra) - U(ry) < W(xo) - ¥(z1) < ¥2(\/72)

(because ¥(zg) - U(z1) ~ 6,0735- 1072 and U?(,/72) ~ 6,123 -107?).

From this follows that the statement (??) is true for all 71, 75. Taking into account
the above considerations we conclude that (?7?) is also true for v € (0, v2]. Together
with the inequalities (?7), (??), (??) and (?7?) we obtain the inequality (??). Theorem
2 is proved.

Proof of Theorem 3 repeats the arguments presented in the proof of Theorem 2,
taking into account some peculiarities in the case n = 3.
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PEWNE ZAGADNIENIA EKSTREMALNE
NA NIEZACHODZACYCH NA SIEBIE OBSZARACH
ZE SWOBODNYMI BIEGUNAMI

Streszczenie

Praca jest poswigcona zagadnieniom ekstremalnym w geometrycznej teorii funkcji
z oszacowaniami funkcjonaléw okreslonych na ukladach niezachodzacych na siebie ob-
szarow. W szczegdlnodci, kladziemy nacisk na znany problem V.N. Dubinina i uogélnienia
pewnych wynikéw w zakresie tego problemu.
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THE DIAGONAL FORM OF THE HAMILTONIAN
IN A ZWANZIG-TYPE CHAIN

Summary

In this paper we review the general procedure of the diagonalisation of Hamiltonian in
the model of ferromagnetic thin films. In our work, we concentrate on the case when the
considered sample is a simple linear chain of atoms, cutted from the ferromagnetic thin
film structure in the direction perpendicular to the surface. The Hamiltonian of the system
under study is written in the approximate second quantization approach.

1. Preliminaries

The theoretical and experimental study of spin wave resonance (SWR) in ferromag-
netic thin films started nearly 60 years ago. The first who predicted the possibility
of observing the SWR in such a structure was Kittel [1]. In 1958 Seavey and Tan-
nenwald [2] experimentally confirmed the theory of Kittel (resonance standing spin
waves). Next, research of many authors got the basic characteristic of SWR in thin
samples of pure ferromagnetic metals e.g. Fe, Ni or Co and ferrites e.g. NiFesOy
[3]. During the last half of century the theory of SWR was intensively investigated,
complemented and corrected in many kind of materials.

In the process of SWR an important role is played mesaurement of power adsorp-
tion function. The shape of adsorbed power function P(w) fitting to the experimental
data can give us the information about the surface by possibility of finding the values
of such parameters as e.g. the demagnetizing factor and its dispersion (the theory
includes the inhomogeneity of demagnetizing fields).
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The ferromagnetic sample is submerged in a static magnetic film H = (0,0, H?)
and the energy is absorbed from an external magnetic field h*(t) oscillating perpen-
dicularly to H = (0,0, H?*). The nature of the shape of curve of power adsorption
function is determined by the peaks. Each peak corresponds to an excitation of a
distinct spin wave. The first who pointed out the theoretical possibility of the oc-
curence of a surface peak of SWR was Wolf [4]. Sokolov et. all [5, 6], Puszkarski [7, 8]
independently researched a method of identifying such a peak in the SWR spectrum.
In theoretical considerations concerned with very thin films they proved that posi-
tions of peaks are independent to thickness, whereas the thinner ones it should shift
towards growing field strengths with decreasing thickness. Important influence for
the theoretical study of SWR have the models with assumptions regarding the sur-
face anisotropy in the magnetic field H, studied by many researchers e.g. [9,10, 11].
From the experimental point of view that models was discussed and their properties
are reviewed [12]. Various experiments on SWR show that the resonance spectrum
depends on the crystallographic structure of the sample and its surface roughness.

From the viewpoint of the vibrational problem of a thin film the specific as-
pects can be describing in terms of coupled oscillators in relation to their boundary
conditions. The fundamentals of the theory of oscillators in various applications in
different aspects have been reviewed in the available literature [e.g. 13, 14].

The propose of this article is to review some of the key of the method used for
the diagonalisation of Hamiltonian in the model in the ferromagnetic thin films. We
shall consider a simple linear chain of atoms, which is cutted from the ferromagnetic
thin films in the perpendicular to the surface, with assumptions proposed in [15].

2. Linear harmonic Zwanzig’s chain

Let us consider the sample which is a ferromagnetic thin film interacting with the rf
magnetic field. We divide the sample of thickness d = Na into N monoatomic, two-
dimensional layers parallel to the surface planes of sample, which shall be numbered
by v, (v = 1,2,...,N). The position of each atom localized at the crystallographic
lattice site is determined by the vector 7 The sample is characterized by the mag-
netization M (¢, z) in the plane of the surface with respect to the easy magnetisation
axes parallel to the quantization direction. The rf magnetic field h*(¢) is perpendicu-
lar to the constant magnetic field H = (0,0, H*). We will restrict our considerations
to interactions between nearest neighbours (Fig.1).
The Hamiltonian of above system takes the form

1 ro1
(1) H=§ E pMV“r§ E Ky<xm_$u)27
v (v,vr)

where K, denote the harmonic forces and M is mass of the atom localized in the
position v, the symbol Z( ) denotes a sum containing each pair of atoms once only.
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oS

QQMQ QMQ 5
Q
O

Fig. 1: The way of form one dimensional chain of atoms cutted from the ferromagnetic
sample in accordance with assumptions of Zwanzig.

