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 LÓDZKIE TOWARZYSTWO NAUKOWE
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bibliographie et l’adresse de l’auteurs doivent être tapés avec le petites car-
actères 8 points typographiques et l’interligne de 12 points. Ne laissez pas de
“blancs” inutiles pour respecter la densité du texte. En commençant le texte
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SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES

DE  LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the

file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-

str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-

tions/addresses, and go on with the body of the paper using all other means and

commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted

in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4

Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

[6]



2.3. “Ghostwriting” and “guest authorship” are strictly forbiden

The printed version of an article is primary (comparing with the electronic version).

Each contribution submitted is sent for evaluation to two independent referees before

publishing.

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-

ment files sent to the address zofija@uni.lodz.pl. If a whole manuscript exceeds

2 MB composed of more than one file, all parts of the manuscript, i.e. the text

(including equations, tables, acknowledgements and references) and figures, should

be ZIP-compressed to one file prior to transfer. If authors are unable to send their

manuscript electronically, it should be provided on a disk (DOS format floppy or

CD-ROM), containing the text and all electronic figures, and may be sent by reg-

ular mail to the address: Department of Solid State Physics, University of

Lodz, Bulletin de la Société des Sciences et des Lettres de  Lódź, Pomorska

149/153, 90-236  Lódź, Poland.
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ON DIFFERENTIAL SUBORDINATION OF GEOMETRIC MEAN

Summary

For t ∈ [0, 1] and a, b ∈ C \ {0}, let Gt(a, b) := a1−tbt be a geometric mean of a and b.
Given γ ∈ [0, 1], we study the di�erential subordination of the following form:

Gγ

(
p(z), p(z) + zp′(z)Φ(p(z)

)
≺ h(z)⇒ p(z) ≺ h(z)

for z ∈ D := {z ∈ C : |z| < 1}, where p, h and Φ satisfy required assumptions.

Keywords and phrases: di�erential subordination, geometric mean, convex function

1. Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1}. Let A be the
subclass of H of functions f normalized by f(0) := 0 and f ′(0) := 1, and S be the
subclass of A of univalent functions.

It is well known that a function f ∈ H is said to be subordinate to a function
F ∈ H if there exists ω ∈ H such that ω(0) = 0, ω(D) ⊂ D and f = F ◦ ω in D. We
write then f ≺ F. When F is univalent, then

(1.1) f ≺ F ⇔ (f(0) = F (0) ∧ f(D) ⊂ F (D)) .

Let ψ : C2 → C and let h ∈ H be univalent. We say that a function p ∈ H
satis�es the �rst-order subordination if a function

D 3 z 7→ ψ (p(z), zp′(z))
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is well de�ned and analytic, and

(1.2) ψ (p(z), zp′(z)) ≺ h(z), z ∈ D.

The question when (1.2) yields p ≺ h is the basis for the theory of di�erential
subordinations (see Lewandowski, Miller and Zªotkiewicz [9], Miller, Mocanu [10]
and [11]). For further details and references see the book of Miller and Mocanu [13],
Biernacki [16, 17], and Rogosinski [18].

For further discussion we need the following de�nition.

De�nition 1.1. Let Φ : D → C be an analytic function in a domain D in C. By H(Φ)

we denote the subclass of H of all functions p such that p(D) ⊂ D, the function

(1.3) PΦ,p(z) :=

 1 +
zp′(z)

p(z)
Φ(p(z)), z ∈ D \ p−1(0),

limD3ζ→z PΦ,p(ζ), z ∈ p−1(0),

is analytic and PΦ,p(z) 6= 0 for z ∈ D.
By H0(Φ) we denote the subclass of H(Φ) of all functions p such that p(z) 6= 0

for z ∈ D.

Remark 1.2. 1. For p ∈ H0(Φ) we have p−1(0) = ∅, so then the function

(1.4) PΦ,p(z) = 1 +
zp′(z)

p(z)
Φ(p(z)), z ∈ D,

is analytic and has no zero in D.

2. Note that p ∈ H0(Φ) if and only if p ∈ H, p 6≡ const, p(D) ⊂ D, and

(1.5) p(z) 6= 0, p(z) + zp′(z)Φ(p(z)) 6= 0, z ∈ D.

3. Let Φ : D → C be an analytic function in a domain D in C with 0 ∈ D. We
now show that H0(Φ) ( H(Φ). Clearly, DR ⊂ D for some R > 0. Given n ∈ N and
c ∈ DR with 0 < |c| =: r, take the function

pc(z) := czn, z ∈ D.

Note that

(1.6) pc(D) = Dr ⊂ DR ⊂ D.

By (1.3) we have

PΦ,pc(z) = 1 +
zp′c(z)

pc(z)
Φ(pc(z))(1.7)

= 1 + czΦ(pc(z)), z ∈ D.

By (1.6), Dr ⊂ D, so for every z ∈ D,

|Φ(pc(z))| = |Φ(czn)| ≤ max
w∈Dr

|Φ(w)| =: Mr.
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Since Mr → 0+ as r → 0+, we can take r0 ∈ (0, R) such that

r0Mr0 < 1.

Let c0 ∈ C with |c0| =: r0 be any. Then

(1.8) |1 + c0zΦ(pc0(z))| ≥ 1− r0 |Φ(pc0(z))|

≥ 1− r0Mr0 > 0, z ∈ D.

Summarizing, since for c := c0 and r := r0 the inclusion (1.6) holds, by (1.7) for
c := c0 the function PΦ,pc0

is analytic and by (1.8) the function PΦ,pc0
has no zero

in D, so we conclude that pc0 ∈ H(Φ). On the other hand, pc0 /∈ H0(Φ).

4. If p ∈ H(Φ), then the analytic branch logPΦ,p, i.e., the analytic function

D 3 z 7→ logPΦ,p(z),

exists. Thus for every γ ∈ (0, 1) the analytic branch P γΦ,p exists.

In [4] the authors started to consider (1.2) related to geometric mean, namely, for
γ ∈ [0, 1], an analytic function Φ : D → C in a domain D in C, a univalent function
h ∈ H and p ∈ H(Φ), they studied the di�erential subordination of the type

(1.9) pP γΦ,p ≺ h.

When p ∈ H0(Φ), then, taking into account (1.4), the condition (1.9) is of the form

(1.10) p(z)

[
1 +

zp′(z)

p(z)
Φ(p(z))

]γ
≺ h(z), z ∈ D,

which, by (1.5), is equivalent to

(1.11) [p(z)]
1−γ

[p(z) + zp′(z)Φ(p(z))]
γ ≺ h(z), z ∈ D.

Further studies in this subject were continued in [5], [6], [7] and [1].
Let us remark that the source of considering (1.9) is in the concept of γ-starlike

functions introduced by Lewandowski, Miller, Zªotkiewicz [8]. Recall that a function
f ∈ A with

(1.12)
f(z)f ′(z)

z
6= 0

zf ′′(z)

f ′(z)
6= −1, z ∈ D \ {0},

is called γ-starlike if

(1.13) Re

{(
zf ′(z)

f(z)

)1−γ (
1 +

zf ′′(z)

f ′(z)

)γ}
> 0, z ∈ D \ {0}.

In particular, 1-starlike functions are convex functions and 0-starlike functions are
starlike ones. Recall that f ∈ H is called convex if it is univalent and f(D) is a
convex set.

Let Φ(w) := 1/w, w ∈ C \ {0}. For f ∈ A satisfying (1.12) let

p(z) :=
zf ′(z)

f(z)
, z ∈ D \ {0}, p(0) := 1.



14 N.E.Cho, O.Chojnacka and A. Lecko

Thus p ∈ H and p 6≡ const. Moreover, by (1.12), p(z) 6= 0 for z ∈ D and

p(z) + zp′(z)Φ(p(z)) = p(z) +
zp′(z)

p(z)

= 1 +
zf ′′(z)

f ′(z)
6= 0, z ∈ D.

Hence and from (1.5) it follows that p ∈ H0(Φ). Consequently, the inequality in
(1.13) is equivalent to the subordination (1.11) with

h(z) :=
1 + z

1− z
, z ∈ D,

i.e., the subordination

[p(z)]
1−γ

[
p(z) +

zp′(z)

p(z)

]γ
≺ 1 + z

1− z
, z ∈ D.

The basis of this paper is Theorem 2.3, where the di�erential subordination of
the form (1.9) with a convex function h is considered. This result is related to the
similar one from [4] and [6]. In cited papers the di�erential subordination of the form
(1.10) was examined. However, the method of proof here, based on Lemma 2.1, is
essentially new. Moreover, Lemma 2.2, which in general is well known in the theory,
was equipped with detailed proof in case when a dominant function h is convex with
a piecewise smooth boundary curve of h(D), namely, with h in the subclass Q of
convex functions. Restricting our interest to the subclass Q, we were able to present
self-contained detailed proofs of results considered. On the other hand, the class Q
is enough general for typical applications.

Let T := {z ∈ C : |z| < 1}. Given r > 0, let Dr := {z ∈ C : |z| < r}.
The lemma below is a modi�cation of Lemma 2.2c [13, p. 22]. However, in this

form it follows directly from Jack's Lemma [3].

Lemma 1.1. Let h ∈ H be univalent and assume that h′(ζ0) 6= 0 at ζ0 ∈ T exists.

Let p ∈ H be a nonconstant function with p(0) = h(0). If z0 ∈ D is such that

p
(
D|z0|

)
⊂ h(D) and p(z0) = h(ζ0), then

(1.14) z0p
′(z0) = mζ0h

′(ζ0)

for some m ≥ 1.

2. Main result

Given A ⊂ C, by A we denote the closure of A in C. For H being an open half-plane
in C, let H0

:= H\{0}. Given z0 ∈ C and r > 0, let D(z0, r) := {z ∈ C : |z−z0| < r}
and C(z0, r) := {z ∈ C : |z − z0| = r}. De�ne

}(z) :=
1

z
, z ∈ C \ {0}.
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For t ∈ [0, 1] and a, b ∈ C \ {0} let

Gt(a, b) := a1−tbt.

Lemma 2.1. Let H be an open half-plane in C such that 0 /∈ H. Then∧
a,b∈H0

∧
t∈[0,1]

Gt(a, b) ∈ H0
.

Proof. Since 0 /∈ H, either 0 ∈ ∂H, or 0 /∈ H. If 0 ∈ ∂H, then }(H) is an open
half-plane, say E, with 0 ∈ ∂E. Moreover

(2.1) }
(
H0
)

= E0
.

If 0 /∈ H, then

(2.2) }
(
H
)

= D(ξ, |ξ|) \ {0} =: D0
(ξ)

for some ξ ∈ C \ {0}. We can choose a half-line l with end point at 0 ∈ l such that

(2.3) E0 ⊂ C \ l

in case of (2.1), or

(2.4) D0
(ξ) ⊂ C \ l

in case of (2.2). Clearly, the branch of logarithm

(2.5) C \ l 3 w 7→ logw

exists.
Thus in case of (2.1), log

(
E0
)
is a horizontal strip of width π, so a convex set.

Now we prove that in case of (2.2), log
(
D0

(ξ)
)
is a convex set. To this end, we

show that ∂ log
(
D0

(ξ)
)
is a convex curve. Let C0(ξ) := C(ξ, |ξ|) \ {0}. Since

D0
(ξ) = D(ξ, |ξ|) ∪ C0(ξ),

so

(2.6) log
(
D0

(ξ)
)

= log
(
D(ξ, |ξ|) ∪ C0(ξ)

)
= log (D(ξ, |ξ|)) ∪ log

(
C0(ξ)

)
.

But
D(ξ, |ξ|) ∩ C0(ξ) = ∅,

so the univalence of the function (2.5) yield

log (D(ξ, |ξ|)) ∩ log
(
C0(ξ)

)
= log

(
D(ξ, |ξ|) ∩ C0(ξ)

)
= ∅.

Hence and by (2.6) we get

∂ log
(
D0

(ξ)
)

= log
(
C0(ξ)

)
.
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As ξ 6= 0, set ξ := |ξ|eiτ , where τ ∈ [0, 2π). Let

z(t) := |ξ|
(
eiτ + eit

)
, t ∈ (τ − π, τ + π),

be a parametrization of C0(ξ) and

w(t) := log z(t), t ∈ (τ − π, τ + π),

be a parametrization of log
(
C0(ξ)

)
. It su�ces to show that the function

(2.7) (τ − π, τ + π) 3 t 7→ argw′(t)

is monotonic (see e.g., [2, Vol. I, p. 110]). Indeed, since

z′(t) = i|ξ|eit, z′′(t) = −|ξ|eit, t ∈ (τ − π, τ + π),

we have
d

dt
argw′(t) = Im

w′′(t)

w′(t)
= Im

{
z′′(t)

z′(t)
− z′(t)

z(t)

}
= Im

{
i− i

eit

eiτ + eit

}
= Im

ieiτ

eiτ + eit

= Re
eiτ

eiτ + eit
=

1 + cos(τ − t)
|eiτ + eit|2

> 0, t ∈ (τ − π, τ + π).

This shows that the function (2.7) is increasing.

Summarizing, we proved that the sets log
(
E0
)
and log

(
D0

(ξ)
)
are convex.

Fix a, b ∈ H0
. We consider the case (2.1). The case (2.2) follows analogously.

Since

{}(a), }(b)} ⊂ }
(
H0
)

= E0
,

so

{log(}(a)), log(}(b))} ⊂ log
(
E0
)
.

Hence and from the convexity of log
(
E0
)
it follows that

(1− t) log(}(a)) + t log(}(b)) ∈ log
(
E0
)
, t ∈ [0, 1].

Consequently,

log
(
}(a)1−t}(b)t

)
∈ log

(
E0
)
, t ∈ [0, 1].

This and the univalence of the function (2.5) yield

(2.8) }(a)1−t}(b)t ∈ E0
, t ∈ [0, 1].

Since

}(a)1−t}(b)t =
1

a1−tbt
= }

(
a1−tbt

)
= }(Gt(a, b)), t ∈ [0, 1],

so by (2.8) and (2.1) we get

}(Gt(a, b)) ∈ E0
= }

(
H0
)
, t ∈ [0, 1].
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Consequently,

Gt(a, b) = } ◦ }(Gt(a, b)) ∈ } ◦ }
(
H0
)

= H0
, t ∈ [0, 1],

which ends the proof of the lemma. 2

Now we introduce the class Q of convex functions h with some natural regularity
of the boundary ∂h(D) (for details on corners of curves see e.g., [14, pp. 51-65]).

De�nition 2.2. ByQ we denote the class of convex functions h ∈ H with the following
properties:

(a) h(D) is bounded by �nitely many smooth arcs which form corners at their
end points (including corners at in�nity),

(b) E(h) is the set of all points ζ ∈ T which corresponds to corners h(ζ) of ∂h(D),

(c) h′(ζ) 6= 0 exists at every ζ ∈ T \ E(h).

The lemma below is similar to Lemma 2.3d of [13, p. 24]. However we prove it
in details when a dominant h is a function from the class Q, so ∂h(D) is a piecewise
smooth boundary curve having a �nite number of corners. Therefore this lemma is
useful for applications. Using it we omit a limiting procedure standardly used in
argumentation which can fail to be apply in some situations.

Lemma 2.2. Let h ∈ Q and p ∈ H be a nonconstant function with p(0) = h(0). If p

is not subordinate to h, then there exist z0 ∈ D, z0 6= 0, and ζ0 ∈ T \E(h) such that

(2.9) p
(
D|z0|

)
⊂ h(D)

and

(2.10) p(z0) = h(ζ0).

Proof. Assume that p is not subordinate to h. Then, in view of (1.1),

(2.11) p(D) = p

 ⋃
r∈(0,1)

Dr

 =
⋃

r∈(0,1)

p
(
Dr
)
6⊂ h(D).

De�ne

r0 := inf
{
r ∈ (0, 1) : p

(
Dr
)
6⊂ h(D)

}
.

Since, in view of (2.11), p
(
Dr
)
6⊂ h(D) for some r ∈ (0, 1), so r0 well de�ned. We

show that r0 ∈ (0, 1). Note �rst that

(2.12) p
(
Dr1
)
⊂ p

(
Dr2
)
, 0 < r1 ≤ r2 < 1.

By the continuity of p at zero, by the fact that p(0) = h(0) and h(D) is an open set,
it follows that there exists 0 < %1 < 1 such that

p
(
D%1
)

= p (D%1) ⊂ h(D).
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Thus, taking into account (2.12), we have

p
(
Dr
)
⊂ p

(
D%1
)
⊂ h(D), r ∈ (0, %1].

Consequently, 0 < %1 ≤ r0 ≤ 1.

On the other hand, from (2.11) it follows that for some %2 ∈ (0, 1),

p
(
D%2
)
6⊂ h(D).

Hence and by (2.12) we have

p
(
Dr
)
6⊂ h(D), r ∈ [%2, 1).

Consequently, 0 < %1 ≤ r0 ≤ %2 < 1, so r0 ∈ (0, 1).

Observe now that

(2.13) p
(
Dr0
)
6⊂ h(D).

Indeed, if otherwise
p
(
Dr0
)

= p (Dr0) ⊂ h(D),

then

(2.14) p (Dr0) ⊂ U ⊂ h(D)

for some open set U in h(D). By the continuity of p, the set p−1(U) is open and by
(2.14) we have

p−1
(
p (Dr0)

)
= p−1

(
p
(
Dr0
))

= Dr0 ⊂ p−1(U).

Thus there exists r1 ∈ (r0, 1) such that

Dr0 ⊂ Dr1 ⊂ p−1(U).

Hence and by (2.14) we have

p
(
Dr1
)
⊂ U ⊂ h(D).

But r1 > r0, which contradicts the de�nition of r0, so (2.13) holds. Thus

r0 = min
{
r ∈ (0, 1) : p

(
Dr
)
6⊂ h(D)

}
.

Moreover we can state that

(2.15) p (Dr0) ⊂ h(D).

Otherwise, there exists z0 ∈ Dr0 such that

(2.16) p(z0) /∈ h(D).

Since |z0| < r0, by (2.16) we have

p
(
D|z0|

)
6⊂ h(D),

which contradicts the de�nition of r0.

From (2.15) we have
p (Dr0) ⊂ h(D).

Hence

(2.17) p
(
Dr0
)

= p (Dr0) ⊂ h(D) = h(D) ∪ ∂h(D).
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By (2.13) there exists z0 ∈ Dr0 such that (2.16) holds. In view of (2.15), z0 ∈ Tr0 .
Since p(z0) ∈ p

(
Dr0
)
, by (2.17), p(z0) ∈ h(D) ∪ ∂h(D). Hence, taking into account

(2.16), we deduce that p(z0) ∈ ∂h(D). Thus there there exists ζ0 ∈ T such that

(2.18) p(z0) = h(ζ0).

Summarizing, we proved that (2.15) and (2.18), so (2.9) and (2.10) hold.
It remains to prove that ζ0 ∈ T\E(h). Suppose that ζ0 ∈ E(h). By the convexity

of h(D), h(ζ0) is the corner of opening α ∈ (0, π), i.e., the following limits

(2.19) lim
t→0+

arg
(
h
(
eitζ0

)
− h(ζ0)

)
=: β,

and

(2.20) lim
t→0+

arg
(
h
(
e−itζ0

)
− h(ζ0)

)
=: β + α

exist (see [14, p. 51]). Since h(D) is convex, so

h(D) ⊂ V,

where V is the closed convex sector with vertex at h(ζ0) bounded by two half-lines of
the directions (2.19) and (2.20), respectively. Hence and from (2.17) it follows that
p(z) ∈ V for every z ∈ Tr0 . Moreover, when p(z) 6= p(z0), in view of (2.18), we get

β ≤ arg (p(z)− p(z0)) = arg (p(z)− h(ζ0)) ≤ β + α.

Hence, for every z1, z2 ∈ Tr0 , such that p(z1) 6= p(z0) and p(z2) 6= p(z0) we obtain

(2.21) |arg (p(z2)− p(z0))− arg (p(z1)− p(z0))| ≤ α < π.

Assume �rst that p′(z0) 6= 0. Then there exists ε ∈ (0, 1− |z0|) such that p is an
invertible function in D(z0, ε). Thus the arc Tr0 ∩D(z0, ε) is mapped univalently by
p onto an analytic Jordan arc having a tangent line at p(z0). Thus

lim
t→0+

(
arg
(
p
(
e−itz0

)
− p(z0)

)
− arg

(
p
(
eitz0

)
− p(z0)

))
= π.

Hence and from the fact that α < π it follows that there exists t1 > 0 such that

α <
∣∣arg

(
p
(
e−it1z0

)
− p(z0)

)
− arg

(
p
(
eit1z0

)
− p(z0)

))
|,

which contradicts (2.21) with

z1 := eit1z0 and z2 := e−it1z0.

When p′(z0) = 0, then there exist k ∈ N and ε ∈ (0, 1− |z0|) such that

p(z) = p(z0) + qk(z), z ∈ D(z0, ε),

where q is an analytic invertible function in D(z0, ε) such that q(z0) = 0 and q′ has
no zero in D(z0, ε) (see [15, p. 216, Theorem 10.32]). Then, p fails to satisfy (2.21),
evidently.

In this way we proved that ζ0 ∈ T \E(h), which ends the proof of the lemma. 2
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Theorem 2.3. Let γ ∈ [0, 1], h ∈ Q be such that 0 ∈ h(D) and Φ : D → C be an

analytic function in a domain D in C such that D ⊃ h(D) and

(2.22) Re Φ(w) ≥ 0, w ∈ h(D).

If p ∈ H(Φ), p(0) = h(0) and

(2.23) pP γΦ,p ≺ h,

then

(2.24) p ≺ h.

Proof. Suppose, on the contrary, that p is not subordinate to h. From Lemma 2.2 it
follows that there exist z0 ∈ D and ζ0 ∈ T \ E(h) such that (2.9) and (2.10) hold.
Hence, applying Lemma 1.1 we have

(2.25) z0p
′(z0) = mζ0h

′(ζ0)

for some m ≥ 1.

Let H be the open half-plane supporting the convex domain h(D) at h(ζ0). Thus

(2.26) h(ζ0) ∈ ∂H

and

(2.27) h(D) ∩H = ∅.

Assume �rst that 0 ∈ h(D). Hence and from (2.27) it follows that

(2.28) 0 /∈ H.

Moreover, this and (2.26) yield h(ζ0) 6= 0. Thus

(2.29) h(ζ0) ∈ H0
.

Since ζ0h′(ζ0) 6= 0 is an outward normal to ∂h(D) at h(ζ0), so from (2.26) and (2.27)
we have

(2.30) h(ζ0) +mζ0h
′(ζ0)Φ(h(ζ0)) ∈ H.

