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2. Toute communications est présentée à la séance d’une Commission de la Société
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TITLE – INSTRUCTION FOR AUTHORS

SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES

DE  LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the

file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-

str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-

tions/addresses, and go on with the body of the paper using all other means and

commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted

in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4

Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

[6]



2.3. “Ghostwriting” and “guest authorship” are strictly forbiden

The printed version of an article is primary (comparing with the electronic version).

Each contribution submitted is sent for evaluation to two independent referees before

publishing.

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-

ment files sent to the address zofija@uni.lodz.pl. If a whole manuscript exceeds

2 MB composed of more than one file, all parts of the manuscript, i.e. the text

(including equations, tables, acknowledgements and references) and figures, should

be ZIP-compressed to one file prior to transfer. If authors are unable to send their

manuscript electronically, it should be provided on a disk (DOS format floppy or

CD-ROM), containing the text and all electronic figures, and may be sent by reg-

ular mail to the address: Department of Solid State Physics, University of

Lodz, Bulletin de la Société des Sciences et des Lettres de  Lódź, Pomorska

149/153, 90-236  Lódź, Poland.
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DISTRIBUTION OF POINTS OF INTERPOLATION
OF MULTIPOINT PADÉ APPROXIMANTS;
THE NONEQUILIBRIUM CASE

Summary

Given a regular compact set E, a unit measure µ supported by ∂E and a triangular
point set β := {βn,k}, β ⊂ ∂E, we provide a necessary and su�cient condition for the
points β to be distributed according to the measure µ. The results are provided in terms
of multipoint Padé approximantswith �xed degree of the denominators.

Keywords and phrases: multipoint Padé approximant, meromorphic continuation, maximal
convergence

1. Introduction

We �rst introduce notations and concepts needed for the further considerstions.
Given a compact set E ⊂ C, we say that E is regular, if the unbounded component

of the complement Ec := C \ E is solvable with respect to Dirichlet problem. We
will assume throughout the paper that E possesses a connected complement Ec. Set
Cap(E) for the Green's capacity and let GE(z,∞) be the Green's function of E with
pole at in�nity. As known, the capacity Cap(E) is positive, if E is regular [5,13,15].
Given a number ρ > 1, we set

Eρ := {z,GE(z,∞) < ln ρ}, ∂Eρ := Γρ.

Set B(E) for the class of the unit Borel measures supported by E (supp(...) ⊂=

E.) We say that the sequence of Borel measures {µn} converges in the weak topology
to a measure µ if
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∫
g(t)dµn →

∫
g(t)dµ

for every function g continuous on C with compact support. We associate with the
measure µ ∈ B(E) the logarithmic potential Uµ(z), that is

Uµ(z) :=

∫
log

1

|z − t|
dµ.

We also need the concept of a balayage measure, that is: Given a set S, S ⊃ E,
the measure µ̃∂S is the balayage measure of µ onto ∂S, if suppµ̃ ⊂ ∂S, ‖µ‖ = ‖µ̃‖
and

U µ̃(z)

{
≤ Uµ(z), z ∈ C
= Uµ(z), z ∈ Sc.

Finally, given a polynomial p of degree nonexceeding n (p ∈ Πn,) we denote by µp
the counting measure of p, that is

µp(F ) :=
number of zeros of p on F

deg p
,

where F is a point set in C.
Let µ ∈ B(E). We say that µ is the equilibrium measure of E and denote it by

µE , if

inf
µ∈B(E)

∫ ∫
log

1

|z − t|
dµ(t)dµ(z) =

∫ ∫
log

1

|z − t|
dµE(t)dµE(z).

Recall that µE ∈ B(E) is unique.
Given a domain B ⊂ C, a function g and a number m ∈ N, we say that g is

m-meromorphic in B (g ∈ Mm(B)) if in each subdomain g has no more than m of
poles (poles are counted with regard to their multiplicities). Let now the function f
be holomorphic on the compactum E (f ∈ A(E).) In other words, is holomorphic
in some open neighborhood of E. Let m ∈ N

⋃
{0} be �xed. We introduce the radius

of m-meromorphy with respect to E, that is

ρm(f) := sup
ρ
{ρ, f ∈Mm(Eρ)}.

By convention, ρ0(f) stands for the radius of holomorphy. By the accepted de�nition,
ρ0(f) = 1 i� f possesses a nonpolar singularity on E.

Let β be an in�nite triangular point table,

β := {{βn,k}nk=1}n=1,2,..., βn,kE

with no concentration points outside E. We write β ∈ E. Set

ωn(z) :=

n∏
k=1

(z − βn,k).

Let f ∈ A(E) and (n,m) be a �xed pair of nonnegative integers. The rational
function

πβn,m = πβ,fn,m := p/q,
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where the polynomials p ∈ Πn and q ∈ Πm are chosen in the way that
fq − p
ωn+m+1

∈ A(E)

is called a β-multipoint Padé approximant of f of order (n,m) . This construction
was introduced by E. B. Sa� in [14]. As well known, the function πβn,m always exists
and is unique [14]. In the partial case, when β ≡ 0, the multipoint Padé approximant
πβn,m coincides with the classical Padé approximant πn,m of order (n,m) [9].

Set

πβn,m :=
Pn,m
Qn,m

,(1.1)

where the polynomials P βn,m and Qβn,m do not have common divisors. The zeros of
Qn,m are called free zeros of πβn,m; degQn,m ≤ m.

We say that the points βn,k, βn,k ∈ E are uniformly distributed relatively to the

equilibrium measure of E, if

µ̃∂Eωn −→ µE , n→∞
being a positive constant. Di�erent constructions are given in [1, 11, 16]. Note that
if β ⊂ ∂E, then

|ωn(z)|1/n → Cap(E)eGE(z,∞)

uniformly inside Ec(on compact subsets of Ec.)
Following J. L.Walsh [16], we introduce the term of a maximal convergence of

polynomials. Given a regular compact set E, equipped with the max norm ‖‖E and
f ∈ A(E) with ρ0(f) < ∞, we say that the sequence {pn}, pn ∈ Πn, n = 1.2, · · ·
converges maximally to f on E if

lim sup
n→∞

||f − pn||1/nE ≤ 1/ρ0(f).

As established in [16], there holds for every ρ ∈ (1, ρ0(f))

lim sup
n→∞

‖f − pn}‖1/nEρ
≤ ρ/ρ0(f).

The next theorem is due to J. L.Walsh ( [16], Chp. 7.3, Theorem 3.)

Theorem A, [16]. Let E be a regular compact set and the point table β ∈ E be

given. Given a function f ∈ A(E), denote for every n ∈ N by pn(f) the polynomial

in the class Πn which interpolates f at the zeros of ωn+1. Then for each function

f holomorphic on E, but nonentire, the polynomials pn(f) converge to f on E as
n → ∞ i� the points β are uniformly distributed with respect to the equilibrium
measure of E.

In analogy with the maximal convergence of polynomials, we introduce a maximal

convergence of sequences of rational functions with �xed number of the free poles.
Before, we introduce the term of a normalization of a polynomial q(z) respectively a

given open set Ω : that is,

q(z) =
∏

(z − α′k)
∏

(1− z/α′′k) := q̃(z)q∗(z),
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where α′k, α
′′
k are the zeros lying inside, resp. outside Ω.

Furthermore, we recall the notion of m1− Hausdor� measure and m1-almost
uniform convergence inside D (cf. [7]). Let e be a subset of C, we set

m1(e) := inf

{∑
ν

|Vν |

}
where the in�mum is taken over all coverings {Vν} of e by disks Uν and |Vν | is the
radius of the disk Vν .

Let D be a domain in C and ϕ a function de�ned in D with values in C. A
sequence of functions {ϕn}, meromorphic in D, is said to converge to a function ϕ
m1-almost uniformly inside D if for any compact subset K ⊂ D and every ε > 0

there exists a setKε ⊂ K such thatm1(K\Kε) < ε and the sequence {ϕn} converges
uniformly to ϕ on Kε.

We are now capable of extending the concept of a maximal convergence of se-

quences of rational functions with bounded number of free poles.

Let now f ∈ A(E) with ρm(f) <∞. Let the sequence {rn,m} be given, m-�xed,
n → ∞. By presumption, the denominators are normalized with respect to the the
set Eρm(f). The sequence

rn,m = pn,m/qn,m ∈ Rn,m, m-�xed, n→∞

converges maximally to f , if for every compact set K ∈ Eρm(f) and every ε > 0

there exists a set Kε ⊂ K such that m1(K \Kε) < ε and

lim sup
n→∞

||(f − rn,m)||1/nKε
≤ ||eGE(z,∞)||K/ρm(f).

From the properties of the convergence of functions in m1-measure, it follows
[7] that if f has exactly m poles in Eρm(f), then so do all functions rn,m for n
large enough, and on each compact subset K which does not contain poles of f the
inequality

lim sup ||f − rn,m||1/nK ≤ ||eGE(z,∞)||K/ρm(f)

holds. Furthermore, as it was proved in [6], both last inequalities are equalities.
In [10], N. Ikonomov considered the maximal convergence of multipoint Padé

approximants with �xed number of the free poles. Before presenting his result, we
introduce the functions

ft(z) :=
1

t− z
.

Ikonomov proved

Theorem B. Let E be a regular compact set with connected complement and the

point table β ∈ E. Let m ∈ N be �xed. Let the polynomial Q(z) ∈ Πm of degree

exactly m have all its zeros in Ec and the number R be such that Q(z) 6= 0 for

z ∈ E
⋃
EcR. If for every number t ∈ ΓR

lim sup ||f − πβ,ftn,m ||E ≤ 1/ρ0, n→∞, m− �xed
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then the points β are uniformly distributed with respect to the equilibrium measure

of E.

Combining Theorem B with the direct result by Gonchar [7], we arrive at an
analogue of Theorem A, namely

Corollary 1. Given a regular compact set E with connected complement and a

triangular point table β ∈ ∂E with no concentration points outside E, let m ∈ N be

�xed.

Then for each function f ∈ A(E) with ρm(f) <∞ the multipoint Padé approxi-

mants πβ,fn,m converge to f maximally on E i� the points β are uniformly distributed

with respect to the equilibrium measure of E.

2. Statement of the new results

We now pose the question about the general case when the points β do not have
exactly the equilibrium distribution on ∂E.

Let the compact set E be regular, with connected complement Ec and µ be a
unit Borel measure supported by E (suppµ ⊂ E.) As above, we denote by Uµ the
logarithmic potential associated with the measure µ; recall that

Uµ(z) :=

∫
suppµ

log
1

|t− z|
dµ(t).

Introduce the numbers

%1 := inf
z∈E

e−U
µ(z), %1 ≥ 0

and
%2 := max

z∈E
e−U

µ(z).

As known ( [15], Theorem III.1),

e−U
µ(z) ≥ %1, z ∈ Ec.

Set for r > %1
Eµ(r) := {z, e−U

µ(z) < r}.

Because of the semicontinuity of the function χ(z) := e−U
µ(z), the set Eµ(r) is open;

apparently, Eµ(r1) ⊂ Eµ(r2) if r1 ≤ r2. Furthermore, Eµ(r) ⊃ E if r > %2.

Let f ∈ A(E) and m ∈ N be �xed. We introduce in analogy with the previous
case the terms of radius Rm,µ = Rm,µ(f) and of domain of m-meromorphy

Dm,µ = Dm,µ(f) := Eµ(Rm,µ)

according to the measure µ, m ∈ N; that is:

Rm,µ := sup{r, f ∈ A(Eµ(r))}, Dm := Eµ(Rm,µ).

Furthermore, we introduce the term of a maximal convergence related to µ. We
say that the sequences of rational functions {rn,m}, rn,m = pn,m/qn,m with a �xed
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number of the poles = m converges maximally to the function f , Rm,µ < ∞, if for
any ε > 0 and every compact set K ⊂ Dm,µ there exists a set Kε ⊂ K such that
m1(K \Kε) < ε and

lim sup
n→∞

||f − rn,m||1/nKε
≤ ||e

−Uµ ||K
Rm,µ(f)

The next result is due to Hernandez and Calle Ysern

Theorem C, [2]. Let E be a compact set in the complex plane with connected

complement and let µ ∈ B(E). Assume that

β, β := {βn,k}n∞k=1, n=1 ⊂ E

is a triangular point set on E and m ∈ N is �xed. Let µn be the counting measures

associated with the polynomials

ωn, ωn(z) :=

n∏
k=1

(z − βn,k).

Suppose that µn −→ µ as n → ∞. Let f ∈ A(E) and Rm,µ(f) < ∞. Then the

sequence πβ,fn,m converges maximally to f , i.e., for every ε > 0 there exists a compact

set Kε such that

m1(K \Kε) < ε

and

lim sup
n→∞

||f − πβn,m||
1/n
Kε
≤ ||e

−Uµ ||K
Rm,µ

.

As it follows from the results in [7], for the particular case, when the function f
has exactly m poles in the domain Dm,µ, on each compact set K ⊂ Eµ(Rm,µ) which
does not contain poles of f there holds

lim sup
n→∞

||f − πβn,m||
1/n
K ≤ ||e

−Uµ ||K
Rm,µ

(1)

Let now t0 6∈ E be �xed; set

ft0(z) :=
1

t0 − z
.

From the de�nition, we see that ft0 ∈ A(Eµ(r)) for every r < e−U
µ(t0); hence,

Rm,µ(ft0) = e−U
µ(t0). In the present paper, we prove

Theorem 1. Let E be a regular compact set with connected complement, suppose

that µ ∈ B(∂E) and let the point table β ∈ ∂E be given. Let %1 and %2 be as above.

Given a polynomial Q of degree exactly m, assume that all zeros of Q(z) are situated

in an open set Eµ(r) \ E, %1 < r. Let t0 ∈ Ec be such that e−U
µ(t0) > max(%2, r).

Suppose that the sequence of multipoint Padé approximants π
β,ft0
n,m , n→∞ converges

maximally to ft0 . Then the points β are uniformly distributed with respect to the

measure µ.
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Combining this result and Theorem C, we come to

Corollary 2. Let E be a regular compactum in C with connected and regular com-

plement, let µ be a unit Borel measure supported by ∂E and t0 6∈ Eµ(%2). Let

β ∈ ∂E := {βn,k}n,∞k=1,n=1

be a triangular point set and m ∈ N be �xed. Then for every function f ∈ A(E) with

Rm,µ < ∞ the associated sequence {πf,µn,m} converges maximally to f i� µωn −→ µ

as n→∞.

Before providing the proof, we mention some results in the same area. In [8], R.
Grothmann investigated the distribution of interpolation points in approximation
by polynomials. He showed that if the function f ∈ A(E) is not entire and if a
sequence of interpolating polynomials converge maximally to f , then the points of
interpolation are uniformly distributed with respect to the equilibrium measure of
E, at least for a subsequence.

In [3], the distribution of interpolating points of sequences of multipoint Padé
approximants πn,mn was considered, under the assumptions that mn = o(n/ lnn)

as n → ∞ and the sequence {πn,mn} converges maximally to f inside the largest
domain of meromorphic continuation of f . It was shown that if the function f is not
meromorphic in C, then the interpolation points have the equilibrium distribution
for an appropriate sequence if integers.

3. Proofs

The proof will be preceded by basic facts.
Recall [13] that Uµ is a function superharmonic in C, subharmonic in C\supp(µ),

harmonic in C \ supp(µ) and

Uµ(z) = ln
1

|z|
+ o(1), z →∞.

Let µn −→ µ, µn ∈ B(E) and zn → z0 ∈ C. Then the descent principle ( [13],
Theorem 1.6.8.) says that

lim inf Uµn)(zn) ≥ Uµ(z0), n→∞

and

Uµn(zn)→ Uµ(z0), n→∞

uniformly inside Ec.
Suppose that {µn} is an in�nite sequence of Borel measures in B(E). Then ac-

cording to Helly's selection theorem there is an in�nite subsequence Λ and a measure
µ ∈ B(E) such that µn −→ µ as n ∈ Λ.

Carleson Lemma [4]: Given the measures µ1, µ2 supported by ∂E, suppose that

Uµ1(z) = Uµ2(z) for every z ∈ Ec. Then µ1 = µ2.
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In what follows, we will use the notation

π
β,ft0
n−m+1,m := πn,m = Pn,m/Qn,m.

This is justi�ed, because m is �xed. Note that under these notations,

deg Pn,m ≤ n−m− 1, deg Qn,m = m

for n large enough. Set t := t0.

Since the function ft has exactly m poles in Eµ(e−U
µ(t)) \ E, the associated

β-multipoint Pade approximants πn,m have necessarily also m free poles and they
accumulate around the zeros of the polynomial Q (see [7]).

Fix a number δ > 0, such that max(r + δ, %2 + δ) < e−U
µ(t). Set ρ := max(r +

δ, %2 + δ). Select a closed smooth curve γ ∈ Eµ(e−U
µ(t0)) \ Eρ) such that γ winds

around every point in Eµ(ρ) exactly once. This is possible because of the choice of
the number ρ. Under this construction, Dm(ft) contains the interior of the curve γ.

Using the de�nition of multipoint Padé approximant, we get

1

t− z
− πn,m(z) =

ωn(z)

ωn(t)

Qn,m(t)

Qn,m(z)

Q(t)

Q(z)

1

t− z
, z ∈ E,

from which it follows that
1

t− z
− πn,m(z) =

ωn(z)

ωn(t)

Qn,m
Qn,m(z)

Q(t)

Q(z)

1

t− z
, z ∈ γ. (2)

By (1), for every z ∈ γ,

lim sup |ft(z)− πn,m(z)|1/n = lim sup ‖ft − πn,m‖1/n{z} ≤
e−U

µ(z)

e−Uµ(t)
. (3)

By (2)

|
ωn+m+1(z)

ωn+m+1(t)

Qn,m(t)

Qn,m(z)

Q(t)

Q(z)

1

t− z
|1/n ≤ e−U

µ(z)

e−Uµ(t)
.

Hence, for every z ∈ γ
e−U

µ(z)

e−Uµ(t)
≥ eU

(n)(t)

eU(n)(z)
C,

where U (n) is the logarithmic potential associated with the polynomial ωn and C is
a positive constant, independent on n(

say C ≥ minz∈γ |Q(z)|
|Q(t)|

)
.

In other words,
Uµ(t)− Uµ(z) ≥ U (n)(t)− U (n)(z) + o(1)

By Helly's selection theorem, there is a sequence Λ such that µn −→ ω. Since the
point t and the curve γ are lying in Ec and the triangular point set ω does not have
concentration points outside E, it follows from the descent principle that

U (n)(t)→ Uω(t), n ∈ Λ.

Hence,
Uµ(t)− Uµ(z) ≥ Uω(t)− Uω(z)
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Recall that this inequality is valid for every z ∈ γ. From here,

Uµ(t)− Uω(t) ≥ Uµ(z)− Uω(z).

From this inequality we deduce that

(Uµ(t)− Uω(t)) ≥ max
z∈γ

(Uµ(z)− Uω(z))

On the other hand, the function Uµ(t)−Uω(t) is harmonic in C \E and thus obeys
the maximum principle for harmonic functions. Thus,

max
z∈γ

(Uµ(z)− Uω(z)) ≥ Uµ(t)− Uω(t),

since by construction the exterior of the cycle γ contains the point t. Thus, the last
inequality is valid only if Uµ(t) − Uω(t) ≡ Constant in the exterior of γ. On the
other hand, (Uµ(t) − Uτ (t))(∞) = 0. Therefore, Uµ(t) ≡ Uω(t) outside γ, and, by
the maximum principle again, everywhere in Ec.

The theorem is proved.
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ROZMIESZCZENIE PUNKTÓW INTERPOLACJI
WIELOPUNKTOWYCH APROKSYMANT PADÉ;
PRZYPADEK NIERÓWNO�CI

S t r e s z c z e n i e
Przy danym regularnym zbiorze zwartym E, miarze jednostkowej µ speªniaj�acej waru-

nek suppµ = ∂E i trójk�atowym zbiorze punktów β = {βn,k}, β ∈ ∂E, znajdujemy warunek
konieczny i dostateczny na to, by punkty β byªy rozªo»one wedªug miary µ. Wynik ten jest
podany w terminach wielopunktowych aproksymant Padé o staªym stopniu mianowników.

Sªowa kluczowe: miara Borela, wielopunktowa aproksymanta Padé, przedªu»enie meromor-
�czne, maksymalna zbie»no±¢
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DEPENDENCE OF CRYSTAL SEMICONDUCTOR
SOLAR CELL ELECTROMOTIVE FORCE
ON ILLUMINANCE AS A DYNAMICAL SYSTEM

Summary

This paper deals with the examination of polycrystal silicon solar cells of various areas
in active parts. The impact of illuminance on changes of the solar cell electromotive force
(EMF) is analyzed. A mathematical model for a solar cell electromotive force dependence on
illuminance is presented. For this purpose, a selection of experimental data trend function
was carried out, and the Pearson correlation coe�cients were established. The most optimal
results were obtained in case of an exponential function with the strongest correlation
observed (R2 = 0.983). The analysis has shown that in case of 100W/m2 illuminance the
EMF saturation is obtained (the EMF changes insigni�cantly and �uctuates at around
2V), what in turn indicates that upon reaching such an illuminance, a solar cell has the
greatest work e�ciency. A �rst-order di�erential equation satis�ed by the trend function
has been compiled. The analysis revealed that when interpreting illuminance as a variable
of time, an interpretation of the dynamic system of the proposed mathematical model can
be presented.

Keywords and phrases: solar cell, electromotive force, illuminance, dynamic system

1. Introduction

As oil supplies are decreasing and the global warming is threatening, photovoltaic
devices are becoming more and more popular as a renewable and environmentally
friendly energy alternative [1]. Solar cells are electronic devices which turn sunlight
into electricity [2]. A signi�cant advantage of solar cells, as compared with ordinary
fuel, is their ability to turn the free radiation obtained from the sun into electricity
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with almost no pollution emissions. Solar cells can be classi�ed into three main
categories: monocrystalline silicon, polycrystalline silicon, and amorphous silicon.
The e�ciency of monocrystalline silicon solar cells is the highest (25%), as compared
with polycrystalline silicon (20%) and amorphous silicon (10%) solar cells, but they
are most expensive. Crystalline silicon solar cells are used most often (around 90%),
and their coe�cient of performance reaches 16�17%. The manufacturing and usage
of multijunction thin-�lm solar cells, however, is gradually increasing (the coe�cient
of their performance reaches 55%) [3].

When looking for solutions to decrease the increasing energy prices and to reduce
the environmental impact caused by energy, an increasingly bigger role is played by
renewable energy sources, one of which is solar energy [4]. The option of solar energy
usage is a solution for many people who have no access to an electricity network due
to distance, small number of inhabitants, poverty or geographical situation. During
the recent years, solar energy usage has increased because of improved technologies,
reduced spending on production, and the governmental policy encouraging the re-
newable energy development [5]. Solar energy is being widely used worldwide as a
source of energy for individual houses, commercial buildings, in industry, as well as
for the lighting of streets, gardens and parks, and for water pumps.

Although the Lithuanian geographical latitude is not very favourable for solar
energy usage, as compared with that of the countries located closer to the equator,
the solar energy falling onto the earth surface here di�uses on a much more larger
surface than in the geographical latitudes where the Sun is in zenith at midday.
The annual amount of solar energy falling onto the surface of 1m2 area in place
Lithuania exceeds 1000 kWh/m [6]. In the Lithuanian climate conditions, the cost
of installation of 1 kW solar energy production reaches EUR 2.9�4.1 thousand per
year. A photo-voltage system system with a 1 kW installed capacity produces 880�
940 kWh of electricity, and the cost of its production is 0.41�0.43EUR/kWh [7].
Photoelectricity is currently rather expensive, but with the rapid development of
technologies the prices are forecast to become equal in 2018�2020 Lithuania has an
obligation to the European Union to increase the share of renewable energy sources
(RES) in electricity production to at least 20% (which also include 10 MW of solar
power plants) until 2020. Currently, the energy obtained from RES makes around
15% of the �nal energy consumption in Lithuania [8].

The aim of the study was to examine changes of a solar cell's electromotive
force, the reasons determining changes under various conditions for illuminance, and
to draw a mathematical model for a solar cell electromotive force's dependency on
illuminance.

2. Collection of experimental data

The research was carried out on a rooftop of a �ve-storey house during the period
18 March � 13 May 2012. A �xed exposition stand was mounted on the rooftop, and
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other equipment necessary for the research was installed in an apartment located
on the �fth �oor of the house. Two solar cells (SCs) were installed on the rooftop,
whereas a computer and a data converter were installed in the apartment. The
created automated SC parameter measurement equipment included SCs integrated
into lamps, a data collector, a portable computer, and software.

An analogue signal was converted into a digital one by a ADC�16 converter. The
data collector was connected to the computer, enabling to register and collect data on
the solar cell electromotive force. The PicoLog and Microsoft Excel programmes were
used for data collection and analysis. SCs parameters were measured continuously,
by recording the average 10-minute values in the computer database.

Two polycrystalline silicon solar cells with di�erent areas of active parts were used
for the experiment (area of the �rst SC 5.58 cm2 and of the second SC 10.08 cm2);
30 kΩ external resistances were connected to the polycrystalline solar cells to measure
a drop of voltage in the resistances, i.e. the power of the electromotive force. Internal
resistances of the solar cells (10Ω) were signi�cantly lower than external resistances.

The illuminance data, obtained from a company involved in the examination of
solar modules, were used for the analysis of results. The illuminance was measured
by a Sunny SensorBox meteorological station mounted on a horizontal surface of
the SC module. During our experiment, polycrystalline silicon solar cells integrated
into lamps were also exhibited in the horizontal position.