The equations of motions

1o} 0
2 T - _ z __ -
( ) pu 83,:”7—[? l'y 8])195
read
1
KV v~ 4v), v — 7375 'y
(3) ; (x x T Mp

and, consequently
(4) &, = By Z (20, — )
’ M v ev " o

Now, assuming the boundary conditions and the effective external force k,, the
Hamiltonian (1) reads

(5) H== Zp”+ ZK xl,,—ml,)2+Z/<al,xl,.

(v,vr)

In order to describe the magnons properties we use the spin operator varialbles
S¥. SY,S%. The use of Zwanzig approach to the spin waves resonance is based on the
analogy between spin operators described in the harmonic approximation and the
harmonic operators which refer to the model of lattice vibrations.
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Using this analogy, we can see that the spin operators (according to the Holstein-
Primakoff transformation in the harmonic approximation)

Sy =V2S(a) +a,), SY=v2S(a) —a,)

express by the magnon creation a and annihilation a; operators in the harmonic
approximation, correspond to the lattice vibration operators, it means, the position
operator denoting the displacement of the considered atom from its equilibrium
position related to the lattice site j on the layer v

1

X, ==

5 (e +a)),

and momentum operator

which is canonically conjugated to X,. The quantum-mechanical equations of motion
for the spin vibrations considered in the direction perpendicular to the chain axes
take the following form

Here we assume that (S7) < X, (SY) < P,,(SZ) < S.

In the original consideration performed by Zwanzig [7] we can recall his Hamilto-
nian to the form (5) and his equations of motions for the phonon operator X,, P,.
We obtain

dx, 1

(7) = 5uzl,, R, — R, 41 =ugyy1 for v=0,1,2,...,
with

dXO 1 dX2 1

—=—FX —=—-——(F(X X
(8) T = 5P, = o (P £ X
and the resolvent function

1 1 1 /7 1 1
O(z,71) = expi(z—z )T @(270)—5—5 expi(z—z ) (1 —s)| ds x
0

(9) x {(1 = 2*)us(s) + zuo(s) — 2°Fluy(s)] },

where p, 7 and F' denote the reduced mass, reduced time and reduced force, respec-
tively.

3. Diagonalisation of the Hamiltonian

In the case of application of Zwanzig model we start from the Hamiltonian contains
three parts

(10) H= Hex + Hanis + HZ~
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The first term denotes the exchange term, namely
(11) =—J Z SuiS, ;.
()
where J is twice the exchange integral corresponding to two nearest neighbours. The
anisotropy term of the Hamiltonian takes the form

(12) Hanis = —ZA?/j55JSZ ZAzjsjj’

where A0 corresponding to the homogenous volume anisotropy and A;; correspond-
ing to the surface anisotropy. As for the Zeeman term, it can be ertten
(13) Hz = _N’Bstjjv

vj
where H = H* is the component of the magnetic field H = (0,0, H?) in the di-
rection od easy magnetization axes. Taking into account, according to the Holstein-
Primakoff theory, the spin operators are related to the creation and annihilation
operators by the relations

=+v2Sa,, S, =Vv2Saf, S:=S-afa, , for r= v7)
or, in more general case
aia;
285

In the harmonic approximation, f may be replaced by 1. Next, according to the

SE =V2Sfar with f=

procedure of Corciovei [16] the Hamiltonian become
=-J Y (5252 ~(SFSs + S;Sj,)) =Y AVSES; = (AS + upH)(S - afa;)
(rr’) v vj
and, in the terms of creation and annihilation operators

:—JZ —ata;) (S —a'a, J1/2§:2S2 (a;af, +afa)

rr! rr

—ZAO —afa; )(S —afar) =Y (A7 + ppH)(S - afay).

Further, by easy calculations, we obtain

Ho=—-J> (S*=S(afa; +abay)) —JSY (20]a,)

/ /
r,r T

~3 " 40(S? —2Satay) = 3 (AS 4 ppH) (S — afay).

Finally,
ML = Z (upH + AZ +28A% + 2] Sa(r ZTqu iy O

(14) =278 > Y TyTywajay,,

ror!r#r! qq’
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where z(r) is the number of nearest neighbours of any atom in the same layer. Here
we introduced the following notations

|1g) = af|0) = ZTq,aT |0)

+_ +
a; = ZTqrar ,
T

where |1,) is defined in the space [¢ = (7, h)] of quantum numbers 7, h by means of
the linear combination of the localized states
1L,)=1T1L... 1)
with the following commutation relations
a;’a —ag a =0qqs (Lqllg’) =dqq', (Lr[lp) = brr.