Let

(2.31) a := p(z0),

and

(2.32) b := p(z0) + z0p
′(z0)Φ(p(z0)).

From (2.10) and (2.25) we have

a = h(ζ0), b = h(ζ0) +mζ0h
′(ζ0)Φ(h(ζ0)).

Thus in view of (2.29), (2.30) and (2.28) we get

(2.33) {a, b} ⊂ H0
.

But z0 ∈ D \ p−1(0) and by (2.33), ab 6= 0, so in view of (1.3), (2.31) and (2.32) we
have
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p(z0)P γΦ,p(z0) = p(z0)

[
1 +

z0p
′(z0)

p(z0)
Φ(p(z0))

]γ
(2.34)

= [p(z0)]
1−γ

[p(z0) + z0p
′(z0)Φ(p(z0))]

γ

= Gγ(a, b).

Hence and from (2.33), by applying Lemma 2.1 we get

p(z0)P γΦ,p(z0) = Gγ(a, b) ∈ H0
.

Consequently, from (2.27) we have

(2.35) p(z0)P γΦ,p(z0) /∈ h(D),

which contradicts (2.23).
Assume now that 0 ∈ ∂h(D). Let a and b be given by (2.31) and (2.32), respec-

tively, and suppose that (2.33) holds. Then we get again (2.35), so a contradiction.
Suppose that

(2.36) a = h(ζ0) = p(z0) = 0.

Since p ∈ H(Φ), and z0 ∈ p−1(0), by (1.3),

PΦ,p(z0) = 1 + z0 lim
D3z→z0

p′(z)Φ(p(z))

p(z)

exists and is �nite. This and (2.36) yield

p(z0)PΦ,p(z0) = 0.

But 0 ∈ ∂h(D), which contradicts (2.23).
At the end, observe that the case

a = p(z0) 6= 0

and
b = p(z0) + z0p

′(z0)Φ(p(z0)) = 0

does not hold, since then PΦ,p(z0) = 0, which contradicts the de�nition of PΦ,p. This
ends the proof of the theorem. 2

Theorem 2.4. Let γ ∈ [0, 1], h ∈ Q be such that 0 ∈ h(D) and Φ : D → C be

an analytic function in a domain D in C such that D ⊃ h(D) and (2.22) hold. If

p ∈ H0(Φ), p(0) = h(0) and

p(z)

[
1 +

zp′(z)

p(z)
Φ(p(z))

]γ
≺ h(z), z ∈ D,

then

p ≺ h.

Remark 2.6. In typical applications, the convex function h is from the class Q.
Therefore Theorem 2.3 is enough general and useful to apply.
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When h is arbitrary convex functions, then its boundary curve can contain at
most countably many corners (see [14, p. 65]) which have accumulating points either
�nite or at the in�nity.

For γ := 1 we get a weaker form of Theorem 1 of [12] (see [6, p. 379]). In this
case the assumption 0 ∈ h(D) is not needed.

Corollary 2.5. Let h ∈ Q, Φ : D → C be an analytic function in a domain D in

C such that D ⊃ h(D) and (2.22) hold. If p ∈ H is a nonconstant function with

p(0) = h(0) and

p(z) + zp′(z)Φ(p(z)) ≺ h(z), z ∈ D,

then

p ≺ h.

Example 2.6. Functions h below are elements of Q.
1. Given β ∈ (0, 1], let

h(z) = hβ(z) :=

(
1 + z

1− z

)β
, z ∈ D.

Then E(hβ) = {−1, 1} for β ∈ (0, 1) and E(h1) = {1}.
2. Given −1 ≤ B < 1, let

h(z) = hB(z) :=
1 + z

1 +Bz
, z ∈ D.

Then E(hB) = ∅ for −1 < B < 1 and E(h−1) = {1}.
3. Given M > 0 and a ∈ DM , let

h(z) = hM (z) := M
Mz + a

M + az
, z ∈ D.

Then E(hM ) = ∅.
4. Given n ≥ 3, let

h(z) = hn(z) :=

∫ z

0

(ζn − 1)
−2/n

dζ, z ∈ D.

Then hn(D) is a regular convex polygon with n-sides and with

E(hn) = {e2kπi/n : k = 0, . . . , n− 1}.

Moreover hn(0) = 0 is a center of the polygon hn(D).
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O PODPORZADKOWANIU RÓ�NICZKOWYM �REDNIEJ GEOME-
TRYCZNEJ

S t r e s z c z e n i e
Dla t ∈ [0, 1] i a, b ∈ C\{0}, niech Gt(a, b) := a1−tbt b�edzie ±redni�a geometryczn�a liczb

a i b. W pracy tej, dla ustalonego γ ∈ [0, 1], badane jest ró»niczkowe podporz�adkowanie
nast�epuj�acej postaci:

Gγ

(
p(z), p(z) + zp′(z)Φ(p(z))

)
≺ h(z)⇒ p(z) ≺ h(z)

dla z ∈ D := {z ∈ C : |z| < 1}, gdzie p, h i Φ speªniaj�a potrzebne zaªo»enia.

Sªowa kluczowe: podporzadkowanie ró»niczkowe, ±rednia geometryczna, funkcje wypukªe
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ON SOME GENERALIZATION OF THE COX-ROSS-RUBINSTEIN
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Summary

In this paper we present the generalization of the Cox-Ross-Rubinstein (CRR) model.
We assume that upper and lower levels of the stock price do not satisfy the condition
un · dn = 1, which was assumed in the CRR model. Next we demonstrate the convergence
of option prices in the generalization of the CRR model to the price that is given by some
formula that is corresponding to the Black-Scholes formula.
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European call option, the limit case of the Binomial Model of Cox-Ross-Rubinstein model
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1. Introduction

In this chapter we demonstrate some notations connected with the pricing of a
European call option and we recall the Black-Scholes formula and the CRR model
[1�4].

1.1. European call option

A European call option is a contract which gives the holder the right but not the
obligation to buy the underlying asset (for example stocks) for a strike price K
(determined at t = 0) only at a future date T , which is called the expiry date. Since
the holder has the right and not the obligation to buy the asset he will only exercise
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it if it is pro�table to him. So he will exercise the option if the market price is greater
than K. Of course, the option holder pays the premium and this premium is called
the option pricing. Formally, we have the following de�nition.

De�nition 1.1. A European call option is a pair (T,CT ) where T > 0 and CT (·) :

R+ → R is the function

CT (s) = (s−K)+ =

{
s−K if s > K,

0 if s ≤ K, for some K ∈ R+.

1.2. Black-Scholes formula

For �xed numbers K > 0, r > 0, σ2 > 0, T > 0 the following formula is very
famous.

De�nition 1.2. The function Ct(s), 0 ≤ t ≤ T , s > 0, is said the Black-Scholes price
if

Ct(s) = s · φ(d+)−Ke−r(T−t) · φ(d−),

where φ(·) � the cumulative normal distribution function,

d+ =
ln s

K +
(
r + σ2

2

)
(T − t)

σ
√
T − t

,

d− =
ln s

K +
(
r − σ2

2

)
(T − t)

σ
√
T − t

.

The famous interpretation is following: K describes the price that a holder of a
European call option will pay a seller if he wants to make this transaction in the
expiry date T , r is the interest rate of the bank account (or credit) for one year or
one other �xed period of time, σ2 describes speed of random changes of stock prices,
namely σ2 is the variance of ln S(1)

S0
, S(1) is random stock price after one period of

time and S0 is the beginning stock price. Then, if S(t) denotes the process of changes
of stock prices, then

Ct(S(t)) = S(t) · φ(d+)−Ke−r(T−t) · φ(d−)

is the pricing of a European call option that we describe in the De�nition 1.1.
One of a way of an explanation for sense of this pricing is taking into consideration

the limit case of the Binomial Model of Cox-Ross-Rubinstein (CRR).

1.3. CRR model

In this section t ∈ N = {0, 1, 2, . . .}.

De�nition 1.3.1. The system of all sequences (S(0), S(1), . . . , S(T )) satisfying

S(0) = s0

S(t) = S(t− 1)u or S(t) = S(t− 1)d, 1 ≤ t ≤ T,
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with some number r̂ and �xed T ∈ N , s0 > 0, 0 < d < r̂ < u, is called the Binomial
Model of Cox-Ross-Rubinstein (CRR). These sequences can be presented as paths
in the following diagram:

Interpretation
The sequence (S(0), . . . , S(T )) presents all possible changes of the stock price,

r̂ = 1 + r, where r is the interest rate of the bank account (or credit) for a �xed
short period of time, t is a number of short periods, u and d are the only possible
changes of stock prices during one short period.

De�nition 1.3.2. A European type option in CRR model is a pair (T,CT ) where
T > 0 and CT is a real function on the set {s0dT , s0udT−1, . . . , s0uT−1d, s0uT }.

The following pricing of such option is famous and important.

De�nition 1.3.3 (CRR-pricing). For the �xed European call option

CT (·) : {s0dT , s0udT−1, . . . , s0uT−1d, s0uT } → R

with the expiry date T the following formula depended on parameter s0

C0(s0) =
1

r̂T

T∑
k=0

(
T

k

)
p∗kq∗T−kCT (s0u

kdT−k),

where p∗ = 1− q∗ is so called martingale probability,

p∗ =
r̂ − d
u− d

,

is called the CRR price of the European call option.

As a particular case of a European type option we have:

De�nition 1.3.4. A pair (T,CT ) is a European call option with a strike price K and
an expiry date T if
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CT (s0u
kdT−k) = (s0u

kdT−k −K)+.

Corollary 1.3.1. For a European call option CT (·) with the expiry date T and the

strike price K = s0u
k0dT−k0 , 0 ≤ k0 ≤ T , the CRR-option pricing is described by

the following formula:

(1.3) C0(s0) = s0D̄ −
K

r̂T
D∗,

where

D̄ =

T∑
k=k0

(
T

k

)
· p̄k · q̄T−k, D∗ =

T∑
k=k0

(
T

k

)
· p∗k · q∗T−k,

k0 =
ln K

S0
− T · ln d

ln
(
u
d

) , p∗ =
r̂ − d
u− d

, q∗ =
u− r̂
u− d

, p̄ = p∗ · u
r̂
, q̄ = q∗ · d

r̂
.

1.4. Calibration of CRR model

In this section we adjust parameters of CRR Model to the �nancial market. Of
course, on the �nancial market we can trade in stocks at any time during the day
and stock prices can get more than two values during the day. That is why, the
adjustment of parameters of CRR Model is necessary.

Let τ denotes the quantity of time units to expiry time (for example the quantity
of months), and n � the quantity of moments of the portfolio's change at one time
unit. Thus we shall discuss a sequence of CRR models, indexed by n ≥ 1. In such
model we have expiry date Tn = n · τ and it proves to be natural to take an interest
rate for one (short) period r̂n = er·

1
n , and possible price changes

un = e
σ 1√

n , dn =
1

un
= e
−σ 1√

n .

Corollary 1.4.1. If we provide for all assumption given above and the formula (1.3)

we get the corresponding formula for the pricing a European call option:

(1.4) C0,n(s0) = s0D̄n −
K

erτ
D∗n,

where

D̄n =

nτ∑
k=k0,n

(
nτ

k

)
· p̄kn · q̄nτ−kn , D∗n =

nτ∑
k=k0,n

(
nτ

k

)
· p∗kn · q∗nτ−kn

k0,n =
ln K

s0
− τ · n · ln dn

ln
(
un
dn

) =

√
n ln K

s0
+ σ · τ · n

2σ
,

p∗n =
r̂n − dn
un − dn

, q∗n =
un − r̂n
un − dn

, p̄n = p∗n ·
un
r̂n
, q̄n = q∗n ·

dn
r̂n
.
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1.5. Convergence of option prices in the CRR model to the Black-Scholes
formula

We shall describe the convergence next to n → ∞ of CRR model to Black-Scholes
formula. For a sequence of function (1.4) we have

lim
n→∞

C0,n(s0) = s0φ

 ln s0
K + τ

(
r + σ2

2

)
σ
√
τ

− K

erτ
φ

 ln s0
K + τ

(
r − σ2

2

)
σ
√
τ

 .

It is the famous Black-Scholes formula.

2. Generalization of the CRR model

In this chapter we shall research some generalization of the CRR Model and limit
theorems that include generalization of the Black-Scholes formula.

2.1. Assumptions

Now we assume that in n-th CRR model

un = e
σ 1√

n · eρ
1√
n , dn =

e2ρ
1
n

un
= e
−σ 1√

n · eρ 1
n , r̂n = er

1
n .

The investigation of a European call option leads to limit theorems for the following
system of functions.

De�nition 2.1. The formula for the pricing a European call option is the following

(2.1) C0,n(s0) = s0D̄n −
K

erτ
D∗n,

where

D̄n =

nτ∑
k=k0,n

(
nτ

k

)
· p̄kn · q̄nτ−kn , D∗n =

nτ∑
k=k0,n

(
nτ

k

)
· p∗kn q̇∗nτ−kn ,

k0,n =
ln K

s0
− τ · n · ln dn

ln
(
un
dn

) =

√
n ln K

s0
+ σ · τ · n

2σ
,

p∗n =
r̂n − dn
un − dn

, q∗n =
un − r̂n
un − dn

, p̄n = p∗n ·
un
r̂n
, q̄n = q∗n ·

dn
r̂n
,

un = e
σ 1√

n · eρ 1
n and dn =

e2ρ
1
n

un
= e
−σ 1√

n · eρ 1
n .

2.2. Convergence to the Black-Scholes type formula

In this section we get the convergence next to n → ∞ of generalization of CRR
model to the formula that is corresponding to the Black-Scholes formula.
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Theorem 2.2.1. For a European call option with the strike price K, the expiry date

τ , the beginning stock price s0, the interest rate of the bank account (or credit) for

one unit r and volatility σ, de�ned in (2.1) we have

lim
n→∞

C0,n(s0) = s0φ

 ln s0
K + τ

(
r − ρ+ σ2

2

)
σ
√
τ

− K

erτ
φ

 ln s0
K + τ

(
r − ρ− σ2

2

)
σ
√
τ

 .

This theorem is interesting, because ρ can be interpreted as the average change
of logarithm of stocks' prices after one time unit (for example after one month).
Such parameter obviously should be considered in real markets. Before we prove the
theorem 2.2.1 we present three lemmas.

Lemma 2.2.1. We have the following convergence:√
p∗n · q∗n

n→∞→ 1

2
,

√
p̄n · q̄n

n→∞→ 1

2
.

Proof.

lim
n→∞

√
p∗n · q∗n = lim

n→∞

√√√√ er
1
n − e−σ

1√
n · eρ 1

n

e
σ 1√

n · eρ 1
n − e−σ

1√
n · eρ 1

n

·

√√√√ e
ρ 1√

n · eρ 1
n − er 1

n

e
σ 1√

n · eρ 1
n − e−σ

1√
n · eρ 1

n

=

(
ε :=

1√
n

)

= lim
ε→0

√
er·ε2 − e−σ·ε · eρε2

eσ·ε · eρ·ε2 − e−σ·ε · eρ·ε2
·

√
eσ·ε · eρ·ε2 − er·ε2

eσ·ε · eρ·ε2 − e−σ·ε · eρ·ε2
H
= . . .

=

√
σ

σ + σ
·
√

σ

σ + σ
=

1

2
.

lim
n→∞

√
p̄n · q̄n = lim

n→∞

√
p∗n ·

e
σ· 1√

n · eρ· 1n
er·

1
n

· q∗n
e
−σ· 1√

n · eρ· 1n
er·

1
n

= lim
n→∞

√
p∗n · q∗n =

1

2
.

�
In the following lemmas we use the symbol o(nα), which means some sequence

(an)n∈N that satis�es
an
nα

n→∞→ 0, α ∈ R.

We have the following obvious properties:

a) o(nα+β) stands in for o(nα) · o(nβ),
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b) for α ≤ β, o(nβ) stands in for o(nα) + o(nβ),

c) o(nα+β) stands in for o(nα) · nβ ,

d) for α < 0, 1 + o(nα) stands in for 1
1+o(nα) .

Lemma 2.2.2. We have the following asymptotes:

p∗n =
1

2
+

(
r − ρ
2σ

− 1

4
σ

)
1√
n

+ o

(
1√
n

)
n→∞→ 1

2
,

p̄n =
1

2
+

(
r − ρ
2σ

+
1

4
σ

)
1√
n

+ o

(
1√
n

)
n→∞→ 1

2
.

Proof.

p∗n =
er

1
n − e−σ

1√
n · eρ 1

n

e
σ 1√

n · eρ 1
n − e−σ

1√
n · eρ 1

n

=
e(r−ρ)

1
n − e−σ

1√
n

e
σ 1√

n − e−σ
1√
n

=
1 + (r − ρ) 1

n + o
(
1
n

)
− 1 + σ 1√

n
− 1

2σ
2 1
n + o

(
1
n

)
1 + σ 1√

n
+ 1

2σ
2 1
n + o

(
1
n

)
− 1 + σ 1√

n
− 1

2σ
2 1
n + o

(
1
n

)
=
σ 1√

n
+
(
r − ρ− 1

2σ
2
)

1
n + o

(
1
n

)
2σ 1√

n
+ o

(
1
n

) =

1
2 +

(
r
2σ −

ρ
2σ −

1
4σ
)

1√
n

+
o( 1
n )

2σ 1√
n

1 +
o( 1
n )

2σ 1√
n

=

[
1

2
+

(
r

2σ
− ρ

2σ
− 1

4
σ

)
1√
n

+ o

(
1√
n

)]
·
(

1 + o

(
1√
n

))
=

1

2
+

(
r − ρ
2σ

− 1

4
σ

)
1√
n

+ o

(
1√
n

)
,

p̄n = p∗n ·
un
r̂n

=

[
1

2
+

(
r − ρ
2σ

− 1

4
σ

)
1√
n

+ o

(
1√
n

)]
· e

σ 1√
n

e(r−ρ)
1
n

=

[
1

2
+

(
r − ρ
2σ

− 1

4
σ

)
1√
n

+ o

(
1√
n
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·

1 + σ 1√
n

+ o
(

1√
n

)
1 + (r − ρ) 1

n + o
(
1
n

)
=

[
1

2
+

(
r − ρ
2σ

− 1

4
σ

)
1√
n

+ o

(
1√
n

)]
·
(

1 + σ
1√
n

+ o

(
1√
n

))
·
(

1 + o

(
1√
n

))
=

1

2
+

(
r − ρ
2σ

− 1

4
σ

)
1√
n

+ o

(
1√
n

)
+

1

2
σ

1√
n

+ o

(
1√
n

)
=

1

2
+

(
r − ρ
2σ

+
1

4
σ

)
1√
n

+ o

(
1√
n

)
.
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�Lemma 2.2.3. We have the following convergence:

√
n (1− 2p∗n)

n→∞→ 1

2
σ − r − ρ

σ
,

√
n (1− 2p̄n)

n→∞→ −1

2
σ − r − ρ

σ
.

Proof. From lemma 2.2.2 we get

√
n (1− 2p∗n) =

√
n

(
1− 2

(
1

2
+

(
r − ρ
2σ

− 1

4
σ

)
1√
n

+ o

(
1√
n

)))
=

1

2
σ − r − ρ

σ
+ o(1)

n→∞→ 1

2
σ − r − ρ

σ
,

√
n (1− 2p̄n) =

√
n

(
1− 2

(
1

2
+

(
r − ρ
2σ

+
1

4
σ

)
1√
n

+ o

(
1√
n

)))
=−1

2
σ − r − ρ

σ
+ o(1)

n→∞→ −1

2
σ − r − ρ

σ
.

�

We shall use the following version of Central Limit Theorem. It is an immediate
consequence of Lindeberg-Feller theorem.

Theorem 2.2.2. For any sequences pn → p, qn = 1− pn, xn → x with 0 ≤ pn ≤ 1

and 0 < p < 1, and for sequences of independent random variables Xn
1 , X

n
2 , . . . , X

n
n

with P (Xn
i = 1) = pn, P (Xn

i = 0) = q, we have

P

(
Sn − ESn√

D2Sn
< xn

)
n→∞→ φ(x),

where Sn = Xn
1 +Xn

2 + . . .+Xn
n . It means that∑

0≤k≤n
k<xn

√
npnqn+npn

(
n

k

)
pknq

n−k
n

n→∞→ φ(x).

Proof the theorem 2.2.1. We notice

ko,n − nτ · p̄n√
nτ · p̄nq̄n

=
ln K

s0
+ τσ

√
n(1− 2p̄n)

2
√
τσ
√
p̄nq̄n

,

ko,n − nτ · p∗n√
nτ · p∗nq∗n

=
ln K

s0
+ τσ

√
n(1− 2p∗n)

2
√
τσ
√
p∗nq
∗
n

.

From Lemmas 2.2.1 and 2.2.3 we know that the limits next to n → ∞ of the
expressions above exist. Let denote:



On some generalization of the Cox-Ross-Rubinstein model and its asymptotics 33

ȳ = lim
n→∞

ln K
s0

+ τσ
√
n(1− 2p̄n)

2
√
τσ
√
p̄nq̄n

,

y∗ = lim
n→∞

ln K
s0

+ τσ
√
n(1− 2p∗n)

2
√
τσ
√
p∗nq
∗
n

,

Snτ � the number of success in Bernoulli scheme with nτ samples and the probability
of success in one sample p̄n.

Then from the Theorem 2.2.2 , Lemmas 2.2.1�2.2.3 and De�nition 2.1 we have

lim
n→∞

D̄n = 1− φ(ȳ),

analogically

lim
n→∞

D∗n = 1− φ(y∗),

and

lim
n→∞

Co,n(s0) = s0(1− φ(ȳ))− K

erτ
(1− φ(y∗))

= s0φ

 ln s0
K + τ

(
r − ρ+ σ2

2

)
σ
√
τ

− K

erτ
φ

 ln s0
K + τ

(
r − ρ− σ2

2

)
σ
√
τ

 .
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Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Com-
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UOGÓLNIENIE MODELU COXA-ROSSA-RUBINSTEINA
I JEGO PRZEJ�CIE GRANICZNE DO ANALOGU
MODELU BLACKA-SCHOLESA

S t r e s z c z e n i e
W pracy zaprezentowano uogólnienie modelu Coxa-Rossa-Rubinsteina (CRR). Zaªo-

»ono, »e górne i dolne wzrosty ceny akcji nie speªniaj�a warunku un · dn = 1, przyj�etego
w klasycznym modelu CRR. Nast�epnie przedstawiono przej±cie graniczne przy n → ∞
uogólnionego modelu Coxa-Rossa-Rubinsteina do analogu modelu Blacka-Scholesa. Mo»na
wówczas uzyska¢ wynik równie przejrzysty jak klasyczna formuªa Blacka-Scholesa.