3. The dependence of solar cell electromotive force

on illuminance

The SC monitoring data analysis revealed the existence of EMF periodic changes in
the course of the day. Figure 1 presents data of the total period of the experiment,
grouped by hours. The research results show that the EMF of the SC is observed
from 5�6 h a.m. when the sun goes up, and it is no longer recorded after sunset
(9�10 p.m.). The highest values of EMF are recorded at 2�3 p.m. when the sun is in
the zenith.

Where there is a su�ciently large amount of experimental data collected, the
abundance of the data almost surely re�ects the shape of the approximation curve.
Our case is exactly like that. Figure 2 presents experimental data obtained when
researching EMF dependence on illuminance: ε = ε(E).

Noteworthy, there are two important features of Figure 2:

• �rstly, the data start at the beginning of the coordinates. This con�rms the
physical nature of the dependence: no illuminance � no EMF;

• secondly, an almost horizontal positioning of the data is clearly seen, which
testi�es to the saturation mode in the ε = ε(E) dependence: when illuminance
E reaches the value E 100W/m2, the EMF of saturation no longer increases
and equals about 2V.
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Fig. 1: Change of SC electromotive force and sun radiation intensity during a day (8 March
� 13 May, 2012)

Generally, the selection of the approximation curve is a rather complicated issue
requiring a special grounding. In our case, we will show the experimental data pre-
sented in Figure 2 as being of continuous dependence ε(E) of EMF on illuminance E
(trend). We will consider this function not only as continuous, but as di�erentiated
as well: ε(E) ∈ C1[a, b] [9, 10]. To determine the trend function, we will make the
presumption that the experimental data present the function of a fading exponent
with respect to the saturation value:

ε = a(1− e−bE) .(1)

In this dependence, a and b are unknown parameters the values of which have to
be determined. By using the Mathematica 8.0 programme package we obtain that
a = 2085mV and b = 4.90 ·10−2m2/W. Figure 2 presents experimental data and the
trend approximating it 1, with the parameters a and b.

The physical meaning of parameters a and b is seen in Figure 2. Parameter a

means the maximum asymptotic EMF value εm, and parameter b is related to the
illuminance E measurement units enabling to move to non-dimensional variables.
The value E0 ≡ 1/b = 20.4W/m2 is the value of illuminance at which EMF is
reduced e times against the maximum value εm (Figure 3).

The selection of the trend function is related to a physical law under study. When
the physical law is known, the trend function is most often related to the law or its
modi�cation. There are cases, however, when it is di�cult, or even impossible, to
establish the trend function in advance. In such cases, several approximations with
various mathematical functions have to be carried out, and the Pearson correlation
coe�cient should be used [11]. In this case, the correlation coe�cient is the criterion
which helps to select the best approximation curve.
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Fig. 2: Experimental data of EMF dependence on illuminance and the trend approximating
it (a = 2085mV, b = 4.90 · 10−2 m2/W)
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In addition to the experimental function 1, approximations with the power func-
tion and the logarithm function were performed. The results of these approximations
are presented in Table 1.

Table 1: Various approximation functions, their parameters and correlation coe�cients

Function Parameters R2

a b

axb 953 0.1248 0.569

a lnx + b 276.9 225.7 0.727

a(1−e−bx ) 2085 4.90 ·10−2 0.983

As we can see, when considering the value of the correlation coe�cient, the
approximation carried out with an exponential function is the best.

4. The mathematical model as a dynamical system

According to the general de�nition, a dynamical system is a set of the n-dimensional
smooth manifold Mn and a one-parameter group of di�eomorphisms gt (see e.g.

[12]):

DS = {Mn, gt} ,(2)

Is it possible to consider solution 1 as an evolutionary function of a dynamical
system?

The �rst step: we have to consider the illuminance E as a time variable. The next
step: we have to �nd the di�erential equation and initial conditions with solution 1.

Finding a trend 1 is not yet a mathematical model. To �nd a di�erential equation
the solution of which is the function 1, we will use of the method of undetermined
coe�cients [13]. We will establish the function 1 derivative:

ε ′ = abe−bE .(3)

Since there are two unknown coe�cients in the function 1, a system of two equa-
tions, 1 and 3, is fully su�cient to establish the unknown di�erential equation of the
mathematical model.

We will write down system of equations 1, 3:{
ε = a(1− e−bE) ,

ε ′ = abe−bE ,
(4)

there ε ′ means a derivative with respect to the illuminance E.
We will solve the system 4 with respect to functions ε and ε ′, by eliminating an

independent variable � illuminance E. It follows from the �rst equation that

ae−bE = a− ε .(5)
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Upon entering the expression into the second equation of the system, we obtain
a di�erential equation:

ε ′ = b(a− ε) .(6)

Considering the feature of the experimental data and the trend 1

ε(0) = 0,(7)

we will get an answer to the modelling question: the di�erential equation 6 together
with the initial conditions 7, make a Cauchy problem of the dependence under study.

Now let us make sure that the function 1 satis�es the di�erential equation 6 and
the initial condition 7. Generally, a relevant programme package is suggested to be
used for reaching this aim, but in our case the procedure is not complicated and can
be performed manually: by entering function 1 into equation 6 and conditions 7, we
obtain an identity.

5. Conclusions

The modelling of the solar cell EMF and illuminance has shown that in case of
illuminance of 100W/m2, EMF reaches a value of around 2V and then changes
insigni�cantly with an increase of illuminance; consequently, this means that in case
of the above illuminance the SC operates at its highest e�ciency. The research results
show that the illuminance reaches the value of 100W/m2 at 8�9 a.m., and the value
decreases to < 100W/m2 at 7�8 p.m., i.e. SCs work most e�ciently during the above
hours.

The established di�erential equation 6, together with the initial condition 7, can
be interpreted as a continuous dynamic system in which the role of time is played by
illuminance E. This dynamic system is linear. Its phase portrait, with a change of the
parameter b, includes straight lines of various trends, going through the beginning
of the coordinates.

It should be stressed that in cases allowing a change of the other parameters of SC,
which were �xed in our case, the determined dependency of SC EMF on illuminance
ε = f(E) 1 can be more complicated. The corresponding di�erential equation can
be a nonlinear one. As a consequence, the phase portrait of such a system will be
di�erent. However, there remains the main idea that the dependence of the crystal
semiconductor SC electromotive force on illuminance can be interpreted as a dynamic
system.

The general understanding that a dynamic system is a set of the n-dimensional
smooth manifoldMn and a one-parameter group of di�eomorphisms 2, can be gen-
eralized. It is enough to require one-side di�erentiability instead of smoothness,
whereas the group of di�eomorphisms can be restricted to its semigroup gt+. The
DS generalized in this way enables the usage of singular integro-di�erential operators
instead of a classical evolution operator [14].
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We see that the interpretation of the SC illuminance E as the �time� variable is
productive since it allows applying powerful DS methods for the SC mathematical
modelling. The other possible sphere of mathematical modelling is related to the
analysis of the �uctuation of experimental values with respect to the trend.
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ZALE�NO�� SI�Y ELEKTROMOTORYCZNEJ KOMÓRKI
S�ONECZNEJ KRYSZTA�U PÓ�PRZEWODNIKA
NA O�WIETLENIE JAKO UK�AD DYNAMICZNY

S t r e s z c z e n i e
Autorzy zajmuj�a si�e badaniem polikrystalicznych krzemowych komórek sªonecznych

z ró»nych obszarów ich aktywnych cz�e±ci. Analizowany jest wpªyw nat�e»enia o±wietlenia na
zmiany siªy elektromotorycznej komórki sªonecznej. Przedstawiono model matematyczny
zale»no±ci siªy elektromotorycznej komórki sªonecznej na o±wietlenie. W tym celu wybrano
eksperymentaln�a funkcj�e trendu danych i wyznaczono wspóªczynniki korelacji Pearsona.
Najbardziej optymalne wyniki uzyskano dla funkcji wykªadniczej z najsilniejsz�a obser-
wowan�a korelacj�a (R2 = 0.983). Analiza wykazaªa, »e dla nat�e»enia o±wietlenia 100W/m2

otrzymuje si�e nasycenie siªy elektromotorycznej (siªa ta zmienia si�e nieistotnie i �uktuuje
wokóª 2V), co z kolei oznacza, »e przy osi�agni�eciu takiego nat�e»enia o±wietlenia ogniwo
sªoneczne ma najwi�eksz�a wydajno±¢ pracy. Uzyskano równanie ró»niczkowe pierwszego
rz�edu, które speªnia funkcja trendu. Analiza wykazaªa, »e przy interpretacji nat�e»enia jako
zmiennej zale»nej od czasu dochodzimy do interpretacji dynamicznej przedstawionego mo-
delu matematycznego.

Sªowa kluczowe: komórka sªoneczna, siªa elektromotoryczna, o±wietlenie, ukªad dynamiczny
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Summary

The proof that the family of strong �wi�atkowski functions with nowhere dense set of
discontinuity points is dense in the family DQ of the Darboux quasi-continuous functions is
given. Also a generalization of the strong �wi�atkowski property is considered and the con-
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In this note we introduce some families of functions f : R→ Rmodifying Darboux
property analogously as it was done by A. Maliszewski in [10]. Here the continuity is
replaced with A-continuity, i.e. continuity with respect to a family A of subsets in the
domain. We prove that if A has the (*)-property then the family of functions having
the A-Darboux property with nowhere dense set of discontinuity points is contained
and dense in the family DQ of the Darboux quasi-continuous functions. Moreover,
we prove that the family of the strong �wi�atkowski functions with nowhere dense sets
of discontinuity points is dense in the family DQ of the Darboux quasi-continuous
functions.

In 1977 T. Ma«k and T. �wi�atkowski in [11] de�ned a modi�cation of the Darboux
property. They considered a family of functions with so called �wi�atkowski property.

To simplify our notation, we shall write:

< a, b >= (min{a, b},max{a, b}) .
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De�nition 1. [11] A function f : R → R has the �wi�atkowski property if for each
interval (a, b) ⊂ R there exists a point x0 ∈ (a, b) such that f (x0) ∈< f (a) , f (b) >

and f is continuous at x0.

In 1995 A.Maliszewski investigated a class of functions which possess a stronger
property.

De�nition 2. [10] A function f : R → R has the strong �wi�atkowski property
(brie�y f ∈ Ds) if for each interval (a, b) ⊂ R and for each λ ∈< f (a) , f (b) > there
exists a point x0 ∈ (a, b) such that f (x0) = λ and f is continuous at x0.

Z.Grande in 2009 considered a modi�cation of the strong �wi�atkowski property
replacing the continuity with approximate continuity.

De�nition 3. [3] A function f : R → R has the ap-Darboux property (brie�y
f ∈ Dap) if for each interval (a, b) ⊂ R and for each λ ∈< f (a) , f (b) > there exists
a point x0 ∈ (a, b) such that f (x0) = λ and f is approximately continuous at x0.

Let I be the σ-ideal of sets of the �rst category. In [4] and [5] we introduced a
family of functions f : R → R modifying the Darboux property analogously as it
was done by Z. Grande and replacing approximate continuity with I-approximate
continuity, i.e. continuity with respect to the I-density topology in the domain (see
[2, 13,14,17,18]).

De�nition 4. [5] A function f : R → R has the I-ap-Darboux property (brie�y
f ∈ DI−ap) if for each interval (a, b) ⊂ R and for each λ ∈< f (a) , f (b) > there
exists a point x0 ∈ (a, b) such that f (x0) = λ and f is I-approximately continuous
at x0.

Let A ⊂ P (R), where P (R) is the power set of R. To simplify our considerations
we need the following de�nition.

De�nition 5. A function f : R → R is A-continuous at a point x ∈ R if for each
open set V ⊂ R with f (x) ∈ V there exists a set A ∈ A such that x ∈ A and
f (A) ⊂ V . We will say that f : R→ R is A-continuous if f is A-continuous at each
point x ∈ R.

If A is the Euclidean topology τe, then the notion of the A-continuity coincides
with the notion of the continuity in the classical sense; if A is the density topology
τd, then we have approximate continuity; and if A is the I-density topology τI ,
then we obtain I-approximate continuity. If A is an arbitrary topology τ on R, then
A-continuity is a continuity between (R, τ) and (R, τe).

Of course, A need not to be a topology. Let us denote by A (Int (A)) the closure
(interior) of the set A in the Euclidean topology. A set A ⊂ R is said to be semi-open
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if there is an open set U such that U ⊂ A ⊂ U (see [9]). It is not di�cult to see that
A is semi-open i� A ⊂ Int (A). The family of all semi-open sets will be denoted by
S. A function f : R→ R is semi-continuous if for each set V open in the Euclidean
topology the set f−1 (V ) is semi-open (see [9]).

De�nition 6. A function f : R → R is quasi-continuous at a point x if for every
neighbourhood U of x and for every neighbourhood V of f (x) there exists a non-
empty open set G ⊂ U such that f (G) ⊂ V . A function f : R → R is quasi-
continuous (brie�y f ∈ Q) if it is quasi-continuous at each point.

A. Neubrunnová proved in [12] that f is semi-continuous if and only if it is
quasi-continuous.

It is easy to see that S is not a topology and if A is the family of semi-open sets
S, then A-continuity coincides with quasi-continuity.

Let D (f) denote the set of discontinuity points of f .

De�nition 7. (compare [15]) A function f : R → R is internally Darboux quasi-
continuous if it is Darboux quasi-continuous and the set D (f) of discontinuity points
of f is nowhere dense.

The family of all internally Darboux quasi-continuous functions we will denote
by DQi.

De�nition 8. [6] A function f : R → R has the A-Darboux property (brie�y f ∈
DA) if for each interval (a, b) ⊂ R and each λ ∈< f (a) , f (b) > there exists a point
x ∈ (a, b) such that f (x) = λ and f is A-continuous at x.

It is easy to see that if A is the Euclidean topology τe, then DA = Dτe = Ds, if A
is the density topology τd, then DA = Dτd = Dap and if A is the I-density topology,
then DA = DτI = DI−ap.

The family of all functions having the A-Darboux property with nowhere dense
set of discontinuity points we will denote by DAi.

The set A is of the �rst category at the point x (see [7]) if there exists an open
neighbourhood G of x such that A ∩ G is of the �rst category. We will denote by
D (A) the set of all points x such that A is not of the �rst category at x.

Let Ba be a family of all sets having the Baire property.

De�nition 9. The family A have the (∗)-property, if

1. τe ⊂ A ⊂ Ba;

2. A ⊂ D (A) for each A ∈ A.

Clearly, there is a wide class of topologies having the (*)-property: Eucli-
dean topology, I-density topology, topologies constructed in [8] by E. �azarow,
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R.A. Johnson, W.Wilczy«ski or topology constructed by Wiertelak in [16]. Also
the family of semi-open sets has this property, but it does not have the density
topology.

De�nition 10. We will say that f : R→ R has the q-property if for each (a, b) ⊂ R
and for each non-empty open interval (C,D) ⊂ f ((a, b)) there exists a non-empty
open interval (c, d) ⊂ (a, b) such that f ((c, d)) ⊂ (C,D).

In [6] we proved that the Darboux function f : R → R has the q-property
i� f is quasi-continuous (Lemma 1) and if the family A has the (*)-property and
f ∈ DA, then f has the q-property. Consequently, if A has the (*)-property, then
Ds ⊂ DA ⊂ DQ ( [6], Theorem 1).

Let U be a family of all functions such that for each a < b and for each set
A ⊂ [a, b] with card (A) < card (R), the set f ([a, b] \A) is dense in < f (a) , f (b) >.
Let QU = Q∩ U . As D ⊂ U (for more details see [1]), we have DQ ⊂ QU .

Let us introduce a metric ρ in the space UQ in a following way:

ρ(f, g) = min {1, sup {| f(t)− g(t) |: t ∈ R}} .

We proved also that if A has the (*)-property, then DA is dense in (DQ, ρ) and
the closure of DA equals QU ( [6], Corollary 1).

Let us show the stronger result, it means, that not only DA but also DAi is dense
in (DQ, ρ). For this purpose we need the following lemma:

Theorem 1. For each function f ∈ DQ and for each number ε > 0 there exists a
function h ∈ DQi such that ρ (f, h) < ε.

Proof. Let f ∈ DQ and ε > 0. Fix n0 ∈ N such that 1/n0 < ε. Put

E0 = {x ∈ R : osc (f, x) ≥ 1

n0
}.

As f is quasi-continuous, the set of continuity points of f is dense in (R, τe) and
of type Gδ, so it is residual. Of course, E0 ⊂ D (f) and E0 is closed (as oscillation
is upper semi-continuous function). So E0 is closed and nowhere dense set.

If there exists a number a such that (−∞, a) is a component interval of R\E0,
then put E1 = {a−i+1 : i ∈ N}. In the opposite case E1 = ∅. If there exists a number
b such that (b,∞) is a component interval of R\E0, then put E2 = {b+i−1 : i ∈ N}.
In the opposite case E2 = ∅.

Put E = E0 ∪ E1 ∪ E2. It is not di�cult to see that E is closed and nowhere
dense.

Put

R\E =

∞⋃
n=1

(an, bn) ,

where {(an, bn)}n∈N is the sequence of all component intervals of R\E.
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Let us modify the function f . Fix n ∈ N and let I0 ⊂ (an, bn) be a nondegenerate
closed interval concentric with (an, bn).

As (an, bn) ⊂ R\E0, for each x ∈ (an, bn) there exists a number δx > 0 such
that osc (f, (x− δx, x+ δx)) < 1/n0. We can assume that δx < min I0 − an. Let
us choose from the cover {(x− δx, x+ δx) : x ∈ I0} of the interval I0 the minimal
�nite subcover, i.e. cover which does not contain unnecessary intervals. Denote the
intervals from this subcover by (cnk , d

n
k ), where k = 0, 1, 2, ...k0, dnk < cnk+2 for each

k = 0, 1, 2, ...k0 − 2 and cn1 > min I0, dnk0−1 < max I0.
Put

J0 =

k0⋃
k=0

(cnk , d
n
k ).

Hence J0 ⊂ (an, bn) . Let us consider the interval

I−1 =

[
1

2
(an +min J0) ,min J0

]
.

Obviously, I−1 ⊂ (an, bn).
For each x ∈ I−1 select a number δx < min{min I−1 − an, cn1 − cn0} such that

osc (f, (x− δx, x+ δx)) < 1/n0. From the family {(x− δx, x+ δx) : x ∈ I−1} choose
the minimal �nite cover. Denote the intervals from this cover by (cnk , d

n
k ), where k =

−1,−2, ...,−k−1, dnk < cnk+2 for each k = −1,−2, ...,−k−1 and cn−k−1+1 > min I−1,
dn−2 < max I−1. Together with such chosen family it is a �nite minimum cover of the
interval [min I−1,max I0]. Let

J−1 =

k−1⋃
k=1

(
cn−k, d

n
−k
)
.

Analogously we construct the interval

I1 =

[
max J0,

1

2
(max J0 + bn)

]
and repeat the same procedure: for each x ∈ I1 we select a number δx < min{bn −
max I1, d

n
k0
− dnk0−1}. From the family {(x− δx, x+ δx) : x ∈ I1} we choose the

minimal �nite cover. Denote the intervals from this cover by
(
cnk0+1, d

n
k0+1

)
, ...,(

cnk0+k1 , d
n
k0+k1

)
, where dnk0+k < cnk0+k+2 for each k = −1, 0, ..., k1 − 2, and put

J1 =

k1⋃
k=1

(
cnk0+k, d

n
k0+k

)
.

Let i ∈ N\{1}. Assume that we have constructed intervals Ij and Jj for j ∈ {−i+
1,−i + 2, ..., i − 1} and chosen minimal and �nite cover {(cnk , dnk ) : k = −i−, ..., i+}
of the interval [min I−i+1,max Ii−1], where

i− =

i−1∑
j=1

k−j and i+ =

i−1∑
j=0

kj .
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Put

I−i =

[
1

2
(an +min J−i+1) ,min J−i+1

]
and

Ii =

[
max Ji−1,

1

2
(max Ji−1 + bn)

]
.

For each x ∈ I−i select a number

δx < min{min I−i − an, cn−i−+1 − cn−i−}

such that osc (f, (x− δx, x+ δx)) < 1/n0.
From the family {(x− δx, x+ δx) : x ∈ I−i} choose the minimal �nite cover.

Denote the intervals from this cover by (cnk , d
n
k ), where

k = −i− − 1,−i− − 2, ...,−i− − k−i, dnk < cnk+2

for each
k = −i− − 1,−i− − 2, ...,−i− − k−i

and
cn−i−−k−i+1 > min I−i, dn−i−−2 < max I−i.

Together with the preselected cover the family chosen in such a way is a �nite
minimum cover of the interval [min I−i,max Ii−1]. Put

J−i =

k−i⋃
k=1

(
cn−i−−k, d

n
−i−−k

)
.

Analogously for each x ∈ Ii �nd a number

δx < min{bn −max Ii, d
n
i+ − d

n
i+−1}

such that osc (f, (x− δx, x+ δx)) < 1/n0.
From the family {(x− δx, x+ δx) : x ∈ Ii} choose the minimal �nite cover.

Denote the intervals from this cover by (cnk , d
n
k ), where

k = i+ + 1, i+ + 2, ..., i+ + ki, dnk < cnk+2

for each
k = i+ − 1, i+, ..., i+ + ki − 2

and
cni++1 > min Ii, dni++ki−1 < max Ii.

Together with the preselected cover such chosen family is a �nite minimum cover of
the interval [min I−i,max Ii]. Put

Ji =

ki⋃
k=1

(
cni++k, d

n
i++k

)
.

Next, we proceed inductively and result is the sequence (in�nite in both direc-
tions) of open intervals (cnk , d

n
k )k∈Z such that:
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(i)
⋃
k∈Z

(cnk , d
n
k ) = (an, bn),

(ii) ∀k∈Zcnk < cnk+1 < dnk < cnk+2 < dnk+1 < cnk+3 < dnk+2 < ...,

(iii) dnk − cnk
k→∞→ 0 and dnk − cnk

k→−∞→ 0.

Let us de�ne the function hn on the interval (an, bn). Let k be an arbitrary
integer. Choose the points ynk ∈

(
cnk+1, d

n
k

)
for k ∈ Z. In each interval

(
ynk−1, y

n
k

)
contained in (cnk , d

n
k ) �nd two points tnk and znk (for example ynk−1 < tnk < znk < ynk ).

It is easy to see that

(an, bn) =
⋃
k∈Z

[
ynk−1, y

n
k

]
.

For each n ∈ N de�ne a function hn on the interval (an, bn) in the following way:

hn(x) =


f (x) for x = ynk , k ∈ Z,
sup{f (t) : t ∈

[
ynk−1, y

n
k

]
} for x = tnk , k ∈ Z,

inf{f (t) : t ∈
[
ynk−1, y

n
k

]
} for x = znk , k ∈ Z,

linear on the intervals
[
ynk−1, t

n
k

]
, [tnk , z

n
k ],

[znk , y
n
k ], k ∈ Z.

Therefore hn is de�ned on the interval (an, bn), i.e. on the component interval of
R\E.

As [
ynk−1, y

n
k

]
⊂ (cnk , d

n
k )

for k ∈ Z, n ∈ N and

osc (f, (cnk , d
n
k )) <

1

n0
,

hence from the construction of the function hn it follows that

sup
{
| f (x)− hn (x) |: x ∈

[
ynk−1, y

n
k

]}
≤ 1

n0
< ε.

So ρ
(
f |(an,bn), hn

)
≤ 1

n0
< ε.

Put

h(x) =

{
hn (x) for x ∈ (an, bn), n ∈ N,
f (x) for x ∈ E.

It is easy to see that at each point of R\E the function h is continuous. Therefore
the set of discontinuity points of h is nowhere dense.

Let us proof that h has the Darboux property.
Let [x′, x′′] be an arbitrary interval. We will show that the set h ([x′, x′′]) is

connected.

1. If [x′, x′′] ∩ E = ∅, then [x′, x′′] is contained in a component of the set R\E,
where h is continuous, so h ([x′, x′′]) is connected.
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2. If [x′, x′′] ∩ E 6= ∅, then

[x′, x′′] = [min ([x′, x′′] ∩ E) ,max ([x′, x′′] ∩ E)]

(1) ∪ [x′,min ([x′, x′′] ∩ E)] ∪ [max ([x′, x′′] ∩ E) , x′′] .

It may happen that some intervals in formula (1) are single-point. Then this
point belongs to another summand of (1), therefore we consider the case, when
all summands of (1) are nondegenerate intervals.

Consider an interval [x′,min ([x′, x′′] ∩ E)]. It is a part of a component interval
(an, bn) with an attached right end, i.e. [x′,min ([x′, x′′] ∩ E)] = [x′, bn]. Hence
there exists a number k ∈ N such that ynk ∈ [x′, bn]. From the construction of
h we have for each i ∈ N, j ∈ Z

(2) f
([
yij , y

i
j+1

])
⊂ h

([
yij , y

i
j+1

])
⊂ f

([
yij , y

i
j+1

])
.

Observe that

[x′, bn] = [x′, ynk ] ∪ [ynk , bn] = [x′, ynk ] ∪
∞⋃
j=k

[
ynj , y

n
j+1

]
∪ {bn}.

Hence, by (2), we have

f ([ynk , bn]) =

∞⋃
j=k

f
([
ynj , y

n
j+1

])
∪ f ({bn})

⊂
∞⋃
j=k

h
([
ynj , y

n
j+1

])
∪ h ({bn}) = h ([ynk , bn])

⊂
∞⋃
j=k

f
([
ynj , y

n
j+1

])
∪ f ({bn})

(3) ⊂
∞⋃
j=k

f
([
ynj , y

n
j+1

])
∪ f ({bn}) = f ([ynk , bn]).