Performing the calculations, the Hamiltonian (14) takes the shape

Hy = D> > D T (upH + A7 +25A0 + 27S2(r)) Tyrr

qa q T

(15) - 2JS Y Typ|afa,,

ror! r#Er!
If we introduce the following notation
(16)  (upH + A7 +28A +2J82(r)) Tyr — 278 Y Ty = wy Ty
r#r!
the Hamiltonian can be written in the form

1_ +,-
Hy = E E E TyrwegTyragay .
q T

Taking into account the fact that > Ty Ty = dqq we see that Hj = Dy Waly ay
The classical approach consists in the digitalization procedure of the Hamlltonlan
[16, 17] by means of the transformation

(17) ar = Z T, rax

determining the spectrum of eigenvalues for the magnons in the space of the wave
vector 7. The transformation coeflicients T, play the role of the spin waves ampli-
tudes. They can satisfy the equation applied by the diagonalisation of equation (16),
namely

(18) O Tor —2J8Y Ty = w:Tpr

where w, are the eigenfrequencies of magnons with the wave vectors characterised
by 7 and
Q, = ppH + AY + 25 A% +2JS%(r).
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Taking into account the temporal behaviour of (a;) (c.g. [17]) we obtain the
adsorption power proportional to the expresion

(19) P(w) ~ ZTT(S(w —w;)

where the eigenfrequencies w, are given by (16) and

(20) T = <Z Tr-r)

determines the power adsorbed by the mode 7.

In the case of Zwanzig’s model we calculate directly the value of the temporal
derivative of the magnetisation deviation M*(¢). In order to apply this model we in-
troduce the canonically conjugated operators P, and (), which show the coincidence
with the spin component operators

(21) P =57, Q, < S;.
The Hamiltonian (10) takes its form

H = %XT;QTPE SIS RPo+ %erm@% ~ 983 QQu /S 3

(22)

which is convenient for consideration of the solutions for @, in terms of Zwanzig’s
approach equivalent to the magnetization component S appearing in the formula
(19).

The effective solution is discussed in the model in which the off-diagonal terms
PP, for v’ # r are neglected. (The general case where the terms mentioned are not
neglected will be studied in a subsequent paper. They will cause the appearance of
terms with (S%)2 in the differential equation (7) below, complicating considerably
the method used by a necessity of using a proper perturbation procedure.)

Therefore the effective Hamiltonian takes the form

(23) H= %XTIQTPE IS QQu 1 Y00 /53 Q

r,r! T

from which the equation of motion can be written as

(24) g2 () = <Qr<5i”> —JS Z<Sf/>> — QruphV'S

and it allows us to apply the procedure proposed by Zwanzig and used in the paper
[18, 19]. According to the considerations of the extended method [17] we can see
that

(25) S5y =
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where the solution for ug, found in [20, 21] can be applied to the formula (19) in the
present paper.

4. Conclusions

An essential aim of this article was the review the method used for the diagonalisation
of the Hamiltonian. We applied usual steps of diagonalisation procedure described
in the many papers [e.g. 7, 8, 16] for the case of thin films with the Zwanzig’s
assumptions [15]. The procedure contains the following two important steps:

1) we introduced the creation and annihilation operators of spin waves in the
Holstein - Promakoff approximation,

2) we transform the creation and annihilation operators by relation (17).
The coefficient T, are determined by the following difference equation [16] (structure
is assumed with orientation (100))
0 T +Try1 o+ 151, =0,
with boundary conditions
1=z —7)T1 + T =0,
(I—2—7)Th +Th-1, =0.

In this meaning, we can consider the the power function P(w) for adsorption of the
magnetic field in the terms of functions T%,, namely [20]

T/2 x
Pw) = %tho <Z Tﬂ) %/ d<5;r> cos(wt)dt,

-T/2

where the brackets ( ) denotes the statistical average value of the spin component
operator S7 in lattice site while pp stands for the Bohr magneton multiplied by the
gyromagnetic factor.
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DIAGONALNA POSTAC HAMILTONIANU W LANCUCHACH
TYPU ZWANZIGA

Streszczenie

Praca przedstawia przeglad metody diagonalizacji Hamiltonianu zaproponowanej w pra-
cy Corcioveia (1963) w przypadku kiedy rozwazamy cienkie warstwy, w szczegdlnosci
z uwzglednieniem zalozen Zwanziga [15]. W pierwszym kroku wyrazamy Hamiltonian ukla-
du za pomoca operatoréw kreacji i anihilacji stosujac przeksztalcenia Holsteina-Primakoffa.
Nastepnie w celu otrzymania postaci diagonalnej Hamiltonianu, to znaczy jego postaci
jako sumy Hamiltonianw opisujacych niezalezne oscylatory wprowadzamy konieczne prze-
ksztalcenia zgodnie z [16].
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