Sªowa kluczowe: model CRR, model Coxa-Rossa-Rubinsteina, formuªa Blacka-Scholesa,
wzór Blacka-Scholesa, zbie»no±¢ do formuªy Blacka-Scholesa, wycena opcji, zbie»no±¢ wy-
ceny opcji w modelu CRR do formuªy Blacka-Scholesa, graniczne przypadki modelu CRR
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pp. 35–44

In memory of

Professor Luboš Valenta
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ON THE VALENTA MODEL AND ITS ACTUALITY III

Summary
The present article describes some events which characterized the development of the

theory of magnetic thin films. In this context the present contribution can be treated as
the third part of the previous papers On the Valenta model and its actuality I and II [1].

The model originally introduced by Luboš Valenta, in order to describe magnetic thin
films properties, at the level of molecular field approximation (MFA) and, recently modified
by the group working under the supervision of Leszek Wojtczak (together with B. Mrygoń,
I. Zasada, B. Busiakiewicz), in particular, in terms of reaction field approach (RFA), is still
of great interest for modern physics and technology. The present article is meant to be
a report concerning the research cooperation schemes between the Charles University in
Prague and the University of  Lódź.

Keywords and phrases: ferromagnetic thin films, spin autocorrelation functions, Valenta
model modified by Reaction Field Approach

1. Introduction

Fifty five years ago Luboš Valenta introduced the model describing properties of

magnetic thin films, in particular, the spontaneous magnetization and its angular and

spatial distribution. The model allows us to construct spin waves, their resonances

including the instability conditions as well as the phase transitions theory based

on the order-disorder crystalline lattice thermodynamics and electronic phenomena

[1, 2].

The model for magnetic thin films known in literature as the Valenta model has

been proceeded by a pioneering work on the angular distribution of magnetization in
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one-dimensional toroid [3]. The model, originally formulated by Valenta is equivalent

to the approach at the level of molecular field approximation (MFA) [4]. This work

has been found as a good starting point in order to explain the surface deformation

and the role of the structure, in particular, characteristic for helimagnetism in rare-

earth thin films, the Mössbauer effect as well as the neutron inelastic magnetic

scattering [5].

It seems to us that the Valenta model is very convenient for interpretation of spin

waves properties, first of all, the physical nature of standing spin waves in magnetic

films propagating in the samples of metals: iron, nickel and cobalt when the structure

with two sublattices is reflected by acoustic and optical branches. Moreover, a spin

wave means a propagation spin deformation inside the network sites. The spins

do not change their positions which form the ground state with respect to one or

two-dimensional trajectory of a deformation responsible for the formation of spin

waves, respectively.

Taking into account the Valenta model in the representation of localized spins

we can see that the structure is well established for different types of exchange

or anisotropy interactions which play an essential role for a given construction of

occupied lattice sites.

Fig. 1: Professor Luboš Valenta (1924–1994). Professor of the Charles University in Prague
(Katedra fyziky pevných látek) and the Friedrich Schiller University in Jena, Doctor honoris
causa of the University of  Lódź.
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Spin waves (or equivalent quasiparticles, i.e. magnons) belong to the class of

particles which are of a quantum and collective nature at the same time.

In the case of magnetic thin films the relations between thermodynamic properties

and geometry of samples play an essential role for the calculations of the average

values, in particular, frequencies whose sequences are responsible for the spectrum

properties. Spin waves in the direction perpendicular to the surface of a sample are

standing waves and they are of discretized character in the momentum space.

The present paper is meant to commemorate the 50th anniversary of the be-

ginning of the international cooperation between the Universities of Prague,  Lódź,

Košice and Jena. The research, devoted to the problems of magnetic thin films,

develops fruitfully until the present moment.

2. The beginnings the research cooperation scheme
(Prague- Lódź)

The above research achievements were fundamental for the cooperation scheme es-

tablished between Charles University in Prague (earlier ČVUT in Prague) and the

University of  Lódź organized and headed by Professor L. Valenta who was preparing

the co-workers in the first period of the research investigations in the field of mag-

netism. Speaking more precisely, he was preparing specialists in Prague and in  Lódź

for thin films magnetism.

The opening scenario began the first period of the research investigations (1964–

1994). It was fifty years ago in 1964 in Prague, in the Czech Technical University

(ČVUT), in Mysĺıkova street close to the Vltava river bank. In that time Pro-

fessor L. Valenta was waiting in his laboratory of the Department of Solid State

Physics (Katedra fyziky pevných laték) for two young postgraduate students, tenta-

tive co-workers in order to take part in the informal project on thin films. Professor

L. Valenta was very well known in the international magnetic community as a physi-

cist and a specialist in the theory of thin films physics and as the author of an

important model of magnetic films which received the State Award in Physics. Two

of Professor Valenta’s former young postgraduate students are the authors of the

present article – Štefan Zajac who fifty years ago was a student of ČVUT finishing

his diploma thesis devoted to the contribution of inelastic scattering of polarized

neutrons in Fe and Ni [5], and Leszek Wojtczak, a postgraduate student at the Uni-

versity of  Lódź (Poland) who worked under the supervision of Professor L. Valenta in

Prague. L. Wojtczak’s doctoral dissertation was devoted to The eigenfunctions and

energy eigenvalues of atoms. The supervisor of the dissertation, Professor Tadeusz

Tietz was a very well known physicist among the specialists of the statistical theory

of atoms. The program of the scholarship in Prague refers to the red shift of spin

wave frequencies in Fe and Ni as well as to the characterization of the acoustic and

optic branches in Co spectrum [6].
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3. The development of the research cooperation scheme
(Prague,  Lódź, Jena, Košice)

The second period of the research cooperation between the universities in Prague

and in  Lódź (1994–2014) is mainly connected with the discussion of the reaction field

approach (RFA) applied to the considerations in the case of magnetic thin films.

The method seems to be one of many evident calculations procedures in the case

when the convergence of a number of magnons is discussed in the context of the

construction which changes the static properties and influences the thermodynamics

when the size plays an important and effective role. The spontaneous magnetization

is given by a distribution dependent on the surface conditions.

In this context we can observe an extension of the anisotropy considerations

which play an important role in the description of the nature of thin films and their

surfaces.

The first period of the Prague- Lódź cooperation scheme was connected with the

original version of the Valenta model in which we considered the sample geometry

whose discretization reflects the crystallographic lattice properties. Moreover, in the

case of small particles their thermodynamics is modified for inhomogeneous media.

The second period of the Prague- Lódź cooperation scheme was devoted to the

presentation of a review by the modification of the original structure and it allowed

us to consider some effective parameters by mutual relations (RFA); in particular,

the kinetic equation for spins introduced by Oguchi in order to consider the damping

term or the construction introduced by Néel in the form of sublattices. The properties

of the (RFA) model are described more precisely in the present paper (part II) [1].

The report concerning the international cooperation on magnetic thin films con-

tains also information on the accompanying events which created the special atmo-

sphere and intellectual climate of the discussions [7].

Gradually, the number of research groups was strengthened by inviting colleagues

from the Friedrich Schiller University in Jena. Continuing research on directly ap-

plied transformations (Holstein-Primakoff transformations) the participants of the

project could organize, more or less formally, seminars, meetings and develop other

conditions to make the cooperation more fruitful.

The Quantum Chemistry Group was supervised by Professor L. Valenta with

the help of Professor Hans Müller from Jena while Professor L. Wojtczak ( Lódź)

was responsible for the cooperation links headed in the second period by Professor

L. Skála (Prague) and Professor S. Romanowski ( Lódź).

Professor L. Valenta was elected to be chairman of the International Organizing

Committee (IOC) for the International Colloquium on Magnetic Films and Surfaces

(ICMFS). Trilateral Seminars on Contemporary Quantum Chemistry were devoted

to the problems of fundamental elements serving the proper structure.

In 1966 the Prague- Lódź team accepted dr. Andrzej Sukiennicki from the Univer-

sity of Technology in Warsaw who was working under the supervision of Professor
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Fig. 2: During the 6th General Conference of the European Physical Society (1984) in
Prague. From the left: Dr O. B́ılek (Charles University, Prague), Professor C. Rau (Rice Uni-
versity, Houston), Professor Luboš Valenta (Charles University, Prague), Professor Š. Zajac
(Charles University, Prague) and Professor L. Wojtczak (University of  Lódź).

Valenta. Taking part in the project he obtained his excellent result, the so-called

Valenta-Sukiennicki model which was very often applied in literature as a model

describing an order-disorder transition in the case of an inhomogeneous system de-

termined by the structural network. Recently, an extended version of this model

confirmed the actuality of the Valenta-Sukiennicki approach to the considered prob-

lems. At the same time the surface model is an example of construction by means

of application to the extended version of the model.

Next, we consider the achievements obtained within the Prague-Košice project on

the basis of which a cooperation between the University of  Lódź and the P. J. Šafárik

University in Košice began. The first period of the informal project development was

a time when the University in Košice was founded. Physics, which was included to

the Faculty of Sciences, directed its research towards magnetism taking into account

both the aspects, namely, the theoretical approach as well as the experiment.

Creating the initial basis conditions for the construction of laboratories in Košice

was possible thanks to the activity of two people – Professor L. Valenta, who was a

permanent guest in Košice, and Professor Vladimir Hajko, physicist, who was the

first rector of the P. J. Šafárik University in Košice.
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Thirty years ago the University od  Lódź was included to the cooperation in the

 Lódź-Košice group starting with a personal exchange between the research groups

headed by Professor T. Balcerzak ( Lódź) and Professor A. Bobák (Košice). One of

the recent topics of professor Balcerzak’s research is the antiferromagnetic interlayer

coupling in diluted magnetic thin films with RKKY interaction confirmed by the

excellent experiment performed in the group of Professor J. Furdyna [8].

Another group of problems reflected in a series of papers concerns the anisotropic

Heisenberg model studied for the bilayer multilayer as well as the bulk diluted

system. Other papers discuss approaches convenient in the context of the magne-

tocaloric effect studies.

The thermodynamic properties resulting from the non-magnetic Gibbs energy

analysis have been calculated and successfully compared with experimental data

for argon. In the magnetic materials studies, in particular, the compensation effect

for the Curie temperature has been found for asymmetric interactions within the

neighbouring planes of the bilayer.

The number of papers and their relevance to some of the most topical problems

of magnetism are the most tangible results of the  Lódź-Košice cooperation.

4. Final conclusions

The main result of the paper II is finding a comparison between the Valenta model

originally applied in MFA approach and the model modified in terms of RFA, intro-

duced to the theoretical construction considered in both cases – thin films as well

as nanoparticles structures.

An evident advantage in the case of RFA method is observed when a generalized

susceptibility considerations are included to the sample energy minimization and lead

to the conclusion that the convergence of a mean number of magnons is obtained

even in thin films, which differs from the result of MFA calculations.

We consider the above problem as explanation of the spontaneous magnetization

in some isotropic layered system which gives the average magnetization vanishing at

the temperature assumed to be different from zero.

For this purpose, we remember that a thin film in the Valenta model is treated

as a set of n monoatomic layers parallel with the film surfaces. The set of layers is

equivalent in its interpretation to Néel sublattices embedded in the limited space of

the discrete geometry. Of course, the construction of the lattice for the structural

form in the case of RFA is the same.

In terms of thermodynamics we consider the properties of a sample treated as a

composition of layers which form homogeneous independent subsystems. Thus, the

relation between the main values of spontaneous magnetization and the effective

number of magnons is different when MFA or RFA are applied [9].

Concluding we can see that the mean number of particles vanishes when T 6= 0

and it takes the value different from zero when T = 0.
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Fig. 3: Professor L. Wojtczak during a lecture in 1994.

The second conclusion which is important for the present paper and brings inter-

pretations of great interest for physics methodology refers to the interplay between

theory and experiment.

The theory and, first of all, its development from MFA to RFA shows the in-

terpretation of the considered effects at the surface. At the same effects time, the

theoretical description is an inspiration of new experimental techniques based on

the investigated effects. This interdependence is seen particularly in the surface

physics domain. The relation between theory and experiment is a leading factor in

the progress of coherent and successive interpretations. The method applied to the

long and short-ranged ferromagnetic order at the topmost surface layer as well as

layer in the middle of the interface is an example of mutual considerations.

Next, we have applied the Valenta model to the description of the electron-phonon

system (Zajac and Wojtczak) which is very convenient for the model of electrical

conductivity. We plan at this point to reconstruct the transport theory allowing us

to describe the giant magnetoresistance.
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The model and its actuality is still accepted in the case of order disorder phase

transition (Valenta and Sukiennicki). A comparison of experimental data and theo-

retical results shows, however, that the use of the standard MFA is insufficient for the

description of the nanoparticles. This picture needs the stochastic and stoichiometric

distribution when we use RFA [9].

Finally, we can conclude that the Valenta model can be useful not only in the

case of localized spins in the ferromagnetic structure but also in the systems of itin-

erant electrons in the band theory applied for magnetic samples, rare earth metals,

with special emphasis on the surface and interface properties like surface magneti-

sation, contact potentials or sorption effects (Valenta and Wojtczak). The proposed

formalism works, roughly speaking, on the Hartee-Fock level of accuracy, as shown

in some earlier papers whose applicability has been tested on Ni films and on Ni-Fe

alloys (Valenta and Wojtczak with the assistance of Nhan and Khan, students from

Viet-Nam).

Taking into account the present experience in the field we expect that the band

model can be extended and modified to RFA considerations [9].

Fig. 4: Professor Štefan Zajac from the Czech Technical University in Prague [10].

Let us remark that the important biographical facts mentioned in the first part

of our article are also reflected in the main achievements of Professor L. Valenta

presented by him during the honoris causa doctor [11] ceremony which was held in

the University of  Lódź. The Senate of the University of  Lódź conferred the title and

the degree of the honoris causa doctor upon Professor L. Valenta in the light of the

topicality and practical applicability of his achievements as well as of the cooperation
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the survey of which was presented during the ceremony, in 1994. The lecture delivered

by the laureate showed the discovery of thermodynamics and geometry links and

their importance for the modified versions of the fundamental model.

The lecture, delivered in Polish, focussed on some of the last original ideas intro-

duced by Professor Valenta and ended with prospective expectations and develop-

ments of surface physics.
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Košice 2013, P4-01 (2013), 169.
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O MODELU VALENTY I JEGO PRZYSTOSOWANIU

DO RZECZYWISTOŚCI III

S t r e s z c z e n i e
Niniejszy artyku l jest kontynuacja̧ dwóch poprzednich prac i opisuje pewne wydarzenia,

które charakteryzuja̧ rozwój teorii magnetycznych cienkich warstw. W tym kontekście
obecna praca może być traktowana jako trzecia czȩść poprzednich prac traktuja̧cych
O modelu Valenty i jego przystosowaniu do rzeczywistości III i jako uzupe lnienie czȩści
II i czȩści I.

Rozpatrywany model s luży do opisu w lasności warstw magnetycznych. By l on orygi-
nalnie wprowadzony przez Luboša Valentȩ na poziomie aproksymacji pola molekularnego
(MFA) oraz ostatnio modyfikowany przez kilku autorów pracuja̧cych pod kierunkiem
L. Wojtczka (M. Mrygoń, I. Zasada, B. Busiakiewicz) przy za lożeniu metodologicznego ujȩ-
cia w terminach pola reakcji (RFA). Zmodyfikowana metoda budzi wcia̧ż duże zaintere-
sowanie fizyków i technologów.

Niniejszy artyku l jest napisany w taki sposób, aby razem z artyku lami I i II stanowi l
raport dotycza̧cy badań we wspó lpracy czterech ośrodków. Uniwersytet Karola w Pradze
i Uniwersytet  Lódzki prowadza̧ nieformalna̧ wspó lpracȩ bezpośrednia̧, uwzglȩdniajaca̧ także
udzia l pośredni Uniwersytetu Friedricha Schillera w Jenie oraz Uniwersytetu P. J. Šafarika
w Košicach.

Przedstawiony raport zosta l oparty na kolejnych przybliżeniach modelu oraz kolejnych
opisach zjawisk. Szczegó lowe odnośniki wskazuja̧ na przytaczane artyku ly, z których naj-
ważniejsze by ly prezentowane na miȩdzynarodowych konferencjach o magnetyzmie.

S lowa kluczowe: cienkie warstwy ferromagneyczne, funkcje spinowe autokorelacji, model
Valenty modyfikowany przez pole reakcji
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SYSTEMATIC RESEARCH OF FACTORS DETERMINING OF THE
GIANT MAGNETORESISTANCE IN MAGNETORHEOLOGIACAL
SUSPENSIONS

Summary

The article describes a way of producing conductive magnetorheological suspensions,
containing submillimeter particles of chemically pure iron, with sizes between 0.05�0.30mm,
and colloidal particles of graphite, with seizes of 0.5µm, dispersed in cedar wood oil. It also
presents a construction of an experiment system used to measure the magnetoresistance in
these suspensions, in three perpendicular directions within a high magnetic �eld with induc-
tion level of 0�8T. The work demonstrates results of the magnetoresistance measurements
of the described suspensions, depending on: induction and speed of �eld changes, sizes and
content of iron particles, graphite particles content and viscosity of disperse liquid. The
obtained results shows giant magnetoresistance in three directions of measurement and its
hysteresis.

Keywords and phrases: suspension, magnetoresistance

1. Introduction

Magnetorheologiacal suspensions comprise ferromagnetic particles with sizes of
tenths or hundredths parts of a millimetre, dispersed in liquids with adequately high
viscosity [1�3]. Possibilities to control viscosity or to achieve a non-zero module of
sti�ness [4�7] are well known. It happens thanks to strong interactions of dispersed
particles with an external magnetic �eld [4�7]. A phenomena of resistance within



46 S.Bednarek and P.Tyran

magnetorheological suspensions is researched to a signi�cantly lower extent. Pres-
ence of high level of magnetoresistance in these suspensions was proved at the end of
the 20th century [8]. Aim of this article is to present systematic and detailed results of
investigation on factors, which in�uence to magnetoresistance in magnetorheological
suspensions. A new feature of this research is a measurement of magnetoresistance
for a particular induction of a magnetic �eld in three perpendicular directions; cf.
also [15, 16].

2. Preparation of samples

The investigation uses the magnetorheological suspensions, comprising chemically
pure particles of iron, dispersed in cedar wood oil, doped with graphite particles.
Graphite doping made it able to increase an e�ective electric conductivity of the
suspensions. Structure of the investigated suspension is presented on Fig. 1. Particles
of chemically pure iron were used as a reagent to produce the suspensions. Initial
sizes of the particles were 0.4�0.6mm. These particles underwent grounding in an
electric grinder multiple times, in order to decrease their sizes, and sifting through
sets of double sieves. In this way, three fractions of particles with sizes: 0.25�0.30mm,
0.20�0.25mm and 0.15�0.20mm, were selected. Cedar wood oil � used as immersion
liquid in optical microscopy � was used as disperse liquid. This oil was characterised
by high viscosity of 360Pa·s in a temperature of 20◦C. Viscosity of the oil was
determined with a �ow-through Ostwald type viscometer, of own construction. Such
a high viscosity prevented the particles dispersed in the oil from sedimentation.

Fig. 1: Structure of suspension before applying a magnetic �eld; 1 � ferromagnetic particle,
2 � graphite particle, 3 � cedar wood oil.

Both pure oil and its solutions, comprising 10% or 20% of ethanol, were used to
produce the suspensions. Ethanol caused a decrease of oil viscosity, respectively to
0.9 or to 0.8 of the initial value. Used graphite was in a form of dust, comprised of
colloidal particles, whose sizes (determined with a measurement microscope) were
2�4µm. Content of iron and graphite particles within suspensions were determined
by �lling factors, marked respectively as pf and pg. These factors are de�ned with
the following formulas:
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(1) pf =
Vf
V
, pg =

Vg
V

where Vf , Vg mean volume sums of iron and graphite particles, and V means volume
of the suspension.

In order to produce the suspensions, masses of iron, graphite and cedar oils were
weighed out. These masses were calculated on the basis of required �lling and volume
factors of the �nal suspension. Then, the weighed out mass of the graphite particles
was added to the cedar oil and stirred for 40 minutes. After that, a weighed out
mass of the iron particles was added and stirred for 10 minutes more. An electric
stirrer was used for stirring. In the obtained suspensions, factors of pf , pg was 0.15,
0.25 or 0.35 pg. The produced suspensions completely �lled cubical closed containers
made from plastics, Fig. 2. The external size of the container was 29mm, and the
walls were 2mm thick. A narrow canal in the upper part of the container made it
easier for air to �ow while closing the container, and facilitated its �lling up. This
canal, after �lling the container up and attaching the upper wall to it, was closed
as well. A symmetrically square electrode, with a side length of 23mm, made from
copper foil, was also attached to every wall inside the container. Every electrode had
a cable soldered on, going outside the container through a hole within its wall.

Fig. 2: Cross section of a container with a sample; 1 � magnetorheologiacal suspension, 2,
3 � walls of the container, respectively: vertical and horizontal, 4 � electrode, 5 � lead of
the electrode, 6 � canal.
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3. Experimental system

The produced samples were placed within a magnetic �eld, produced by a Bitter's
magnet. Induction of the magnetic �eld was altered within a range of 0T to ±8T.
Speeds of changes to the �eld induction were 0.1T/s, 0.33T/s or 0.011T/s. Inho-
mogenity of the magnetic �eld in a sample did not exceed ±2%. Vector of the �eld
induction was parallel to the side walls of the sample and directed vertically, Fig. 3.
Measurements of the electrical resistance of the samples were conducted after the
�eld induction was changed for ±0.5T in three perpendicular directions 0x, 0y, and
0z (Fig. 3). For this purpose, three digital mutlimeters, working as ohmmeters, were
used, and subsequently connected to the sample, after achieving a given value of the
�eld induction. During the measurement, only one ohmmeter was connected to a
chosen pair of electrodes, corresponding to a given direction.