As f has the Darboux property, the set h ([ynk , bn]) is connected.

The function h is continuous on [x′, ynk ], h ([x
′, bn]) is a union of two intervals

which have common point, so h ([x′, bn]) is connected.

Analogously the interval [max ([x′, x′′] ∩ E) , x′′] is a part of a component
(am, bm) with an attached left end, hence

[max ([x′, x′′] ∩ E) , x′′] = [am, x
′′]

and, as previously, we can show that the set h ([am, x′′]) is connected, too.

It follows easily that

[min ([x′, x′′] ∩ E) , max ([x′, x′′] ∩ E)] = [bn, am] .
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Let
M = {i ∈ N : (ai, bi) ⊂ [bn, am]}.

Hence we have

[bn, am] = (E ∩ [bn, am]) ∪
⋃
i∈M

⋃
j∈Z

[
yij , y

i
j+1

]
.

So, from (2), we obtain

f ([bn, am]) = f ([bn, am] ∩ E) ∪
⋃
i∈M

⋃
j∈Z

f
([
yij , y

i
j+1

])
⊂ h ([bn, am] ∩ E) ∪

⋃
i∈M

⋃
j∈Z

h
([
yij , y

i
j+1

])
= h ([bn, am])

⊂ f ([bn, am] ∩ E) ∪
⋃
i∈M

⋃
j∈Z

f
([
yij , y

i
j+1

])
⊂ f ([bn, am] ∩ E) ∪

⋃
i∈M

⋃
j∈Z

f
([
yij , y

i
j+1

])
= f ([bn, am]).

As f has the Darboux property, the set h ([bn, am]) is connected.

Hence h ([x′, x′′]) is a union of three connected sets h ([x′, bn]), h ([bn, am]) and
h ((am, x

′′]), such that the �rst and the second, also the second and the third
sets are not disjoint, so the set h ([x′, x′′]) is connected, too.

Let us show that h has the q-property. Let (a, b) be an interval on which h is not
constant and let (C,D) ⊂ h ((a, b)), C < D. We will show that there exists an open
nondegenerate interval (c, d) ⊂ (a, b) such that h ((c, d)) ⊂ (C,D).

Fix y ∈ (C,D). Then we can �nd a point x ∈ (a, b) such that h (x) = y.
There are possible cases:

1. there exists a component interval (an, bn) of complement of E with x ∈ (an, bn).
Hence h is continuous at x and we can �nd a number δ > 0 such that

(x− δ, x+ δ) ⊂ (a, b) and h ((x− δ, x+ δ)) ⊂ (C,D) .

Put (c, d) = (x− δ, x+ δ) .

2. there exists a component interval (an, bn) of complement of E with x = an
(analogously if there exists a component interval (an, bn) of complement of E
satisfying x = bn). If h is constant on the interval [x, d′], where d′ ∈ (x, b),
then put (c, d) = (x, d′).

Otherwise let x1 ∈ (an, b) ∩ (an, bn) be a point at which h (x1) 6= h (x). As
h is Darboux function, there exists a point x2 ∈ (x, x1) such that h (x2) ∈
(C,D) ∩ h ((x, x1)). Clearly x2 ∈ C (h) ∩ (a, b), i.e. we can �nd a number
δ > 0 satisfying (x2 − δ, x2 + δ) ⊂ (a, b) and h ((x2 − δ, x2 + δ)) ⊂ (C,D). Put
(c, d) = (x2 − δ, x2 + δ).
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3. x /∈
∞⋃
n=1

[an, bn]. We can assume that h is not constant on each interval [x, d′],

where d′ ∈ (x, b), and on each interval [c′, x], where c′ ∈ (a, x) (otherwise put
(c, d) = (x, d′) or (c, d) = (c′, x)).

It is clear that h (x) = f (x), as x ∈ E.

Observe that for each t ∈ (x, b) ∩ E the set h ([x, t] ∩ (R\E)) is dense on the
interval h ([x, t]). Suppose on the contrary. Then there exists a point x1 ∈
(x, t) ∩ E such that

(4) dist (h (x1) , h ([x, t] ∩ (R\E))) > 0.

Observe that

(5) f ((x, t) ∩ (R\E)) ⊂ h ((x, t) ∩ (R\E)) .

Indeed, as x, t ∈ E and x is an accumulation point of E, there exists a subse-
quence {(ank

, bnk
)}n∈N of the sequence {(an, bn)}k∈N such that

(x, t) ∩ (R\E) =

∞⋃
k=1

(ank
, bnk

) .

Hence, by (2) and from the construction of h, we have

f ((x, t) ∩ (R\E)) =

∞⋃
k=1

f ((ank
, bnk

))

=

∞⋃
k=1

⋃
j∈Z

f
([
ynk
j , ynk

j+1

])
⊂
∞⋃
k=1

⋃
j∈Z

h
([
ynk
j , ynk

j+1

])
= h ((x, t) ∩ (R\E)) .

Put
ε = dist (f (x1) , f ((x, t) ∩ (R\E))) .

As f (x1) = h (x1), by (5) and (4) we obtain that ε > 0. Hence we have(
f (x1)−

ε

2
, f (x1) +

ε

2

)
∩ f ((x, t) ∩ (R\E)) = ∅.

The set E is nowhere dense, hence in the neighbourhood (x, t) of x1 there is
no interval which image is contained in(

f (x1)−
ε

2
, f (x1) +

ε

2

)
.

So there exists an interval (x, t) such that f is not constant on (x, t). Put

(C,D) =
(
f (x1)−

ε

2
, f (x1) +

ε

2

)
⊂ f ((x, t)) .

Then for each interval (c, d) ⊂ (x, t) condition f ((c, d)) * (C,D) is satis�ed.
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It means that f does not have the q-property. Hence by lemma 1 in [6] the
function f is not quasi-continuous, which contradicts our assumption.

So for each t ∈ (x, b) ∩ E the set h ([x, t] ∩ (R\E)) is dense in h ([x, t]).

Now we will prove that there exists a sequence {xi}i∈N, xi ↘ x, such that

h (xi)
i→∞−−−→ h (x) .

Consider the interval (x, x+ 1). Then we can �nd a point x0 ∈ (x, x+ 1) with
h (x0) 6= h (x). Assume that h (x0) > h (x) (if h (x0) < h (x) the proof is
analogous). As h has the Darboux property, we can �nd a point x1 ∈ (x, x0)

such that
h (x1) ∈ (h (x) , h (x) + 1) .

Using the Darboux property of h once more we �nd a point

x2 ∈
(
x,min

{
x+

1

2
, x1

})
such that

h (x2) ∈
(
h (x) , h (x) +

1

2

)
.

Assume that we have a point xi−1 satisfying

h (xi−1) ∈
(
h (x) , h (x) +

1

i− 1

)
.

In the interval
(
x,min

{
x+ 1

i , xi−1
})

we can �nd by Darboux property a point
xi such that

h (xi) ∈
(
h (x) , h (x) +

1

i

)
.

Hence we obtain a sequence of points {xi}i∈N, xi ↘ x, satisfying

h (xi)
i→∞−−−→ h (x) .

We can assume that xi ∈ (a, b) for all i ∈ N.

Let i ∈ N.

As h has the Darboux property, we have

(h (x) , h (xi)) ⊂ h ([x, xi]) .

By virtue of the fact proved above, the set h ([x, xi] ∩ (R\E)) is dense in
h ([x, xi]), so in the interval (h (x) , h (xi)) there exists a point yi which be-
longs to h ([x, xi] ∩ (R\E)). So we can �nd a point si ∈ [x, xi] ∩ (R\E) such
that h (si) = yi ∈ (h (x) , h (xi)).

Hence we obtain a sequence {si}i∈N of points of R\E such that

si
i→∞−−−→ x and h (si)

i→∞−−−→ h (x) .
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As x ∈ (a, b) and h (x) ∈ (C,D), there exists a number i0 ∈ N such that
si0 ∈ (a, b) and h (si0) ∈ (C,D). As h is continuous on R\E, there exists a
neighborhood (c, d) of si0 such that (c, d) ⊂ (a, b) and h ((c, d)) ⊂ (C,D).

Finally we showed that h has the q-property. As h also has the Darboux property,
by Lemma 1 in [6], the function h is quasi-continuous.

Consequently h ∈ DQi, as the set D (h) of discontinuity points of h is nowhere
dense. �

Theorem 2. The family Dsi is dense in (DQ, ρ).

Proof. Let f ∈ DQ and ε > 0. By Theorem 1 there exists a function

g ∈ K
(
f,
ε

2

)
∩ DQi.

By Theorem 4 in [10] we can �nd a function h ∈ Ds and a continuous function α,
such that

g = h+ α and | α (x) |≤ ε

2
for x ∈ R.

It is easy to check that D (g) = D (h), so h ∈ Dsi.
Consequently,

ρ (f, h) ≤ ρ (f, g) + ρ (g, h) <
ε

2
+
ε

2
= ε,

so h ∈ K (f, ε) ∩ Dsi. �

Corollary 1. If A has the (∗)-property, then the family DAi is dense in (DQ, ρ).

The proof follows from the previous theorem and from the inclusion Ds ⊂ DA ⊂
DQ (see [6], Theorem 1).
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O PEWNYCH PODRODZINACH FUNKCJI DARBOUX

QUASI-CIA�G�YCH

S t r e s z c z e n i e
Niniejsza praca jest po±wi�econa uogólnieniu silnej wªasno±ci �wi�atkowskiego. Dowodzi

si�e, »e rodzina funkcji maj�acych siln�a wªasno±¢ �wi�atkowskiego o nigdzie g�estym zbiorze
punktów nieci�agªo±ci jest zbiorem g�estym w przestrzeni DQ funkcji quasi-ci�agªych o wªas-
no±ci Darboux. W pracy podane s�a te» warunki, dla których rodzina funkcji maj�acych
A-wªasno±¢ Darboux o nigdzie g�estym zbiorze punktów nieci�agªo±ci jest podzbiorem g�estym
rodziny DQ.

Sªowa kluczowe: wlasnosci Darboux, mocna wªasno±¢ �wi�atkowskiego, quasi-ci�agªo±¢
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DEPENDENCE OF THE CURVATURE OF SI/GE CANTILEVERS ON
THE SIZE, COMPOSITION, AND TEMPERATURE

Summary

Mirrors are very important in controlling electromagnetic radiation, with applications
such as radiation guiding, lithography, modulation, sensors and �ltering. Especially in our
days the needs of this control is concentrated in the micro and sub-micro scale. But the trend
in technology is to create and use structures in the nanometre range. Therefore is necessary
to study the possibilities of using new materials that could be used for the formation
and the control of mirrors at that scale. In this work we studied the nanometre sized
structures consisting of Si and Ge, forming bilayer cantilevers using atomistic modelling
and molecular dynamics. We found that the atomistic modelling can shows phenomena
that are not possible to be shown utilizing the methodology of continuum mechanics. We
found that the strains are localized mainly near the interface of the two materials and
the radius of curvature is depended on the distance from the interface. The experimental
observation that the radius of the curvature is slightly smaller than the calculated with
the continuum mechanics methodology was reproduced here. This modelling also showed
a higher dependence on linear expansion coe�cient and the results of strains distribution
can be extended to larger structures because the e�ect of the free surface and the interface
is limited to about 6 lattice units or 3.5 nm depth.

Keywords and phrases: cantilever, mirror, electromagnetic radiation, atomic modelling,
molecular dynamics

1. Introduction

The integration of electronics with micromechanical components on a common sub-
strate is a technology for creating microelectromechanical systems (MEMS). These
devices can �nd applications as sensors or actuators. As actuators can guide mirrors
which are very important in controlling electromagnetic radiation, with applications
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such as radiation guiding, lithography, modulation, sensors and �ltering. In our days
the needs of this control is concentrated in the micro and sub-micro scale[intro_1,
2, 3]. The trend in technology is to use smaller device falling in the scale of few
nanometres. Some of the advantages of the nanometre scale nanostructures are the
possibility of using the fabrication methods of semiconductor chips that leads to the
precise and reproducible control of properties, geometry and positioning, the possi-
bility of using a large variety of materials such as Si, Ge, SiGe alloys, InAs, GaAs,
InGaAs alloys, polypyrrole, gold (PPy-Au) etc. SiGe, Si and Cr trilayer nanotubes
were produced using the molecular-beam epitaxy (MBE) or the ultrahigh-vacuum
chemical vapour deposition (UHV-CVD) with wall thickness in the range of few
nanometres [nanotubes] and found the radius of curvature to fall in the submicron
range. The case of PPy-Au has been studied theoretically and experimentally in
[ppy-bi]. The high stress in the interface of the PPy-Au can cause the delamination
of the materials and an alternate technique has been proposed with the addition of a
third intermediate layer. This case has been modelled and found that the additional
layer does not lead to the loss of curvature [ppy-tri].

Another possible application of the bilayer nanostructures is the formation of
nanohelices. These structures can �nd applications as nano-springs, nano-coils for the
detection or creation of magnetic �eld or as temperature sensors with the advantage
of the large surface and small mass. Such structures have been produced and their
properties investigated recently by Zhang et al [helices].

The e�ect of uncapped Ge quantum dots (QD) grown on Si �lms on the bending
of the structure has been studied by Huang and al [bending_qd]. And found that
the shape of QD is largely a�ecting this bending.

The aim of the present work is to study the possibilities of a nano sized composite
material to be used as an actuator for the control of a similarly sized mirror. The
material we study is a bilayer Si/Ge cantilever measuring up to a few of nanometres
and the properties we study are the curvature of the cantilevers and its dependence
on the size, composition and temperature. Also we compare our results to the con-
tinuum mechanics analysis.

2. Method

For this study we created atomistic models of cantilevers of di�erent size and compo-
sition and applied molecular dynamics to investigate their structural properties, and
particularly the radius of the curvatures and their dependence on di�erent factors.
The models we used were, measuring few nanometres and consist from two layers,
one from Si and the other from Ge, hypothetically grown on the Si along the z direc-
tion. In this way we simulate dual material cantilevers. The thickness of the created
structures is 10 to 20 lattice units (LU) and the length is 20 LU. The thickness ratio
(composition) of Ge and Si in the models takes the values of 1 : 3 (25% Ge), 1 : 1
(50% Ge) and 3 : 1 (75% Ge). A 50% Ge cantilever model, with thickness of 10 LU
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before any relaxation, is shown in Fig. 1 where the lower part or dark grey is the
Si region and the upper part or light grey is the Ge region. On these structures we
applied periodic boundary conditions on the y direction only (perpendicular to the
plane of �gure). We have applied the simulated annealing method which leads to the
global minimum of the energy of the structure and tested a variety of integration
methods e.g. the Verlet (classical and velocity) [Verl] and Beeman [Bee], and we
found to have similar results.

Fig. 1: Unrelaxed cantilever atomistic model. Si are the dark grey atoms, Ge are the light
grey atoms.

For the calculation of the forces we used the Stillinger-Weber interatomic po-
tential model [SW]. This model has been proven to describe very well the studied
compounds [SW_SIGE]. Also it describes their interface and free surface
[SW_INTER_SURF]. It consists of two and three body terms, with the two body
term taking into account the bond length of the �rst order neighbours and the three
body term the bond angles of the same order of neighbours penalizing any deviations
from the perfect tetrahedral structure. This model works for moderate distortions
from the perfect tetrahedral. In the case of Si and Ge the distortions are expected
to be less than 7%, the lattice mismatch of the 2 bulks. The atoms that are on the
surface of the structure have only one or two neighbours which lie in the interior of
the structure. For the calculation of the forces this poses a serious problem as the
direction of the calculated force is irrelevant. For this purpose we used an alterna-
tive methodology. Instead of calculating the force from the analytical derivative of
the potential energy of the atom (Eq. 1), we calculated the derivative arithmetically
from the potential energy of the whole structure (Eq. 2).

(1) Fi = −dUi

dri
,
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(2) Fi = −
∑
j

∆Uj

∆ri
,

where Ui is the energy of atom i and j is the �rst neighbour of atom i.
Actually, the sum in this equation runs only for the �rst neighbours of the atom i

because we assume only interactions over the �rst neighbours. Thus, the calculated
forces have a well de�ned direction. For the interface we used for the parameters of
SW potential the arithmetic mean value for the energies and the geometric mean
value for the interatomic distances.

All tasks were performed with the STREL [strel_1, 2] integrated windows based
environment, which is designed for the calculation of the structural and electronic
properties of nanostructures. The time step for the relaxation process was 0.1 fs, and
the total relaxation time was 20 ps. The estimation of the atomic sites was taken
from the average atomic positions over the last 10 ps.

A comparison of the results with that derived from continuum mechanics calcu-
lations on bilayer materials used as an evaluation of the correctness of our method.
The curvature is given by the Eq. 3, 3a [form, _2001, 2002, _last]

(3)
1

R
=

6B1B2t1t2(t1 + t2)

B2
1t

4
1 +B2

2T
4
2 + 2B1B2t1t2(2t21 + 2t22 + 3t1t2)

ε0,

(3a), ε0 =
(α2 − α1

α2

where Bi is the bulk modulus, ti � the thickness, and αi � the lattice constant of
compound i, and R is the radius of the curvature. In this formula we presume that
the widths of the two materials are the same.

Fig. 2: Radius of curvature relative to the thickness of Ge for uniform distribution of strains
(rhombuses) and from the formula (line).
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At �rst we tested a uniform strain distribution on a curved structure without
applying any molecular dynamics. The calculated curvature for the minimum energy
of a structure 10 LU thick with material properties for 300K is shown in the Fig. 2.
The radius is calculated at the interface. On the same �gure is plotted the curvature
calculated from the Eq. 3 for the same structure. For the Eq. 3 the parameters of
lattice constant and bulk modulus are also for T = 300K. We see that the uniform
distribution of strains gives about 40% smaller radius of the curvature than the
calculated from the Eq. 3 although the form of curvature is the same. Reference
[form_2002_nano] also shows experimentally that the radius is smaller than the
predicted but the di�erence is not so large. So this method is not adequate to describe
that property and a full relaxation is necessary to be performed.

3. Results

3.1. Energy of structures

In Fig. 3 we plot the energy of structures per atom for the temperature range 100�
600K. The studied structure has a length of 20 (LU) or about 10.8 nm and height
10 LU or 5.4 nm and consist of 50% Si and 50% Ge. We see that the kinetic energy
curve follows the Boltzmann law as expected. This is a good indication that the
applied methodology is properly working.

Fig. 3: Energy of structures vs temperature. The studied structures are consisted of 50%
Ge.

3.2. E�ect of temperature

In Fig. 4 we plot the dependence of the radius of curvature vs the temperature for
the upper layer of Ge and the lower layer of Si and the interface layer (as can be seen
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in Fig. 1) of a structure similar to the previous. We see that the lower layer of the Si
has a bigger radius and this is explained by the larger value of the bulk modulus of Si
(98GPa) compared to the Ge (75GPa) at 300K [SiGeBulk]. The decrease of radius
of the top of the Ge and the increase of radius of the bottom of Si is explained by
the larger linear expansion coe�cient of Ge (5.9×10−6K−1) [Ge_e_c] compared to
Si (2.6 × 10−6K−1) [Si_e_c]. In general the calculated radius is in good agreement
with that calculated from the Eq. 3 but this method can distinguish the radius at
di�erent positions of the structure. The changes we observed are bigger than one
would expect to arise solely from the expansion coe�cient through the Eq. 3. This
equation gives for the same temperature range only a 1% change for the radius of
curvature.

Fig. 4: Temperature dependence of radius for top of Ge (triangles), bottom of Si (squares)
and interface (rhombuses).

3.3. E�ect of composition

In Fig. 5 we plot the radius of curvature vs temperature for the three compositions
25%, 50% and 75% Ge and for the top layer of Ge and the interface layer. The
diagram for the bottom layer of Si is similar to that of the top of Ge but with curves
in reverse order. The structure here has the same length along the x axis but the
thickness is now 20LU. We see that at the interface layer the calculated radius is
slightly smaller than that deriving from Eq. 3 which gives a radius of 312 LU for the
50% Ge at 200K. The previous observation that the radius of curvature is depended
on the position within the cantilever is more obvious here especially for the cases
of 25 and 75% content of Ge and shows that the radius at the free surface of the
material with the highest content tends to become in�nitive.

An interesting feature of the relaxed structures in the case of thick cantilever is
observed in Fig. 6. We notice �rstly that away from the interface the material which
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Fig. 5: Temperature dependence of curvature for a structure with 20LU height at top of
Ge and interface.

Fig. 6: Distorted cantilever containing 25% Ge (top) and 75% Si (bottom). The left image
is the extended left part of the cantilever by x axis only.
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is thick (one shown only in Fig.) relaxes to its lattice parameter and therefore the
radius of curvature tends to be in�nite and secondly that the radius of curvature close
to the interface is the smaller. Because of that there is a transition region around the
interface with width of about 6 LU in each material, where the unavoidable strains
are present. In Fig. 7 we plot the strain tensor components εxx and εzz. The previous
observation is shown here for the strains at atomic level.

Fig. 7: Strains for a 25% Ge (top) and 75% Si (bottom). Left the εxx and right the εzz
tensors. Dark color shows the negative strain and light color the positive strain.

The Si is expanded along the horizontal � x axis (εxx > 0) and compressed along
the vertical � z axis (εzz < 0) for about 6 LU from the interface. Similar is the
situation in the Ge area but with inversed strains. We observe that 6 LU away the
interface the values of tensors become almost zero. Also, the e�ect of the free surface
at minimum and maximum z is obvious near the interface. But in the internal area
(again 6 LU away from the free surface) the strains look quite uniform, predicting
that the longer cantilever will not show di�erent behavior, regarding the curvature
and/or the strains distribution

4. Conclusion

The study of nanosized bilayer cantilevers with atomistic models reveals phenomena
that are not possible to be shown with the study of continuum mechanics, such as
that the strains are localized mainly near the interface of the two materials ant the
radius of curvatures is depended on the distance from the interface. The calculated
radius is slightly smaller than the predicted with the continuum mechanics, which is
also observed and experimentally and the atomistic models show a higher dependence
on linear expansion coe�cient. Finally, the strains distribution show that the free
surface and the interface a�ect only a small part of the total structure with a depth
of 6 LU, making possible to extend our results on them and on curvature for longer
and thicker structures.
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ZALE�NO�� KSZTA�TU BELECZEK POMIAROWYCH Si/Ge
OD ICH ROZMIARU, SK�ADU I TEMPERATURY

S t r e s z c z e n i e
Zwierciadªa s�a bardzo wa»nym elementem kontrolnym promieniowania elektromagnety-

cznego u»ywanym do prowadzenia wi�azki w litogra�i, jej modulacji i �ltracji. Powszechnie
u»ywa sie ukªadów kontrolnych w skali mikrometrycznej, ale wyzwania nowoczesnych tech-
nologii id�a w kierunku tworzenia i wykorzystywania ukªadów o rozmiarach nanometrowych.
W tym kontek±cie konieczne s�a badania dotycz�ace nowych struktur, które mogªyby zosta¢
wykorzystane w ukªadach kontroluj�acych zwierciadªa w skali nano. W pracy zostaª przed-
stawiony teoretyczny opis struktur nanometrowych tworz�acych dwuwarstwowe beleczki po-
miarowe wykonane z Si i Ge. Do opisu zastosowano dwie metody: modelowanie atomowe
oraz dynamik�e molekularn�a. Pokazano, »e podej±cie atomowe pozwala na opis zjawisk
w sposób niedost�epny przy zastosowaniu mechaniki o±rodków ci�agªych. Przeanalizowano
mi�edzy innymi rozkªad napr�e»e« i krzywizny beleczki w funkcji odªeglo±ci od miedzy-
wierzchni Si/Ge. Uzyskane wyniki s�a zgodne z dost�epnymi danymi do±wiadczalnymi.

Sªowa kluczowe: beleczka pomiarowa, zwierciadªo, promieniowanie elektromagnetyczne, mo-
delowanie atomowe, dynamika molekularna
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Summary

We consider bases of the vector spaces of semi-magic squares consisting only of permu-
tation matrices. We show a relation between such bases and the maximal sets of linearly
independent equations of some system. Using this relation we prove the existence of some
particular types of bases consisting of the unit matrix and cyclic permutation matrices. In
most cases the bases correspond to sets of permutations including as many cycles of the
same length as possible. We give examples of all considered types of bases and we show
some connections between our results and the maximal sets of independent loops in some
particular graphs of electric circuits.
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1. Introduction

We call a matrix [aij ]n×n of real numbers a semi-magic square if there exists a real
number m for which the matrix satis�es the conditions:

n∑
j=1

aij = m for 1 ≤ i ≤ n (the entries in each row add up to m) ,

n∑
i=1

aij = m for 1 ≤ j ≤ n (the entries in each column add up to m) .

The number m is called the magic constant of the semi-magic square. The set of all
semi-magic squares of a given order n is a vector space which dimension is equal to
(n− 1)2 + 1 (see [1]). We denote this space by SM(n).
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We denote by Sn the permutation group of the set {1, 2, . . . , n} and by e its unit
element. By the permutation matrix of ν ∈ Sn we mean the matrixM(ν) = [aij ]n×n,
where

aij =

{
1, j = ν(i)

0, j 6= ν(i)
for 1 ≤ i, j ≤ n .

We call ν ∈ Sn a p-cycle or a cycle of length p if ν(i1) = i2, ν(i2) = i3, . . . , ν(ip) = i1
for some {i1, i2, . . . , ip} and ν(j) = j for any j /∈ {i1, i2, . . . , ip}. Then we denote ν
by (i1, i2, . . . , ip). It is worth noting that this p-cycle notation is ambiguous, i.e. we
have also ν = (ik, ik+1, . . . , ip, i1, . . . , ik−1) for any 2 ≤ k ≤ p. The inverse of ν is the
p-cycle ν−1 = (ip, ip−1, . . . , i1). A permutation matrix of a cycle of length p we call
brie�y a p-cycle matrix or a matrix of p-cycle. We write M(ν) or M(i1, i2, . . . , ip).

Each permutation matrix is a semi-magic square with the magic constant m = 1.
Moreover, the set of all such matrices of a given size n × n spans SM(n). If n < 3

then the set of all permutation matrices of order n is the basis of this space. For the
trivial case n = 1 it is {M(e)} and for n = 2 it is {M(e),M(1, 2)}. For any n ≥ 3

the set

{M(e) } ∪ {M(1, k) : 2 ≤ k ≤ n } ∪ {M(1, k, l) : 2 ≤ k, l ≤ n, k 6= l }(1)

is an example of such basis (see [1]). In Section 3 we prove that for any 4 ≤ p ≤ n it is
possible to obtain another basis from (1) by replacing the set of 3-cycle matrices with
some set of p-cycle matrices. Moreover, we give some constraints for the existence of
bases consisting only of the unit matrix and p-cycle matrices for some �xed p. Next,
in Section 4 we give examples of all previously considered types of bases. Finally, in
Section 5 we show some connections between our results and maximal sets of linearly
independent Kirchho�'s voltage equations.

2. Connections with some system of equations

Let X = [xij ] be a square matrix of order n, where for any 1 ≤ i, j ≤ n the element
xij is a real variable. The system of all equations

n∑
k=1

xk,ν(k) = 0 ,(2)

where ν ∈ Sn, we can write as

Ax = 0 ,(3)

where x is the column vector whose elements are taken row-wise from X, i.e.

x = [x11, x12, . . . , x1n, x21, x22, . . . , x2n, . . . , xn1, xn2, . . . , xnn]
T ,

and elements of each row of the matrix A are taken row-wise from the matrix of
ν which occurs in the corresponding equation. From (3) we see that the maximum
number of linearly independent equations is equal to the maximum number of lin-
early independent permutation matrices of order n. Moreover, any subset of equa-
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tions from (3) is linearly independent if and only if so is the corresponding subset of
permutation matrices. To simplify notation, we write the sum in (2) as y(ν), e.g.

y(e) =

n∑
i=1

xii .

If ν = (i1, i2, . . . , ip), then we write also y(i1, i2, . . . , ip). Now, we can give at once
the maximal set of linearly independent equations of the system (3) corresponding
to the basis (1):

{ y(e) = 0 } ∪ { y(1, k) = 0: 2 ≤ k ≤ n } ∪ { y(1, k, l) = 0: 2 ≤ k, l ≤ n, k 6= l } .(4)

In the remainder of this paper, we use the following three properties and two
lemmas about sums of variables occurring in the system (3).

If ν = (i1, i2, . . . , ip) ∈ Sn, where 4 ≤ p ≤ n, then

y(ν) =

p−1∑
k=2

y(i1, ik, ik+1)−
p−1∑
k=3

y(i1, ik) .(5)

If ν ∈ Sn is a p-cycle, where 3 ≤ p ≤ n− 1 and j = ν(j), then

y(ν) = y(e) +
∑
i 6=ν(i)

y(j, i, ν(i))−
∑
i6=ν(i)

y(j, i) .(6)

If ν ∈ Sn is a p-cycle, where 3 ≤ p ≤ n, then

y(ν) + y(ν−1) + (p− 2) y(e) =
∑
i6=ν(i)

y(i, ν(i)) .(7)

Lemma 1. Let 4 ≤ p ≤ n. If y(ν) = 0 for any p-cycle ν ∈ Sn, then

y(i, j, k)− y(i, k, l) = y(i, j)− y(i, l)

for any distinct 1 ≤ i, j, k, l ≤ n.

Lemma 2. Let 3 ≤ p ≤ n−1. If y(ν) = 0 for any p-cycle ν ∈ Sn, then y(ν1) = y(ν2)

for any 3-cycles ν1, ν2 ∈ Sn. If n ≥ 5, this is also true for any 2-cycles ν1, ν2 ∈ Sn.

Property (5) for i1 = 1 and property (6) for j = 1 correspond to linear combina-
tions of M(ν) in the basis (1). In [1] a linear combination of any semi-magic matrix
in this basis is derived. In the same paper the formula corresponding to property (7)
in case ν = (1, 2, ..., p) is used. Direct proofs of all these properties and lemmas are
in the appendix.

Throughout the paper, we use the following reasoning. Let P ⊂ Sn and λ ∈ Sn.
To prove that M(λ) is a linear combination of the set {M(ν) : ν ∈ P} we assume
implicitly that for any ν ∈ P the equality y(ν) = 0 holds and next we show that this
implies y(λ) = 0. For example, let us consider the set

{M(e) } ∪ {M(k, l) : 1 ≤ k < l ≤ n } ∪ {M(1, k, l) : 2 ≤ k < l ≤ n } .(8)
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This set and the basis (1) have the same number of elements. Let 2 ≤ k < l ≤ n.
Since the relation

y(e) = y(1, k) = y(k, l) = y(l, 1) = y(1, k, l) = 0

holds, we have by property (7) the following equality

0 = y(1, k, l) + y(l, k, 1) + (p− 2) y(e)− y(1, k)− y(k, l)− y(l, 1) = y(1, l, k) .

So any element of the basis (1) is a linear combination of the set (8). Hence this set
is also a basis of SM(n).

3. Existence of bases

Theorem 1. For any 3 ≤ p ≤ n there exists a basis of SM(n) consisting of M(e),

some (n− 1) matrices of 2-cycles, and some (n− 1)(n− 2) matrices of p-cycles.

Proof. The basis (1) consists ofM(e), (n−1) matrices of 2-cycles, and (n−1)(n−2)

matrices of 3-cycles. So the theorem is true in case p = 3.
For 4 ≤ p ≤ n it su�ces to show that any 3-cycle matrix from (1) is a linear

combination of the set consisting of M(e), (n − 1) matrices of 2-cycles from (1),
i.e. matrices M(1, k) for 2 ≤ k ≤ n, and all p-cycle matrices. Since y(1, k) = 0 for
2 ≤ k ≤ n, we have by Lemma 1 that for any distinct 2 ≤ i1, i2, i3 ≤ n the equality
y(1, i1, i2) = y(1, i2, i3) holds. Now, for any distinct 2 ≤ j1, j2 ≤ n we can take some
p-cycle ν = (1, j1, j2, . . . , jp−1) for which by property (5) we have

0 = y(ν) =

p−2∑
k=1

y(1, jk, jk+1) = (p− 2) y(1, j1, j2) .

Hence y(1, k, l) = 0 for any distinct 2 ≤ k, l ≤ n. �

Corollary 1. For any 3 ≤ p ≤ n there exists a basis of SM(n) consisting of M(e),

all matrices of 2-cycles, and some 1
2 (n− 1)(n− 2) matrices of p-cycles.

Proof. The basis (8) consists of M(e), all matrices of 2-cycles, and 1
2 (n − 1)(n − 2)

matrices of 3-cycles. So the corollary is true in case p = 3.
For 4 ≤ p ≤ n it su�ces to show that any 3-cycle matrix from (8) is a linear

combination of the set consisting of M(e), all matrices of 2-cycles, and all p-cycle
matrices, which is true by Theorem 1. �

Corollary 2. For any n ≥ 3, the maximum number of linearly independent n-cycle

matrices equals (n− 1)(n− 2).

Proof. Let us consider a set of n matrices of (n−1)-cyclesM(νk) such that νk(k) = k

for 1 ≤ k ≤ n. This set is linearly independent, because M(νk) is its only element
with non-zero element in row k, column k. Moreover, any non-zero linear combination
of its elements must have at least one non-zero diagonal element. But any linear
combination of all n-cycle matrices has all diagonal elements equal zero. This means
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that the intersection of the subspaces generated by these two sets consists only of
the zero matrix. Since the dimension of SM(n) equals (n − 1)2 + 1, the maximum
number of independent n-cycle matrices is not greater than

(n− 1)2 + 1− n = (n− 1)(n− 2).

By Theorem 1 there exists a linearly independent set of (n − 1)(n − 2) matrices of
n-cycles. �

Theorem 2. If n ≥ 5, then for any 3 ≤ p ≤ n − 1 there exists a basis of SM(n)

which consists of M(e) and some (n− 1)2 matrices of p-cycles.

Proof. Since the dimension of SM(n) equals (n − 1)2 + 1, it remains to show that
any 2-cycle and 3-cycle matrix from the basis (1) is a linear combination of the set
consisting of M(e) and all p-cycle matrices. Let 2 ≤ k, l ≤ n, k 6= l. Because p < n,
there exists a p-cycle ν = (k, l, i1, i2, . . . , ip−2) such that ν(1) = 1. Since y(e) = 0,
by property (6) and Lemma 2 we have

0 = y(ν) = p y(1, k, l)− p y(1, k) ,

hence y(1, k, l) = y(1, k). If 4 ≤ p ≤ n− 1, then by property (5) we have

0 = y(1, k, l, i1, i2, . . . , ip−3) = (p− 2) y(1, k, l)− (p− 3) y(1, k) = y(1, k, l) .

For p = 3 the equality y(1, k, l) = 0 holds by assumption. We have just shown that

y(1, k, l) = y(1, k) = 0

for any distinct 2 ≤ k, l ≤ n. �

Remark 1. Theorem 2 is not true in case p = 3, n = 4, because then the number of

all 3-cycle matrices equals 8 which is less than (n− 1)2 = 9.

Remark 2. It is not possible to construct a basis of SM(n) consisting only of p-cycle

matrices for some 2 ≤ p ≤ n. This is because for any p-cycle matrix d = (n− p)m,

where d is the sum of all its diagonal elements and m is its magic constant. Hence

any linear combination of all p-cycle matrices must have the same property. But for

2 ≤ q ≤ n, q 6= p any q-cycle matrix does not have this property. This also means

that in Theorem 2 we may replace M(e) by any q-cycle matrix, where q 6= p.

4. Examples of bases

Let
4 ≤ p ≤ n, π = (2, 3, . . . , p), and τ = (2, 3, 4, 5).

Since π is a (p − 1)-cycle, 2 ≤ πk(i) ≤ p and πp−1(i) = i for any k = 0, 1, 2 . . .

and 2 ≤ i ≤ p. Similarly, 2 ≤ τk(i) ≤ 5 and τ4(i) = i for any k = 0, 1, 2 . . . and
2 ≤ i ≤ 5. We use these facts implicitly. Let us denote
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δi =

{(
1, π(i), π2(i), . . . , πp−1(i)

)
, 2 ≤ i ≤ p(

1, i− p+ 2, . . . , i− 1, i
)
, p+ 1 ≤ i ≤ n

,

γi =

{(
τ(i), τ2(i), τ3(i)

)
, 2 ≤ i ≤ 5

(2, 3, i) , 6 ≤ i ≤ n
,

ζi =

{(
1, π(i), π2(i), . . . , πp−3(i), p+ 1, πp−2(i)

)
, 2 ≤ i ≤ p

(2, 3, . . . , p, i) , p+ 1 ≤ i ≤ n
,

for 2 ≤ i ≤ n. Moreover, for any 2 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n let us denote

ρij =


(
1, πK(i), . . . , π(i), i, j, π(j), . . . , πL(j)

)
, 2 ≤ i ≤ p− 2, i+ 2 ≤ j ≤ p(

1, π2(i), π3(i), . . . , πp−2(i), i, j
)
, 2 ≤ i ≤ p− 1, p+ 1 ≤ j ≤ n(

1, i− p+ 3, . . . , i− 1, i, j
)
, p ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n

,

where K = (j − i)− 1 and L = (p− 1)− (j − i)− 1. Using property (5) we obtain
the following equalities:

y
(
δπ(i)

)
− y
(
δi
)
= y
(
1, i, π(i)

)
− y
(
1, π(i), π2(i)

)
− y
(
1, i
)
+ y
(
1, π2(i)

)
,(9a)

y
(
δ−1π(i)

)
− y
(
δ−1i
)
= y
(
1, π(i), i

)
− y
(
1, π2(i), π(i)

)
− y
(
1, i
)
+ y
(
1, π2(i)

)
,(9b)

which are true for any 2 ≤ i ≤ p.
To construct all our examples in cases 4 ≤ p ≤ n we use the set of p-cycles

A = { δi : 2 ≤ i ≤ n } ∪ { ρij : 2 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n } \ { ρ2p }(10)

which has 1
2 (n−1)(n−2) elements. The sets {γi : 2 ≤ i ≤ n} and {ζi : 2 ≤ i ≤ n} are

used to construct examples to Theorem 2 for p = 3 and 4 ≤ p ≤ n− 1 respectively.
To prove that a given set is a basis of SM(n) we show that it generates another
basis. Checking that the cardinality of the set equals the dimension of SM(n) is left
to the reader.

4.1. Examples to Theorem 1

The basis (1) is an example to Theorem 1 in case p = 3. For 4 ≤ p ≤ n, the set

{M(e) } ∪ {M(1, k) : 2 ≤ k ≤ n } ∪ {M(ν) : ν ∈ A } ∪ {M(ν−1) : ν ∈ A } ,(11)

where A is the set de�ned in (10), is such an example. To prove this, it su�ces to
show that any 3-cycle matrix from the basis (1) is a linear combination of matrices
from the set (11).

We have y(e) = 0, y(1, k) = 0 for any 2 ≤ k ≤ n, and y(ν) = y(ν−1) = 0 for any
p-cycle ν ∈ A. By (9a) we get y

(
1, i, π(i)

)
= y

(
1, π(i), π2(i)

)
for 2 ≤ i ≤ p. From

this and property (5) we get
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0 = y
(
δi
)
=

p−2∑
k=1

y
(
1, πk(i), πk+1(i)

)
= (p− 2) y

(
1, i, π(i)

)
,

hence y(1, i, i + 1) = y(1, p, 2) = 0 for any 2 ≤ i ≤ p − 1. If p + 1 ≤ i ≤ n and
y(1, j, j + 1) = 0 for any 2 ≤ j ≤ i− 2, then by property (5) we have

0 = y(δi) =

i−2∑
j=i−p+2

y
(
1, j, j + 1

)
+ y(1, i− 1, i) = y(1, i− 1, i) ,

and by induction on i we get y(1, i, i + 1) = y(1, p, 2) = 0 for 2 ≤ i ≤ n − 1. Using
(9b) we can prove analogously that y(1, i+ 1, i) = y(1, 2, p) = 0 for 2 ≤ i ≤ n− 1.

For any 2 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n such that i 6= 2 or j 6= p, by the above and
property (5) we have 0 = y(ρij) = y(1, i, j) and 0 = y(ρ−1ij ) = y(1, j, i).

We have shown that y(1, k, l) = 0 for any distinct 2 ≤ k, l ≤ n.

4.2. Examples to Corollary 1

The basis (8) is an example to Corollary 1 in case p = 3. For 4 ≤ p ≤ n, the set

{M(e) } ∪ {M(k, l) : 1 ≤ k < l ≤ n } ∪ {M(ν) : ν ∈ A } ,(12)

where A is the set de�ned in (10), is such an example. Since by property (7) we have

y(ν−1) =
∑
i6=ν(i)

y
(
i, ν(i)

)
− y(ν)− (p− 2) y(e) = 0 ,

for any ν ∈ A, the set (12) generates the basis (11).

4.3. Examples to Theorem 2

For p = 3 the set

{M(e) } ∪ {M(γi) : 2 ≤ i ≤ n } ∪ {M(1, k, l) : 2 ≤ k, l ≤ n, k 6= l }(13)

is an example to Theorem 2. To prove this, it su�ces to show that any 2-cycle matrix
from the basis (1) is a linear combination of this set.

We have y(e) = 0, y(γi) = 0 for any 2 ≤ i ≤ n, and y(1, k, l) = 0 for any distinct
2 ≤ k, l ≤ n. By property (6) we get

0 = y
(
γτ(i)

)
− y
(
γi
)
= −y(1, τ2(i))− y(1, τ3(i))− y(1, τ4(i))
+ y(1, τ(i)) + y(1, τ2(i)) + y(1, τ3(i))

= y(1, τ(i))− y(1, i) ,

and hence y(1, i) = y(1, τ(i)), for any 2 ≤ i ≤ 5. Now, by property (6) we have

0 = y
(
γi
)
= −

3∑
k=1

y
(
1, τk(i)

)
= −3 y

(
1, i
)



62 S. Szumi«ski

for 2 ≤ i ≤ 5, and since y(1, 2) = y(1, 3) = 0, we have also

0 = y
(
γi
)
= −y

(
1, 2
)
− y
(
1, 3
)
− y
(
1, i
)
= −y

(
1, i
)

for 6 ≤ i ≤ n. So the equality y(1, i) = 0 holds for any 2 ≤ i ≤ n.
For 3 < p < n the set

{M(e) } ∪ {M(ζi) : 2 ≤ i ≤ n } ∪ {M(ν) : ν ∈ A } ∪ {M(ν−1) : ν ∈ A } ,(14)

where A is the set de�ned in (10), is an example to Theorem 2. To prove this, it
su�ces to show that any 2-cycle matrix from the basis (11) is a linear combination
of matrices from the set (14).

We have y(e) = 0, y(ζi) = 0 for any 2 ≤ i ≤ n, and y(ν) = y(ν−1) = 0 for any
p-cycle ν ∈ A. By subtracting (9b) from (9a) we get

y
(
1, i, π(i)

)
− y
(
1, π(i), i

)
= y
(
1, π(i), π2(i)

)
− y
(
1, π2(i), π(i)

)
for 2 ≤ i ≤ p. From this and property (5) we have

0 = y
(
δπ(i)

)
− y
(
δ−1π(i)

)
=

p−1∑
k=2

[
y
(
1, πk(i), πk+1(i)

)
− y
(
1, πk+1(i), πk(i)

)]
= (p− 2)

[
y
(
1, i, π(i)

)
− y
(
1, π(i), i

)]
,

hence y
(
1, i, π(i)

)
= y
(
1, π(i), i

)
for 2 ≤ i ≤ p. Since by property (5) we have also

0 = y
(
δπ(i)

)
− y
(
ρi,p+1

)
= y
(
1, i, π(i)

)
− y
(
1, i, p+ 1

)
,

0 = y
(
δ−1π(i)

)
− y
(
ρ−1i,p+1

)
= y
(
1, π(i), i

)
− y
(
1, p+ 1, i

)
,

for 2 ≤ i ≤ p− 1, and

0 = y
(
δπ(p)

)
− y
(
δp+1

)
= y
(
1, p, 2

)
− y
(
1, p, p+ 1

)
,

0 = y
(
δ−1π(p)

)
− y
(
δ−1p+1

)
= y
(
1, 2, p

)
− y
(
1, p+ 1, p

)
,

the following relation holds

y
(
1, i, p+ 1

)
= y
(
1, i, π(i)

)
= y
(
1, π(i), i

)
= y
(
1, p+ 1, i

)
for 2 ≤ i ≤ p. From this and property (5) we obtain

0 = y
(
ζπ(i)

)
− y
(
δπ(i)

)
= y
(
1, πp−2(i), p+ 1

)
− y
(
1, πp−2(i), πp−1(i)

)
+ y
(
1, p+ 1, πp−1(i)

)
− y
(
1, πp−1(i), πp(i)

)
+ y
(
1, πp−1(i)

)
− y
(
1, p+ 1

)
= y(1, i)− y(1, p+ 1) ,

hence y(1, i) = y
(
1, p+ 1

)
for 2 ≤ i ≤ p. By the above and (9a) we get

y
(
1, i, π(i)

)
= y
(
1, p, p+ 1

)
= y
(
1, p+ 1, 2

)
for any 2 ≤ i ≤ p. Now, by property (6) we have

0 = y
(
ζp+1

)
= p y(1, p, p+ 1)− p y(1, p+ 1) ,
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hence y(1, p+ 1) = y(1, p, p+ 1), and by property (5) we have

0 = y
(
δp+1

)
= (p− 2) y(1, p, p+ 1)− (p− 3) y(1, p+ 1) = y(1, p+ 1) ,

hence y(1, p+ 1) = y(1, p, p+ 1) = 0. It follows that

y(1, i, i+ 1) = y(1, p, 2) = y(1, i+ 1, i) = y(1, 2, p) = 0

for 2 ≤ i ≤ p, the equality y(1, i) = 0 holds for 2 ≤ i ≤ p+ 1, and by properties (5)
and (6) we obtain

0 = y(ρpi) + y(ρ−12i )− y
(
ζi
)
= y(1, i)

for p+ 2 ≤ i ≤ n. So the equality y(1, i) = 0 holds for any 2 ≤ i ≤ n.

5. Connections with Kirchho�'s voltage law

Let {νk : 1 ≤ k ≤M} be a set of permutations from Sn such that the corresponding
set of equations in the system (3) is linearly independent and the equation y(e) = 0

is not a linear combination of this set of equations. In the remainder of this section
we use implicitly the fact that then the set of equations∑

i 6=νk(i)

xi,νk(i) = 0 for 1 ≤ k ≤M

is also linearly independent. This is because otherwise the set of equations

0 =
∑

i 6=νk(i)

(
xi,νk(i) − xi,i

)
=
∑

i 6=νk(i)

xi,νk(i) +
∑

i=νk(i)

xi,i −
n∑
i=1

xi,i = y(νk)− y(e)

for 1 ≤ k ≤M would be linearly dependent, which is not true.

5.1. Graphs with one branch between each pair of nodes

Let us consider a graph of an electric circuit with n ≥ 4 nodes such that each two of
them are connected by one branch. We can create the matrix U = [uij ]n×n, where
each entry uij is the node voltage at node i with respect to node j. Since uij = −uji
for any 1 ≤ i, j ≤ n, it follows that the matrix U is antisymmetric. In particular,
uii = 0 for 1 ≤ i ≤ n. Let us assume that for any 1 ≤ i < j ≤ n the branch between
node i and node j is directed from i to j, which means that uij is the branch voltage
and uji is its negation. It follows from Kirchho�'s voltage law that for any p-cycle
ν, where 3 ≤ p ≤ n, the following equality holds∑

i<ν(i)

ui,ν(i) −
∑
i>ν(i)

uν(i),i = 0 .

The set of all branches corresponding to the terms in the equality above we call a
loop of length p. The p-cycle ν determines the loop direction in the obvious way.
We say that some loops are independent if the corresponding Kirchho�'s voltage
equations are linearly independent. From electric circuit theory we know that the
maximum number of independent loops in a connected graph equals



64 S. Szumi«ski

N = b− α+ 1 ,

where b is the number of its branches and α is the number of its nodes (see for
instance [3]). In our case this number equals

N1 =

(
n

2

)
− n+ 1 = 1

2n(n− 1)− (n− 1) = 1
2 (n− 1)(n− 2) ,

and electric circuit theory gives an easy way to �nd the maximal set of independent
loops which consists only of loops of length 3. In [2] it is proved that we can do
the same for the loops of length n and it is shown how to do it. We have shown in
Section 3 that it is possible for any 3 ≤ p ≤ n. Indeed, by Corollary 1 there exists a
set of p-cycles {νk : 1 ≤ k ≤ N1} such that the corresponding set of equations

0 =
∑

i6=νk(i)

ui,νk(i) −
∑

i>νk(i)

(
ui,νk(i) + uνk(i),i

)
=
∑

i<νk(i)

ui,νk(i) −
∑

i>νk(i)

uνk(i),i

is linearly independent. To obtain examples of such sets of equations it su�ces to
take all equations corresponding to p-cycles occurring in (8) for p = 3 and in (12)
for 4 ≤ p ≤ n respectively.

5.2. Graphs with two branches between each pair of nodes

Now, let us consider a graph of an electric circuit with n ≥ 3 nodes such that each
two of them are connected by two branches. Then, the maximum number of linearly
independent loops equals

N2 = N1 +

(
n

2

)
= 2

(
n

2

)
− n+ 1 = n (n− 1)− (n− 1) = (n− 1)2 .

We can create the same matrix U as in the previous subsection. Now, let us assume
that each pair of branches have opposite directions. Then, any p-cycle, 2 ≤ p ≤ n,
corresponds to exactly one loop consisting only of branches with the same direction as
the loop direction. The set of all such loops contains the maximal set of independent
loops consisting only of loops of the same length if and only if the number of nodes
n ≥ 5 and the length of loops 3 ≤ p ≤ n − 1. Indeed, the number of all 2-cycles is
too small and by Remark 1 the number of all 3-cycles is too small in case n = 4.
By Corollary 2 the maximum number of linearly independent loops of length n is
too small. Finally, by Theorem 2, for n ≥ 5 and 3 ≤ p ≤ n− 1 there exists a set of
p-cycles {νk : 1 ≤ k ≤ N2} such that the corresponding set of equations∑

i 6=νk(i)

ui,νk(i) = 0

is linearly independent. To obtain examples of such sets of equations it su�ces to
take all equations corresponding to p-cycles occurring in (13) for p = 3 and in (14)
for 4 ≤ p ≤ n− 1 respectively.
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6. Appendix

6.1. Proofs of the properties

First, let us notice that

y(ν) =

n∑
i=1

xi,ν(i) =
∑
i 6=ν(i)

xi,ν(i) +
∑
i=ν(i)

xi,i =
∑
i 6=ν(i)

xi,ν(i) −
∑
i 6=ν(i)

xi,i +

n∑
i=1

xi,i

=
∑
i 6=ν(i)

xi,ν(i) −
∑
i 6=ν(i)

xi,i + y(e)

for any ν ∈ Sn.