Fig. 3: Scheme of a measurement system; S � a container with sample, C � Bitter's magnet
winding, T � teslameter, Kx, Ky, Kz � reed relay, m � neodymium magnet, d � synchronic
engine, G � generator, Ox, Oy, Oz � ohmmeters, PC � personal computer.
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Connection of the ohmmeters was carried out through using a special multiplexer
of own construction, which exploited reed relays. A reed relay was installed within
a circuit of each ohmmeter, closed with a neodymium magnet, attached to one
of three plates. All of the three plates were placed on a common axis, and moved
rotationally by a synchronic motor, powered by a generator with regulated frequency.
When magnets were far enough from the reed relay, all circuits of the ohmmeters
were open. Apart from the plates, also one magnet approaching a reed relay, e.g.
Kx, cause closure of the ohmmeter circuit, connected with this reed relay. It enabled
a measurement of resistance in one direction (in this case � 0x). Thanks to a proper
angular shift of attachment places of the magnets on the plates towards each other,
the remaining reed relays were opened.

Further movement of the plate caused the magnet mentioned above to move away
from the reed relay, and therefore open the circuit. Another magnet approached
the next contractor (Ky), which caused its closing. Thanks to this, it was able to
measure resistance in the direction 0y. After that, the described situations repeated.
The obtained results of measuring the electric resistance were recorded through a
personal computer PC. Simultaneously, a measurement of a magnetic �eld induction
was carried out. It was realized through measuring a voltage drop on an R resistor,
attached as a shunt to the Bitter's magnet winding. This voltage drop was directly
proportional to the �eld induction, and measured with a T multimeter, playing a
role of a teslameter.

4. Discussion of the results

The obtained results of measurements were presented on Fig. 4�9. Analysis of the
provided charts leads to a discovery of several general regularities, which are as fol-
lows. The measurements showed a decreasing in speci�c resistance of all researched
samples of the suspension, together with an increase of induction of the applied
magnetic �eld, and a growth of this resistance when the �eld induction was lowered.
It means that all suspensions, which were investigated, show negative magnetore-
sistance. A characteristic property of all samples is also a non-linear relation of the
speci�c resistance with the induction of the applied magnetic �eld. While decreas-
ing the magnetic �eld induction, growth speed of the speci�c resistance for each
suspension was lower than the drop speed when the �eld induction is increasing.
As a result, the speci�c resistance of the suspensions after �nishing the cycle of
changes to the �eld induction did not go back to the initial value. This resistance
was lower than the initial one. It means a presence of magnetoresistance hysteresis
in all researched samples. The described regularities occur for all three perpendicu-
lar directions, within which measurements of the speci�c resistance of the samples
according to the magnetic �eld induction were carried out. However, it is easy to
notice that these changes towards an induction vector of the applied magnetic �eld
B (x − x direction) are signi�cantly bigger than in case of two remaining direction
perpendicular towards B (y − y and z − z directions).
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Fig. 4: Dependence of the speci�c resistance of the suspension sample ρx, ρy, ρz measured
respectively: in directions of an x, y, z axis on the magnetic �eld induction Bx, applied
along the x axis.



Systematic research of factors determining of the giant magnetoresistance 51

Fig. 5: Dependence of the speci�c resistance of the suspension sample ρx, ρy, ρz measured
respectively: in directions of an x, y, z axis on the speed of the magnetic �eld induction
changes ∆Bx/∆t applied along the x axis.
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Fig. 6: Dependence of the speci�c resistance of the suspension sample ρx, ρy, ρz measured
respectively: in directions of an x, y, z axis on the magnetic �eld induction Bx, applied
along the x axis, for di�erent factors of �lling by iron particles pf .
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Fig. 7: Dependence of the speci�c resistance of the suspension sample ρx, ρy, ρz measured
respectively: in directions of an x, y, z axis on the magnetic �eld induction Bx, applied
along the x axis, for di�erent factors of �lling by graphite particles pg.
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Fig. 8: Dependence of the speci�c resistance of the suspension sample ρx, ρy, ρz measured
respectively: in directions of an x, y, z axis on the magnetic �eld induction Bx, applied
along the x axis, for di�erent sizes of iron particles d.



Systematic research of factors determining of the giant magnetoresistance 55

Fig. 9: Dependence of the speci�c resistance of the suspension sample ρx, ρy, ρz measured
respectively: in directions of an x, y, z axis on the magnetic �eld induction Bx, applied
along the x axis, for di�erent coe�cient viscosity η of disperse liquid.
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What is more, changes within directions of y − y and z − z have similar values.
It means that both longitudinal magnetoresistance (towards the applied �eld) and
transverse magnetoresistance (in directions that are perpendicular towards this �eld)
occurs.

In order to compare the detected changes in case of di�erent samples thoroughly,
we can introduce a factor of a relative alteration of the speci�c resistance in a
chosen direction, e.g. Wx for x − x direction. This factor is expressed by a relation
of change of the initial speci�c resistance of the sample, measured in this direction
before applying a magnetic �eld (B = 0), e.g. ρ0x for x− x direction, to the speci�c
resistance ρ0 measured in a �eld, whose induction value is B.

(2) wx =
ρx − ρ0x
ρ0x

.

The maximal value of the wx factor de�ned in this way is 60.2 and was found
within a magnetic �eld with an induction value of 8T for a sample with �lling
factors of pf = pg = 0.25 (Fig. 5.a, line No. 3). This sample was earlier subjected
to the changes of magnetic �eld within a range of 0 − 8 − 0T. Speed of changes of
the magnetic �eld was 0.011T/s. For the same samples, values of the analogically
de�ned factors wy and wz were −0.73 (Fig. 5.b, c). Detected changes of the speci�c
resistance are multiple times bigger, than changes of the speci�c resistance occurring
in case of metals, with a comparable �eld induction value, not exceeding several %
[9, 10]. The revealed changes are even bigger than giant magnetoresistance present
within systems of thin layers, including ferro- and paramagnetic metals [11�14].
The detected changes are comparable with the colossal magnetoresistance. However,
reason of presence of magnetoresistance in the researched suspensions is completely
di�erent than that in case of thin layers systems and metals.

In the case of metals, the reason of magnetoresistance is in�uence of electrody-
namics force at electrons moving in the applied magnetic �eld. An e�ect of this force
comprises deviations of the electrons' trajectories from the direction of the electric
�eld, causing current to �ow. Because of that, a number of electrons moving in a
direction established initially by an electric �eld are changed, as well as current in-
tensity. Change of electric resistance is a macroscopic indication of such a situation
[9]. In the case of thin layers system a signi�cant meaning is also attached to an
orientation change of electrons' spin towards the layers within the applied magnetic
�eld and quantum e�ects. It in�uences the movement of electrons and current in-
tensity in such systems [11]. Within the researched suspensions, the main reason
of magnetoresistance is change of spatial distribution of iron and graphite particles
dispersed in cedar wood oil.

Before applying the magnetic �eld, the spatial distribution of both iron and
graphite particles within suspension is disordered. In such a situation, a relatively
small number of particles have contact with each other. The contacting particles cre-
ate connections between electrodes with a small cross section and signi�cant length.
As a result, the initial speci�c resistance is relatively high. Application of the mag-
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netic �eld causes induction of magnetic moments in the particles of iron. Opposite
poles of magnetized particles attract each other. It leads to a situation, when iron
particles are closer and form thin �bres created along the line of the magnetic �eld.
The moving iron particles cause the graphite particles to move as well through forces
of viscosity and cedar wood oil. Because of the fact that sizes of the graphite parti-
cles are much smaller than the iron ones, graphite particles �ll the spaces between
iron particles. As a result, connections between electrodes with smaller length and
bigger cross section are established. They cause a drop in the speci�c resistance of
a sample of the applied magnetic �eld direction, observed as negative longitudinal
magnetoresistance. Iron particles attracting each other decrease contact resistance
at the surfaces of both particles. Previous studied revealed that the �bres group
themselves into chains and columns connected with each other. This e�ect is known
as a production of the Winslow's column and �bre structure [17, 18]. Such a struc-
ture is presented in a scheme manner by a Fig. 10. Presence of this structure was also
proved by X-ray inspections of the suspensions sample placed within the magnetic
�eld [19]. As a result of these connections between �bres, the speci�c resistance is
decreased also in directions perpendicular towards the applied magnetic �eld. It is
observed as negative transverse magnetoresistance. Because of the fact of very high
viscosity of the cedar wood oil, a process of creating a more ordered structure is
delayed in relation to the changes of the magnetic �eld. This is a reason for the ob-
served hysteresis of magnetoresistance. When the �eld is switched o�, the described
structure remains maintained thanks to very high viscosity of the cedar wood oil.
As a result, remanence of magnetoresistance is observed, i.e. maintaining its lowered
level, in relation to the initial value.

Fig. 10: Structure of the suspension after applying the magnetic �eld � numbers mean the
same as in Fig. 1.

Apart from general regularities characterising magnetoresistance within the in-
vestigated suspensions, also more detailed regularities are observed, occurring while
changing particular parameters of the suspensions or conditions of conducing the
studies. Charts presented on Fig. 5 inform that lowering the sped of changes of mag-
netic �eld induction, while maintaining the remaining parameters of the suspension,
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cause bigger changes to the speci�c resistance, corresponding to the same change of
the �eld induction. A higher hysteresis of magnetoresistance occurs when the �eld
is switched o�. This e�ect can be explained by a fact known from rheology, telling
that value of some changes within a viscoelastic material, e.g. of a deformation, de-
pends on the speed of the applied intensity of stress. Usually, the �nal deformation
is bigger when the stress is applied slower. What is more, the viscoelastic material
shows a tendency for enhancing the deformation with an established stress, i.e. for
deformation �ow [20]. The investigated suspensions interact as viscoelastic materi-
als, where the stress is applied through an external magnetic �eld. This observation
is also con�rmed by charts presented in Fig. 4. They show that changes of induction
of the magnetic �eld conducted several times, in an increasing range, but applied to
the same sample with the same speed, cause a higher level of the �nal magnetore-
sistance. It is also noticed that while induction of the magnetic �eld approaches the
�nal values, speed of changes of the speci�c resistance is lower. It points to the fact
that the structure of suspension approaches the highest state of order, which can be
obtained for a given value of the magnetic �eld induction.

Charts presented on Fig. 6 and 7 demonstrated presence of volume e�ect within
the investigated suspensions. The volume e�ect consists in decreasing the initial spe-
ci�c resistance of the suspensions, together with increasing their �lling factors, both
by iron pf and graphite pg particles. Growth in the �lling factors means an increase
of volume of the conductive phase within the suspensions. In case of bigger volumes
of this phase, a huge cluster with many branches ending at opposite electrodes is
created in an easier way [21]. From this reason, even before applying the magnetic
�eld, i.e. in an unordered state, there are more percolation paths within the suspen-
sion, through which an electric current may �ow. A �nal e�ect is that the speci�c
resistance of a suspension is decreased by this. Analysis of the charts presented in
Fig. 6 and 7, allows also noticing that in the case of bigger values of factors pf and
pg, changes of the speci�c resistance take place quicker together with alterations to
induction of the magnetic �eld, and hysteresis of magnetoresistance is increased as
well. It is caused by stronger interaction of ferromagnetic phase with bigger volume
and the applied magnetic �eld, and also more e�ective interaction ordering iron and
graphite particles through forces of viscosity.

Analysis of the charts presented on Fig. 8 shows that there is also a size e�ect
within the investigated suspensions. It consists in increasing the speed of changes
of the speci�c resistance together with decreasing the size of iron particles. What is
more, if size of particles is smaller, hysteresis of magnetoresistance is smaller as well.
A reason for such e�ect is direct proportionality of the viscosity force in�uencing the
particles to their sizes. This is why, smaller particles are met with smaller resistance
of motion, and it is easier for them to �ll spaces between given particles. Analysis
of the charts presented on the Fig. 9 implies that a decrease in the viscosity factor
η of disperse liquid causes an increase in the speed of changes to the speci�c resis-
tance and an increase of the magnetoresistance hysteresis. These e�ects may be also
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explained by easier ordering of the particles by the magnetic �eld within disperse
liquid characterized by lower viscosity.

The conducted investigation allowed not only recognizing more and systematizing
the e�ects within magnetorheologiacal suspensions with a conducting carrier. Results
of the studies may turn out to be useful in improving those suspensions and their
practical applications, e.g. in sensors of magnetic �eld, switching or memory elements
[1�3, 6].
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SYSTEMATYCZNE BADANIA CZYNNIKÓW
DETERMINUJA�CYCH GIGANTYCZNY MAGNETOOPÓR
W ZAWIESINACH MAGNETOREOLOGICZNYCH

S t r e s z c z e n i e
W artykule opisano sposób wytwarzania przewodz�acych zawiesin magnetoreologicznych,

zawieraj�acych submilimetrowe cz�astki chemicznie czystego »elaza o rozmiarach 0.05�
�0.30mm i koloidalne cz�astki gra�tu o rozmiarach 0.5µm, zdyspergowane w oleju cedro-
wym. Przedstawiono te» budow�a ukªadu do±wiadczalnego do pomiaru magnetooporu tych
zawiesin w trzech wzajemnie prostopadªych kierunkach w silnym polu magnetycznych o in-
dukcji 0�8T. Podano wyniki pomiarów magnetooporu opisanych zawiesin w zale»no±¢i od:
indukcji i szybko±ci zmian pola, rozmiarów i zawarto±ci cz�astek »elaza, zawarto±ci cz�astek
gra�tu oraz lepko±ci cieczy dyspersyjnej. Uzyskane wyniki wykazuj�a gigantyczny magne-
toopór w trzech kierunkach pomiaru oraz jego histerez�e.

Sªowa kluczowe: zawiesina, magnetoopór
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GREAT HUMAN BATTERY

Summary

The interesting educational experiments in physics are described in this paper. In these
experiments a voltage and electric current are generated in the chain of human connected
by special electrodes. Every electrode consist a two elements produced from di�erent metal
and mutually connected.

Keywords and phrases: galvanic cell, conection, electromotive force, current intensity

1. Introduction

Experiments called �a fruit battery� or �a vegetable battery� are well known. They
include electrodes made from two di�erent kinds of metal stuck in some fruits or veg-
etables, e.g. in a pickled cucumber, (Fig. 1). As a result of electrochemical reactions
electromotive force (emf) is generated [1]. Several such batteries joined together are
able to e�ciently supply electricity to a receiver of low power, e.g. a clock with an
liquid crystal display (LCD) screen or a light emitting diode (LED).

Aim of this work is to present a description of an interesting battery, where
electromotor power is generated as a result of a human hand touching sets of elec-
trodes, made from di�erent metals. Such a battery may be called �a hand battery� or
�a human battery�. The following tools and materials are needed to construct such
a battery: universal meter (a digital or analogue multimeter) with a range of a mil-
livoltmeter and a voltmeter, and optionally a microammeter, a piece of plywood
or other insulating plate with dimensions about 30 × 20 cm2, pieces of sheet from
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di�erent metals, e.g. copper and zinc or copper and aluminum � two bigger ones
(about 15 × 10 cm2) and several dozens of smaller ones (about 10 × 2 cm2, numbers
of pieces from both kinds of metal should be equal), epoxy glue, connection wires in
insulation, banana plugs, tin and a soldering tool.

Fig. 1: The example of vegetable battery; 1 � cucumber, 2, 3 � electrodes made of di�erent
metals, 4�6 � wires, 7 � light emitting diode (LED).

2. Description of experiments

The simplest version of a battery is presented on Fig. 2. Two rectangular pieces
of sheet 2, 3, made from di�erent kinds of metal, e.g. from copper and zinc with
dimensions of 15×10 cm2 are attached with epoxy glue to the plywood or insulating
plate 1. Both sheets should be placed with a 1 cm distance from each other. Each
sheet is joined through one wire 4 or 5 with a universal meter. The meter should be
switched to the range of the millivoltmeter or the microammeter. You can also use
analogue meters with indicating needles. Joints are made by soldering one end of each
cord to the sheets, and equipping the remaining ends with banana plugs, destined to
put them into adequate sockets of the meter. When nothing touches both sheets, the
meter indicates 0. If on each plate a human 6 puts one hand, the meter will indicate
voltage or current intensity (Photo 1). A typical value of the indicated voltage in
case of zinc and copper electrodes in about 0.3�0.7V, and current intensity equals
several dozens of µA because of the fact that his current intensity is very low and
resistance of human body very high when compared with resistance of connection
cords and the meter, the indicated voltage practically equals the electromotor power.

A reason for the current �ow is creation of a galvanic cell within a system of the
sheets (playing a role of electrodes) and skin of a hand. There is always a certain
amount of sweat on skin with salt dissolved in water (mainly sodium chloride), which
are electrolyte. Indications of the meter depend on many factors, among others on
the surface area of the hands, their pressure force to the electrodes, skin moisture,
materials that electrodes are made of. Skin moisture depends for instance on age
(it is usually lower in case of older people), health condition and an emotional state
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of a person performing the experiment. This last relation is used in so called lie
detectors, which are also called polygraphs. These devices make use of a fact that
stress caused by lying usually causes an increase in skin moisture and decrease of its
electric resistance. In our experiment, taking even one hand away from the electrodes
causes circuit opening, and indications of the meter will come back to zero.

Fig. 2: �Hand battery� in the top view; 1 � insulating plate, 2, 3 � pieces of sheet made of
di�erent metals, 4, 5 � wires, 6 � a human, mV � millivoltmeter.

Photo 1. One of the examples of �a hand battery� in action.
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The previous version of the experiment may be easily developed in a way that
many persons may take part in it. For that purpose, several persons should stand
in an arc. A person staying at the beginning of the arc puts one hand on one of the
electrodes joined with the meter, and gives another hand to the next person. This
second person gives the second hand to the next person and so on. A person standing
at the end of the arch puts the free hand on the second electrode, which is also
attached to the meter. Therefore, a chain closing the electric circuit is created. This
circuit will host current �ow caused by electromotive force, generated by the �rst and
by the last person, keeping their hands on the electrodes. Value of the electromotive
force is similar as in the previous version of the experiment, but current intensity is
lowered, because resistance of separate persons is added and the total resistance of
the circuit increases. For comparison, it needs to be mentioned that a typical value
of human body resistance is about 1 kΩ. In order to lower resistance of the chain you
can try to apply a mixed connection, i.e. to place several shorter chains next to each
other, each created by several people. Obviously, everyone holds their neighbour's
hand strongly.

Even more e�ective version of the experiment is presented on Fig. 3.

Fig. 3: Group �hand battery�; 1 � a set of electrodes, 2, 3 � wires, mV � millivoltmeter.

In this case, persons creating a chain hold hands of their neighbours through
sets of electrodes 1, made from two di�erent kinds of metals, joined to each other
in any way, but it needs to provide good electric contact. It is important that part
of each sets of electrodes made from the same type of metal, e.g. copper, be turned
into the same direction, e.g. clockwise. The �rst and the last human in the chain
keeps the insulated ends of the wires 2, 3, attached to the multimeter. In this case,
electromotive forces generated by separate persons in the chain are also added, and



Great human battery 65

high voltage may create. Current intensity depends, on among others, on area of
the metal surface touching hands at every set of electrodes. Also in this experiment,
the previously mentioned mixed connection of human taking part may be applied.
Three simple examples of preparing sets of electrodes, constructed from stripes of
sheet or bars, are shown in Fig. 4. Stripes of sheet or bars, creating the sets should
have dimensions allowing to hold them comfortably in a hand � width or diameter
about 2�3 cm and length about 10�15 cm. Instead of bars you can also use pipes.
The least expensive ones are sets including stripes of thin sheet, which can be joined
through soldering or riveting (Fig. 4a, b). While using pieces of sheet, their sharp
edges needs to be smoothened to avoid potential cutting of hands skin. Pieces of
bars may be joined through screws (Fig. 4c), and pipes with proper diameters may
be put one into another in particular sections.

Fig. 4: Examples of method of joining the electrodes: a) soldiered, b) riveted, c) twisted; 1,
2 � stripes of sheet made of di�erent metals, 3 � soldiering alloy, 4 � rivets, 5, 6 � pieces of
a pipe made of di�erent metals, 7 � screw.

3. Conclusions

The described experiments enable pictorial veri�cation of the Ohm's law for the
whole circuit or the Kirchho�'s law. These experiment are perfect to be used dur-
ing di�erent kinds of scienti�c festivals or picnics, as they are highly entertaining,
educative and integrating for participants. They may also serve for setting individ-
ual records, e.g. which group will generate the highest voltage or current intensity.
For that purpose, instead of zinc and copper elements, one may use elements from
di�erent metals, e.g. aluminium and copper � a clue for optimum choice is an elec-
trochemical row of metals, present in physical or chemical tables. Regarding its
uniqueness, such records have a chance to be registered as Guinness World Records.
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WIELKA LUDZKA BATERIA

S t r e s z c z e n i e
W artykule opisano interesuj�ace edukacyjne do±wiadczenia z �zyki. W tych do±wiad-

czeniach napi�ecie elektryczne i pr�ad s�a wytwarzane przez ªa«cuch ludzi poª�aczonych ze
sob�a za pomoc�a specjalnych elektrod. Ka»da elektroda skªada si�e z dwóch elementów wyko-
nanych z ró»nych metali i wzajemnie poª�aczonych.

Sªowa kluczowe: ogniwo galwaniczne, zª�acze, siªa elektromotoryczna, nat�e»enie pr�adu
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MODEL OF COUPLED HARMONIC OSCILLATOR

IN A ZWANZIG-TYPE CHAIN.

REMARKS ON ROWLANDS APPROACH

Summary
The aim of the present paper is to consider possibility to apply our previous ideas [7,8]

and to extend the model of coupled harmonic oscillations in a Zwanzig-type chain [1, 6–8]
to the case of the one-dimensional finite stochastic chain. The classical equations of motion
are simplified to the system of equations of motion for relative displacement. We discuss
the the first order differential equation of generating function which can help us to find the
general form of solutions in the case of stochastic chain.

Keywords and phrases: harmonic oscillator, Zwanzig-type chain atoms, damping of acoustic
modes

1. Introduction

The simple theoretical model of a gas atom interactions with a solid surface appears

in many investigations coming from the different branches of physics, chemistry

and biology, as well. In particular, very useful and interesting model was study by

Zwanzig [1] and Cabrera [2]. Both of them considered the interaction between colli-

sion of a single atom (e.g. a gas atom) with a solid represented by one-dimensional

semi-infinite harmonic chain. This simple model assumed that collision atom interact

with the sample via a truncated parabolic potential.

In the next investigations of many researches (e.g. [3,4,9]) we can discover more

precisely (or not) consideration or extension above model. The illustrative examples
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can be given in the papers [3, 4], where the authors approximate this problem in

the case of homogenous chain or chain with impurities and presented the computer

simulations of this problem. Another very curious example we can find in the paper

[5], where damping is discussed as the effect of surface disorder.