Proof. [Proof of property (5)]

y(i1, i2, . . . , ip) = xi1,i2 +

p−1∑
k=2

xik,ik+1
+ xip,i1 −

p∑
k=1

xik,ik + y(e)

=

p−1∑
k=2

(
xi1,ik + xik,ik+1

+ xik+1,i1

)
−
p−1∑
k=3

(
xi1,ik + xik,i1

)
−

p∑
k=1

xik,ik + y(e)

=

p−1∑
k=2

(
y(i1, ik, ik+1) + xi1,i1 + xik,ik + xik+1,ik+1

− y(e)
)

−
p−1∑
k=3

(
y(i1, ik) + xi1,i1 + xik,ik − y(e)

)
−

p∑
k=1

xik,ik + y(e)

=

p−1∑
k=2

y(i1, ik, ik+1)−
p−1∑
k=3

y(i1, ik)

�

Proof. [Proof of property (6)]

y(ν) =
∑
i 6=ν(i)

xi,ν(i) −
∑
i 6=ν(i)

xi,i + y(e)

=
∑
i 6=ν(i)

(
xj,i + xi,ν(i) + xν(i),j

)
−
∑
i 6=ν(i)

xj,i −
∑
i6=ν(i)

xν(i),j −
∑
i6=ν(i)

xi,i + y(e)

=
∑
i 6=ν(i)

(
xj,i + xi,ν(i) + xν(i),j

)
−
∑
i 6=ν(i)

(
xj,ν(i) + xν(i),j

)
−
∑
i6=ν(i)

xi,i + y(e)

=
∑
i 6=ν(i)

(
y
(
j, i, ν(i)

)
+ xj,j + xi,i + xν(i),ν(i) − y(e)

)
−
∑
i6=ν(i)

(
y
(
j, ν(i)

)
+ xj,j + xν(i),ν(i) − y(e)

)
−
∑
i 6=ν(i)

xi,i + y(e)
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=
∑
i 6=ν(i)

y
(
j, i, ν(i)

)
−
∑
i 6=ν(i)

y
(
j, ν(i)

)
+ y(e)

= y(e) +
∑
i 6=ν(i)

y
(
j, i, ν(i)

)
−
∑
i 6=ν(i)

y(j, i) .

�

Proof. [Proof of property (7)]∑
i6=ν(i)

y
(
i, ν(i)

)
=
∑
i 6=ν(i)

(
y
(
i, ν(i)

)
− y(e)

)
+ p y(e)

=
∑
i 6=ν(i)

(
xi,ν(i) + xν(i),i − xi,i − xν(i),ν(i)

)
+ p y(e)

=
∑
i 6=ν(i)

(
xi,ν(i) + xν(i),i

)
−
∑
i 6=ν(i)

xi,i −
∑
i 6=ν(i)

xν(i),ν(i) + p y(e)

=
∑
i 6=ν(i)

xi,ν(i) +
∑
i 6=ν(i)

xν(i),i − 2
∑
i 6=ν(i)

xi,i + 2 y(e) + (p− 2) y(e)

= y(ν) + y(ν−1) + (p− 2) y(e) .

�

6.2. Proofs of the lemmas

First, let us notice that by property (5) we have

y(i1, i2, . . . , ir, . . . , ip) =

=

p−1∑
k=2

y(i1, ik, ik+1)−
p−1∑
k=3

y(i1, ik)

=

r−1∑
k=2

y(i1, ik, ik+1) +

p−1∑
k=r

y(i1, ik, ik+1)−
r−1∑
k=3

y(i1, ik)− y(i1, ir)−
p−1∑
k=r+1

y(i1, ik)

= y(i1, i2, . . . , ir) + y(i1, ir, ir+1, . . . , ip)− y(i1, ir)

for any p-cycle (i1, i2, . . . , ir, . . . , ip) ∈ Sn, where 4 ≤ p ≤ n and 3 ≤ r ≤ p− 1.

Proof. [Proof of Lemma 1]

If p = 4, then for any distinct 1 ≤ i, j, k, l ≤ 4 we have

0 = y(i, l, j, k) = y(i, l, j) + y(i, j, k)− y(i, j) ,
0 = y(i, k, l, j) = y(i, k, l) + y(i, l, j)− y(i, l) ,

and by subtracting one equation from the other we get

y(i, j, k)− y(i, k, l) = y(i, j)− y(i, l) .
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If 5 ≤ p ≤ n, then for any distinct 1 ≤ i, j, k, l ≤ n we can take two p-cycles

σ1 = (j, k, i, l, r1, r2, . . . , rp−4) ,

σ2 = (l, r1, r2, . . . , rp−4, j, i, k) ,

for which we have

0 = y(σ1) = y(j, k, i) + y(j, i, l) + y(j, l, r1, r2, . . . , rp−4)− y(j, i)− y(j, l) ,
0 = y(σ2) = y(l, r1, r2, . . . , rp−4, j) + y(l, j, i) + y(l, i, k)− y(l, j)− y(l, i) ,

and by subtracting one equation from the other we get

y(i, j, k)− y(i, k, l) = y(i, j)− y(i, l) .

�

Proof. [Proof of Lemma 2]

If 4 ≤ p ≤ n− 1, then for any distinct 1 ≤ i, j, k, l ≤ n we can take two p-cycles

σ1 = (i, k, j, r1, r2, . . . , rp−3) ,

σ2 = (i, l, j, r1, r2, . . . , rp−3) ,

for which we have

0 = y(σ1) = y(i, k, j) + y(i, j, r1, r2, . . . , rp−3)− y(i, j) ,
0 = y(σ2) = y(i, l, j) + y(i, j, r1, r2, . . . , rp−3)− y(i, j) ,

and by subtracting one equation from the other we get y(i, k, j) = y(i, l, j). It follows
that y(ν1) = y(ν2) for any 3-cycles ν1, ν2 ∈ Sn. From this and Lemma 1 the equality
y(ν1) = y(ν2) holds for any 2-cycles ν1, ν2 ∈ Sn.

If p = 3 and n ≥ 5, then for any distinct 1 ≤ i, j, k, l ≤ n we have

0 = y(i, j, k) + y(i, k, l) = y(i, j, k, l) + y(i, k) ,

0 = y(j, k, l) + y(j, l, i) = y(j, k, l, i) + y(j, l) ,

and by subtracting one equation from the other we get y(i, k) = y(j, l). Hence for
any distinct 1 ≤ i, j, k, l,m ≤ n we have

y(i, k) = y(j, l) = y(i,m) ,

and it follows that y(ν1) = y(ν2) for any 2-cycles ν1, ν2 ∈ Sn. �
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KWADRATY PÓ�MAGICZNE I NAPIE�CIOWE
PRAWO KIRCHHOFFA

S t r e s z c z e n i e
Rozwa»amy bazy przestrzeni wektorowych kwadratów póªmagicznych skªadaj�ace si�e

tylko z macierzy permutacji. Pokazujemy relacj�e mi�edzy takimi bazami a maksymalnymi
zbiorami liniowo niezale»nych równa« pewnego ukªadu. U»ywaj�ac tej relacji, dowodzimy
istnienia pewnych konkretnych rodzajów baz skªadaj�acych si�e z macierzy jednostkowej
i macierzy permutacji cyklicznych. W wi�ekszo±ci przypadków bazy te odpowiadaj�a zbiorom
permutacji zawieraj�acym tak du»o cykli tej samej dªugo±ci, jak to jest tylko mo»liwe. Po-
dajemy przykªady wszystkich rozwa»anych rodzajów baz i pokazujemy zwi�azki mi�edzy
naszymi rezultatami a maksymalnymi zbiorami niezale»nych p�etli w pewnych konkretnych
grafach obwodów elektrycznych.

Sªowa kluczowe: kwadrat póªmagiczny, macierz permutacji, permutacja cykliczna, napi�ecio-
we prawo Kirchho�a
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Summary

In this paper, the DPL and the MD heat transfer models are implemented in the
RESCUER language for thermal simulations of various nanostructures. The application
of RESCUER language allows simple and e�ective description of distributed heat transfer
problems using equivalent electrical circuits. In this way, compared to the classic Fourier-
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be obtained.
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1. Introduction

The electro-thermal analysis is one of the most important development steps in
the professional design of analogue submicron electric Integrated Circuits (ICs),
power modules design process as well as modern nanostructures. This analysis is
useful to power density and operating conditions estimation (e.g. the electric circuit
operating point, the temperature dependence of device electric properties as well as
the maximum operating circuit temperature). Mostly heat transfer in a thermally
conducting solid medium can be correctly described using the classical Fourier law
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(1) and the resulting Fourier-Kirchho� heat equation (2)

~q (x, y, z, t) = −λ ∇T (x, y, z, t)(1)
∂

∂t
(cp ρ T (x, y, z, t)) = −∇ · ~q (x, y, z, t) + qgen (x, y, z, t)(2)

with mixed boundary conditions, where T (x, y, z, t) represents the temperature dis-
tribution in ICs, q (x, y, z, t) is the heat �ux, qgen (x, y, z, t) is internal generated heat
density, λ is thermal conductance, cp is speci�c heat capacity, ρ is mass density and
t is time variable.

Unfortunately, the Fourier-Kirchho� equation postulates some nonphysical be-
haviour assuming that heat propagates with in�nite speed and both heat �ux and
temperature gradient are changing instantaneously, what does not agree with ex-
periments [9,16]. Another problem is associated with the semiconductor fabrication
technology whose development brought extreme device size down to 14 nm in case
of Metal-Oxide-Semiconductor Field-E�ect Transistor (MOSFET), e.g. in the In-
tel Broadwell CPU family, or 6 nm in the prototype FinFETs technology [10] and
in nanowire and nanotube fabrication. In all these cases the dimensionless Knudsen
number Kn, which is de�ned as the ratio of the mean free path to the structure char-
acteristic length, is much more higher than the unity because for silicon the phonon
free path at 300K is around 41.8 nm [15]. Therefore, the ballistic heat transport
should be taken into consideration in the heat transfer mathematical description.

The �nite speed of heat propagation has been introduced into the Fourier law by
Cattaneo and Vernotte who postulated the following relation between the tempera-
ture gradient and the heat �ux [2, 17]:

(3) τq
∂~q (x, y, z, t)

∂t
+ ~q (x, y, z, t) = −λ ∇T (x, y, z, t)

This leads to the hyperbolic heat conduction equation. Further modi�cations have
been introduced by Tzou in the single-phase-lag model (SPL) [3, 4]

(4) ~q (x, y, z, t+ τq) = −λ ∇T (x, y, z, t)

and �nally in the dual-phase-lag model (DPL) [5]

~q (x, y, z, t) + τq
∂~q (x, y, z, t)

∂t
=(5)

= −λ
(
∇T (x, y, z, t+ τT ) + τT

∂

∂t
∇T (x, y, z, t+ τT )

)
where τT and τq are the phase lag of the temperature gradient and the heat �ux vec-
tor respectively. The DPL model can be used to model heat transfer in IC structures
developed in technologies down to 180 nm, introduced before 1999, and for electronic
circuits operating at frequency up-to 6.4GHz, i.e. those for which the changes in heat
generation processes occur in more than 80 ps.

The results presented in [7,8] and [14] show that the heat transfer in latest ICs and
nanostructures (with Knudsen number between 2÷7) should be described using the
Boltzmann Transfer Equation (BTE), Ballistic-Di�usive (BD) equation [7, 8, 12] or
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Molecular Dynamics (MD) approach depending on the application and the dominant
physical phenomena.

2. Heat transfer in technology node up-to 180 nm

The equation modelling heat transfer in isotropic solids according to the DPL model
can be found by introducing (5) into (2) obtaining the following relation [5, 18]:

1

α

∂T (x, y, z, t)

∂t
+

τq
α

∂2T (x, y, z, t)

∂t2
= ∆T (x, y, z, t) +(6)

+ τT
∂

∂t
∆T (x, y, z, t) +

+
1

λ

(
qgen (x, y, z, t) + τq

∂qgen (x, y, z, t)

∂t

)
where α = λ/ (cp ρ) is material thermal di�usivity and

(7) ∆T (x, y, z, t) ≡ ∆T (x, y, z, t+ τT )

This equation has been already solved analytically in [1] but the solution form is
not acceptable for electronic simulation environments. In order to simplify modelling
and simulation of recently developed silicon structures, the RESCUER compiler has
been proposed [19]. The RESCUER software allows joint analysis of multidomain
models described in its internal language and their translation into the Mathemat-
ica language or into an equivalent electrical circuit simulator, such as Simulation
Program with Integrated Circuit Emphasis (SPICE). Such translated models can be
used then simultaneously with electrical circuits and digital systems in various simu-
lation environments. Owing to this solution, the advantages of both the multidomain
simulation and a chosen simulation environment can be jointly exploited.

The advantage of the proposed approach consists in the creation of a new gener-
ation of compilers, which can translate and optimize speci�ed distributed problems
described in the high-level abstraction language into a destination language or an
equivalent SPICE circuit. Models written in the RESCUER language can contain
the following elements:

• sets of second order algebraic and partial di�erential equation containing �rst
order space and time derivatives;

• constants coe�cients de�ned by the time invariable scalar �elds;

• variables treated as solution �elds;

• discretization points used to couple equations, constants and variables.

The decomposed models are converted into di�erential algebraic equation using
no-mesh approximations of the �rst and the second order partial di�erential opera-
tors based on the Taylor series expansions [19]. Then, the models are symbolically
simpli�ed and numerically reduced. The �nal approximate models are mapped into
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structures available in a destination environment. In the case of electrical simulators,
the set of equations is converted into equivalent electrical circuit using the method
presented in [20]. More information about the model translation, the stability and
the convergence of generated models can be found in [19�21].

For example, assuming that τq = 3 ps, τT = 60 ps, ρ = 2330 kg/m3, cp =

712 J/kgK and λ = 148W/mK. a one-dimensional DPL heat transfer problem (6)
de�ned as:

(8)
(x, t) ∈ [0, L]×

[
0, 10−6

]
, L = 180 · 10−9, qgen (x, t) = 0

T (x, t)|t=0 = 0; ∂T (x,t)
∂t

∣∣∣
t=0

= 0;T (x, t)|x=0 = 1 (t) ; T (x, t)|x=L = 0;

can be described in the RESCUER language as follows:

object 1D DPLExample {

const tauq=3.0E-9, tauT=60.0E-9, lambda=148,

alpha=lambda/(712*2330);

var T=0, Tt=0;

equ DPLeq1(T): (di�[T,t]+tauq*di�[Tt,t])/alpha==
laplacian[T]+tauT*laplacian[Tt],

DPLeq2(Tt): di�[T,t]==Tt;

point P0(0.0E-11) {-
-boundary conditions for x=0 nm

equ
DPLeq1(T): -lambda*di�[T,x]==q,
DPLeq2(Tt): di�[T,t]==Tt;

};

point P1(2.0E-11); pointP2(4.0E-11);
-
-. . .mesh points ...

point P1000(180.0E-9){ -
-boundary conditions for x=200 nm

equ DPLeq1(T): T==0, DPLeq2(Tt): Tt==0;

}

}

The part of this model translated into an equivalent electric circuit in SPICE
format (for the coordinate x = 2.0 · 10−11) is presented below:

* Variables:

* DPLExample.P0,T,N1, DPLExample.P0,x=0
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* DPLExample.P0,Tt,N2, DPLExample.P0,x=0

...

* DPLExample.P1,T,N3, DPLExample.P1,x=2e-011

* DPLExample.P1,Tt,N4, DPLExample.P1,x=2e-011

E1 N9 0 N1 0 1 ;voltage controlled voltage source,

;output node: N9, ground, inp. node: N1, ground

R2 N2 0 1 ;resistor 1 ohms, between node N2 and ground

C2 N2 0 -1 ; capacitance -1F, between node N2 and ground

C3 N3 N10 3.3627568e-005

E2 N10 0 N4 0 1

G5 0 N3 N1 0 -2.5e+021 ; voltage controlled current source,

; input nodes: N1, ground, output node: N3, ground

; coupling coe�. -2.5e+021

G6 0 N3 N5 0 -381208.87

G7 0 N3 N7 0 -2.5e+021

G8 0 N3 N4 0 3e+014

G9 0 N3 N2 0 -1.5e+014

G10 0 N3 N6 0 -0.022872532

G11 0 N3 N8 0 -1.5e+014

R3 N3 0 -2e-022

C4 N3 0 -11209.189

.IC V(N3)= {0} ; initial conditions for node N3

...

* DPLExample.P1000,T,N5, DPLExample.P1000,x=1.8e-007

* DPLExample.P1000,Tt,N6, DPLExample.P1000,1.8e-007

...

The generated equivalent electric circuit can be used then with electrical sim-
ulators for a coupled electro-thermal simulation. An example of simulation results
obtained for the DPL (solid line, τq = 3 ps, τT = 60ps) and the Fourier-Kirchho�
heat transfer models (dashed line, τq = τT = 0) have been presented in Fig. 1. As
can be seen, for large structures (180 nm in the considered case) the di�erences be-
tween both heat transfer models are negligible. The DPL model is not correct for
L = 14nm (Kn � 1) therefore the Ballistic-Di�usive Equation [7, 8, 12] or BTE
should be used.

3. Molecular dynamics simulation of nanowires and nanotubes

Nanowires and nanotubes are de�ned as nanometre size structures, whose the length
is typically much greater than the thickness (eg. 1000:1). These nanostructures are
more and more used to manufacture prototype transistors with ultra small gate
lengths (6 ÷ 20 nm = 11 ÷ 37 · a). Because the lattice constant (a = 0.543 nm for
silicon) is comparable with the nanostructure dimensions, the heat transport can be
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e�ectively simulated using molecular dynamics (MD) approach.

a)

0.2 0.4 0.6 0.8 1.0
t @usD

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T @KD

L=14nm; x1=14.pm, x2=28.pm, x3=42.pm

b)

0.2 0.4 0.6 0.8 1.0
t @usD

0.05

0.10

0.15

0.20
T @KD

L=180nm; x1=180.pm, x2=360.pm, x3=540.pm

Fig. 1: 1 Simulation results for DPL (solid line, τq = 3 ps, τT = 60ps) and Fourier-Kirchho�
model (τq = τT = 0, dashed). X-axis � time in seconds. Y -axis � temperature rise for Robin
mixed boundary condition at speci�ed nodes.
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Fig. 2: The 1-D heat MD transport model.

The main problem of microscopic approaches, such as the MD, is related to the
insu�cient number of particles N required to estimate the values of thermal conduc-
tivity and temperature. Namely, from macroscopic point of view thermal conductiv-
ity is de�ned by the equilibrium time correlation function of the corresponding heat
current in Green-Kubo formalism

(9) λ =
1

kBT 2
lim
t→∞

lim
N→∞

1

N

∫ t

0

〈J (t′) J (0)〉 dt′

where J (t), kB , T are the total heat current, Boltzmann coe�cient and temperature
respectively.

The other problem is associated with the classical temperature de�nition as the
averaged kinetic energy of particles which should be estimated for larger solid regions
(grains) using the virial theorem

(10) T =
〈[

x1 . . . p1
N . . .

]
· ∇H

〉
µ

=

〈
p2i
mi

〉
µ

Thus, here the local temperature will be de�ned as:

(11) Ti =

〈
ẍi
mi

〉
One- or many dimensional systems of vibrating lattice particles are placed in the

external potential �eld U and interact through a nearest neighbour what is modelled
by the interaction potential V . Then, the Hamiltonian can be written as:

(12) H =

N∑
i=1

[
p2l

2ml
+ V (xl − xl+1)

]
+

N−1∑
l=1

U (xl)

where ml, xl, pl = ml · ẋl for l = 1, 2, . . . , N denote the particle mass, displacement
and moment of the l-th particle respectively. In the proposed approach, the interac-
tion potential �eld V is approximated using the FPU-β model [6] (for a = 1, β = 0

see also [13])
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(13) V (∆xi) =
(∆xi − a)

2

2
+ β

(∆xi − a)
4

4

The periodic on-site potential for nanostructure-substrate interaction has been
described using the FK model [11] (for b = 1, K = 10π)

(14) U (xi) =
K

(2π)
2 cos

[
2πxi
b

]
The motion equation of nanostructure internal particles (i = 2, . . . , N − 1) can be
described using the following equations:

(15) ẍi = fi − fi+1

(16) fi = −V (xi − xi+1)− U ′ (xi)

Finally, the heat transfer through a nanostructure can be obtained by connecting
the Langevin heat reservoirs to the outer particles (i = 1 and i = N , see Fig. 2).

The description of this problem in the RESCUER language is as follows:

object 1D NanoStructure {

const TL=1.1,TR=0.9, -
-b.c.

const m=1, pi= 3.141592653589793;

const XiL=2,LambdaL=0.1, XiR=1,LambdaR=0.1;

var xpos=0, p=sqrt[m*(TL+TR)/2], u=0;

equ eq1(p):di� [p,t]==m*(di�[xpos,x,x]+di�[u,x,x]), -
- simpli�ed

eq2(xpos): p==m*di�[xpos,t],
eq3(u): u==5*cos(2*pi*xpos)/(2*pi);

point P0(0) { -
-boundary conditions for x=0 nm

equ eq1(p): di�[p,t]==m*(di�[xpos,x,x]-
(XiL-LambdaL*di�[x,t]});

};
point P1(1); point P2(2);

-
-. . .mesh points ...

point P37(37){ -
-boundary conditions for x=20 nm

equ eq1(p): di�[p,t]==m*(di�[xpos,x,x]-
(XiR-LambdaR*di�[x,t])});

}

}

For time instants t of 0, 5, 10, 15 and 25 seconds, the computed estimates of the
local temperature distribution and the total heat current are presented in Fig. 3.
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a)
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b)
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-1.0´ 108

-5.0´ 107

J @auD

Fig. 3: a) The local temperature distribution estimation for t = 0, 5, 10, 15 and 25s. b) The
total heat current estimation.
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4. Summary

In this paper, the DPL and the MD heat transfer models were implemented in
the RESCUER language for thermal simulations of nanostructures. The applica-
tion of RESCUER language allowed simple and e�ective description of distributed
heat transfer problems using equivalent electrical circuits. Compared to the classic
Fourier-Kirchho� heat equation, more accurate heat transfer models for nanoscale
components can be obtained employing BTE, DPL, BD or MD approaches.
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PRZEP�YW CIEP�A W NANOSTRUKTURACH
I AUTOMATYCZNA TRANSLACJA MODELI OPISANYCH
RÓWNANIAMI PDE DO ELEKTRYCZNEJ POSTACI OBWODOWEJ
I JE�ZYKÓW OPISU SPRZE�TU

S t r e s z c z e n i e
W niniejszej pracy przedstawiono sposoby modelowania nowoczesnych struktur póª-

przewodnikowych przy u»yciu niefurierowskiego opisu przepªywu ciepªa z wykorzystaniem
makroskopowego modelu o niesymetrycznym opó¹nieniu zmian temperatury i strumienia
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cieplnego (DPL) oraz mikroskopowego modelu dynamiki molekularnej (MD). Zapropo-
nowane modele zostaªy przeksztaªcone do równowa»nej elektrycznej postaci obwodowej
i j�ezyków opisu sprz�etu za pomoc�a opracowanego kompilatora RESCUER. W publikacji
przedstawiono równie» gªówne ograniczenia i zakresy stosowania tych sposobów modelowa-
nia.

Sªowa kluczowe: DPL, MD, SPICE, RESCUER, HDL, Fourier-Kirchho� equation, dyna-
mika molekularna, równanie przepªywu ciepªa, symulacja, elektryczny model obwodowy
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Summary

By applying the reduction matrices of Part I we analyze the multiplication tables of
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to Part III.

Keywords and phrases: noncommutative Galois extensions, �nite-dimensional algebras, as-
sociative rings and algebras, matrix rings

9. Six characteristic triples of the 3×3-matrices applied in the

reduction matrices

We observe a special form of the matrices involved in the reduction relations (8)�(13)
of Part I [4].

(ajk) =

 a1 a2 a3
a3 a1 a2
a2 a3 a1

 or

 a1 a2 a3
−a3 a1 a2
−a2 −a3 a1


where

a1 =

(
x1 x2

−x2 x1

)
, a2 =

(
x3 x4

−x4 x3

)
, a3 =

(
x5 x6

−x6 x5

)
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or

a1 =


y1 y2 y3 y4
−y2 y1 −y4 y3
−y3 −y4 y1 y2
y4 −y3 y2 y1

, a2 =


y5 y6 y7 y8
−y6 y5 −y8 y7
−y7 −y8 y5 y6
y8 −y7 y6 y5

,

a3 =


y9 y10 y11 y12
−y10 y9 −y12 y11
−y11 −y12 y9 y10
y12 −y11 y10 y9

,

or

a1 =


y1 y2 y3 y4
y4 y1 y2 y3
y3 y4 y1 y2
y2 y3 y4 y1

, a2 =


y5 y6 y7 y8
y8 y5 y6 y7
y7 y8 y5 y6
y6 y7 y8 y5

, a3 =


y9 y10 y11 y12
y12 y9 y10 y11
y11 y12 y9 y10
y10 y11 y12 y9

,

or

corresponding to binary structure, or

corresponding to quaternary structure [4]. This motivates introducing six charac-
teristic triples of a 3×3-matrix (14) applied to the reduction matrices: the �rst

characteristic triad

(a11, a22, a33), (a12, a23, a31), (a13, a21, a32)(14)

and the second characteristic triad

(a13, a22, a31), (a12, a21, a33), (a11, a23, a32)(15)

(cf. the enclosed scheme (Fig. 2)).
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Fig. 1: Scheme for two triads of characteristic triples: a) �rst b) second characteristic triad.

10. Multiplication table for the cubic and nonion algebra

generators

We turn our attention now to the cubic and nonion algebras [1�5, 7�10]. Because of
(14) we make the following

Demand 1. Generators T1, T2, T3 of the cubic algebra form the following second
characteristic triad T3(1, 1, 1), T2(1, 1, 1), T1(1, 1, 1).

From (15) we deduce the following

Proposition 1. Generators of the cubic algebra read

T1 =

 1 0 0

0 1 0

0 0 1

, T2 =

 0 1 0

0 0 1

1 0 0

, T3 =

 0 0 1

1 0 0

0 1 0

.

Observation 1. The �rst characteristic triad corresponding to T1, T2, T3 reads

(T1, T3, T2), (T2, T1, T3), (T3, T2, T1).

In consequence, we have the following the multiplication table for T1, T2, T3:

T1 T2 T3

T2 T3 T1

T3 T1 T2

.

In analogy, because of (14), for generators (R3, Q2, Q1) and (R2, Q1, Q2) we
make the following

Demand 2. The second characteristic triads for (R3, Q2, Q1) and (R2, Q1, Q2) read

Q2(1, 1, j), Q1(j, 1, 1), R2(1, j, 1) and Q1(1, 1, j2), Q2(j2, 1, 1), R3(1, j2, 1),

respectively, where j3 = 1 and j 6= 1.

By (14) and Proposition 1 we have
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Proposition 2. The generators (R1, Q3, Q3); (R3, Q2, Q1); (R1, Q1, Q2) read

R1 = T1 =

 1 0 0

0 1 0

0 0 1

, Q3 = T2 =

 0 1 0

0 0 1

1 0 0

, Q3 = T3 =

 0 0 1

1 0 0

0 1 0

,

R3 =

 1 0 0

0 j2 0

0 0 j

, Q2 =

 0 j2 0

0 0 j

1 0 0

, Q1 =

 0 0 1

j2 0 0

0 j 0

,(16)

R2 =

 1 0 0

0 j 0

0 0 j2

, Q1 =

 0 j 0

0 0 j2

1 0 0

, Q2 =

 0 0 1

j 0 0

0 j2 0

,

where j3 = 1 and j 6= 1.

Observation 2. The second characteristic triads for (R3, Q2, Q1) and (R2, Q1, Q2)

read

Q2(1, 1, j), Q1(j, 1, 1), R2(1, j, 1) and Q1(1, 1, j2), Q2(j2, 1, 1), R3(1, j2, 1),

respectively. In consequence, we have the following multiplication tables for
(R3, Q2, Q1) and (R2, Q1, Q2) :

∗ R3 Q2 Q1

R3 R2 jQ1 Q2

Q2 Q1 Q2 jR2

Q1 jQ2 R2 Q1

∗ R2 Q1 Q2

R2 R3 j2Q2 Q1

Q1 Q2 Q1 j2R3

Q2 j2Q1 R3 Q2

Finally, we write down second and �rst characteristic triads for the triples

(R1 = T1, Q3 = T2, Q3 = T3) with (R3, Q2, Q1),

(R1, Q3, Q3) with (R2, Q1, Q2),

(R3, Q2, Q1) with (R1, Q3, Q3),

(R3, Q2, Q1) with (R2, Q1, Q2),

(R2, Q1, Q2) with (R1, Q3, Q3),

(R2, Q1, Q2) with (R3, Q2, Q1).

(17)

Observation 3. The second and �rst characteristic triads for (17) read:

Q1(1, j, j), Q2(1, 1, j2), R3(1, j2, 1); Q2(1, j2, j2), Q1(1, 1, j), R(1, j, 1);

Q1(1, j2, 1), Q2(j, 1, j), R3(1, j2, 1); Q3(1, j, j2), Q3(j, 1, j2), R1(1, 1, 1);

Q2(1, j, 1), Q1(j2, 1, j2), R2(1, j, 1); Q3(1, j2, j), Q3(j2, 1, j), R1(1, 1, 1),

respectively. In consequence we have the following multiplication tables:



An algebra governing reduction of quaternary structures to ternary structures II 85

∗ R3 Q2 Q1

R1 R3 Q2 Q1

Q3 Q2 jQ1 j2R3

Q3 jQ1 R3 j2Q2

∗ R2 Q1 Q2

R1 R2 Q1 Q2

Q3 Q1 j2Q2 jR2

Q3 j2Q2 R2 jQ1

∗ R1 Q3 Q3

R3 R3 jQ2 Q1

Q2 Q2 j2Q1 j2R3

Q1 Q1 R3 jQ2

∗ R2 Q1 Q2

R3 R1 jQ3 Q3

Q2 Q3 jQ3 R1

Q1 j2Q3 R1 j2Q3

∗ R1 Q3 Q3

R2 R2 j2Q1 Q2

Q1 Q1 jQ2 jR2

Q2 Q2 R2 j2Q1

∗ R3 Q2 Q1

R2 R1 j2Q3 Q3

Q1 Q3 j2Q3 R1

Q2 jQ3 R1 jQ3

11. Remaining diagonal 3×3-subtables of the multiplication

table for the resulting algebra generators

Observation 4. In analogy, because of (13), for generators (R4, Q6, Q6), (R6, Q5,
Q4) and (R5, Q4, Q4) we have the following second characteristic triads

R1(1, 1, 1), Q3(1, 1, 1), Q3(1, 1, 1),

R1(j, 1, 1), Q3(1, j, 1), Q3(j, j, j2),

R1(j2, 1, 1), Q3(1, j2, 1), Q3(j2, j2, j),

respectively. We have the following multiplication tables:

∗ R4 Q6 Q6

R4 R1 Q3 Q3

Q6 Q3 R1 Q3

Q6 Q3 Q3 R1

∗ R6 Q5 Q4

R6 jR1 Q3 jQ3

Q5 jQ3 R1 jQ3

Q4 Q3 j2Q3 R1

∗ R5 Q4 Q4

R5 j2R1 Q3 j2Q3

Q4 j2Q3 R1 j2Q3

Q4 Q3 jQ3 R1

(18)

12. The resulting algebra generators

The multiplication tables (18) provide a system of nine quadratic equations for the
nine unknown generators which lead to the following result

Theorem. The algebra in question is generated by (16) and R4, Q6, Q6, R6, Q5,

Q4, R5, Q4, Q4, where

R4 = T4 =

 0 0 1

0 1 0

1 0 0

, Q6 = T5 =

 0 1 0

1 0 0

0 0 1

, Q̄6 = T6 =

 1 0 0

0 0 1

0 1 0

,

R6 =

 0 0 1

0 j2 0

j 0 0

, Q5 =

 0 j2 0

j 0 0

0 0 1

, Q̄4 =

 1 0 0

0 0 j2

0 j 0

,



86 M. Nowak-K�epczyk

R5 =

 0 0 1

0 j 0

j2 0 0

, Q4 =

 0 j 0

j2 0 0

0 0 1

, Q̄5 =

 1 0 0

0 0 j

0 j2 0

,

and where j3 = 1, j 6= 1.

13. 3×3-subtables of the multiplication table

over the diagonal

In analogy to Observation 4 in the context concerned we have the following

Observation 5. For the triples

(R1, Q3, Q3) with (R4, Q6, Q6), (R1, Q3, Q3) with (R6, Q5, Q4),

(R1, Q3, Q3) with (R5, Q4, Q5), (R3, Q2, Q1) with (R4, Q6, Q6),

(R3, Q2, Q1) with (R6, Q5, Q4), (R3, Q2, Q1) with (R5, Q4, Q5),

(R2, Q1, Q2) with (R4, Q6, Q6), (R2, Q1, Q2) with (R6, Q5, Q4),

(R2, Q1, Q2) with (R5, Q4, Q5), (R4, Q6, Q6) with (R6, Q5, Q4),

(R4, Q6, Q6) with (R5, Q4, Q5), (R6, Q5, Q4) with (R5, Q4, Q5)

(19)

we have the following characteristic triads

R4(1, 1, 1), Q6(1, 1, 1), Q6(1, 1, 1); R6(1, j2, 1), Q5(1, 1, j2), Q4(1, j, j);

R5(1, j, 1), Q4(1, 1, j), Q5(1, j2, j2); R6(1, j2, 1), Q5(j, 1, j), Q4(1, j2, 1);

R5(1, j, 1), Q4(j, 1, 1), Q5(1, 1, j); R4(1, 1, 1), Q6(j, 1, j2), Q6(1, j, j2);

R5(1, j, 1), Q4(j2, 1, j2), Q5(1, j, 1); R4(1, 1, 1), Q6(j2, 1, j), Q6(1, j2, j);

R6(1, j2, 1), Q5(j2, 1, 1), Q4(1, 1, j2); R2(j, j, 1), Q1(1, j, 1), Q2(1, j, j);

R3(j2, j2, 1), Q2(1, j, 1), Q1(1, j2, j2); R2(j2, j, 1), Q1(1, 1, 1), Q2(j, j2, 1),

respectively, and the corresponding multiplication tables read

∗ R4 Q6 Q6

R1 R4 Q6 Q6

Q3 Q6 Q6 R4

Q3 Q6 R4 Q6

∗ R6 Q5 Q4

R1 R6 Q5 Q4

Q3 Q5 jQ4 j2R6

Q3 jQ4 R6 j2Q5

∗ R5 Q4 Q5

R1 R5 Q4 Q5

Q3 Q4 j2Q5 jR5

Q3 j2Q5 R5 jQ4
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∗ R4 Q6 Q6

R3 R6 jQ5 Q4

Q2 Q5 j2Q4 jR6

Q1 Q4 R6 jQ5

∗ R6 Q5 Q4

R3 R5 jQ4 Q5

Q2 Q4 Q5 jR5

Q1 jQ5 R5 Q4

∗ R5 Q4 Q5

R3 R4 jQ6 Q6

Q2 Q6 jQ6 R4

Q1 j2Q6 R4 Q5

∗ R4 Q6 Q6

R2 R5 j2Q4 Q5

Q1 Q4 jQ5 jR5

Q2 Q5 R5 j2Q4

∗ R6 Q5 Q4

R2 R4 j2Q6 Q6

Q1 Q6 j2Q6 R4

Q2 jQ6 R4 jQ6

∗ R5 Q4 Q5

R2 R6 j2Q5 Q4

Q1 Q5 Q4 j2R6

Q2 j2Q4 R6 Q5

∗ R6 Q5 Q4

R4 jR2 Q2 Q1

Q6 jQ1 jR2 j2Q2

Q6 Q2 jQ1 R2

∗ R5 Q4 Q5

R4 j2R3 Q1 Q2

Q6 j2Q2 j2R3 jQ1

Q6 Q1 j2Q2 R3

∗ R5 Q4 Q5

R6 j2R2 Q2 jQ1

Q5 j2Q1 jR2 Q2

Q4 Q2 Q1 R2

14. 3×3-subtables of the multiplication table

below the diagonal

Similarly to previous paragraphs, we have

Observation 6. For the triples

(R4, Q6, Q6) with (R1, Q3, Q3), (R4, Q6, Q6) with (R3, Q2, Q1),

(R4, Q6, Q6) with (R2, Q1, Q2), (R6, Q5, Q4) with (R1, Q3, Q3),

(R6, Q5, Q4) with (R3, Q2, Q1), (R6, Q5, Q4) with (R2, Q1, Q2),

(R6, Q5, Q4) with (R4, Q6, Q6), (R5, Q4, Q5) with (R1, Q3, Q3),

(R5, Q4, Q5) with (R3, Q2, Q1), (R5, Q4, Q5) with (R2, Q1, Q2),

(R5, Q4, Q5) with (R4, Q6, Q6), (R5, Q4, Q5) with (R6, Q5, Q4)

(20)

we have the following second characteristic triads

R4(1, 1, 1), Q6(1, 1, 1), Q6(1, 1, 1); R5(j, j, 1), Q4(1, j, j), Q5(1, j2, 1);

R6(j2, j2, 1), Q5(1, j2, j2), Q4(1, j, 1); R6(1, j2, 1), Q5(j, 1, j), Q4(1, j2, 1);

R4(j, 1, 1), Q6(j, j, j2), Q6(1, j, 1); R5(j2, j, 1), Q4(j, j2, 1), Q5(1, 1, 1);

R3(1, j2, 1), Q2(j, 1, j), Q1(1, j2, 1); R5(1, j, 1), Q4(j2, 1, j2), Q5(1, j, 1);

R6(j, j2, 1), Q5(j2, j, 1), Q4(1, 1, 1); R4(j2, 1, 1), Q6(j2, j2, j), Q6(1, j2, 1);

R2(1, j, 1), Q1(j2, 1, j2), Q2(1, j, 1); R3(j, j2, 1), Q2(j2, j, 1), Q1(1, 1, 1),
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respectively, and the corresponding multiplication tables read

∗ R1 Q3 Q3

R4 R4 Q6 Q6

Q6 Q6 R4 Q6

Q6 Q6 Q6 R4

∗ R3 Q2 Q1

R4 jR5 Q5 Q4

Q6 jQ4 jR5 j2Q5

Q6 Q5 jQ4 R5

∗ R2 Q1 Q2

R4 j2R6 Q4 Q5

Q6 j2Q5 j2R6 jQ4

Q6 Q4 j2Q5 R6

∗ R1 Q3 Q3

R6 R6 Q4 jQ5

Q5 Q5 j2R6 j2Q4

Q4 Q4 jQ5 R6

∗ R3 Q2 Q1

R6 j2R4 Q6 jQ6

Q5 jQ6 R4 jQ6

Q4 Q6 j2Q6 R4

∗ R2 Q1 Q2

R6 j2R5 Q5 jQ4

Q5 j2Q4 jR5 Q5

Q4 Q5 Q4 R5

∗ R4 Q6 Q6

R6 R3 Q1 jQ2

Q5 Q2 j2R3 j2Q1

Q4 Q1 jQ2 R3

∗ R1 Q3 Q3

R5 R5 Q5 j2Q4

Q4 Q4 jR5 jQ5

Q5 Q5 j2Q4 R5

∗ R3 Q2 Q1

R5 jR6 Q4 j2Q5

Q4 jQ5 j2R6 Q4

Q5 Q4 Q5 R6

∗ R2 Q1 Q2

R5 j2R4 Q6 j2Q6

Q4 j2Q6 R4 j2Q6

Q5 Q6 jQ6 R4

∗ R4 Q6 Q6

R5 R2 Q2 j2Q1

Q4 Q1 jR2 jQ2

Q5 Q2 j2Q1 R2

∗ R6 Q5 Q4

R5 jR3 Q1 j2Q2

Q4 jQ2 j2R3 Q1

Q5 Q1 Q2 R3

15. Conclusions

Although the algebra in question has formally 18 generators a natural question that
arises is concerning their linear independence. The algebra might be generated by
merely 15 generators because of 12×12 complex matrices in (10)�(13) of [4] similarly
to the case of nonion algebra and the related 6×6 complex matrices in (8), (9) of [4]:

12 + (6− 9) = 15.

Another thing that should be checked is the equivalence between relevant struc-
tures - �rstly the corresponding Cauchy-Riemann equations and secondly, the equiv-
alence between di�erent Galois extensions.
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REDUKCJA STRUKTUR TYPU KWATERNARNEGO

DO STRUKTUR TYPU TERNARNEGO II

ANALIZA TABELI MNO�ENIA GENERATORÓW ODPOWIEDNIEJ ALGEBRY

S t r e s z c z e n i e
Analizowana jest tabela mno»enia generatorów algebry rozwa»anej w Cz�e±ci I tego

artykuªu. Stosuj�ac macierze redukuj�ace z Cz�esci I analizowane s�a tabele mno»enia genera-
torów algebr kubicznej i nonionowej i st�ad wywodzone pozostaªe 9 generatorów, a nast�epnie
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analizowane ich tabele mno»enia. Zagadnienie liniowej niezale»no±ci tak otrzymanych ge-
neratorów zostanie poruszone w Cz�e±ci III.

Sªowa kluczowe: nieprzemienne przedªu»enia Galois, algebry sko«czenie wymiarowe, ª�aczne
pier±cienie i algebry, pier±cienie macierzy
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TEICHMÜLLER DISTANCE IN THE CLASS OF WEAKLY
QUASIREGULAR FUNCTIONS

Summary

The aim of this paper is to generalize quasiconformal mappings in the complex plane
to functions de�ned in domains in the complex plane and with values in a real unitary
space, called weakly quasiregular functions. Then the Teichmüller distance is de�ned for
such functions.

Keywords and phrases: quasiconformal mappings, quasiregular functions, Teichmüller dis-
tance

Introduction

There are many equivalent de�nitions of quasiconformal mappings in the extended
complex plane E(Ĉ) := (C, ρ), where Ĉ := C ∪ {∞} and ρ is the chord metric in
Ĉ. We recall the geometric de�nition which comes from Ahlfors; see. [1, Chap. II,
A.], [6, Chap. I, �3]. Let Q = (Q; γ1, γ2) be a quadrilateral, i.e., a Jordan domain
Q ⊂ Ĉ together with a pair of disjoint closed arcs γ1 and γ2 on the boundary fr(Q);
cf. [1, p. 21], [6, Chap. I, �2]. Write Mod(Q) for the module of quadrilateral Q; [1, p.
21], [6, Chap. I, �2 and �4]. For any nonempty domain Ω in E(Ĉ) and K ≥ 1 a
mapping f : Ω → Ĉ is called K-quasiconformal in Ω if f is a sense-preserving
homeomorphism from Ω onto a domain f(Ω) in E(Ĉ), satisfying the inequality

Mod((f(Q); f(γ1), f(γ2))) ≤ K Mod((Q; γ1, γ2))

for every quadrilateral (Q; γ1, γ2) with closure cl(Q) ⊂ Ω. Write QC(Ω;K) for the
class of all K-quasiconformal mappings in Ω and let QC(Ω) be the class of all
quasiconformal mappings in Ω, i.e.,
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QC(Ω) :=
⋃
K≥1

QC(Ω;K) .

A real number

(0.1) K(f) := inf({K ≥ 1 : f ∈ QC(Ω;K)})

is said to be the maximal dillatation of a mapping f ∈ QC(Ω). It is easy to verify
that the function

(0.2) QC(Ω)×QC(Ω) 3 (f1, f2) 7→ τ(f1, f2) := log K(f1 ◦ f−1
2 )

is well de�ned and it satis�es the following properties:

τ(f1, f3) ≤ τ(f1, f2) + τ(f2, f3) , f1, f2, f3 ∈ QC(Ω) ,

τ(f1, f2) = τ(f2, f1) , f1, f2 ∈ QC(Ω) ,

τ(f1, f1) = 0 , f1, f2 ∈ QC(Ω) ,

(0.3)

i.e. τ is a pseudo-metric in the class QC(Ω). We call it the Teichmüller pseudo-

metric or Teichmüller distance in QC(Ω). Up to the nonessential constant 1/2.;
cf. [5, Chap III, �2.1].

The pseudo-metric τ can be expressed by a more quantitative form by means of
the complex dilatation of a quasiconformal mapping. We recall that by the complex

dilatation of a function f : Ω → C we mean the function µ[f ] : Ω → C de�ned by
the formula

(0.4) µ[f ](z) :=
∂̄f(z)

∂f(z)

provided f has partial derivatives ∂|1f(z) and ∂|2f(z) at z ∈ Ω as well as the
denominator ∂f(z) 6= 0, and otherwise µ[f ](z) := 0. Here and in the sequel ∂f and
∂̄f are formal derivatives of f de�ned by

(0.5) ∂f :=
1

2
(∂|1f − i∂|2f) , ∂̄f :=

1

2
(∂|1f + i∂|2f) .

Using the formulas (0.5) we can express the Jacobian J[f ] of a function f : Ω → C
in the following simple form

(0.6) J[f ](z) = |∂f(z)|2 − |∂̄f(z)|2 ,

if the partial derivatives ∂|1f(z) and ∂|2f(z) exist at z ∈ Ω. By the analytical charac-
terization of quasiconformal mappings in the complex plane we know that for every
f ∈ QC(Ω) the partial derivatives ∂|1f(z) and ∂|2f(z) exist for a.e. z ∈ Ω and

(0.7) ‖µ[f ]‖Ω,∞ =
K(f)− 1

K(f) + 1
;

cf. e.g. [1, Chap. II, B.] or [6, Chap. IV, �1 and �2]. Here and in the sequel ‖f‖Ω,∞
stands for the essential supremum norm of a measurable � in a sense of Lebesgue
� function f : Ω→ C, i.e.,

(0.8) ‖f‖Ω,∞ := ess sup
z∈Ω

|f(z)| .
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As shown in [7, (2.16)],

(0.9) τ(f1, f2) = log
1 + κ(f1, f2)

1− κ(f1, f2)
, f1, f2 ∈ QC(Ω) ,

where

(0.10) κ(f1, f2) :=

∥∥∥∥∥ µ[f1]− µ[f2]

1− µ[f2]µ[f1]

∥∥∥∥∥
Ω,∞

, f1, f2 ∈ QC(Ω) .

We intend to extend the Teichmüller distance τ to a certain pseudo-metric τ∗ in
the class of all weakly quasiregular functions in a given nonempty domain Ω in the
complex plane E(C), i.e. the standard euclidean complex unitary space supported
by C. To this end we extend the complex dilatation operator QC(Ω) 3 f 7→ µ[f ] to
a certain operator f 7→ µ∗[f ] where f is a weakly quasiregular function. The last
operator is determined by the metod of isothermal coordinates.

Weakly quasiregular functions are introduced in Section 1. The extending proce-
dure is described in Section 2.

1. Quasiregular functions

Let Ω be a nonempty domain in E(C) and let X = (X; +, ·, 〈· | ·〉) be a real unitary
space endowed with an inner product 〈· | ·〉. It determines the norm ‖ · ‖ in the
standard way as follows

(1.1) ‖x‖ :=
√
〈x |x〉 , x ∈ X .

We recall that a function f : Ω→ X is di�erentiable in the Gatoux sense at a point
z ∈ Ω provided the following limit

(1.2) dzf(h) := lim
t→0

1

t
(f(z + th)− f(z))

exists in the space X for every h ∈ C and the function C 3 h 7→ dzf(h) � called
the Gatoux di�erential of f at z � is a linear operator from ER(C) into X, where
ER(C) denotes the standard euclidean real unitary space supported by C. Then the
directional derivatives dzf(1) and dzf(i) exist and

(1.3) dzf(h) = (Reh)dzf(1) + (Imh)dzf(i) , h ∈ C .

A point z ∈ Ω is said to be a regular point of a function f : Ω → X if f is
di�erentiable in the Gatoux sense at z and dzf(C) is a two-dimensional linear set in
X. Setting Reg(f) for the set of all regular points of the function f we see that the
function D[f ] is well de�ned by the following formula

(1.4) Ω 3 z 7→ D[f ](z) :=


max({‖dzf(h)‖ : h ∈ T})
min({‖dzf(h)‖ : h ∈ T})

if z ∈ Reg(f) ;

1 if z ∈ Ω \ Reg(f) ,

where T is the unit circle, i.e., T := {z ∈ C : |z| = 1}. By the maximal dilatation of

a function f : Ω→ X at a regular point z of f we mean the value D[f ](z).
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Analyzing the de�nition of quasiregular mappings in the complex plane (cf. e.g. [3,
p. 25] or [6, Chap VI]) we can generalize them as follows.

De�nition 1.1. A function f is said to be a weakly quasiregular X-valued function
in Ω if f : Ω → X, z ∈ Reg(f) for almost every (a.e. for short) z ∈ Ω and the

following condition holds

(1.5) K∗(f) := ‖D[f ]‖Ω,∞ < +∞ .

The class of all weakly quasiregular X-valued functions in Ω will be denoted by
WQR(Ω,X). By analogy to the classes QC(Ω;K),K ≥ 1, we can de�ne the following
classes

(1.6) WQR(Ω,X;K) := {f ∈WQR(Ω,X) : K∗(f) ≤ K} , K ≥ 1 .

Any f ∈WQR(Ω,X;K) is said to be a weakly K-quasiregular X-valued function in

Ω. From the formula (1.6) and the condition (1.5) it follows that

(1.7) WQR(Ω,X) =
⋃
K≥1

WQR(Ω,X;K) .

Lemma 1.2. For all f : Ω→ X and z ∈ Reg(f),

(1.8) D[f ](z) =

(
E +G+

√
(E −G)2 + 4F 2

E +G−
√

(E −G)2 + 4F 2

)1/2

,

where

(1.9) E := ‖dzf(1)‖2 , F := 〈dzf(1) |dzf(i)〉 and G := ‖dzf(i)‖2 .

Proof. Given f : Ω→ X and z ∈ Reg(f) �x h = eiθ ∈ T. Then

(1.10) dzf(h) = (Reh)dzf(1) + (Imh)dzf(i) = cos(θ)dzf(1) + sin(θ)dzf(i) ,

whence

‖dzf(h)‖2 = 〈dzf(h) |dzf(h)〉(1.11)

= cos(θ)2E + sin(θ)2G+ sin(2θ)F

= (E −G) cos(θ)2 + F sin(2θ) +G

=
E −G

2
cos(2θ) + F sin(2θ) +

E +G

2
.