Motivated by mentioned considerations we write the system of equations for

the relative displacement of atoms in stochastic chain and study the first order

differential equation of generating function, which can leads us to the general form of

solutions for relative displacement of atoms in stochastic chain. We compare solutions

obtained by the generating technique function in [7,8] with the known solutions for

the homogenous chain (a Zwanzig-type chain) [3, 4] and chain with one impurity

(different mass of one atom) obtained by “two” generating functions or by using the

convolution of functions [4, 9].

2. Equations of motion for a stochastic chain

Let us consider the finite chain of atoms colliding with the gas atom of a mass M0

(Fig. 1). The atoms of the chain are not identical, so Mi 6= Mi+1 i = 1, ..., N − 1.

The motion is characterized by the system of equations

M1r̈1(t) = −K1(r1 − r2)

Mir̈i(t) = Ki−1(ri−1 − ri)−Ki(ri − ri+1), i = 2, ..., N − 1,(1)

Mir̈i(t) = Ki(ri−1 − ri), i = N,

where ri(t) denotes the displacement of ith atom from its equilibrium position, Ki

is the force constants for the harmonic interaction between particles i and i+ 1, in

general differ from atom to atom in the unit cell.

Fig. 1: One dimensional stochastic finite chain of atoms of mass Mi, i = 1, 2, ..., N .

The system (1) is equivalent to

r̈1(t) = −ω2α1
1(r1 − r2)

r̈i(t) = ω2
[
αi−1
i (ri−1 − ri)− αi

i(ri − ri+1)
]
, i = 2, 3, ..., N − 1(2)

r̈N (t) = ω2αN
N (rN−1 − rN ).

Here, we suppose that ω =
√
K/Mt, where K is responsible for a interaction between

pair of homonuclear atoms, each of mass M and αi
j = KiM/KMj for i, j = 1, ..., N.
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2.1. Disscusion of optimality of substitution

For simplify of (2) we introduce the following substitution [1]

u2i(τ) = 2(d/dτ)ri(τ), i = 1, 2, ..., N,(3)

u2i+1(τ) = ri(τ)− ri+1(τ), i = 1, 2, ..., N − 1,(4)

u2N+1(τ) = rN and τ = 2ωt.(5)

Now, we can rewrite the system of equation (2) in the form

d

dτ
u2(τ) = −1

2
α1
1u3(τ)(6)

d

dτ
uk(τ) =

1

2

[
α

1
2k
1
2k−1

uk−1(τ)− α
1
2k
1
2k
uk+1(τ)

]
, k = 4, 6, ..., 2N − 2,(7)

d

dτ
uk(τ) =

1

2
[uk−1(τ)− uk+1(τ)] , k = 3, 5, ..., 2N − 1(8)

d

dτ
u2N (τ) =

1

2
αN
Nu2N−1(τ),(9)

d

dτ
u2N+1(τ) =

1

2
u2N (τ).(10)

Using equations (6), (7) for k = 4 and (8) for k = 3 we can easily express the second

derivative (d2/dτ2)u3 as a linear function of u5, namely

(11) (4D2 + γ11,2)u3 = α2
2u5,

where γ11,2 = α1
1 + α1

2 and D2 = d2/dτ2.

It is natural to ask is the substitution (4)-(6) is optimal? In order to examine

mentioned substitution we replace (5) by the following

Anu2i+1(τ) = ri(τ)− ri+1(τ), i = 1, 2, ..., N − 1,(12)

where

An =

{
1/αi−1

i for n = 2i− 1,

1/αi
i for n = 2i+ 1.
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Further calculations lead to the following system of equations

d

dτ
u2(τ) = −1

2
u3(τ),(13)

d

dτ
uk(τ) =

1

2
[uk−1(τ)− uk+1(τ)] , k = 4, 6, ..., 2N − 2,(14)

d

dτ
uk(τ) =

1

2
α

1
2 (k−1)
1
2 (k−1)

[uk−1(τ)− uk+1(τ)] , k = 3, 5, ..., 2N − 1,(15)

d

dτ
u2N (τ) =

1

2

αN
N

αN−1
N−1

u2N−1(τ),(16)

d

dτ
u2N+1(τ) =

1

2
u2N .(17)

As we can see the equation (12) corresponds to equation (6) for α1
1 = 1, and equations

(13) corresponds to equations (8) in the case of k = 3, 5, ..., 2N − 1. The equations

for the second derivative (d2/dτ2)u3 takes the form

(18) (2D2 + α1
1)u3 = α1

1u5,

where D2 is define as previously. Similarly, like in paper [7], we can see by (11) and

(18) that the relative displacement u5 plays specific role.

2.2. Generating function method for stochastic chain

Let us write the system of equations (6)-(10) to a more convenient form by setting

xk = xk(τ) = uk+2(τ) for k = 0, ..., 2N − 2. Then we obtain

d

dτ
x0(τ) = −1

2
α1
1x1(τ),(19)

d

dτ
xk(τ) =

1

2

[
αk
k−1xk−1(τ)− αk

kxk+1(τ)
]
, k = 2, 4, 6, ..., 2N − 4,(20)

d

dτ
xk(τ) =

1

2
[xk−1(τ)− xk+1(τ)] , k = 1, 3, 5, ..., 2N − 3,(21)

d

dτ
x2N−2(τ) =

1

2
αN
Nx2N−3(τ),(22)

d

dτ
x2N−1(τ) =

1

2
x2N−2(τ).(23)
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Let us consider the generating function in the form

(24) θ(z, τ) = θ+(z, τ) + θ−(z, τ),

where

θ+(z, τ) =

2N−2∑
k=0,
k even

xkz
k and θ−(z, τ) =

2N−1∑
k=1,
k odd

xkz
k.

Using (19)–(23) we obtain the derivative of generating function (24)

2
∂

∂τ
θ = (z − z−1)θ+ +

2N−1∑
k=1,
k odd

xkz
k
(
αk
k+1z − αk+1

k z−1
)

(25)

+ x1z
(
α2
1z − α1

1z
−1
)

+ x0z
−1 + α2N−2

2N−3x2N−3z
2N−2,

with the extra condition α2N
2N−1 = α2N−1

2N .

2.2.1. Remaks on homogeneous chain

Let us consider homogeneous chain of atoms, it means the chain of the same atoms.

In this case we suppose that Mi = Mj and Ki = Kj for every i, j. Equations of

motions and further calculations using the generating technique function provide to

the same results as in the paper [7, 8].

2.2.2. Remaks on chain with one impurity

Let us consider the system of equations of motion (1) in the following form

M1r̈1(t) = −K1(r1 − r2)

Mr̈2(t) = K1(r1 − r2)−K(r2 − r3),

Mr̈i(t) = K(ri−1 − 2ri + ri+1), i = 3, ..., N − 1,(26)

Mr̈i(t) = K(ri−1 − ri), i = N,

where we assume that Mi = M and Ki = K for i = 2, ..., N. Using the substitutions

(3)–(5) and introduce new notations α = K1/K and β = M1/M we can simplify

the system (26) into the system of equations for relative displacement considered by

Dolgov and Khizhnyak [9]

(27)
d

dτ
x0(τ) = −1

2

α

β
x1(τ)
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d

dτ
x2(τ) =

1

2
[αx1(τ)− x3(τ)] ,(28)

d

dτ
xk(τ) =

1

2
[xk−1(τ)− xk+1(τ)] , k = 3, 4, ..., 2N − 1,(29)

d

dτ
x2N−1(τ) =

1

2
x2N−2(τ).(30)

In this case the derivative of generating function take the form

2
∂

∂
τθ = θ(z − z−1) + x1z(z −

α

β
z−1) + x0z

−1 + x2N−3z
2N−2,

which is different from the result obtained in [9]. This difference appears because in

our consideration we use calculations based on one generating function, but tech-

nique applied by Dolgov and Khizhnyak is based on introducing two generating

functions. In consequence, the solutions for the relative displacement in the simple

homogeneous model of chain are similar but not the same. In both case approxima-

tion methods the results are presented in the terms of Bessel functions.

3. Conclusion

In relations to the Zwanzig’s model [1], we compared differential equation of gen-

erating function with the knowing solutions for the homogeneous chain and chain

with one impurity. Mathematically, we obtain the system of differential-difference

equations of motions for relative displacement and differential equation for gener-

ating function. We shown the difference between the solutions and we can see that

use of our approximation method can give us a more precisely (general) results. In

discussion of optimality of substitution we notice that the u5 plays specific role like

u3 in the Zwanzig’s model.
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MODEL OSCYLATORA HARMONICZNEGO W  LAŃCUCHU

ATOMÓW TYPU ZWANZIGA.

UWAGI NA TEMAT PODEJŚCIA ROWLANDSA

S t r e s z c z e n i e
W pracy podjȩto próbȩ zastosowania metody aproksymacyjnej R. W. Zwanziga (1960)

oraz rozwia̧zania uk ladu równań różniczkowych ruchu w przypadku skończonego stochasty-
cznego  lańcucha atomów [5]. Porównano równania funckji generuja̧cej dla znanych przy-
padków:  lańcucha jednorodnego oraz  lańcucha z lokalna̧ niejednorodnościa̧ z dotychczas
otrzymanymi wynikami [3, 4, 9].

S lowa kluczowe: oscylator harmoniczny,  lańcuch atomów typu Zwanziga, t lumienie modów
akustycznych





PL ISSN 0459-6854

B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE �ÓD�

2014 Vol. LXIV

Recherches sur les déformations no. 1

pp. 75�82

In memory of

Professor Claude Surry

Arezki Touzaline

ADHESIVE CONTACT OF AN ELASTIC BODYWITH PRESCRIBED

NORMAL STRESS AND TOTAL SLIP-DEPENDENT FRICTION I
PROBLEM STATEMENT AND VARIATIONAL FORMULATION

Summary

We consider a mathematical model which describes the frictional contact between a
nonlinear elastic body and a foundation. The normal stress on the contact surface is pre-
scribed, the coe�cient of friction depends on the total slip and adhesion of contact surfaces
is taken into account. In the �rst part of the paper the evolution of the bonding �eld is
discribed by a �rst order di�erential equation. We derive a variational formulation of the
mechanical problem.

Keywords and phrases: elastic, adhesion, total slip-dependent friction, �xed point, weak
solution

1. Introduction

Contact problems involving deformable bodies are quite frequent in industry as well
as in daily life and play an important role in structural and mechanical systems.
Because of the importance of this process a considerable e�ort has been made in
its modelling and numerical simulations. A �rst study of frictional contact problems
within the framework of variational inequalities was made in [7]. The mathematical,
mechanical and numerical state of the art can be found in [17]. The frictional contact
problem with adhesion and normal compliance for nonlinear elastic materials was
studied in [12]. The static frictional contact probem with a slip dependent coe�cient
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of friction and a prescribed normal stress for elastic materials was studied in [5]. This
model, when the adhesion of contact surfaces is taken into account, was studied in
[23] where an existence and uniqueness result was established under the hypothesis
of smallness of the coe�cient of friction and the prescribed normal stress. In this
paper we deal moreover with the study of this last model which was recently studied
in [20] but when the coe�cient of friction depends on the total slip. Indeed, recently
in [20] the authors have proved new existence, uniqueness and regularity results in
the study of a class of quasivariational inequalities de�ned on an unbounded interval
of time. They have also applied these results in the analysis of several quasistatic
contact problems. In the next, recall that models for dynamic or quasistatic process
of frictionless adhesive contact between a deformable body and a foundation have
been studied in [3, 4, 8, 17�19, 21, 22]. In [2, 6, 12�15,23�25] some frictional con-
tact problems with adhesion were studied. Indeed, in [2, 6, 14], quasistatic frictional
contact problems with adhesion in elasticity were studied and the existence results
for a friction coe�cient small enough were established while under the same condi-
tion, the existence and uniqueness results were proved in [12, 23]. Also in [24, 25]
quasistatic frictional contact problems with adhesion in viscelasticity were studied
and the existence and uniqueness of solutions under a smallness assumption on the
coe�cient of friction was proved. In this paper, as in [9, 10] we use the bonding �eld
as an additional state variable β, de�ned on the contact surface of the boundary.
The variable is restricted to values 0 ≤ β ≤ 1, when β = 0 all the bonds are severed
and there are no active bonds; when β = 1 all the bonds are active; when 0 < β < 1

it measures the fraction of active bonds and partial adhesion takes place. We refer
the reader to the extensive bibliography on the subject in [1, 11, 14�19]. In this
work we provide the variational formulation of the mechanical problem for which we
prove the existence of a unique weak solution and obtain a partial regularity result.
Unlike the result obtained in [23], we observe that the hypothesis of smallness on the
coe�cient of friction was removed because this latter depends on the total slip and
is a term �history-dependent� while the term containing the slip-dependent friction
is not.

The paper is structured as follows. In Section 2 we present some notations and
give the variational formulation. In Section 3 we state and prove our main existence
and uniqueness result.

2. Problem statement and variational formulation

A nonlinear elastic body occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with a
regular boundary Γ that is partitioned into three disjoint measurable parts Γ1, Γ2

and Γ3 such that meas (Γ1) > 0. The body is clamped on Γ1 and, therefore, the
displacement �eld vanishes there. A volume force of density ϕ1 acts in Ω and surface
tractions of density ϕ2 act on Γ2. In the reference con�guration the body is in an
adhesive frictional contact with a foundation, over the potential contact surface Γ3.
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Thus, the classical formulation of the mechanical problem is written as follows.

Problem P1. Find a displacement �eld u : Ω × [0, T ] → Rd and a bonding �eld
β : Γ3 × [0, T ]→ [0, 1] such that, for all t ∈ [0, T ] ,

(2.1) divσ (t) + ϕ1 (t) = 0 in Ω,

(2.2) σ (t) = Fε (u (t)) in Ω,

(2.3) u (t) = 0 on Γ1,

(2.4) σ (t) ν = ϕ2 (t) on Γ2,

(2.5) −σν (t) = S − cνβ2 (t)Rν (uν (t)) on Γ3,

(2.6)

∥∥στ (t) + cτβ
2 (t)Rτ (uτ (t))

∥∥ ≤ µ(∫ t
0
‖uτ (s)‖ ds

)
S

∥∥στ (t) + cτβ
2 (t)Rτ (uτ (t))

∥∥ < µ
(∫ t

0
‖uτ (s)‖ ds

)
S =⇒ uτ (t) = 0

∥∥στ (t) + cτβ
2 (t)Rτ (uτ (t))

∥∥ = µ
(∫ t

0
‖uτ (s)‖ ds

)
S =⇒

∃λ ≥ 0 s.t. uτ (t) = −λ
(
στ (t) + cτβ

2 (t)Rτ (uτ (t))
)

on Γ3,

(2.7) β̇ (t) = −[β (t) (cν(Rν (uν (t)))2 + cτ ‖Rτ (uτ (t))‖2)− εa]+ on Γ3,

(2.8) β (0) = β0 on Γ3.

We denote by σ the stress �eld and ε (u) the linearized strain tensor. Equality (2.1)

represents the equilibrium equation. Equation (2.2) represents the elastic constitutive
law of the material in which F is a given nonlinear function while (2.3) and (2.4) are
the displacement and traction boundary conditions, respectively, in which ν denotes
the unit outward normal vector on Γ and σν represents the Cauchy stress vector.
Condition (2.5) represents the prescribed normal stress S with adhesion and (2.6)

is the associated Coulomb's law of dry friction on the contact surface Γ3. Here the
parameters cν , cτ and εa are adhesion coe�cients. As in [17], Rν , Rτ are truncation
operators de�ned by

Rν (s) =


L if s < −L
−s if − L ≤ s ≤ 0

0 if s > 0

, Rτ (v) =

 v if ‖v‖ ≤ L
L

v

‖v‖
if ‖v‖ > L ,

where L > 0 is a characteristic length of the bonds. Equation (2.7) represents the
ordinary di�erential equation which describes the evolution of the bonding �eld and
it was already used in [17] where [s]+ = max (s, 0) ∀s ∈ R. Since β̇ ≤ 0 on Γ3×(0, T ),
once debonding occurs, bonding cannot be reestablished. Also we wish to make it
clear that from [13] it follows that the model does not allow for complete debonding
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�eld in �nite time. Finally, (2.8) represents the initial bonding �eld. Recall that the
inner products and the corresponding norms on Rd and Sd are given by

u.v = uivi, ‖v‖ = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , ‖τ‖ = (τ.τ)
1
2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3). Here and
below, the indices i and j run between 1 and d and the summation convention over
repeated indices is adopted. Now, to proceed with the variational formulation, we
need the following function spaces:

H =
(
L2 (Ω)

)d
, H1 =

(
H1 (Ω)

)d
, Q =

{
τ = (τij) : τij = τji ∈ L2 (Ω)

}
,

Q1 = {σ ∈ Q : divσ ∈ H} .
Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

〈u, v〉H =

∫
Ω

uividx, 〈σ, τ〉Q =

∫
Ω

σijτijdx.

For all v ∈ H1, the linearized strain tensor is de�ned as

ε (v) = (εij (v)) =
1

2
(vi,j + vj,i)

and for a all function τ ∈ Q1, divτ = (τij,j) is the divergence of τ . For every element
v ∈ H1 we denote by vν and vτ the normal and the tangential components of v on
the boundary Γ given by

vν = v.ν, vτ = v − vνν.

Similary, for a regular function σ ∈ Q1, we de�ne its normal and tangential compo-
nents by

σν = (σν) .ν, στ = σν − σνν

and we recall that the following Green's formula holds:

〈σ, ε (v)〉Q + 〈divσ, v〉H =

∫
Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1 de�ned
by

V = {v ∈ H1 : v = 0 on Γ1} .

Since meas(Γ1) > 0, the following Korn's inequality holds [10],

(2.9) ‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V,

where the constant cΩ > 0 depends only on Ω and Γ1. We equip V with the inner
product

(u, v)V = 〈ε (u) , ε (v)〉Q
and ‖.‖V is the associated norm. It follows from Korn's inequality (2.9) that the
norms ‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space.
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Moreover by Sobolev's trace theorem, there exists dΩ > 0 which depends only on
the domain Ω, Γ1 and Γ3 such that

(2.10) ‖v‖(L2(Γ3))d ≤ dΩ ‖v‖V ∀v ∈ V.

For p ∈ [1,∞] , we use the standard norm of Lp (0, T ;V ). We also use the Sobolev
space W 1,∞ (0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ) .

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C ([0, T ] ;X)

for the space of continuous functions from [0, T ] to X; recall that C ([0, T ] ;X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

We suppose that the body forces and surface tractions have the regularity

(2.11) ϕ1 ∈ C ([0, T ] ;H) , ϕ2 ∈ C
(

[0, T ] ;
(
L2 (Γ2)

)d)
and, moreover, by Riesz's representation theorem, we de�ne a function

f : [0, T ]→ V

by

(2.12) (f (t) , v)V =

∫
Ω

ϕ1 (t) .vdx+

∫
Γ2

ϕ2 (t) .vda−
∫

Γ3

Svνda ∀v ∈ V , t ∈ [0, T ] .

We see that (2.11) and (2.12) imply

f ∈ C ([0, T ] ;V ) .

Also we de�ne the functional jfr : L2 (Γ3)× V → R by

jfr (ξ, w) =

∫
Γ3

µ (ξ)S ‖wτ‖ da ∀ξ ∈ L2 (Γ3) ∀w ∈ V,

where the coe�cient of friction µ is assumed to satisfy

(2.13)

(a) µ : Γ3 × R+ → R+;

(b) there exists Lµ > 0 such that
|µ (x, r1)− µ (x, r2)| ≤ Lµ |r1 − r2| ∀r1, r2 ∈ R+, a.e. x ∈ Γ3;

(c) for any r ∈ R+, the mapping x→ µ (x, r) is measurable on Γ3;

(d) the mapping x→ µ (x, 0) ∈ L2 (Γ3) .


We suppose that S satis�es

(2.14) S ∈ L∞ (Γ3) and S ≥ 0 a.e. on Γ3.
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In the study of Problem P1 we assume that the elasticity operator A satis�es

(2.15)

(a) F : Ω× Sd → Sd;

(b) there exists MF > 0 such that
‖F (x, ε1)− F (x, ε2)‖ ≤MF ‖ε1 − ε2‖ ,
for all ε1, ε2 in Sd, a.e. x ∈ Ω;

(c) there exists mF > 0 such that
(F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2 ,
for all ε1, ε2 in Sd, a.e. x ∈ Ω;

(d) the mapping x→ F (x, ε) is Lebesgue measurable on Ω,

for any ε in Sd;

(e) x→ F (x, 0) ∈ Q.


We suppose that the adhesion coe�cients cν , cτ and εa satisfy the conditions

(2.16) cν , cτ ∈ L∞ (Γ3) , εa ∈ L2 (Γ3) , cν , cτ , εa ≥ 0 a.e. on Γ3.

We also consider the functional h : C ([0, T ] ;V )→ C
(
[0, T ] ;L2 (Γ3)

)
de�ned by

hv (t) =

∫ t

0

‖vτ (s) |Γ3
‖ ds ∀v ∈ C ([0, T ] ;V ) , t ∈ [0, T ] .

We assume that the initial data satis�es

(2.17) β0 ∈ L2 (Γ3) : 0 ≤ β0 ≤ 1, a.e. on Γ3.

Next, we de�ne the functional jad : L2 (Γ3)× V × V → R by

jad (β, u, v) =

∫
Γ3

(−cνβ2Rν (uν) vν + cτβ
2Rτ (uτ ) .vτ )da.

Finally, we need the following set for the bonding �eld:

B =
{
θ : [0, T ]→ L2 (Γ3) : 0 ≤ θ (t) ≤ 1 ∀t ∈ [0, T ] , a.e. on Γ3

}
.

Now, a straightforward application of the Green formula yields the following varia-
tional formulation of Problem P1, in terms of displacement and bonding �elds.

Problem P2. Find a displacement �eld u ∈ C ([0, T ] ;V ) and a bonding �eld β ∈
W 1,∞ (0, T ;L2 (Γ3)

)
∩ B such that,

(2.18)
〈Fε (u (t)) , ε (v)− ε(u (t))〉Q + jfr (hu (t) , v)− jfr (hu (t) , u (t))

+jad (β (t) , u (t) , v − u (t)) ≥ (f (t) , v − u (t))V ∀v ∈ V, t ∈ [0, T ] ,

(2.19) β̇ (t) = −[β (t) (cν(Rν (uν (t)))2 + cτ ‖Rτ (uτ (t))‖2)− εa]+, a.e. t ∈ (0, T ) ,

(2.20) β (0) = β0.
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Our main result of this section, which will be established in the next is the following
theorem.