Choosing R ≥ 0 and α ∈ R such that

(1.12)
E −G

2
= R sin(α) and F = R cos(α)

we conclude from (1.11) that

‖dzf(h)‖2 = R sin(α+ 2θ) +
E +G

2
.
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Combining this with (1.4) we obtain

D[f ](z) =

(
E +G+ 2R

E +G− 2R

)1/2

,

which together with (1.12) leads to (1.8). �

2. The Teichmüller type pseudo-metric τ ∗

The metod of isothermal coordinates can be used in order to introduce a pseudo-
metric in the class WQR(Ω,X) by means of the Teichmüller pseudo-metric τ . Let
us recall that a function h : Ω→ X is said to be an isothermal reparametrization of
a function f : Ω→ X if

(2.1) f(z) = h ◦ ϕ(z) , z ∈ Ω ,

for some sense preserving homeomorphism ϕ of Ω onto itself and the di�erential dzh

is independent of a direction for z ∈ Reg(h) in the following sense

(2.2) ‖dzh(v)‖n = λ(z)|v| , v ∈ C , z ∈ Reg(h) ,

where λ : Ω → R is a certain function with positive values. Let C1(Ω,X) stand for
the class of all functions f ∈ Ω → X which are di�erentiable at each point z ∈ Ω

and the directional derivatives df(1) and df(i) are continuous functions from E(C)

to X.
Assume that f ∈ C1(Ω,X)∩WQR(Ω,X). We wish to describe all sense preserving

di�eomorphic self-mapping ϕ of Ω satisfying (2.1) for some function h with the
property (2.2). Following calculations from [7, Sect. 4] we see that ϕ satis�es the
following condition

(2.3) ∂̄ϕ(z) = µ̃[f ](z) ∂ϕ(z) , z ∈ Reg(f) ,

where

(2.4) µ̃[f ](z) :=
E −G+ 2iF

E +G+ 2
√
EG− F 2

, z ∈ Reg(f) ,

with E, F and G given by (1.9) and µ̃[f ](z) := 0 for z ∈ Ω\Reg(f). From Lemma 1.2
it follows that for every z ∈ Reg(f),

|µ̃[f ](z)| = |E −G+ 2iF |
E +G+ 2

√
EG− F 2

(2.5)

≤ |E −G+ 2iF |
E +G

=

√
(E −G)2 + 4F 2

E +G

=
D[f ](z)2 − 1

D[f ](z)2 + 1
.
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Hence and by (1.5),

(2.6) ‖µ̃[f ]‖Ω,∞ ≤
∥∥∥D[f ](z)2 − 1

D[f ](z)2 + 1

∥∥∥
Ω,∞

=
K∗(f)2 − 1

K∗(f)2 + 1
< 1 .

Assume now additionally that Ω is a simply connected domain in E(C). Then by
the mapping theorem ( [4, p. 39, 45], [6, Chap. V, �1]), we conclude from (2.6) that
there exists ϕ ∈ QC(Ω) satisfying the Beltrami equation

(2.7) ∂̄ϕ = µ̃[f ] ∂ϕ a.e. in Ω .

Therefore, for every f ∈ C1(Ω,X) ∩WQR(Ω,X),

(2.8) QCf (Ω) :=
{
ϕ ∈ QC(Ω) : ∂̄ϕ = µ̃[f ] ∂ϕ a.e. on Ω

}
6= ∅ ,

and so the Teichmüller pseudo-metric τ in QC(Ω) determines the function

(2.9) F × F 7→ τ̃(f1, f2) := sup
(
{τ(ϕ1, ϕ2) : ϕ1 ∈ QCf1(Ω) , ϕ2 ∈ QCf2(Ω)}

)
,

where F := C1(Ω,X) ∩WQR(Ω,X). Moreover, from [7, Thm. 0.23] it follows that
for every f ∈ F ,

(2.10) τ(ϕ1, ϕ2) = 0 , ϕ1, ϕ2 ∈ QCf (Ω) ,

and consequently, τ̃ is a pseudo-metric in F expressed by the following analytical
formula

(2.11) τ̃(f1, f2) = log
1 + κ̃(f1, f2)

1− κ̃(f1, f2)
, f1, f2 ∈ F ,

where

(2.12) κ̃(f1, f2) :=

∥∥∥∥∥ µ̃[f1]− µ̃[f2]

1− µ̃[f2]µ̃[f1]

∥∥∥∥∥
Ω,∞

, f1, f2 ∈ F ,

and µ̃ is given by (2.4). We call τ̃ the pseudo-metric in F induced from the Teich-

müller pseudo-metric τ in QC(Ω) by the assignment

(2.13) F 3 f 7→ QCf (Ω) .

It is worth noting that we do not need to solve the Beltrami equations (2.7), with
f := f1 and f := f2, in order to calculate the value τ̃(f1, f2) by the formula (2.9).
In view of (2.11) and (2.12) it is enough to determine, using the formula (2.4), the
functions µ̃[f1] and µ̃[f1]. Thus the value τ̃(f1, f2) can be expressed explicitly in terms
of µ̃[f1] and µ̃[f2], which simpli�es considerations dealing with the pseudo-metric τ̃ .
In particular, we can extend τ̃ to the case where Ω is an arbitrary domain in E(C),
not only simply connected, and F is replaced by WQR(Ω,X).

Following the formula (2.4) we de�ne for any f ∈WQR(Ω,X),

(2.14) µ∗[f ](z) :=
Af (z)

1 +
√

1− |Af (z)|2
, z ∈ Ω ,

where for every z ∈ Ω,

(2.15) Af (z) :=
‖dzf(1)‖2 − ‖dzf(i)‖2 + 2i〈dzf(1) |dzf(i)〉

‖dzf(1)‖2 + ‖dzf(i)‖2
,
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provided f is di�erentiable at z and the denominator in (2.15) does not vanish, and
otherwise Af (z) := 0. Note that with the notations (1.9),

(2.16) Af (z) =
E −G+ 2iF

E +G
, z ∈ Reg(f) .

Following calculations from (2.5) and (2.6) we conclude from (2.14) and (2.16) that
for every f ∈WQR(Ω,X),

(2.17) |µ∗[f ](z)| ≤ |Af (z)| = |E −G+ 2iF |
E +G

≤ D[f ](z)2 − 1

D[f ](z)2 + 1
< 1 , z ∈ Reg(f) ,

and consequently,

(2.18) ‖µ∗[f ]‖Ω,∞ ≤
K∗(f)2 − 1

K∗(f)2 + 1
< 1 f ∈WQR(Ω,X) .

Therefore we can replace µ̃ by µ∗ in (2.12), which leads to the following formula

(2.19) κ∗(f1, f2) :=

∥∥∥∥∥ µ∗[f1]− µ∗[f2]

1− µ∗[f2]µ∗[f1]

∥∥∥∥∥
Ω,∞

, f1, f2 ∈WQR(Ω,X)

Lemma 2.1. For any nonempty domain Ω in E(C),

(2.20) κ∗(f1, f2) ≤ K∗(f1)2 K∗(f2)2 − 1

K∗(f1)2 K∗(f2)2 + 1
< 1 , f1, f2 ∈WQR(Ω,X) .

Proof. Write D for the unit disk, i.e., D := {z ∈ C : |z| < 1}. Since

|1− wz|2 − |z − w|2 = (1− |z|2)(1− |w|2) , w, z ∈ C ,

we have
|z − w|2

|1− wz|2
= 1− (1− |z|2)(1− |w|2)

|1− wz|2

≤ 1− (1− |z|2)(1− |w|2)

(1 + |z||w|)2

=

(
|z|+ |w|
1 + |z||w|

)2

, w, z ∈ D .

Therefore
|µ∗[f1]− µ∗[f2]|
|1− µ∗[f2]µ∗[f1]|

≤ ‖µ
∗[f1]‖Ω,∞ + ‖µ∗[f2]‖Ω,∞

1 + ‖µ∗[f1]‖Ω,∞‖µ∗[f2]‖Ω,∞
a.e. in Ω .

Combining this with (2.18) and (2.19) we obtain (2.20), which is our claim. �

Replacing now κ̃ by κ∗ in (2.11) we can extend τ̃ as follows.

Theorem 2.2. For any nonempty domain Ω in E(C) the function

(2.21) WQR(Ω,X)×WQR(Ω,X) 3 (f1, f2) 7→ τ∗(f1, f2) := log
1 + κ∗(f1, f2)

1− κ∗(f1, f2)
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is a pseudo-metric in WQR(Ω,X).

Proof. Given a nonempty domain Ω in E(C) �x f1, f2, f3 ∈WQR(Ω,X). From (2.17)
it follows that

|µ∗[fk](z)| < 1 , z ∈ Reg(fk) , k ∈ {1, 2, 3} .

Let ρh be the hyperbolic metric (Poincaré metric) in the unit disk D; cf. e.g. [5,
Chap I, �1.1] or [2, �1-5] for the de�nition of ρh. Hence for all k, l ∈ {1, 2, 3} and for
a.e. z ∈ Ω,

ρh
(
µ∗[fk](z), µ∗[fl](z)

)
=

1

2
log
|1− µ∗[fk](z)µ∗[fl](z)|+ |µ∗[fk](z)− µ∗[fl](z)|
|1− µ∗[fk](z)µ∗[fl](z)| − |µ∗[fk](z)− µ∗[fl](z)|

,

which together with the formulas (2.19) and (2.21) leads to

(2.22) ess sup
z∈Ω

ρh
(
µ∗[fk](z), µ∗[fl](z)

)
=

1

2
log

1 + κ∗(fk, fl)

1− κ∗(fk, fl)
=

1

2
τ∗(fk, fl) .

Since ρh is a metric in D, it follows that for a.e. z ∈ Ω,

ρh
(
µ∗[f1](z), µ∗[f3](z)

)
≤ ρh

(
µ∗[f1](z), µ∗[f2](z)

)
+ ρh

(
µ∗[f2](z), µ∗[f3](z)

)
.

Combining this with (2.22) we obtain

τ∗(f1, f3) ≤ τ∗(f1, f2) + τ∗(f2, f3) .

From the formula (2.19) it follows that

κ∗(f1, f2) = κ∗(f2, f1) and κ∗(f1, f1) = 0 ,

which implies, by (2.21), that

τ∗(f1, f2) = τ∗(f2, f1) and τ∗(f1, f1) = 0 .

Therefore the conditions (0.3) hold with τ and QC(Ω) replaced respectively by τ∗

and WQR(Ω,X), which is the desired conclusion. �

Following [7, Example 0.24] we will show that the pseudo-metrics τ∗ and τ coin-
cide in the class QC(Ω).

Theorem 2.3. For any nonempty domain Ω in E(C), QC(Ω) ⊂ WQR(Ω,ER(C)

and

(2.23) K∗(f) = K(f) , f ∈ QC(Ω) ,

as well as

(2.24) τ∗(f1, f2) = τ(f1, f2) , f1, f2 ∈ QC(Ω) .

Proof. Given a domain Ω 6= ∅ in E(C) �x f ∈ QC(Ω). Then for a.e. z ∈ Ω, z ∈ Reg(f)

and the Jacobian J[f ](z) of f at z is positive, which leads, by (0.6), to

(2.25) |∂f(z)|2 − |∂̄f(z)|2 > 0 ;
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cf. [6, Chap IV, �1.5]. Using the formulas (1.9) and (0.5) we see that

E = |∂f + ∂̄f |2 = |∂f |2 + |∂̄f |2 + 2 Re(∂f∂̄f) ,

F = −2 Im(∂f∂̄f) ,

G = |∂f − ∂̄f |2 = |∂f |2 + |∂̄f |2 − 2 Re(∂f∂̄f)

(2.26)

a.e. in Ω. Hence

(E −G)2 + 4F 2 = [4 Re(∂f∂̄f)]2 + 4[−2 Im(∂f∂̄f)]2(2.27)

= 16|∂f |2|∂̄f |2 a.e. in Ω .

Applying now Lemma 1.2 and (2.25) we have

D[f ] =

(
E +G+

√
(E −G)2 + 4F 2

E +G−
√

(E −G)2 + 4F 2

)1/2

(2.28)

=

(
2|∂f |2 + 2|∂̄f |2 + 4|∂f ||∂̄f |
2|∂f |2 + 2|∂̄f |2 − 4|∂f ||∂̄f |

)1/2

=
|∂f |+ |∂̄f |
|∂f | − |∂̄f |

a.e. in Ω .

On the other hand side, we can appeal to (0.7) and (1.5), which combined with (0.4)
and (2.28) gives

(2.29) K∗(f) = ‖D[f ]‖Ω,∞ = K(f) ,

whence f ∈ WQR(Ω,ER(C). Therefore the inclusion QC(Ω) ⊂ WQR(Ω,ER(C)

holds, and (2.29) yields the property (2.23). From (2.26) and (2.27) it follows that

(E +G)2 − |E −G+ 2iF |2 = (E +G)2 − [(E −G)2 + 4F 2]

= (2|∂f |2 + 2|∂̄f |2)2 − 16|∂f |2|∂̄f |2

= 4(|∂f |2 − |∂̄f |2)2 a.e. in Ω .

Combining this with (2.14), (2.16) and (2.26) we have

µ∗[f ] =
E −G+ 2iF

E +G+
√

(E +G)2 − |E −G+ 2iF |2

=
4[Re(∂f∂̄f)− i Im(∂f∂̄f)]

2|∂f |2 + 2|∂̄f |2 +
√

4(|∂f |2 − |∂̄f |2)2

=
2∂f∂̄f

|∂f |2 + |∂̄f |2 + ||∂f |2 − |∂̄f |2|
a.e. in Ω .

Hence, by (2.25) and by (0.4) we obtain

µ∗[f ] =
∂f∂̄f

|∂f |2
=
∂f∂̄f

∂f∂f
=
∂̄f

∂f
= µ[f ] a.e. in Ω .

This means that for every f ∈ QC(Ω), the function µ∗[f ] coincides with the complex
dilatation µ[f ] of f a.e. in Ω. We may now apply the formulas (0.10) and (2.19) to
conclude that
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(2.30) κ∗(f1, f2) = κ(f1, f2) , f1, f2 ∈ QC(Ω) .

Hence, by (0.9) and by (2.21) we deduce the property (2.24), which completes the
proof. �
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ODLEG�O�� TEICHMÜLLERA W KLASIE FUNKCJI
S�ABO REGULARNYCH

S t r e s z c z e n i e
Celem pracy jest uogólnienie odwzorowa« quasi-konforemnych pªaszczyzny zespolonej

do funkcji okre±lonych w obszarach pªaszczyzny zespolonej i warto±ciach w przestrzeni
unitarnej rzeczywistej, zwanych funkcjami sªabo regularnymi. Nast�epnie zde�niowana jest
odlegªo±¢ Teichmüllera dla takich funkcji.

Sªowa kluczowe: odwzorowania quasi-konforemne, funkcje quasi-regularne, odlegªo±¢ Teich-
müllera
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Summary

This paper presents a discussion of di�erent approaches for globally optimizing the
objective functions de�ned in a standard continuous search space when passing to a discrete
respective problems. The related techniques are developed in the context of the particle
swarm optimization method (PSO). As far as PSO has shown recently a good e�ectiveness
in performing di�cult optimization tasks we intend to approve its applicability to discrete
systems, i.e. traveling salesman problem (TSP), being well known representative and still
most di�cult discrete task between all NP-hard problems. To do this we can follow two
roads: �rstly rede�ne discrete system in order to use PSO and secondly adjust PSO, using
genetic operators, for discrete system.
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1. Introduction

Since a long time, the task of minimization of real function with many local, and often
also many global minima, is encountered in di�erent scienti�c as well as technical
problems. Usually, this objective/cost function is continuous on the discussed search
space, however, the search space of particular problem can have either continuous
or discrete structure. Up to now, a number of optimization algorithms has been
proposed to deal with the continuous tasks but not everyone of them can be rewritten
in a simple way to optimize a discrete case of similar problem. The most known
example of such traditional algorithms not working in the latter case is that based on
gradient method. Thus, to perform a transition from continuous to discrete problems,
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we discuss below a class of another approaches with its origin coming up rather from a
family of evolutionary ideas. In that case, a population or swarm of agents penetrates
a search space taking into account only minimal number of non-gradient operations
and are easy applicable to assumed discrete problems. The related techniques are
developed in the context of the particle swarm optimization method (PSO). As far
as PSO has shown recently a good e�ectiveness in performing di�cult optimization
tasks we intend to approve its applicability to traveling salesman problem (TSP)
being well known representative and still most di�cult discrete task between all
NP-hard problems. To do this we show below the action of several crossover operators
leading to the relatively simple but also e�ective optimization algorithms for TSP.

2. Particle Swarm Optimization for continuous space � basic

equations

The philosophy behind the original particle swarm optimization (PSO) is to conclude
�nal information from individual own experience and the best individual experience
in the whole swarm. The basis for such thinking came from a distributed behavioral
model by Craig W. Reynolds in 1987 [1]. This approach to computer animation
of �ock motion assumed the interaction between the behaviors of individual birds,
however, one of the results reported also in this paper was that the aggregate motion
strongly depends upon a limited and localized view of the world. The basic Particle
Swarm Optimisation algorithm was introduced by R.C.Eberhart and J.Kennedy
in 1995 [2] and is based on �ocking behaviour of swarm of birds. The algorithm
recreates some basic social behaviour of swarm members and on the other hand
allows individual reasoning based on member memory and local environment. It
should be mentioned here, that this idea became a basis for a more general way of
thinking well known as Swarm Intelligence.

In classical approach of PSO type we have swarm of particles (agents) that lives
(moves) in n-dimensional continuous space RN . Each of these particles searches for
optimal solution of a given cost function f . Even though that every member of the
swarm is working separately they take into account best results from all swarm
members. For every particle in the swarm we can de�ne it's position pi in the search
space and it's velocity vi understood as a change of positions. The leading rule for
PSO algorithm is the de�nition of change of velocity recalculated in every step of
the algorithm

(1) v′i = w ∗ vi + c1 ∗ (plb − pi) + c2 ∗ (pgb − pi),

where v′i is a new velocity of particle i, while vi stands for the actual velocity of this
particle i, pi is a local position of particle i, while plb is historically best position
found by this particle and pgb gives us the best position known from results of all
particles in the swarm. The constants w, c1 and c2 are algorithm parameters and
should be established in special way to obtain e�cient and stable swarm action in
optimization procedure. Coe�cient w represents an inertia of the particle/agent,



Di�erent approaches to particle swarm optimization for discrete systems 103

while parameters c1 and c2 represent strength of in�uence of historical and swarm
best known positions on reasoning.

When we know a new velocity v′i of particle i, we can easily �nd it's new position
p′i according to a simple rule

(2) p′i = pi + v′i,

while the only problem is to verify the value of velocity v′i and limit it to a certain
maximal value assumed in advance because increased to much leads to long lasting
algorithm action when the global minimum is omitted.

This behaviour of particle is basically similar to real behaviour of �ocking bird in
the swarm. Each of birds before changing it's position often checks where are other
members of the swarm (locally or globally). Then, they have to choose individually
a new direction of �ight in order to �nd the most promising spot in the search space,
what leads to optimization of respective objective function.

3. PSO for Simple Discrete Systems

3.1. Function on discrete lattice

The simplest discrete problem can be described as optimization of function over
N-dimensional �eld of Integer numbers f(ZN ) → R. In order to solve this problem
we can embeds ZN inside RN and de�ne function f ′(RN ) → R such that for every
i ∈ ZN f ′(i) = f(i). Now in continuous space RN we optimize function f ′ using PSO
rounding positions of particles to nearest lattice point at each step of PSO iteration.
At the end of this procedure if we should obtain optimal position of f .

3.2. Binary coding � mapping between continuous and discrete search
spaces

The simplest version to achieve binary PSO results has been also proposed by
Kennedy, J., Eberhart, R.C. but in 1997 [3]. The above standard real-valued for-
mula for evolution of particle velocity components has been extended applying a
sigmoid transformation sig(vij) ensuring binary result for particle position such that
the probability the j-th component of particle i's position is equal to 1 is given by
this sigmoid value from [0, 1]. However, a number of problems arise from this simple
binary PSO version as pointed in many later papers (see e.g. Khaneser et al.). The
main is that just mentioned velocity loose its physical meaning and becomes not
connected with a change in position but represents rather probability of taking a
particular position. We will show later that the problem can be solved using algebraic
approach.

3.3. Boolean PSO

On the other hand, we can formulate a Boolean version of PSO (BPSO) where
variables are obviously binary while the arithmetic operators �*�, �+� and �-� in
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(1) and (2) become replaced by their logical equivalents, i.e. AND, OR and XOR,
respectively. Unfortunately, as it has been shown recently in [4], this algorithm does
not scale well to large search space dimensions what makes it less applicable to serious
and realistic tasks. However, introducing a speci�c �pure noise� term to the velocity
evolution equation can force the swarm to behave in a better way for large Boolean
problems than applying a standard Kennedy, J., Eberhart, R.C. approach [2].

4. TSP as non trivial discrete system

Traveling salesman problem (TSP) is one of the most known discrete NP-hard prob-
lem in computer science. The problem can be easy de�ned as search for optimal
(shortest) way of salesman that have to visit all clients in di�erent places. At the
beginning one have a set of coordination's of all clients. As a result, we search for
shortest route through set of all clients while each of the clients can be visited only
once. Researches, all the time, look for as good as possible optimization algorithms
using di�erent techniques, i.e. genetic algorithms, ant colony optimization, simulated
annealing, neural networks and many others [5�9]. As for every NP-hard problem the
need of some e�cient optimization algorithm is still crucial for long time. Also the
PSO algorithm is used for this [10,11]. At the beginning, however, we have to observe
that usual interpretation of position and velocity is not suitable for this problem .
There is not obvious how to de�ne a position in TSP in order to implement men-
tioned velocity and PSO algorithm without some special modi�cations. One of the
�rst approaches was introduced by M. Clerc [12] and de�nes some special algebraic
operators of addition in order to introduce special interpretation of position and
velocity for TPS. Next, researches introduced some additional elements/operations
to PSO in order to incorporate it with traveling salesmen problem.

5. Algebraic approach

PSO algorithm can be easily used for every problem if we can de�ne:

• position pi of i-th particle in the swarm,
• velocity vi of i-th particle in the swarm,
• di�erence between two arbitrary positions pi − pk,
• sum of velocity and position v + p.

As was shown by M. Clerc [12] all these elements can be introduced for TSP in
order to use PSO for optimization. At the beginning we have to de�ne all important
elements that will be used later.

De�nition 1. A position of a particle from the swarm in TSP problem is an Hamil-
tonian cycle in TSP graph.

De�nition 2. Velocity is de�ned as an ordered list of transpositions of elements from
a Hamilton cycle.
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Example. v = ((1, 2)(3, 4)) means that we �rst have to the exchange elements 1 and
2 in cycle and later 3 and 4.

De�nition 3. Let v be a velocity then opposite of a velocity v denoted as ¬v is the
same set of transposition as in v but in reversed order.

De�nition 4. Let p be a position of a particle and v its velocity then new position
p′ = p + v is obtained applying all transpositions from velocity on position with
appropriate order.

Example. If p = (1, 2, 3, 4, 5) and v = ((1, 4)(3, 5)) then p′ = p+ v = (4, 2, 5, 1, 3)

De�nition 5. Let pa and pb be two positions. The di�erence pa − pb is an velocity
needed to move from position pa to pb.

Remark. It is important that the velocity obtained as subtraction is not uniquely
de�ned, that is why this de�nition should be used with appropriate algorithm of �nd-
ing one. There can be many procedures for computing subtraction (i.e. M.Clerc [12]).

Using all presented elements we can now incorporate PSO algorithm for any
TSP problem. Moreover in the same way we can adjust many discrete systems for
PSO algorithm. Unfortunately presented concepts as velocity and subtraction lost
their natural interpretation, and can strongly depend on additional algorithm of
subtraction computing.

6. PSO with genetic crossover operator

As was presented in previous section it is not easy to de�ne a velocity vector for
travelling salesman problem that have some meaningful interpretation. In that case
we can try to rede�ne PSO algorithm itself instead of forcing de�nition of TSP for
standard PSO algorithm. This way we can use PSO in order to solve TSP. First
let us analyse if velocity is really needed in order to introduce PSO algorithm. We
can de�ne position of a particle as a Hamilton cycle through graph describing TSP
problem. When we look at the equations that de�ne PSO algorithm (1,2) it is obvious
that velocity is introduced in order to describe change of position between algorithm
iterations. This implies that in order to use PSO for TSP we have to de�ne rule for
position change. What is important we can omit usage of velocity vector, it is enough
to de�ne rules for change of position of a particle between algorithm iterations. Such
rede�nition of PSO allows us to search for di�erent approaches for this speci�c
problem. From all possible ways of introducing this position change operations the
Genetic crossover operator seems to be the best possible choice. If we can introduce
a genetic operator which from two Hamilton cycles creates new one we have a good
candidate that can be used for solving TSP problem with PSO algorithm.

The modi�cation of PSO in order to use crossover operator has the form:

(3) p′i = pi ⊗ plb ⊗ pg,

where ⊗ is a genetic crossover operator.
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The rest of algorithm stays exactly the same. We create a swarm of starting
positions, then at each iteration of algorithm we count new position of particles (3),
update the best obtained position for each particle and the swarm. As we can see
such de�nition of PSO is very general and independent of actual crossover operator
implementation.

6.1. Genetic crossover operator for TSP

After introducing Genetic Algorithm (GA) by Holand [13] many crossover operators
have been invented and is used in computer science in many areas. Crossover operator
is the most important element of Genetic Algorithms (GA). The interpretation of
this operator comes from genetic process of creation chromosomes of o�spring from
chromosomes of its parents. In order to use GA in TSP cases we can de�ne that
chromosome is a position of a particle i.e Hamiltonian cycle from TSP graph. There
are many already existing genetic crossover operators used in many areas in computer
science. The TSP problem has a very speci�c set of possible chromosomes (Hamilton
cycles) and we have to remember the most important property of Hamilton cycle:
each element of the cycle occurs only once. Using just simple cut and stitch genetic
crossover operation in most of cases we would create new cycles that would not
be Hamilton cycle. This implies that in order to use a crossover operator for TSP
problem we have to incorporate additional rules to enforce that chromosome of
o�spring would also be a Hamilton cycle. We can introduce a few of known and used
crossover operators for TSP.