Theorem 2.1. Let T > 0 and assume that (2.11) , (2.13), (2.14), (2.15), (2.16) and

(2.17) hold. Then there exists a unique solution to Problem P2.

References

[1] H.Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité,
Annales Inst. Fourier 18 (1968), 115�175.

[2] L. Cangémi, Frottement et adhérence: modè le, traitement numérique et application
à l'interface �bre/matrice, Ph. D. Thesis, Univ. Méditerranée, Aix Marseille I 1997.

[3] O.Chau, J. R. Fernandez, M. Shillor, and M. Sofonea, Variational and numerical anal-
ysis of a quasistatic viscoelastic contact problem with adhesion, Journal of Computa-
tional and Applied Mathematics 159 (2003), 431�465.

[4] O.Chau, M. Shillor, and M. Sofonea, Dynamic frictionless contact with adhesion, J.
Appl. Math. Phys. (ZAMP) 55 (2004), 32�47.

[5] C.Ciulcu, D.Motreanu, and M. Sofonea, Analysis of an elastic contact problem with
slip dependent coe�cient of friction, Mathematical Inequalities and Applications 4,
no. 3 (2001), 465�479.

[6] M.Cocu and R.Rocca, Existence results for unilateral quasistatic contact problems
with friction and adhesion, Math. Model. Num. Anal. 34 (2000), 981�1001.

[7] G.Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod,
Paris 1972.

[8] J. R. Fernandez, M. Shillor, and M. Sofonea, Analysis and numerical simulations of a
dynamic contact problem with adhesion, Math. Comput. Modelling 37 (2003), 1317�
1333.

[9] M. Frémond, Adhérence des solides, J. Mécanique Théorique et Appliquée 6 (1987),
383�407.

[10] M.Frémond, Equilibre des structures qui adhèrent à leur support, C. R. Acad. Sci.
Paris, série II 295 (1982), 913�916.

[11] M.Frémond, �Non smooth Thermomechanics�, Springer, Berlin 2002.

[12] Z. Lerguet, M. Sofonea, and S.Drabla, Analysis of a frictional contact problem with
adhesion, Acta Mathematica Universitatis Comenianae 77 (2008), 181�198.

[13] S.A.Nassar, T.Andrews, S.Kruk, and M. Shillor, Modelling and simulations of a
bonded rod, Math. Comput. Modelling, 42 (2005), 553�572.

[14] M.Raous, L.Cangémi, and M.Cocu, A consistent model coupling adhesion, friction,
and unilateral contact, Comput. Meth. Appl. Mech. Engng. 177 (1999), 383�399.

[15] J. Rojek and J. J. Telega, Contact problems with friction, adhesion and wear in or-
thopeadic biomechanics. I: General developements, J. Theor. Appl. Mech. 39 (2001),
655�677.

[16] M. Shillor, M. Sofonea, and J. J. Telega, Models and Variational Analysis of Qua-
sistatic Contact, Lecture Notes Physics, vol. 655, Springer, Berlin 2004.

[17] M. Sofonea, W.Han, and M. Shillor, Analysis and Approximations of Contact Prob-
lems with Adhesion or Damage, Pure and Applied Mathematics 276, Chapman and
Hall CRC Press, Boca Raton, Florida 2006.



82 A. Touzaline

[18] M. Sofonea and T.V.Hoarau-Mantel, Elastic frictionless contact problems with ad-
hesion, Adv. Math. Sci. Appl. 15, no. 1 (2005), 49�68.

[19] M. Sofonea, R.Arhab, and R.Tarraf, Analysis of electroelastic frictionless contact
problems with adhesion, Journal of Applied Mathematics ID 64217 (2006), 1�25.

[20] M. Sofonea and M.Matei, History-dependent quasivariational inequalities arising in
contact mechanics, Eur. Appl. Math. 22, no. 5 (2011), 471�491.

[21] A.Touzaline, Frictionless contact problem with adhesion for nonlinear elastic mate-
rials, Electron. J. Di�erential Equations 174 (2007), 13.

[22] A.Touzaline, Frictionless contact problem with adhesion and �nite penetration for
elastic materials, Ann. Pol. Math. 98, no. 1 (2010), 23�38,

[23] A.Touzaline, Analysis of a contact problem with slip dependent coe�cient of friction
and adhesion for nonlinear elastic materials, Ana. Univ. Oradea. Fasci. Math. 17,
no. 2 (2010), 155�166.

[24] A.Touzaline, Analysis of a quasistatic contact problem with adhesion and nonlocal
friction for viscoelastic materials, Appl. Math. Mech.-Engl. Ed. 31, no. 5 (2010),
1�12.

[25] A.Touzaline, Study of a viscoelastic frictional contact problem with adhesion, Com-
ment. Math. Univ. Carolin. 32, no. 2 (2011), 257�272.

Faculté de Mathématiques, USTHB

Laboratoire de Systèmes Dynamiques

BP 32 EL ALIA, Bab-Ezzouar, 16111

Algeria

e-mail: ttouzaline@yahoo.fr

Presented by Ilona Zasada at the Session of the Mathematical-Physical Commission
of the �ód¹ Society of Sciences and Arts on June 12, 2014

OPIS ADHEZYJNEGO KONTAKTU CIA�A ELASTYCZNEGO

Z POD�O�EM W PRZYPADKU PROSTOPAD�EGO NACISKU

I TARCIA ZALE�NEGO OD POWIERZCHNI �LIZGU I

POSTAWIENIE PROBLEMU I SFORMU�OWANIE WARIACYJNE

S t r e s z c z e n i e
W pracy zostaª przedstawiony teoretyczny model opisuj�acy tarcie pomi�edzy nieliniowym

ciaªem elastycznym a podªo»em. Rozwa»ania dotycz�a przypadku prostopadªego nacisku na
powierzchnie styku i bior�a pod uwag�e zale»no±¢ wspóªczynnika tarcia od powierzchni ±lizgu
oraz adhezji powierzchni styku. W pierwszej cz�e±ci pracy ewolucja pola styku jest opisana
przez równanie ró»niczkowe pierwszego rz�edu. Autorzy uzyskuj�a wariacyjne sformuªowanie
problemu wariacyjnego.

Sªowa kluczowe: elastyczny, adhezja, tarcie zale»ne od caªkowitego styku, punkt staªy, sªabe
rozwi�azanie
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Summary

We consider a mathematical model which describes the frictional contact between a non-
linear elastic body and a foundation. The normal stress on the contact surface is prescribed,
the coe�cient of friction depends on the total slip and adhesion of contact surfaces is taken
into account. In connection with a variational formulation of the mechanical problem we
prove the existence, uniqueness and regularity result. The proof is based on arguments
of time-dependent variational inequalities, di�erential equations and Banach �xed point
theorem.

Keywords and phrases: elastic, adhesion, total slip-dependent friction, �xed point, weak
solution

3. Existence and uniqueness of solution

Let Z be the closed set de�ned as

Z =
{
θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
∩ B; θ (0) = β0

}
,

where the Banach space C
(
[0, T ] ;L2 (Γ3)

)
is endowed with the norm

‖θ‖k = sup
t∈[0,T ]

[
exp (−kt) ‖θ (t)‖L2(Γ3)

]
for all θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
, k > 0.



84 A. Touzaline

The goal of this section is the proof of Theorem 2.1 which will be carried out in
several steps. In the �rst step, for a given β ∈ Z, we consider the following variational
problem.

Problem Pβ . Find uβ : [0, T ]→ V such that

(3.21)

〈Aε (uβ (t)) , ε (v)− ε(uβ (t))〉Q + jfr (huβ (t) , v)− jfr (huβ (t) , uβ (t))

+jad (β (t) , uβ (t) , v − uβ (t)) ≥ (f (t) , v − uβ (t) (t))V

∀v ∈ V, t ∈ [0, T ] .

We show the following result.

Proposition 3.1. Problem Pβ has a unique solution and it satis�es

uβ ∈ C ([0, T ] ;V ) .

The proof of this lemma is based on �xed point arguments and will be estab-
lished in several steps. In the �rst step let η ∈ C ([0, T ] ;V ) and denote by yη
∈ C

(
[0, T ] ;L2 (Γ3)

)
the function

(3.22) yη (t) = hη (t) ∀t ∈ [0, T ] .

Consider now the following auxiliary problem.

Problem Pβη. Find uβη : [0, T ]→ V such that

(3.23)

〈Aε (uβη (t)) , ε (v)− ε(uβη (t))〉Q + jfr (yη (t) , v)− jfr (yη (t) , uβη (t))

+jad (β (t) , uβη (t) , v − uβη (t)) ≥ (f (t) , v − uβη (t) (t))V

∀v ∈ V, t ∈ [0, T ] .

We have the following result.

Lemma 3.2. There exists a unique solution uβη ∈ C ([0, T ] ;V ) to the problem

Pβη.

Proof. For each t ∈ [0, T ], we consider the nonlinear operator At : V → V de�ned by

(Atv, w)V = 〈Fε (v) , ε(w)〉Q + jad (β (t) , v, w) ∀v, w ∈ V.

Using (2.15) and the properties of the operators Rν and Rτ (see [17]), we see
that the operator At is Lipschitz continuous and strongly monotone. Then it follows
from classical results for elliptic varaitional inequalities (see [2]) that there exists
a unique element uβ (t) that solves (3.23) . Let us show that uβη ∈ C ([0, T ] ;V ) .

Indeed, for t1, t2 ∈ [0, T ], take t = t1 and v = uβη (t2) in inequality (3.3); then t = t2
and v = uβη (t1), by adding the resulting inequalities we obtain
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(3.24)

〈Fε (uβη (t1))− Fε (uβη (t2)) , ε (uβη (t1))− ε(uβη (t2))〉Q

≤ (f (t1)− f (t2) , uβη (t1)− uβη (t2))V

+jfr (yη (t1) , uβη (t2))− jfr (yη (t1) , uβη (t1)) + jfr (yη (t2) , uβη (t1))

−jfr (yη (t2) , uβη (t2)) + jad (β (t1) , uβη (t1) , uβη (t2)− uβη (t1))

+jad (β (t2) , uβη (t2) , uβη (t1)− uβη (t2))

Using now the properties of the operators Rν and Rτ (see [16]), (2.13) (b), (2.14),
(2.15) (c) and (2.10), we obtain the following estimate

(3.25)

mF ‖uβη (t1)− uβη (t2)‖V

≤ LdΩ

(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

)
‖β (t1)− β (t2)‖L2(Γ3)

+dΩLµ ‖S‖L∞(Γ3) ‖yη (t1)− yη (t2)‖L2(Γ3) + ‖f (t1)− f (t2)‖V .

Then, we deduce from (3.25) that t → uβη (t) : [0, T ] → V is a continuous function
which concludes the proof.

In the sequel we use Lemma 3.2 to de�ne the operator Λη : C ([0, T ] ;V ) →
C ([0, T ] ;V ) by equality

(3.26) Λη = uβη ∀η ∈ C ([0, T ] ;V ) .

We have the following result.

Lemma 3.3. The operator Λ has a unique �xed point η∗ ∈ C ([0, T ] ;V ).

Proof. Let η1, η2 ∈ C ([0, T ] ;V ), we have

‖Λη1 (t)− Λη2 (t)‖V = ‖uβη1 (t)− uβη2 (t)‖V .

Furthermore, by using an argument similar to that in the proof of (3.25), we obtain

(3.27) mF ‖uβη1 (t)− uβη2 (t)‖V ≤ dΩLµ ‖S‖L∞(Γ3) ‖yη1 (t)− yη2 (t)‖L2(Γ3) .

On the other hand we have

(3.28) ‖yη1 (t)− yη2 (t)‖L2(Γ3) ≤ c
∫ t

0

‖η1 (s)− η2 (s)‖V ds,

We combine now (3.27) and (3.28) to deduce the following inequality

(3.29) ‖Λη1 (t)− Λη2 (t)‖V ≤
cdΩLµ ‖S‖L∞(Γ3)

mF

∫ t

0

‖η1 (s)− η2 (s)‖V ds.

Then it follows from (3.29) (see [25]) that the operator Λ has a unique �xed point
η∗.

We have now all the ingredients to prove Proposition 3.1.



86 A. Touzaline

Proof. Existence. Let η∗ ∈ C ([0, T ] ;V ) be the �xed point of the operator Λ. It
follows from (3.22) and (3.26) that we have

(3.30) yη∗ (t) = hη∗ (t) , uβη∗ (t) = η∗ (t) ∀t ∈ [0;T ] .

We now take η = η∗ in inequality (3.3) and keeping in mind the equalities (3.11), we
conclude that the function η∗ ∈ C ([0, T ] ;V ) is a solution to the inequality (3.1) .

Uniqueness. Let η ∈ C ([0, T ] ;V ) be a di�erent solution of the inequality (3.21).
Then by (3.22), it follows that η is a solution to the variational inequality (3.23)

which has a unique solution, denoted uβη. Thus, we conclude hat η = uβη. This
equality implies that Λη = η and by Lemma 3.3 we deduce that η = η∗.

Next, we consider the following problem.

Problem 3. Find β∗ : [0, T ]→ L2 (Γ3) such that

(3.31) β̇∗ (t) = −[β∗ (t) (cν(Rν (uβ∗ν (t)))2 + cτ ‖Rτ (uβ∗τ (t))‖2)− εa]+

a.e. t ∈ (0, T ) ,

(3.32) β∗ (0) = β0.

Proposition 3.4. There exists a unique solution to Problem 3 and it satis�es

β∗ ∈W 1,∞ (0, T ;L2 (Γ3)
)
∩ B.

Proof. Consider the mapping T : Z → Z de�ned by

Tβ (t) = β0−
∫ t

0

[β (s) (cν(Rν (uβν (s)))2 +cτ ‖Rτ (uβτ (s))‖2)−εa]+ds ∀t ∈ [0, T ] ,

where uβ is a solution of Problem Pβ . Let β1, β2 ∈ Z, then as in [25], there exists a
constant c1 > 0 such that

(3.33)

‖Tβ1 (t)− Tβ2 (t)‖L2(Γ3)

≤ c1
∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3) + c1dΩ

∫ t
0
‖uβ1

(s)− uβ2
(s)‖V ds.

Now we need to show the following lemma.

Lemma 3.5. There exists a constant c > 0 such that

‖uβ1
(t)− uβ2

(t)‖V ≤ c ‖β1 (t)− β2 (t)‖L2(Γ3) ∀t ∈ [0, T ] .

Proof. Let t ∈ [0, T ]. Take uβ2 (t) in the inequality (3.1) satis�ed by uβ1 (t), then
take uβ1

(t) in the same inequality satis�ed by uβ2
(t), we �nd after adding the two

inequalities that
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〈Fε (uβ1
(t))− Fε (uβ2

(t)) , ε (uβ1
(t))− ε (uβ2 (t))〉Q

≤ jad (β1 (t) , uβ1
(t) , uβ2

(t)− uβ1
(t)) + jad (β2 (t) , uβ2

(t) , uβ1
(t)− uβ2

(t))

+jfr (uβ1
(t) , uβ2

(t))− jfr (uβ1
(t) , uβ1

(t))

+jfr (uβ2
(t) , uβ1

(t))− jfr (uβ2
(t) , uβ2

(t))

Using (2.13) (b) this inequality implies

(3.34)

mF ‖uβ1
(t)− uβ2

(t)‖2V ≤

jad (β1 (t) , uβ1
(t) , uβ2

(t)− uβ1
(t))

+jad (β2 (t) , uβ2
(t) , uβ1

(t)− uβ2
(t))

+jfr (uβ1
(t) , uβ2

(t))− jfr (uβ1
(t) , uβ1

(t))

+jfr (uβ2
(t) , uβ1

(t))− jfr (uβ2
(t) , uβ2

(t)) .

Using the properties of Rν and Rτ (see [17] ), as in [25] we have

(3.35)

jad (β1 (t) , uβ1 (t) , uβ2 (t)− uβ1 (t))

+jad (β2 (t) , uβ2 (t) , uβ1 (t)− uβ2 (t))

≤ LdΩ

(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

)
×‖β1 (t)− β2 (t)‖L2(Γ3) ‖uβ1

(t)− uβ2
(t)‖V .

On the other hand using (2.17), (2.18) (b) and (2.18) (c) yields

(3.36)

jfr (uβ1 (t) , uβ2 (t))− jfr (uβ1 (t) , uβ1 (t)) + jfr (uβ2 (t) , uβ1 (t))

−jfr (uβ2
(t) , uβ2

(t)) ≤ d2
ΩLµ ‖S‖L∞(Γ3)

×‖uβ2
(t)− uβ1

(t)‖V ‖β1 (t)− β2 (t)‖L2(Γ3) .

We now combine inequalities (3.34), (3.35) and (3.36) to deduce that for all t ∈ [0, T ] ,

(3.37) ‖uβ1
(t)− uβ2

(t)‖V ≤ c ‖β1 (t)− β2 (t)‖L2(Γ3) ,

where

c =
[
d2

ΩLµ ‖S‖L∞(Γ3) + LdΩ

(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

)]
/mF .

Now to end the proof of Lemma 3.4 we use (3.33) and (3.37) to obtain

(3.38) ‖Tβ1 (t)− Tβ2 (t)‖L2(Γ3) ≤ c2
∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3) ds ∀t ∈ [0, T ] ,
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where c2 > 0. As in [25], the inequality (3.38) implies

(3.39) ‖Tβ1 − Tβ2‖k ≤
c2
k
‖β1 − β2‖k .

Thus for k > c2, it follows from (3.29) that T is a contraction, then it admits a
unique �xed point β∗ ∈ Z which satis�es (3.31) and (3.32) .

Now, the proof of Theorem 2.1 is a consequence of the previous lemmas and
propositions.

Proof. Existence. Let β = β∗ and let uβ∗ the solution of Problem Pβ . We conclude
by (3.21), (3.31) and (3.32) that (uβ∗ , β

∗) is a solution to Problem P2.

Uniqueness. Suppose that (u, β) is a solution of Problem P2. It follows from (2.18)

that u is a solution to Problem Pβ , and from Proposition 3.1 that u = uβ . Take
u = uβ in (2.19) and use the initial condition (2.20), we deduce that β is a solution
to Problem P3. Therefore, we obtain from Proposition 3.4 that β = β∗ and then we
conclude that (uβ∗ , β

∗) is a unique solution to Problem P2.
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OPIS ADHEZYJNEGO KONTAKTU CIA�A ELASTYCZNEGO
Z POD�O�EM W PRZYPADKU PROSTOPAD�EGO NACISKU
I TARCIA ZALE�NEGO OD POWIERZCHNI �LIZGU II

ISTNIENIE I JEDNOZNACZNO�� ROZWIA�ZA�

S t r e s z c z e n i e
W pracy zostaª przedstawiony teoretyczny model opisuj�acy tarcie pomi�edzy nieliniowym

ciaªem elastycznym a podªo»em. Rozwa»ania dotycz�a przypadku prostopadªego nacisku na
powierzchnie styku i bior�a pod uwag�e zale»no±¢ wspóªczynnika tarcia od powierzchni ±liz-
gu oraz adhezji powierzchni styku. W zwi�azku z wariacyjnym sformuªowaniem problemu
autorzy dowodz�a, »e wariacyjne sformuªowanie problemu mechanicznego prowadzi do jed-
noznacznych i prawidªowych wyników. Dowód oparty jest na argumentach wynikaj�acych
z rozwa»ania niezale»nych od czasu nierówno±ci wariacyjnych równa« ró»niczkowych oraz
twierdzenia Banacha o punkcie staªym.

Sªowa kluczowe: elastyczny, adhezja, tarcie zale»ne od caªkowitego styku, punkt staªy, sªabe
rozwi�azanie
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PROBLEM WITH ADHESION I
PROBLEM STATEMENT AND VARIATIONAL FORMULATION

Summary

The paper deals with the study of a quasistatic frictionless contact problem between a
nonlinear elastic body and a foundation. The contact is modelled with a normal compliance
condition associated to Signorini's unilateral constraint. The adhesion between contact
surfaces is taken into account and is modelled with a surface variable, the bonding �eld,
whose evolution is described by a �rst-order di�erential equation. In the �rst part of the
paper we establish a variational formulation of the mechanical problem.

Keywords and phrases: elastic, normal compliance, adhesion, frictionless, unilateral, weak
solution

1. Introduction

Contact problems involving deformable bodies are quite frequent in industry as
well as in daily life and play an important role in structural and mechanical sys-
tems. Contact processes involve complicated surface phenomena, and are modelled
with highly nonlinear initial boundary value problems. Taking into account various
contact conditions associated with more and more complex behavior laws lead to
the introduction of new and non standard models, expressed by the aid of evolu-
tion variational inequalities. An early attempt to study contact problems within the
framework of variational inequalities was made in [8]. The mathematical, mechanical
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and numerical state of the art can be found in [20] where we �nd mathematical and
numerical studies of the adhesive contact problems. The analysis and the approxima-
tion by �nite element methods of the unilateral contact models take an important
place (see [13, 16]). The numerical studies of the Sigonrini contact problem were
made in [1�3, 13, 16]. In [16] we �nd a detailed analysis and numerical studies of
elastic unilateral contact problems.

In this paper, we study a mathematical model which describes a frictionless
quasistatic contact problem with adhesion between a nonlinear elastic body and a
deformable foundation. Following [14, 15] the contact is modelled with a normal
compliance condition associated to unilateral constraint with �nite penetration. For
instance recall that models for dynamic or quasistatic processes of frictionless adhe-
sive contact between a deformable body and a foundation have been studied in [4�7,
9, 12, 15, 17�23].

Here as in [10, 11] we use the bonding �eld as an additional state variable β,
de�ned on the contact surface of the boundary. The variable is restricted to values
0 ≤ β ≤ 1; when β = 0 all the bonds are severed and there are no active bonds,
when β = 1 all the bonds are active; when 0 < β < 1 it measures the fraction of
active bonds and partial adhesion takes place.

This work is a continuation and an extension of the results established in [21,
23], where the frictionless and unilateral contact problems for elastic materials were
studied. We establish a variational formulation of the mechanical problem for which
we prove the existence of a unique weak solution and obtain a partial regularity
result for the solution. We also study the numerical approximation of the problem.

The paper is structured as follows. In section 2 we present some notations and
give the variational formulation. In section 3 we state and prove our main existence
and uniqueness result, Theorem 3.1. Finally, in section 4 a fully discrete scheme is
introduced , based on the �nite element method to approximate the spatial variable
and the backward Euler scheme to discretize the time derivatives. A main error
estimates result is proved, Theorem 4.1.

2. Problem statement and variational formulation

We consider a nonlinear elastic body which occupies a domain Ω ⊂ Rd (d = 2, 3)

and assume that its boundary Γ is regular and partitioned into three measurable
and disjoint parts Γ1,Γ2,Γ3 such that meas (Γ1) > 0. The body is clamped on Γ1

and thus the displacement �eld vanishes here. A volume force of density ϕ1 acts in
Ω and a surface traction of density ϕ2 acts on Γ2. In the reference con�guration the
body is in adhesion frictionless contact on Γ3 with a deformable foundation. The
contact is modelled with a normal compliance in such a way that the penetration
is limited and the evolution of the bonding �eld is given by a di�erential equation
of the �rst order. Inder these conditions, the classical formulation of the mechanical
problem is the following.
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Problem P1. Find a displacement u : Ω × [0, T ] → Rd and a bonding �eld β :

Γ3 × [0, T ]→ R such that

(2.1) divσ + ϕ1 = 0 in Ω× (0, T ) ,

(2.2) σ = Fε (u) in Ω× (0, T ) ,

(2.3) u = 0 on Γ1 × (0, T ) ,

(2.4) σν = ϕ2 on Γ2 × (0, T ) ,

(2.5)
uν ≤ g, σν + p (uν)− cνβ2Rν (uν) ≤ 0(
σν + p (uν)− cνβ2Rν (uν)

)
(uν − g) = 0

 on Γ3 × (0, T ) ,

(2.6) στ = 0 on Γ3 × (0, T ) ,

(2.7) β̇ = −
(
cνβ (Rν (uν))

2 − εa
)

+
on Γ3 × (0, T ) ,

(2.8) β (0) = β0 on Γ3.

Equation (2.1) represents the equilibrium equation. Equation (2.2) represents the
elastic constitutive law of the material in which F is a given function and ε (u)

denotes the strain tensor; (2.3) and (2.4) are the displacement and traction boundary
conditions, respectively, in which ν denotes the unit outward normal vector on Γ and
σν represents the Cauchy stress vector. The condition (2.5) represents the unilateral
contact with adhesion in which p and −cνβ2Rν (uν) are the normal contact functions
where cν is a given adhesion coe�cient and Rν is a truncation operator given by

Rν (s) =


L if s < −L
−s if − L ≤ s ≤ 0

0 if s > 0

.

Here L > 0 is the characteristic length of the bond, beyond which the latter has no
additional traction (see [20]) and p is a normal compliance function which satis�es
the assumption beow (2.14). The condition (2.6) represents the frictionless contact
in which the tangential traction vanishes.We denote by the positive constant g the
maximum value of the penetration. When uν < 0 i.e. when there is separation
between the body and the foundation then the condition (2.5) combined with hy-
potheses (2.14) on the function p shows that σν = −pν (uν , β) and by assumption
(2.14) below, it does not exeed the value Lν (1 + g). When g > 0, the body may
interpenetrate into the foundation, but the penetration is limited that is uν ≤ g. In
this case of penetration (i.e. uν ≥ 0), when 0 ≤ uν < g then −σν = p (uν) which
means that the reaction of the foundation is uniquely determined by the normal
displacement and σν ≤ 0. Since p is an increasing function then the reaction of the
foundation is increasing with the penetration and when uν = g, then −σν ≥ p (g)
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and σν is not uniquely determined. When g > 0 and p = 0, condition (2.5) becomes
the Signorini contact condition with adhesion with a gap function,

uν ≤ g, σν ≤ 0, (σν − cνβ2Rν (uν))(uν − g) = 0.

When g = 0, the condition (2.5) combined with hypothese (2.14) becomes the Sig-
norini contact condition with adhesion with a zero gap function, given by

uν ≤ 0, σν − cνβ2Rν (uν) ≤ 0, (σν − cνβ2Rν (uν))uν = 0.

This contact condition was used in [20, 21, 23]. The condition (2.6) represents the
frictionless contact in which the normal constraint vanishes. Equation (2.7) repre-
sents the ordinary di�erential equation which describes the evolution of the bond-
ing �eld.where εa is an adhesion coe�cient and β+ = max (0, β). Since β̇ ≤ 0 on
Γ3× (0, T ), once debonding occurs bonding cannot be reestablished and, indeed, the
adhesive process is irreversible. Also from [17] it must be pointed out clearly that
condition (2.7) does not allow for complete debonding in �nite time. Finally, (2.8)

is the initial condition, in which β0 denotes the initial bonding �eld. In (2.7) a dot
above a variable represents its derivative with respect to time. We denote by Sd
the space of second order symmetric tensors on Rd (d = 2, 3) and |.| represents the
Euclidean norm on Rd and Sd. Thus, for every u, v ∈ Rd, u.v = uivi, |v| = (v.v)

1
2 ,

and for every σ, τ ∈ Sd, σ.τ = σijτij , |τ | = (τ.τ)
1
2 . Here and below, the indices i

and j run between 1 and d and the summation convention over repeated indices is
adopted. Now, to proceed with the variational formulation, we need the following
function spaces:

H =
(
L2 (Ω)

)d
, H1 =

(
H1 (Ω)

)d
, Q =

{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
,

Q1 = {τ ∈ Q; divτ ∈ H} .
Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =

∫
Ω

uividx, (σ, τ)Q =

∫
Ω

σijτijdx.

The strain tensor is

ε (u) = (εij (u)) =
1

2
(ui,j + uj,i) ;

divσ = (σij,j) is the divergence of σ. For every v ∈ H1 we denote by vν and vτ the
normal and tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.
We also denote by σν and στ the normal and the tangential traces of a function
σ ∈ Q1, and when σ is a regular function then

σν = (σν) .ν, στ = σν − σνν,
and the following Green's formula holds:

(σ, ε (v))Q + (divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1,
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where da is the surface measure element. Now, let V be the closed subspace of H1

de�ned by

V = {v ∈ H1 : v = 0 on Γ1} ,

and let the convex subset of admissible displacements given by

K = {v ∈ V : vν ≤ g a.e on Γ3} .

Since meas(Γ1) > 0, the following Korn's inequality holds [10],

(2.9) ‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V,

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with the
inner product

(u, v)V = (ε (u) , ε (v))Q

and ‖.‖V is the associated norm. It follows from Korn's inequality (2.9) that the
norms ‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space.
Moreover by Sobolev's trace theorem, there exists dΩ > 0 which only depends on
the domain Ω, Γ1 and Γ3 such that

(2.10) ‖v‖(L2(Γ3))d ≤ dΩ ‖v‖V ∀v ∈ V.

For p ∈ [1,∞], we use the standard norm of Lp (0, T ;V ). We also use the Sobolev
space W 1,∞ (0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ) .

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C ([0, T ] ;X)

for the space of continuous functions from [0, T ] to X; recall that C ([0, T ] ;X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

We suppose that the body forces and surface tractions have the regularity

(2.11) ϕ1 ∈W 1,∞ (0, T ;H) , ϕ2 ∈W 1,∞ (0, T ; (L2 (Γ2))d
)

and denote by f (t) the element of V de�ned by

(2.12) (f (t) , v)V =

∫
Ω

ϕ1 (t) .vdx+

∫
Γ2

ϕ2 (t) .vda ∀v ∈ V , t ∈ [0, T ] .

Using (2.11) and (2.12) yield

f ∈W 1,∞ (0, T ;V ) .

In the study of the mechanical problem P1 we assume that the nonlinear elasticity
operator F : Ω× Sd → Sd satis�es:
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(2.13)

(a) There exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2| ∀ ε1, ε2 ∈ Sd,
a.e. x ∈ Ω;

(b) there exists m > 0 such that
(F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2 ,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) the mapping x→ F (x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd;
(d) F (x, 0) = 0 for a.e. x ∈ Ω.


Next we de�ne the functional j : L2 (Γ3)× V × V → R by

j (β, u, v) =
∫

Γ3
(p(uν)− cνβ2Rν (uν))vνda,

∀ (β, u, v) ∈ L2 (Γ3)× V × V,

where we assume that the normal compliance function p : Γ3 × R→ R+ satis�es:

(2.14)



(a) There exists Lp > 0 such that
|p (x, r1)− p (x, r2)| ≤ Lp |r1 − r2|
∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) (p (x, r1)− p (x, r2)) (r1 − r2) ≥ 0

∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(c) the mapping x→ pν (x, r) is measurable on Γ3, for any r ∈ R;

(d) p (x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

Finally we assume that the initial bonding �eld satis�es:

(2.15) β0 ∈ L2 (Γ3) ; 0 ≤ β0 ≤ 1 a.e. on Γ3

and we need to introduce the set of the bonding �eld:

B =
{
θ : [0, T ]→ L2 (Γ3) ; 0 ≤ θ (t) ≤ 1, ∀t ∈ [0, T ] , a.e. on Γ3

}
.

Now, assuming the solution to be su�ciently regular and applying Green's formula,
we deduce the following variational formulation of the mechanical problem P1.

Problem P2. Find a displacement �eld u : [0, T ]→ V and a bonding �eld β : [0, T ]→
L2 (Γ3) such that

(2.16)
u (t) ∈ K, (Fε (u (t)) , ε (v)− ε (u (t)))Q + j (β (t) , u (t) , v − u (t))

≥ (f (t) , v − u (t))V ∀ v ∈ K, t ∈ [0, T ] ,

(2.17) β̇ (t) = −
(
cνβ (t) (Rν (uν (t)))

2 − εa
)

+
a.e. t ∈ (0, T ) ,

(2.18) β (0) = β0.
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ANALIZA I APROKSYMACJA W JEDNOSTRONNYM PROBLEMIE

PRZYLEGANIA Z ADHEZJA� I

POSTAWIENIE PROBLEMU I SFORMU�OWANIE WARIACYJNE

S t r e s z c z e n i e
Artykuª po±wi�econy jest problemowi kwazi-statycznego, beztarciowego kontaktu po-

mi�edzy nieliniowo elastycznym ciaªem a podªo»em. Kontakt jest modelowany za pomoc�a
normalnych warunków odksztaªcenia zwi�azanych z jednostronnymi wi�ezami Signoriniego.
Przyleganie pomi�edzy stykaj�acymi si�e powierzchniami zostaªo uwzgl�ednione i wymode-
lowane za pomoc�a pola powierzchniowych oddziaªywa«, którego zmiana opisywana jest rów-
naniami ró»niczkowymi 1. stopnia. W pierwszej cz�e±ci pracy przedstawiamy sformuªowanie
wariacyjne odpowiedniego problemu mechanicznego.

Sªowa kluczowe: elastyczny, normalne warunki odksztaªcenia, adhezja, pozbawiony tarcia,
jednostronny, sªabe rozwi�azanie
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ANALYSIS AND APPROXIMATION OF A UNILATERAL CONTACT
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EXISTENCE, UNIQUENESS RESULT, AND NUMERICAL APPROACH

Summary

The paper deals with the study of a quasistatic frictionless contact problem between a
nonlinear elastic body and a foundation. The contact is modelled with a normal compliance
condition associated to Signorini's unilateral constraint. The adhesion between contact
surfaces is taken into account and is modelled with a surface variable, the bonding �eld,
whose evolution is described by a �rst-order di�erential equation. In the second part of the
paper we problem and prove an existence and uniqueness result.The technique of the proof
is based on arguments of time-dependent variational inequalities, di�erential equations and
Banach �xed-point theorem. We also introduce the fully discrete scheme based on the
�nite element method to approximate the spatial variable and the backward Euler scheme
to discretize the time derivatives. We derive error estimates on the approximate solutions
under suitable regularity conditions.
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3. Existence and uniqueness result

Our main result which will be established in this section is the following theorem.

Theorem 3.1. Let (2.11), (2.13)�(2.17) and (218) hold. Then Problem P2 has a

unique solution which satis�es
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(3.1) u ∈W 1,∞ (0, T ;V ) ∩ C ([0, T ] ;K) ,

(3.2) β ∈W 1,∞ (0, T ;L2 (Γ3)
)
∩B.

The proof of Theorem 3.1 is carried out in several steps. In the �rst step, let
k > 0 and consider the closed subset X of C

(
[0, T ] ;L2 (Γ3)

)
de�ned as

X =
{
θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
∩B, θ (0) = β0

}
,

where the Banach space C
(
[0, T ] ;L2 (Γ3)

)
is endowed with the norm

‖θ‖X = max
t∈[0,T ]

[
exp (−kt) ‖θ (t)‖L2(Γ3)

]
for all θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
.

Next for a given β ∈ X, we consider the following variational problem.

Problem P1β . Find uβ : [0, T ]→ V such that

(3.3)
uβ (t) ∈ K, (Fε (uβ (t)) , ε (v − uβ (t)))Q + j (β (t) , uβ (t) , v − uβ (t))

≥ (f (t) , v − uβ (t))V ∀v ∈ K, t ∈ [0, T ] .

We have the following result.

Lemma 3.2. Problem P1β has a unique solution

(3.4) uβ ∈ C ([0, T ] ;K) .

Proof. Let the operator Aβ(t) : V → V de�ned by(
Aβ(t)u, v

)
V

= (Fε (u) , ε (v))Q + j (β (t) , u, v) , ∀u, v ∈ V.

We use (2.11), (2.13), (2.14) and (2.15) to show that the operator Aβ(t) is strongly
monotone and Lipschitz continuous; then by a standard existence and uniqueness
result for elliptic quasivariational inequalities (see [4]), it follows that there exists a
unique element uβ (t) ∈ K which satis�es the inequality (3.3) sinceK is a non-empty,
closed convex subset of V.
To see that uβ ∈ C ([0, T ] ;K), it su�ces to see after easy calculations (see [20]) that
there exists a positive constant c such that

(3.5)

‖uβ (t1)− uβ (t2)‖V ≤

c

m

(
‖f (t1)− f (t2)‖V + ‖β (t1)− β (t2)‖L2(Γ3)

)
∀t1, t2 ∈ [0, T ] .

Therefore, as f ∈ C ([0, T ] ;V ) and β ∈ C
(
[0, T ] ;L2 (Γ3)

)
, we immediately conclude

(3.4) . �

In the second step, we consider the following problem.
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Problem P2β . Find χβ : [0, T ]→ L2 (Γ3) such that

(3.6) χ̇β (t) = −
(
cνχβ (t) (Rν (uβν (t)))

2 − εa
)

+
a.e. t ∈ (0, T ) ,

(3.7) χβ (0) = β0.

We obtain the following result.

Lemma 3.3. Problem P2β has a unique solution χβ which satis�es

χβ ∈W 1,∞ (0, T ;L2 (Γ3)
)
∩B.

Proof. Consider the mapping Fβ (t, θ) : [0, T ]× L2 (Γ3)→ L2 (Γ3) de�ned by

Fβ (t, θ) = .−
(
cνθ (t) (Rν (uβν (t)))

2 − εa
)

+

It follows from the properties of the truncation operator R, that Fβ is Lipschitz
continuous with respect to the second argument, uniformly in time. Moreover, for
any θ ∈ L2 (Γ3), the mapping t→ Fβ (t, θ) belongs to L∞

(
0, T ;L2 (Γ3)

)
. Then, from

a version of Cauchy-Lipschitz theorem, we deduce the existence of a unique fonction
χβ ∈W 1,∞ (0, T ;L2 (Γ3)

)
, which satis�es (3.6), (3.7). The regularity χβ ∈ B, follows

from (3.6), (3.7) and (2.18), (see [20, 21]). Therefore, from Lemma 3.5, we deduce
that for all β ∈ X, the solution χβ of Problem P2β belongs to X. Next, we de�ne
the mapping Λ : X → X by

Λβ = χβ

The third step consists of the following lemma. �

Lemma 3.4. The mapping Λ has a unique �xed point β∗.

Proof. We have

Λβ (t) = β0 −
∫ t

0

(
cν (χβ (s) (Rν (uβν (s)))

2 − εa
)

+
ds,

where uβ is the solution of Problem P1β . Then for β1, β2 ∈ X, using (2.10) and the
de�nition of Rν , it follows that there exists a constant c1 > 0 such that

‖χβ1
(t)− χβ2

(t)‖L2(Γ3)

≤ c1
∫ t

0

(
‖χβ1

(s)− χβ2
(s)‖L2(Γ3) + ‖uβ1

(s)− uβ2
(s)‖V

)
ds.

Then using Gronwall's inequality we obtain

‖χβ1 (t)− χβ2 (t)‖L2(Γ3) ≤ c2
∫ t

0

‖uβ1 (s)− uβ2 (s)‖V ds,

where c2 > 0. Now let t ∈ [0, T ]. Then, using the inequality (3.3), (2.13), (2.14) and
(2.15), (see [21]) we deduce that there exists a constant c3 > 0 such that

‖uβ1 (t)− uβ2 (t)‖V ≤ c3 ‖β1 (t)− β2 (t)‖L2(Γ3) .
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Hence, it follows that

‖Λβ1 (t)− Λβ2 (t)‖L2(Γ3) ≤ c4
∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3) ds ∀t ∈ [0, T ] ,

where c4 > 0. Therefore, we obtain

‖Λβ1 − Λβ2‖X ≤
c4
k
‖β1 − β2‖X , ∀β1, β2 ∈ X.

Thus, this previous estimate shows that for k > c4, Λ is a contraction. Then it
has a unique �xed point β∗ which satis�es (3.6) and (3.7) . On the other hand from
(3.5) we deduce that uβ∗ ∈W 1,∞ (0, T ;V ). �

Proof of Theorem 3.1. Let β = β∗ and let uβ∗ the solution to Problem P1β . We
conclude by (3.3), (3.6) and (3.7) that (uβ∗ , β

∗) is a solution of Problem P2. Now to
prove the uniqueness of the solution, suppose that (u, β) is a solution of Problem P2

which satis�es (2.16), (2.17) and (2.18) . It follows from (2.16) that u is a solution
of Problem P1β and by Lemma 3.2 we get u = uβ . Taking u = uβ in (2.17) and
using the initial condition (2.18), we deduce that β is a solution of Problem P2β .
Finally, using Lemma 3.5, we obtain β = β∗ and then (uβ∗ , β

∗) is a unique solution
to Problem P2 which satis�es (3.1), (3.2) .

4. Numerical approach

We now introduce a �nite element method to approximate solutions of Prolem P2 and
derive an error estimate on them. We denote by h > 0 the parameter of discretization
which is done as follows. First, we consider a �nite dimensional spaces V h ⊂ V and
Bh ⊂ L2 (Γ3) associated with a partition Th, approximating respectively the spaces
V and L2 (Γ3), where

V h =
{
vh ∈

[
C
(
Ω
)]d

; vh |Tr ∈ [P1 (Tr)]
d , Tr ∈ T h, vh = 0 on Γ1

}
,

Bh =
{
βh ∈ L2 (Γ3) ; βh |γ ∈ R ∀γ ∈ T hΓ3

}
,

and we recall (see [20] , page 55) that T hΓ3
is a partition induced by the triangulation

T h. Let also PBh : L2 (Γ3) → Bh be the orthogonal projection operator on Bh.
Moreover, let Kh be the discrete convex set of admissibles displacements de�ned
as Kh = K ∩ V h. Secondly, the time derivatives are discretized by using a uniform
partition of [0, T ] denoted as

0 = t0 < t1 < ... < tN = T.

Let k be the time step size, k = T/N , and for a continuous function φ (t) let φn =

φ (tn). Finally, for a sequence (wn)
N
n=0, we denote by δwn = (wn − wn−1) /k the

�nite di�erences. In this section, no summation is assumed over a repeated index.
Using the backward Euler scheme, the fully discrete approximation of Problem P2

is the following.
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Problem Phk2 . Find a discrete displacement �eld

uhk =
(
uhkn
)N
n=1
⊂ Kh

and a discrete bonding �eld

βhk =
(
βhkn
)N
n=1
⊂ Bh

such that βhk0 = βh0 and for all n = 1, ..., N

(4.1)


(Fε

(
uhkn
)
, ε
(
vh − uhkn

)
)Q + j

(
βhkn , uhkn , vh − uhkn

)
≥
(
fn, v

h − uhkn
)
V
∀vh ∈ Kh,

(4.2) δβhkn = −PBh

(
cνβ

hk
n−1

(
Rν

(
uhk(n−1)ν

))2

− εa
)

+

.

and βh0 is an appropriate approximation of the initial condition β0. The same argu-
ments used in the proof of Theorem 3.1 yield that Problem Phk2 admits a unique solu-
tion. Our interest in this section lies in estimating the numerical errors

∥∥un − uhkn ∥∥V
and

∥∥βn − βhkn ∥∥L2(Γ3)
. We have the following main error estimates result.

Lemma 4.5. Let the assumptions of Theorem 3.1 hold. Let (u, β) and
(
uhkn , βhkn

)
denote the solution to Problem P2 and Problem Phk2 , respectively. Assume that

σ = Fε (u), β and β0 satisfy the regularity

(4.3) σ ∈ C
(
[0, T ] ; (H1 (Ω))d×d

)
∩W 1,1 (0, T ;Q) ,

(4.4) β ∈W 2,1
(
0, T ;L2 (Γ3)

)
∩ C1

(
[0, T ] ;H1 (Γ3)

)
,

(4.5) β0 ∈ H1 (Γ3) .

Then, there exists a positive constant c independent of discretization parameters h

and k such that the following error estimate holds true for all vh =
(
vhj
)N
j=1
⊂ Kh :

(4.6)

max
1≤n≤N

{∥∥un − uhkn ∥∥2

V
+
∥∥βn − βhkn ∥∥2

L2(Γ3)

}
≤ c max

1≤n≤N
inf

vh∈Kh

(∥∥un − vh∥∥2

V
+
∥∥unν − vhν∥∥V )+ c

(
h2 + k2

)
.

Proof. First, let us obtain an error estimate on the displacement �eld. We rewrite
variational inequality (2.16) at time t = tn for v = uhkn ∈ Kh to obtain

(4.7) (Fε (un) , ε
(
un − uhkn

)
)Q + j

(
βn, un, un − uhkn

)
≤
(
fn, un − uhkn

)
V
.
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Therefore, after some algebraic manipulations, we have

(4.8)



(Fε
(
uhkn
)
, ε
(
uhkn − un

)
)Q + j

(
βhkn , uhkn , uhkn − un

)
≤ (Fε

(
uhkn
)
, ε
(
vh − un

)
)Q + j

(
βhkn , uhkn , vh − un

)
+
(
fn, u

hk
n − vh

)
V
∀vh ∈ Kh.