6.1.1. Partially Mapped Crossover (PMX)

PMX is one of �rst crossovers proposed by Goldberg and Lingle in 1985 [14]. In order
to create a child cycle from two parent cycles we have to go through four steps:

• Randomly de�ne cutting point and cut both parents chromosomes at the same
positions.

• Create proto-child by exchanging selected subcycles.
• Determine the mapping relationship based on the selected subcycles.
• Repair proto-child using the mapping relationship.

Example. Through this paper we will use one example of TSP problem with 8 cities
on the circle labeled by numbers from 1 to 8. Distance between two consecutive
cities is always equal 1. For every case we have selected two parents P1 and P2 in
the form:

P1: 1 2 5 6 4 8 3 7
P2: 1 4 2 8 6 5 7 3

This cycles can be visualised on graph (Fig. 1).
Suppose the randomly chosen cut points are as follows
P1: 1 2 5 6 4 8 3 7
P2: 1 4 2 8 6 5 7 3
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Figure 1: Graphs for Parents P1 and P2

We have to copy appropriate edges into proto-child cycle (see Fig. 2)
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(b) subcycle of P1
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(c) subcycle of P2
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Figure 2: Edges copied from parents into proto-child (PMX)

According to the algorithm we obtained proto-child in the form (see Fig. 3).
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Figure 3: Obtained proto-child (PMX)

PC: 1 4 5 6 4 5 7 3
Moreover the cutpoints de�ne also mapping 5→ 2, 6→ 8 and 4→ 6.

This child has duplicates 4 and 5.To repair this we use the mapping rule for the
sub-cycles inside the cut points as follows. As result we obtain resulting o�spring
(see Fig. 4):
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O12: 1 8 5 6 4 2 7 3
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Figure 4: Obtained o�spring (PMX)

6.1.2. Variant of Partially Mapped Crossover (VPMX)

Analysing PMX operator we can ask why both parents have cutting points in the
same place? There is no reason for that. This implies the next version of our crossover
operator, very similar to the �rst one [15].

Example. Using parents as in previous example we have (see Fig. 5, 6):

P1: 1 2 5 6 4 8 3 7
P2: 1 4 2 8 6 5 7 3
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(c) subcycle of P2
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Figure 5: Edges copied from parents into proto-child (VPMX)

As the result we obtained o�spring as follows (see Fig. 7):
O12: 1 8 2 5 6 4 7 3

6.1.3. Ordered crossover (OX)

Other type of crossover operator has been designed in order to preserve relative
order of cities from the parents [16]. The o�spring is produced in simple steps:

• Randomly de�ne two cutting point and cut both parents chromosomes at the
same positions.
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Figure 6: Proto-child VPMX
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Figure 7: Obtained o�spring (VPMX)

• Copy the middle part from one of the parents.

• Copy rest of the elements preserving order and omitting elements already
copied into o�spring.

Example. Using the same parents as previously (o�spring on Fig. 8):

P1: 1 2 5 6 4 8 3 7
P2: 1 4 2 8 6 5 7 3
O12: 5 4 2 8 6 3 7 1

1

2
3

4

5

6
7

8

Figure 8: Obtained o�spring (OX)
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6.1.4. Greedy crossover (GX)

This operator is based not only on chromosomes but also on TSP distance matrix
[17]. Creation of o�spring goes as follows.

• Take (randomly) starting point and copy this to child (suppose its 1).
• Copy shortest edge from all edges in both parents containing this element. In
our example these are 1-2 and 1-7 from P1 and 1-4, 1-3 from P2, the shortest
from these is edge 1-2.

• Repeat until �lling o�spring chromosome remembering to omit all already
inserted nodes (o�spring chromosome is a Hamiltonian cycle).

First few steps of this algorithm are presented on Fig. 9 and resulting cycle on Fig. 10.

(a) one edge
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(b) two edges
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(c) four edges
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Figure 9: Starting steps of creation of o�spring using greedy crossover operator (GX)

It is obvious that this algorithm is more complex that PMX, VPMX and OX and
take longer than previous three.

1

2
3

4

5

6
7

8

Figure 10: Obtained o�spring (GX)

6.1.5. Introduction of new genetic crossover operator

In this paper we want to introduce a new crossover operator based on presented
OX. The idea is to preserve order of elements from parent cycles but use more
cutting points than two. We call this new operator Multiple Cut Ordered Crossover
(MCOX). The child is created in followed steps:
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• Select randomly starting point from �rst parent.

• Randomize length l of copied sub-cycles into child cycle.

• Copy l elements from parent into o�spring. However in order to prevent du-
plicates we have to skip nodes that already have been copied into the child.

• Switch to second parent, and set last inserted position as new starting point.

• Repeat until child cycle has the same length as both parents.

Example. Suppose starting point is city 1 and obtained sequence of randomized
lengths {2, 3, 2, 1} then at each step we copy into child elements:

Two elements from P1 starting at 1:

P1: 1 2 5 6 4 8 3 7

Three elements from P2 starting from 2:

P2: 1 4 2 8 6 5 7 3

Two elements from P1 starting from 5 (elements 6 and 8 has to be omitted as
already copied into child cycle):

P1: 1 2 5 6\ 4 8\ 3 7

One element from P1 starting from 3 (it has to be the last missing point 7). As
the result we obtain child in the form (see Fig. 11):

O12: 1 2 8 6 5 4 3 7
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Figure 11: Obtained o�spring (MCOX)

7. Experimental results

In this paper we present a new crossover operator that can be used in order to
solve TSP problem. In order to check usability of this operator we should compare
results of optimization using PSO and presented crossover operators for selected
TSP problems. We selected four well known TSP problems from set of benchmarks
included in TSPLib [18]. For each of benchmark (gr24, fri26, bays29, eli51) we used
swarm that contains 50 particles. Each algorithm was run multiple times, for each of
the approaches we present best result and average result presented in Table 1. As is
shown in presented table the proposed MCOX crossover operator gives good results
for all benchmarks.
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Crossover Gr24 Fri26 Bays29 El51
avg. best avg best avg. best avg. best

PMX 2214 1946 1717 1463 3807 3312 1146 1012
VPMX 1293 1272 980 937 2060 2020 464 447
GX 1295 1272 955 937 2060 2020 451 439
CX 2341 2043 1809 1633 2118 2026 1235 1132
OX 1378 1286 1003 937 2057 2032 480 439
MCOX 1311 1272 960 937 2035 2020 433 427

Table 1: Experimental results of PSO using di�erent crossover operators applied
to selected TSP cases. In table avg means average result over 25 runs (rounded to
nearest integer), best is best result obtained for selected approach in 25 runs.

8. Conclusions

Particle Swarm Optimization algorithm was created for optimization problems in
continuous space. As is presented in this paper this algorithm can be used also for
discrete problems. There are some distinct approaches how to apply PSO. For this
paper TSP was selected as representative to discrete problems. Each of presented
method can be applied not only to TSP but also other NP hard discrete prob-
lems. We introduced new crossover operator that applied for benchmarks gives very
promising results. In future works the convergence of MCOX crossover operator will
be examined.
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OPTYMALIZACJA ROJEM CZA�STECZEK DLA UK�ADÓW
DYSKRETNYCH

S t r e s z c z e n i e
W pracy prezentowana jest dyskusja ró»nych podej±¢ do globalnej optymalizacji funkcji

celu, zde�niowanej standardowo na ci�agªej przestrzeni poszukiwa«, w przypadku przej±cia
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do problemów dyskretnych. Opisywane techniki s�a rozwijane w kontek±cie metody opty-
malizacji stadnej/rojem cz�asteczek (ang. PSO). Poniewa» metoda PSO wykazaªa ostat-
nio du»�a efektywno±¢ w rozwi�azywaniu trudnych zada« optymalizacyjnych, pokazujemy
równie» mo»liwo±¢ jej zastosowa« do najbardziej reprezentatywnego w±ród dyskretnych
NP-trudnych problemów � do zadania komiwoja»era (ang. TSP).

Sªowa kluczowe: optymalizacja globalna, optymalizacja stadna/rojem cz�asteczek, genety-
czne operatory krzy»owania, problem komiwoja»era
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EFFECT OF NEIGHBOURS DISTRIBUTION ON HYBRID GENETIC
APPROACH TO PARTICLE SWARM OPTIMIZATION
FOR THE TRAVELING SALESMAN PROBLEM

Summary

To avoid the problem of traditional genetic algorithm (GA) and particle swarm opti-
mization (PSO) trapped into local minimum, we propose new hybrid approach using PSO
and GA applied to discrete traveling salesman problem (TSP). Thus, constructed hybrid
algorithm with distribution of neighbours in known TSP instances is taken into account.
Our experimental results indicate a few advantages of the method used over the standard
ones, for example better convergence. The algorithm is e�ective and does not depend so
strongly on initial conditions, as often happens.

Keywords and phrases: particle swarm optimization, travelling salesman problem, genetic
algorithms, global optimal, neighbours distribution, benchmark tasks

1. Introduction

The travelling salesman problem (TSP) is one of the most studied and known NP
hard problems. It is easy to describe and on the other hand has great importance in
real life (i.e. logistics, computer networks, etc.) [1]. In order to �nd optimal solution
to a TSP with n cities one needs to check all (n− 1)! routes, this is very demanding
task even for small n. Even though for many years scientists try to �nd the best
algorithm to search for optimal route (Hamiltonian cycle) through TSP graph, it
remains still as one of most challenging problems in Computer Science. There are
many approaches to name a few: using dynamic programming [2], linear program-
ming [3], nearest neighbour algorithm [4], insertion algorithms [4] and many more.
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There are also approaches with evolutionary algorithms like ant colony optimization,
genetic algorithms and particle swarm optimization [5]. Particle swarm optimization
(PSO) is a very interesting approach to TSP problem, this algorithm allows to search
through huge spaces of all possible solutions in relatively short time.

The main purposes behind this paper can be described as follows:

• to modify the standard PSO approach by using a new recombination method
of TSP cycles,

• to apply an experimentally established neighbours distribution to treat the
classical TSP problem more e�ciently.

Thus, more precisely, we propose a new hybrid genetic operation, leading to new
positions of swarm particles, using triple recombination of previous position, local
best position and global best position (Hamilton cycles) of particles in the swarm.
On the other hand, as the optimal route/cycle in any TSP problem is a combination
mostly of the shortest edges between nearest neighbours, so the question arises,
what is a distribution (in a mean sense) of neighbour orders along optimal path
obtained for well-known TSPLIB examples [6]. Application of the neighbourhood
order distribution to cycle recombination mentioned above leads us to much limited
number of possibilities and makes the proposed hybrid GA-PSO approach more
e�cient and stable when compared with the standard approaches with homogeneous
search in the total space of all possible permutations.

This paper is organized as follows. First we describe basic implementation of par-
ticle swarm optimization for travelling salesman problem with discussion on crossover
operator (sec. 2). Section 3 contains analysis of neighbours distribution in TSP cases
with known optimal solutions. This is followed by proposed modi�cation of PSO al-
gorithm with use of neighbourhood order distribution (sec. 4). In last two sections
we placed experimental results of described methods and conclusions.

2. Particle swarm optimization for traveling salesman

problem

Particle Swarm Optimization is well established technique proposed by R.C.Eben-
hart and J.Kennedy in 1995 [7], since then it was used in many areas of computer
science [8]. PSO is an optimization algorithm based on observation of �ocking bird
social behavior. The main goal of PSO is to �nd, using agent methodology, the
point where �tness function has minimal or maximal value. In the usual PSO on
continuous space the rule for position change is de�ned as:

vk,i = w ∗ vk,i−1 + c1 ∗ (plbk − pk,i−1) + c2 ∗ (pgb − pk,i−1),

pk,i = pk,i−1 + vk,i,
(1)

where pk,i is k-th particle position in i-th iteration of algorithm, vk,i represents
velocity of this particle, plbk is k-th particle local best position and pgb stands for the
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global best position in considered swarm, w, c1, c2 are algorithm parameters (weight
coe�cients).

In order to use swarm techniques for TSP we have to rede�ne position and ve-
locity. Position of a particle for TSP problem is one of Hamiltonian cycles in TSP
graph. In usual PSO approach velocity is used to describe how particle position
changes between iterations. In continuous space like Rn velocity is a very intuitive
way to describe this changes. When we have discrete space, like in TSP, it is very
hard to introduce velocity with as intuitive interpretation as in Rn. There exist two
ways to de�ne PSO particle position changes for TSP [9]: using some geometric in-
terpretation of space of all possible cycles like in [10], and the approach based on
recombination/crossover operation [11]. The latter one is used in this paper. Here,
a position of a particle in a swarm is a cycle from space of all possible Hamilton
cycles. Each such cycle has well tour length. Tour length measure is used as a �tness
function. Thus the goal of PSO is to �nd a cycle that minimizes this �tness function.

2.1. Cycles recombination algorithm

We replace the (1) with:

(2) pk,i = Recom
(
pk,i−1, p

lb
k , p

gb
)
,

where Recom is an operation called cycles recombination (crossover operation) de-
�ned bellow in details.

Inspired by many papers (see, e.g., [12�15]) we introduce a recombination algo-
rithm based on genetic recombination of chromosomes.

The algorithm's input is a sequence C of cycles {pgb, plbk , pk,i−1, p
rand} where:

pk,i−1 � k-th particle position in previous iteration,

plbk � k-th particle local best position,

pgb � global best position in the swarm,

prand � randomly generated cycle (using homogeneous random generator).

Each of these cycles has length L.
There are many possible candidates that can be used to de�ne Recombination,

as was presented in [16] Multiple Cut Ordered Crossover Operator (MCOX) is an
interesting candidate.
Based on MCOX we can generate new cycle using algorithm:

Step 0 initialization: take �rst cycle from sequence C, randomly select starting
element s from this cycle;

Step 1 choose random number l from 1 to L;

Step 2 copy l elements of cycle starting from s;

Step 3 set s as last copied point;

Step 4 take next cycle from sequence C;

Step 5 go to Step 1 if the new cycle is shorter than L.
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Example. Input sequence of cycles:

pgb = {9 8 7 6 5 4 3 2 1}

plbk = {4 6 2 1 5 8 9 7 3}

pk,i−1 = {4 2 3 7 6 8 1 9 5}

prand = {7 5 9 1 6 2 4 3 8}

Recombination

pgb, s = 1, l = 3 { 9 8 7 6 5 4 3 2 1 } → 1 9 8

plbk , s = 8, l = 4 { 4 6 2 1 5 8\ 9\ 7 3 }→ 7 3 4 6

pk,i−1, s = 6, l = 2 { 4\ 2 3 7 6\ 8\ 1\ 9\ 5 }→ 5 2

Resulting cycle:

pk,i = {1 9 8 7 3 4 6 5 2}

Using presented algorithm for TSP problem one can observe that if prand would
not be included in sequence C, the results of PSO algorithm often get stuck a local
minimum and never comes near to the global one. Hence, it is important to introduce
prand as some �fresh blood� into the system. Moreover in order to prevent the swarm
from behaving too randomly global best and local best cycles have to be used more
often than pk,i−1 and prand. Taking all this into account we conclude that the best
sequence C used for the recombination algorithm has the form:

(3) C = {pgb, plbk , pk,i−1, p
gb, plbk , p

rand}.

2.2. Hybrid GA-PSO algorithm

Now we can describe how to use presented Recombination within PSO algorithm:

Step 0 Initialization: generate swarm by randomizing all particles positions, de�ne
IterMax - maximum number of iterations

Step 1 for each particle in swarm:

Step a create a new cycle for every particle in swarm using Recombination
Algorithm;

Step b calculate value of �tness function;

Step c set actual particle position to position obtained in Step a;

Step d update local best plbk if tour length for new cycle is less than for plbk ;

Step e update global best pgb if tour length for new cycle is less than for pgb;

Step 2 Repeat Step 1 until number of iterations reaches IterMax.

Step 3 Return global best position pgb.
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3. Distribution of neighbours in TSP problems

It is well known, that in optimal tour through Hamiltonian cycle of TSP problem,
pairs of the nearest neighbours are very probable and often exist. The questions arise
how often it happens and how probably it happens and what is a contribution of
farther neighbours. Is there any distribution of neighbourhood order? We have taken
into account 33 TSP cases with known optimal solutions from Traveling Salesman
Problem Library (TSPLIB) [6] and tried to �nd answers to these questions. Like in
TSPLIB we have used all distances rounded to integer values.

3.1. Neighbourhood order distribution

First let us de�ne neighbourhood order NO(A,B) for two points A and B in TSP
problem with distance measure dist(A,B) :

NO(A,B) = 1 i� there is no point X such that dist(A,X) < dist(A,B). If
NO(A,B) = 1 then B is called a nearest neighbour of A.

We denote the set of all points B that NO(A,B) = 1 by NO1(A) and we call it
the set of neighbours of �rst order.

NO(A,B) = 2 i� there is no point X /∈ NO1(A) such that dist(A,X) <

dist(A,B).
We denote the set of all points B that NO(A,B) = 2 by NO2(A) and we call it

the set of neighbours of second order.
Similarly we can de�ne neighbours of any order.

3.2. Overall neighbourhood order distribution

Taking 33 cases from TSPLIB (with di�erent graph sizes from 16 to 2392 nodes) we
create histogram of neighbourhood orders for all cases. We have to remember that
distinct cases may have very di�erent number of nodes, in order to treat each case
evenly we cannot use classical histogram based on how many elements are in each
neighbourhood order. Instead, we use the frequency of neighbourhood order in each
case. At the end we obtain global distribution of frequency from 33 TSP cases tested
(Fig. 1).

4. Modi�cations of PSO using neighbourhood order

distribution

PSO algorithms are often used because they allow to e�ective search over huge space
o� all possible solutions. We use particles as agents who thanks to cooperation can
easily �nd optimal solution. One of most important feature of PSO is to test value
of �tness in new positions and in the same time �nd some sequence of positions
convergent to optimal one. It is very hard to incorporate these to. After analysis
of optimal solutions in some of TSP problems we conclude that using �at random
distribution in PSO algorithm often gives back positions very far from optimal one.
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Figure 1: Global distribution of neighbourhood order frequency.

Using di�erent probability distribution can increase a chance to move particle to
better position. There are three possible ways one can use neighbourhood order
distribution in PSO algorithm:

1. only during initialization (swarm generation),
2. only during each iteration step,
3. both during initialization and during each iteration step.

4.1. Swarm initialization using neighbourhood order distribution

At the beginning of optimization process we have to generate positions for all parti-
cles in the swarm randomly, usually we use �at probability distribution ρ�at. In our
opinion it would be better to use probability distribution ρNO based on neighbour-
hood order distribution (Fig.1).

(4) ρNO(n) =


45, for: n = 1;

25, for: n = 2;

12, for: n = 3;

6, for: n = 4;

12, for: n ≥ 5

where n is a neighbourhood order of randomized element. Proposed probability
distribution ρNO used during cycle random initialization should increase convergence
of PSO algorithm. Thus generation of a new Hamiltonian cycle using ρNO will have
the form:

Step 0 randomly select �rst element of cycle x0 (using ρ�at);
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Step 1 randomly choose next element of cycle xi (using ρ�at);
Step 2 �nd neighbourhood order NO(xi−1, xi) for this element;
Step 3 randomly generate integer number r, 0 ≤ r ≤ 100 (using ρ�at);
Step 4 if r ≥ ρNO(NO(xi−1, xi)) repeat from Step 1;
Step 5 accept xi as next element in cycle;
Step 6 generate next elements of the cycle (repeating from Step 1) until we have

all possible points in the cycle.

4.2. Modi�cations of recombination operation using neighbourhood order
distribution (PSOwNOD)

We propose a modi�cation of PSO using presented probability distribution (4). In
this new PSOwNOD approach we use Recombination Algorithm changed as follows:
• randomized position prand in (3) is generated using non-homogeneous random
number generator based on neighbourhood order probability distribution (4).

5. Experimental results

In order to estimate e�ciency of the proposed PSO implementation we check results
for selected benchmarks from TSPLIB (gr24, fri26, bays29, eli51). Each of selected
benchmarks is optimized using two versions of algorithms PSO (as described in
section 2.2) and PSO with neighbourhood order distribution (PSOwNOD, sec. 4.2)
with swarm containing 20 particles and maximum number of iterations set to 2000
(results are presented in Tables 1�4). For most of cases best obtained result was
an optimal result (from TSPLIB). The PSO algorithm is mainly based on random
operations that means than not every run of algorithm gives back the same result.
Tables below show dispersion of obtained results when optimization process was
repeated is shown. Margin of error describes e�ciency of �nal result.

The results (Tables 1�4) for optimization processes when neighbourhood order
distribution was used (PSOwNOD) are the best. PSO as most of optimization al-
gorithms, strongly depends on starting point, that is the reason why initialization
of swarm in most cases has a positive impact on performance of the algorithm. It
is worthwhile to observe that for modi�ed algorithm PSOwNOD initialization of
the swarm has little or no e�ect at all on �nal results. This is a result of strong
incorporation of neighbourhood order distribution into recombination algorithm, on
each iteration randomness in initialization is moved toward preferred distribution.
This implies that PSOwNOD does not depend so strongly on swarm initialization.
However not all optimization processes �nished with best possible result. On the
other hand, they mostly �nished with result length no more than 4% longer than
an optimal route. Analyzing distribution of results we can stress that PSOwNOD
algorithm more often converge to global optimal solution and not so easy trapped
with local minimum. It is worth to mention that presented results are better than
presented in papers [12,15] on functions bays29 and eli51 respectively.
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PSO PSOwNOD
random distribution random distribution

swarm swarm swarm swarm

initialization initialization initialization initialization

optimal route 1272
best result 1272 1272 1272 1272

results within 2% error 76% 76% 80% 80%
within 2%÷ 4% 21% 20% 7% 15%
within 4%÷ 10% 3% 0% 10% 0%
within 10%÷ 20% 0% 4% 3% 5%

Table 1: PSO results of 100 runs of algorithm for gr24 with 20 particles, 2000 itera-
tions. For both of algorithms PSO (section 2.2) and PSOwNOD (sect. 4.2) we used
both presented ways of swarm initialization (with or without using neighbourhood
order distribution).The optimal tour length is best possible solution taken from [6].
Best result means best result obtained in 100 runs of algorithm. PSO algorithms not
always �nish with optimal solution, that is why distribution of results is presented.
Results within 2% error means that di�erence between �nal result of algorithm and
the optimal solution is not greater than 2%, where 2%÷ 4% means error lower than
4% and bigger than 2%, etc.

PSO PSOwNOD
random distribution random distribution

swarm swarm swarm swarm

initialization initialization initialization initialization

optimal route 937
best result 937 937 937 937

results within 2% error 80% 88% 100% 84%
within 2%÷ 4% 7% 12% 0% 12%
within 4%÷ 10% 6% 0% 0% 0%
within 10%÷ 20% 7% 0% 0% 0%

Table 2: PSO results of 100 runs of algorithm for fri26 with 20 particles, 2000
iterations

6. Conclusions

New hybrid version of the Particle Swarm Optimization algorithm that uses genetic
recombination algorithm is a very e�ective way to solve TSP tasks. As it is shown, us-
ing the neighbourhood distribution we create new recombination/crossover operator
that can work even more e�ciently. Proposed algorithm was used on known bench-
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PSO PSOwNOD
random distribution random distribution

swarm swarm swarm swarm

initialization initialization initialization initialization

optimal route 2020
best result 2020 2020 2020 2020

results within 2% error 48% 68% 92% 80%
within 2%÷ 4% 25% 29% 8% 15%
within 4%÷ 10% 27% 3% 0% 5%

Table 3: PSO results of 100 runs of algorithm for bays29 with 20 particles, 2000
iterations

PSO PSOwNOD
random distribution random distribution

swarm swarm swarm swarm

initialization initialization initialization initialization

optimal route 426
best result 442 435 427 426

results within 2% error 0% 0% 40% 44%
within 2%÷ 4% 4% 20% 43% 48%
within 4%÷ 10% 25% 46% 17% 8%
within 10%÷ 20% 71% 34% 0% 0%

Table 4: PSO results of 100 runs of algorithm for eli51 with 20 particles, 2000
iterations

marks. For all the presented benchmarks proposed PSOwNOD algorithm gives opti-
mal solution and at least 92% of algorithm runs give result with error less than 4%.
This implies better convergence of algorithm to a global optimal solution even for
large TSP instances. Moreover this new algorithm does not depend so much on ini-
tial conditions (swarm initialization) as it is the case for the usual implementations
of PSO.
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WP�YW ROZK�ADU SA�SIADÓW NA GENETYCZNE
HYBRYDOWE PODEJ�CIE DO OPTYMALIZACJI ROJEM
CZA�STECZEK DLA PROBLEMU KOMIWOJA�ERA

S t r e s z c z e n i e
W celu unikni�ecia tradycyjnego problemu zagnie»d»ania w minimum lokalnym stan-

dardowych algorytmów genetycznych (GA) i optymalizacji stadnej cz�astkami (PSO), pro-
ponujemy nowe hybrydowe podej±cie do zastosowa« PSO i GA dla dyskretnego zadania
komiwoja»era (TSP). Konstruujemy hybrydowy algorytm z u»yciem rozkªadu s�asiadów
znalezionym dla znanych przykªadowych zada« TSP zebranych w TSP.lib. Numeryczne
wyniki do±wiadczalne pokazuj�a dobr�a efektywno±¢ oraz kilka innych korzy±ci tej metody
w porównaniu ze standardowym podej±ciem, np. szybsz�a zbie»no�'c. Ponad to, taki algo-
rytm jest sªabo zale»ny od warunków pocz�atkowych, co w innych przypadkach nie zdarza
si�e cz�esto.

Sªowa kluczowe: optymalizacja globalna, optymalizacja stadna/rojem cz�asteczek, genety-
czne operatory krzy»owania, problem komiwoja»era
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