By adding the inequalities (4.7) and (4.8) we get

(4.9)



(Fε (un)− Fε
(
uhkn
)
, ε
(
un − uhkn

)
)Q + j

(
βn, un, un − uhkn

)
−j
(
βhkn , uhkn , un − uhkn

)
≤ (Fε

(
uhkn
)
, ε
(
vh − un

)
)Q + j

(
βhkn , uhkn , vh − un

)
−
(
fn, v

h − un
)
V
∀vh ∈ Kh.

Hence we deduce from (4.9) the following inequality

(4.10)



〈
Fε (un)− Fε

(
uhkn
)
, ε
(
un − uhkn

)〉
Q

+ j
(
βn, un, un − uhkn

)
−j
(
βhkn , uhkn , un − uhkn

)
≤ (Fε

(
uhkn
)
− Fε (un) , ε

(
vh − un

)
)Q + j

(
βhkn , uhkn , vh − un

)
−j
(
βn, un, v

h − un
)

+ Ln
(
vh
)
,

where

Ln
(
vh
)

= (Fε (un) , ε
(
vh − un

)
)Q + j

(
βn, un, v

h − un
)
−
(
fn, v

h − un
)
V
.

Next, denote

σn = Fε (un)

and using Green's formula we have

Ln
(
vh
)

=

∫
Γ3

(
σnν − cνβ2

nRν (unν) + p (unν)
)

(vhν − unν)da.

So taking into account (4.3) which implies that σν ∈ C
(
[0, T ] ;L2 (Γ3)

)
and using

(2.14) we deduce the following estimate∣∣Ln (vh)∣∣ ≤ c∥∥vhν − unν∥∥L2(Γ3)
.

Now we turn to the other estimates. Indeed, using again (2.14) we have

j
(
βhkn , uhkn , un − uhkn

)
− j

(
βn, un, un − uhkn

)
≤ c′(

∥∥βn − βhkn ∥∥L2(Γ3)
+
∥∥un − uhkn ∥∥V )

∥∥uhkn − un∥∥V
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and
j
(
βhkn , uhkn , vh − un

)
− j

(
βn, un, v

h − un
)

≤ c′(
∥∥βn − βhkn ∥∥L2(Γ3)

+
∥∥un − uhkn ∥∥V )

∥∥vh − un∥∥V .
Moreover using the inequality (4.10) and applying Young's inequality

ab ≤ δa2 +
1

4δ
b2 ∀a, b ∈ R, δ > 0,

after some caluclations, it follows that∥∥un − uhkn ∥∥2

V
≤

c
(∥∥βn − βhkn ∥∥2

L2(Γ3)
+
∥∥un − vh∥∥2

V
+
∥∥unν − vhν∥∥L2(Γ3)

)
∀vh ∈ Kh.

Then we get the estimate

(4.11)

∥∥un − uhkn ∥∥2

V
≤

c
(∥∥βn − βhkn ∥∥2

L2(Γ3)
+
∥∥vh − un∥∥2

V
+
∥∥unν − vhν∥∥L2(Γ3)

)
∀vh ∈ Kh.

Now, keeping in mind (3.43) [20, page 64], (4.4) and (4.5) with the estimate∥∥β0 − βh0
∥∥
L2(Γ3)

≤ ch,

where βh0 is the orthogonal projection of β0 on Bh, we have

(4.12)
∥∥βn − βhkn ∥∥2

L2(Γ3)
≤ c

n∑
k(

j=1

∥∥uj − uhkj ∥∥2

V
+
∥∥βj − βhkj ∥∥2

L2(Γ3)
) + c

(
h2 + k2

)
.

Combining (4.11) and (4.12) yields∥∥un − uhkn ∥∥2

V
+
∥∥βn − βhkn ∥∥2

L2(Γ3)

≤ c


∥∥un − vh∥∥2

V
+
∥∥unν − vhν∥∥L2(Γ3)

+ h2 + k2

+
n∑
k(

j=1

∥∥uj − uhkj ∥∥2

V
+
∥∥βj − βhkj ∥∥2

L2(Γ3)
)


Applying discrete Gronwall's inequality and the arbitrariness of vh ∈ Kh leads the
the estimate (4.6). �

We now have the following result of error estimate.

Theorem 4.6. Let the assumptions of Theorem 3.1 and Lemma 4.1 hold. Moreover

under the regularity conditions

u ∈ C
(

[0, T ] ;
(
H2 (Ω)

)d)
and uν ∈ C

(
[0, T ] ;H2 (Γ3)

)
,
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there exists a constant c > 0 independent of the discretization parameters h and k

such that

(4.13) max
1≤n≤N

(∥∥un − uhkn ∥∥V +
∥∥βn − βhkn ∥∥L2(Γ3)

)
≤ c (h+ k) .

Proof. Recall that we have the following approximation properties of the �nite ele-
ment space V h (see [5]),

(4.14)

max
1≤n≤N

inf
vh∈V h

∥∥un − vh∥∥V ≤ ch ‖u‖C(
[0,T ];(H2(Ω))

d
)
,

max
1≤n≤N

inf
vh∈V h

∥∥uν − vhν∥∥V ≤ ch ‖u‖C([0,T ];(H2(Γ3))),

Combining (4.6) and (4.14) we obtain the error estimate (4.13). �
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ANALIZA I APROKSYMACJA W JEDNOSTRONNYM PROBLEMIE

PRZYLEGANIA Z ADHEZJA� II

ISTNIENIE, JEDNOZNACZNO�� WYNIKU I PODEJ�CIE NUMERYCZNE

S t r e s z c z e n i e
Artykuª po±wi�econy jest problemowi kwazi-statycznego, beztarciowego kontaktu po-

mi�edzy nieliniowo elastycznym ciaªem a podªo»em. Kontakt jest modelowany za pomoc�a
normalnych warunków odksztaªcenia zwi�azanych z jednostronnymi wi�ezami Signoriniego.
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Przyleganie pomi�edzy stykaj�acymi si�e powierzchniami zostaªo uwzgl�ednione i wymode-
lowane za pomoc�a pola powierzchniowych oddziaªywa«, którego zmiana opisywana jest
równaniami ró»niczkowymi 1. stopnia. W drugiej cz�e±ci pracy dowodzimy istnienia i jed-
noznaczno±ci rozwi�azania. Dowód oparty jest na zale»nych od czasu nierówno±ciach waria-
cyjnych, równaniach ró»niczkowych i twierdzeniu Banacha o punkcie staªym. Wykorzystu-
jemy tak»e w peªni nieci�agªe podej±cie oparte na metodzie elementów sko«czonych w celu
przybli»enia zmiennych przestrzennych oraz odwrotne Eulera w celu okre±lenia nieci�agªych
pochodnych czasowych. Oszacowali±my bª�ad przybli»onego rozwi�azania przy odpowiednich
warunkach regularno±ci.

Sªowa kluczowe: elastyczny, normalne warunki odksztaªcenia, adhezja, pozbawiony tarcia,
jednostronny, sªabe rozwi�azanie.
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2014 Vol. LXIV

Recherches sur les déformations no. 1
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NUMERICAL SOLUTIONS OF NEARLY TIME-INDEPENDENT

GINZBURG-LANDAU EQUATION FOR VARIOUS

SUPERCONDUCTING STRUCTURES
III. ANALYTICAL SOLUTIONS AND RELAXATION METHOD

Summary
In this work the concept of modified unconventional Josephson junction (muJJ) is intro-

duced. It is the structure made from deformation of uJJ by placement of nonsuperconduct-
ing rectangular bar on the top of superconducting bar and by shift of nonsuperconducting
bar deeper in the superconductor. Some analytic solutions are obtained for such structure
with use of linearized Ginzburg-Landau equation. The concept of muJJ is introduced for
rectangular, cylindrical and spherical geometry. Basing on obtained analytical results the
development of relaxation method is proposed. It can be further generalized nearly time
independent Ginzburg-Landau equation.

Keywords and phrases: Schrödinger equation, linear Ginzburg-Landau equation, GL equa-

tion, modified unconventional Josephon junction and device, relaxation method

1. Description of superconducting structures by linearized
Ginzburg-Landau equation

We study various cases of system of superconductor with non-superconductor. In

one dimension we have the following GL equation

(1) 0 = αψ + β|ψ|2ψ − ~2

2m

d2

dx2
ψ(x)

with α and β parameters.
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If superconducting order parameter is small such equation can become linear. We

thus have

(2) 0 = αψ − ~2

2m

d2

dx2
ψ(x).

In superconductor we have α < 0, while in normal state we can assume α > 0 or

α = 0.

Therefore we can recognize linearized GL equation in superconductor Schrödinger

equation quite easily with positive eigenenergy values α

(3) |α|ψ(x) = −αψ(x) = − ~2

2m

d2

dx2
ψ(x).

Such solutions of Schrödinger equation correspond to free particle solutions of

Schrödinger equation since −α > 0 in the superconductor. The solutions are of

the form

(4) ψ(x) = A sin(kx) +B cos(kx) + Cx+D,

where A,B,C,D, k are constants.

The following relation is being fulfilled

~2

2m
k2 = |α|.

On another hand in non-superconducting medium we have α > 0. This makes

linear GL equation to be of the form as:

(5) −|α|ψ(x) = −αψ(x) =
~2

2m

d2

dx2
ψ(x)

and have solutions of Schrödinger equation corresponding to bounded-states where

total energy of the system which is the sum of kinetic and potential term is smaller

than zero. It has the following solution of the form

(6) ψ(x) = Aeλx + Ce−λx +Dx+ E,

where A,B,C,D,E, λ are constants. Here

~2

2m
λ2 = |α|.

We should remember that linear equation with given boundary conditions have

infinite number of solutions. Our aim is at first to find solutions for linear Ginzburg-

Landau equation. Later we come back to non-linear version of GL equation. It guar-

antees that we have only one unique solution.

1.1. Boundary conditions for GL equation

If we deal with superconductor-nonsuperconductor system the canonical momentum

with respect to interface needs to be zero since no electric current can escape the

superconductor. We have (
~
i

d

dx
− 2e

c
Ax

)
ψ(x) = 0
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at the superconductor-normal metal interface. At superconductor-normal metal in-

terface the boundary conditions are(
~
i

d

dx
− 2e

c
Ax

)
ψ(x) =

1

b
ψ(x),

where b is constant depending on the type of material. For non-conducting metal b

tends to infinity and for well conducting metal b is of medium value.

It is quite straightforward to generalize the given consideration to 2 or 3 di-

mensions. One should remember that superconductor is the source of Cooper pairs

flowing to non-superconducting area.

2. Various types of solutions of GL equation

2.1. Case of Sc-N and Sc-N-Sc system

Let us assume that α > 0 inside normal metal. Having Sc-N interface at x = 0 and

for infinite superconductor inside normal strip we have have ψ(x) = Ae−λx. In such

case

−λ =
1

b
.

Let us consider Sc and Sc-N-Sc system. We treat the system to be one dimen-

sional. It is quite obvious to assign the symmetry of solutions. In N area we have

ψ(x) = A cosh(λ)+A sinh(λ). Symmetry imposes ψ(x) = A cosh(λ). From boundary

conditions we have

tanh(λd) =
λ

b
.

2.2. Case of N-Sc-N system

Let us refer to situation depicted in Fig. 1. In such one dimensional system we obtain

linear solution of GL equation given as

ψ(x, y) = A cos(ky)

what implies

ψ(x, y) = A cos

((
2m|α|

~

) 1
2

y

)
.

Additional boundary condition implies

tan(kd) =
b

k
.

3. Simple considerations on analytic solution of GL equation
for uJJ structures

Let us consider the structure as depicted in Fig. 2 described by numbers L1,L2,

L3 and L4 and constants b1, b2, b3, b4, b5. It mimics the uJJ structure, but it is
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Fig. 1: Case of superconductor embedded from two sides by non-superconductor.

Fig. 2: Schematic view of modified uJJ in rectangular geometry.

the deformed version of it, since non-superconducting strip is placed deeper in the

superconductor than in the case of uJJ when it is placed directly on superconduc-

tor. Nevertheless in the technological process of synthesis of uJJ the diffusion of

evaporated material can penetrate into superconductor to certain thickness.

Let us concentrate at first on linear GL equation. We have

(7) αψ − ~2

2m
(
d2

dx2
+

d2

dy2
+

d2

dz2
)ψ = 0

and quite obviously its solutions are the solutions of Schrodinger equation.

Therefore for the symmetric system around OY axis we can write:

(8) ψsc(x, y) = [A1 −A2 cos(k1(x− x0)) cos(k2(y − y0))] +A3y
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and set x0 = 0. Therefore we obtain the equation

ψsc(x, y) = [A1 −A2 cos(k1x) cos(k2(y − y0))] +A3y.

We identify the following variables: A1, A2, A3, k1, k2, x0, y0.

From first two equations we obtain the equations:

~2

2m
(k21 + k22) = α,(9)

dψsc
dx

= [+A2k1 sin(k1(x− x0)) cos(k2(y − y0))](10)

dψsc
dy

= [+A2k2 cos(k1(x− x0)) sin(k2(y − y0))] +A3.(11)

Let us consider IH and DE line and consider the boundary conditions(
d

dy
ψ(IH, y) =

1

b5
ψ(IH, y)

)
,

or (
d

dy
ψ(DE, y) =

1

b1
ψ(DE, y)

)
.

For IH, where x ∈ (−L2/2, L2/2) line we have:

{[A1 −A2 cos(k1(x− x0) cos(k2(−y0)))]} 1

b5
=(12)

[+A2k2 cos(k1(x− x0)) sin(k2(−y0)) +A3]

what brings

(13)
A1

b5
−A3 = 0 so

A1

b5
= A3

and

(14) 0 = cos(k1(x− x0))A2

[
1

b5
cos(k2y0)− k2 sin(k2y0)

]
makes finally

(15) tan(k2y0) =

(
1

b5k2

)
.

Let us consider the boundary condition along DE line

([A1 −A2 cos(k1(x)) cos(k2(L3 − y0))] +A3L3)
1

b1
=(16)

[+A2k2 cos(k1x) sin(k2(L3 − y0)) +A3].

It can be rearranged to be of the form

0 =

(
A1 +A3L3

b1

)
−A3 =(17)

A2 cos(k1x)

(
1

b1
cos(k2(L3 − y0)

)
+ k2 sin(k2(L3 − y0)))
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what brings

(18) tan(k2(L3 − y0)) = −
(

1

b1k2

)
and

(19) 0 =

(
A1 +A3L3

b1

)
−A3.

Equation (13) and (7) brings the relation between b1 and b5 to be as b1−L3 = b5.

Third condition along FG line brings the following relation to be valid

(20) tan(k2(L4 − y0)) = −
(

1

b3k2

)
and

(21) 0 =

(
A1 +A3L4

b3

)
−A3.

For GH line we have

1

b4
(A1 −A2 cos(k1(L2/2)) cos(k2(y − y0)) +A3y) =(22)

[+A2k1 sin(k1(L2/2)) cos(k2(y − y0))],

which can be rewritten to be in the form

const =
1

b4
(A1) =(23)

cos

(
k2(y − y0)A2

(
cos

(
k1(L2/2)

1

b4
+ k1 sin(k1(L2/2)

)))
− (A3y)

1

b4
.

Solutions of such equation for infinite number of points (y ∈ (0, L4)) exists only

if b4 → +∞. In such case we have:

(24) k1 sin(k1(L2/2)) = 0.

Since k1 is non zero then

(25) k1 = (π + 2nπ)/L2.

Knowledge of k1 implies knowledge of k2 from equation 3.

Quite similar situation occurs for EF line. We have

1

b2
(A1 −A2 cos(k1(L1/2)) cos(k2(y − y0)) +A3y) =(26)

[+A2k1 sin(k1(L1/2)) cos(k2(y − y0))],

which can be rewritten to be in the form

const =
1

b2
(A1) =(27)

cos(k2(y − y0)A2(cos(k1(L1/2)
1

b2
+ k1 sin(k1(L1/2))))− (A3y)

1

b2
.
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Such equation has only the solution if b2 → +∞ for (y ∈ (L3, L4)). Similarly as

before we obtain the condition

(28) k1 sin(k1(L1/2)) = 0

which implies

(29) k1 = (π + 2n1π)/L1.

Equation (23) and (19) brings the following condition on L1 and L2

(30) (1 + 2n)/L2 = (1 + 2n1)/L1.

3.1. Summary of analytic solutions for linearized GL

First we apply equation (24) and use

n = 0, n1 = 1,
1

3
=
L2

L1
.

Material N1 and N4 needs to be insulators to maintain structure of solution Equation

(2) with two superconducting peaks. N3 and N5 materials can also be insulators. In

such case equation (12) is prescription for y0 coefficient. Equation (13) is prescription

for ration between A1 and A2 coefficients. It is quite straightforward to generalized

the obtained result to 3 dimensional case. Due to periodicity of cosine function one

generalize the obtained results to structures depicted in Fig. 4, 5, 6. The next step

in considerations are structures depicted in Fig. 3. Here SCOP is the cosine function

factorized by Bessel function.

Fig. 3: Geometrical parametrization of modified spherical and cylindrical uJJ junction. The
picture can be used as the definition of cylindrical mujj.
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Fig. 4: Schematic view of infinite series of asymmetric modified uJJs in infinite array.

Fig. 5: Schematic view of infinite series of antisymmetric modified uJJs in infinite array.

Fig. 6: Schematic view of infinite series of symmetric modified uJJs in infinite array.

3.2. Usage of non-linear term in GL equations

Previous solutions of ψ0 do not give any knowledge on A1, A2 and A3 factors except

ration A1

A3
. We only know that (|A1|2 + |A2|2 + |A3|2) is small number. We have also

assumed that β|ψ0|2ψ0 is small. In the region inside superconductor not always is

fully true. For two given points we could use full form of GL equation. With certain

approximation we can write

(31) αψ0 −
~2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
ψ0 + β|ψ0|2ψ0 = 0,
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which results in algebraic equation

(32) |ψ0|2ψ0 = 0.

We can have two equations

(33) |ψ0(xmin, ymin)|2ψ0(xmin, ymin) = 0, |ψ0(xmax, ymax)|2ψ0(xmax, ymax) = 0,

where xmin, ymin, xmax, ymax stands for minima and maxima of ψ(x, y).

Thus we obtain

([A1 −A2 cos(k1xmin) cos(k2(ymin − y0))] +A3ymin)3 = 0

and

([A1 −A2 cos(k1xmax) cos(k2(ymax − y0))] +A3ymax)3 = 0.

We need to use formula:

(a+ (−b+ c))3 = a3 + (−b+ c)3 + 3a2(−b+ c) + 3(−b+ c)2a

= a3 + c3 − b3 + 3b2c− 3bc2 + 3a2(−b+ c) + 3(−b+ c)2a.

4. Perturbation solution of GL equation and enhancement
of relaxation method

Let us assume that ψ0(x, y, z) is the solution of linear GL equation. In case of

nonlinear GL equation we can introduce scalar field f so

(34) ψ(x, y, z) = ψ0(x, y, z) + f(x, y, z).

We assume that f << ψ0 for any point. Let us express non-linear GL equations in

terms of linear GL equation. We have

(35) αψ + β|ψ|2ψ − ~2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
ψ = 0.

Using algebraic property we have

(36) (ψ0 + f)3 = ψ3
0 + f3 + 3ψ0f

2 + 3f2ψ0 ≈ ψ3
0 + 3fψ2

0 ,

since

(a+ b)3 = (a2ab+ b2)(a+ b)(37)

= a3 + 2a2b+ b2a+ a2b+ 2ab2 + b3 = a3 + b3 + 3a2b+ 3b2.

More involving formulas appear if we consider the presence of vector potential

components Ax(x, y, z), Ay(x, y, z), Az(x, y, z).

0 = αψ0 + β|ψ0|2ψ0 − (
~

2m
2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
ψ0 +(38)

− ~2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
f + αf + 3f2ψ0 + f3 + 3ψ2

0f.
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The last equation is equivalent to the equation

(39) − ~2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
f + αf + 3f2ψ0 + f3 + 3ψ2

0f = 0.

The same boundary conditions applies to ψ0 and f function.

What is more we can enhance the relaxation method using the knowledge on

solutions of linearized GL equation. In very straightforward way we obtain

(40) − ~2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
f + αf + 3f2ψ0 + f3 + 3ψ2

0f = η
df

di

where, df is the change of wave-function f during each iteration and η is some

constant.

Once we know the solutions of ψ as ψ0 + f we can turn on weak vector potential

A = (Ax, Ay, Az). Turning weak vector potential would be the perturbation to the

known solution ψ and would simply add phase factor. Thus we would obtain the

distribution of the electric current density. But to have it we need to know the

distribution of A potential. The following equation needs to be solved

(41) ∇2Ax(,y,z) = −cAx(,y,z)|ψ(x, y, z)0|2,
where c is some constant. It can be achieved by the relaxation method applied to A

field. In such way electric current density j, which is proportional to |ψ|2A can be

determined.

Obtained results allows to reduce one or two dimensional system of infinite array

of modified rectangular uJJs to the case of superconducting interacting quantum

dots and are presented in [1].
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Presented by Julian  Lawrynowicz at the Session of the Mathematical-Physical Com-

mission of the  Lódź Society of Sciences and Arts on December 6, 2012

NUMERYCZNE ROZWIA̧ZANIA PRAWIE NIEZALEŻNYCH

OD CZASU RÓWNAŃ GINZBURGA-LANDAUA

DLA RÓŻNYCH NADPRZEWODZA̧CYCH STRUKTUR
III. ROZWIA̧ZANIA ANALITYCZNE I METODA RELAKSACYJNA

S t r e s z c z e n i e
W pracy zostaje wprowadzona koncepcja zmodyfikowanego niekonwencjonalnego z la̧cza

Josephsona. Zostaja̧ zaprezentowane analityczne rozwia̧zania zlinearyzowanego równania
Ginzburga-Landaua dla różnych geometrii realizuja̧cych koncepcje zmodfyfikowanego nie-
konwencjonalnego z la̧cza Josephsona. Powstaje ono przez na lożenie nienadprzewodza̧cego
paska na pasek nadprzewodza̧cy, a nastȩpnie przesuniecie paska nienadprzewodza̧cego
w g la̧b nadprzewodnika. Prezentujemy również rozwiniȩcie algorytmu relaksacyjnego roz-
wia̧zywania równań Ginzburga-Landaua dla przypadków niezależnych od czasu dla różnych
geometrii nadprzewodza̧cych struktur.

S lowa kluczowe: równanie Schrödingera, zlinearyzowane równanie Ginzburga-Lanadaua,
zmodyfikowane niekonwencjonalne z la̧cza Josephona, metoda relaksacyjna
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