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PL-90-505  Lódź, ul. M. Curie-Sk lodowskiej 11

tel. (42) 66-55-459, fax (42) 66 55 464
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Preface

Professor Julian Ławrynowicz, born in 1939 in Łódź, graduated in physics and
mathematics at the Faculty of Mathematics, Physics and Chemistry of the Univer-
sity of Lódz in 1960. He gained the PhD in mathematical and physical sciences in
1964 and the degree of habilitated doctor in 1968. In 1976 Julian Ławrynowicz was
appointed extraordinary professor, and in 1992 ordinary professor in mathematics.
The scientific interest in the field of mathematics and physics includes complex anal-
ysis, Clifford algebras, fractals, field theory and some aspects of solid state physics.
Professor Julian Ławrynowicz is recognized as a very active researcher with a rich
scientific output and many contributions in the international conferences. In the
period 1972–2002 he served in the Institute of Mathematics of the Polish Academy
of Sciences as the Head of the Department of Complex Analysis and Differential
Geometry.

Professor Leszek Wojtczak, born in 1939 in Gozdów, graduated in physics and
mathematics at the Faculty of Mathematics, Physics and Chemistry of the University
of Łódź in 1961. He gained the PhD in mathematical and physical sciences in 1964
and the degree of habilitated doctor in theoretical physics in 1969. In 1976 Leszek
Wojtczak was appointed extraordinary professor, and in 1985 ordinary professor in
physics. Employed in the University of Lódz since 1961 Professor Leszek Wojtczak
organized research in the field of solid state physics, in particular on topical problems
of surfaces and thin films, and at the same time actively participated in organizing
the research group in theoretical electrochemistry of superficial layer properties. In
1974, he created the Department of Solid State Physics and headed it till 1999.
Besides his research achievement confirmed by many publications in journals of
high international standard, Professor Leszek Wojtczak took various administrative
functions, was elected vice dean and dean of the Faculty of Mathematics, Physics
and Chemistry, prorector and rector of the University of Łódź, as well as the first
president of the Polish Universities Rectors Conference.

For the first time They met each other in 1954 as pupils participated in mathe-
matics contest and since then their private and professional life interweave. Common
interests, with physical problems formulated by Professor Leszek Wojtczak and the
use of appropriate mathematical methods by Professor Julian Ławrynowicz resulted
in several tens of joint publications. The important aspect of Professors collabora-
tion is connected with the social scientific service in the Łódź Society of Sciences
and Arts.

In 2014 we celebrated 50th anniversary of PhD degree received by Professors
Julian Ławrynowicz and Leszek Wojtczak. To commemorate this jubilee, the Łódź

[13]



Society of Sciences and Arts offered a special issue of Bulletin de la Société des Sci-
ences et des Lettres de Łódź (Série: Recherches sur les Déformations). The present
collection of papers dedicated to Professors Julian Ławrynowicz and LeszekWojtczak
and submitted by their colleagues and coworkers, who spontaneously answered to the
proposal of this edition, reflects their stimulating role in the development of different
scientific subjects as well as in conducting the fruitful scientific cooperation.

The authors of the presented contributions and myself would like to congratulate
Professors Julian Ławrynowicz and Leszek Wojtczak on this glorious jubilee and
express our worm greetings.

Ilona Zasada

[14]
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Ryszard Taranko and Tomasz Kwapiński

ELECTRON DYNAMICS IN QUANTUM QUBIT INTERACTING
WITH TWO SINGLE ELECTRON TRANSISTORS

Summary
We investigate theoretically the qubit in the form of the double quantum dot (QD)

coupled electrostatically with two detectors composed of single electron transistors. The
equation of motion method for the appropriate correlation functions with the special de-
coupling procedure for higher-order functions was used in the calculations of the QD occu-
pancies and the current flowing in detectors. We have considered the qubit dynamics in the
presence of different types of perturbations imposed on both detectors, i.e. for the constant
and harmonic perturbations of the detectors QD energy levels. It was shown that the qubit
oscillations of the qubit being already in the stationary state can be restored using the
abrupt short-time perturbations acting on both detectors QDs. We have found that in the
case of harmonically driven detectors QDs energy levels the qubit QD occupancy oscillates
with the perturbation frequency for sufficiently long time after the perturbation has been
applied. However, for shorter time we have observed overlap of these oscillations together
with the damped oscillations of a free qubit.

Keywords and phrases: qubit, double quantum dot, single electron transistor, decoherence

1. Introduction

The progress in nanotechnology and the research on quantum computing have mo-
tivated interest in both theoretical and experimental studies of the electron dynam-
ics in different quantum dot (QD) systems. The transient and steady-state electron
transport through various configurations of QDs coupled with leads was investigated
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in the literature , e.g. [1–14]. The simplest quantum mechanical system which plays
an important role in quantum computation is the double QD (DQD), the so-called
qubit, in which a single excess electron occupies the ground state of either one dot or
the other. In order to analyze the qubit dynamics (time-variations of the qubit QDs
occupancies) we should perform the measurements using some external nanoscopic
device. The qubit is usually placed in close proximity to the charge sensitive detector.
The current flowing through such a charge meter depends on the occupancy of the
nearby qubit QD. Detectors can be realized in the form of a quantum point contact
(QPC) [15–24], a single QD placed between two leads (the so-called single electron
transistor (SET)) [25–27], a DQD in a linear or vertical configuration between leads
(the so-called double-dot detector) e.g. [22, 28–30], see also [31]. In most hitherto
studies the detector electrons interact with the qubit electron localized on the qubit
QD being in close proximity to the detector. In this case the second qubit QD is not
coupled with the environment so the interaction between the qubit and the detec-
tor is strongly asymmetric. The environment proximity is responsible for the qubit
decoherence processes (vanishing of the qubit electron oscillations). Asymmetrical
qubit-detector configuration leads to nonequivalent occupations of the qubit QDs
which strongly disturbs the qubit decoherence and is often non-physical.

In this paper we study the interaction between the qubit and the environment in
the form of two SETs placed symmetrically on both sides of the qubit (see Fig. 1). In
such a case the qubit electron interacts all time with the environment independently
of the electron localization on the first or the second qubit QD – the qubit-detector
interaction is fully symmetrical. Such a configuration of the qubit between two detec-
tors (in the form of two SETs) allows us to check the accuracy of the approximations
done in calculating of the required quantities. As the qubit-detectors interaction is
described by the Coulomb electron repulsion, in order to solve the electron transport
problem or calculate the QDs occupancies one is forced to assume some approxima-
tions. For the setup considered in this work, the asymptotic occupations of the qubit
QDs should be equal to one-half and such a result should be obtained using reliable
approximations. Our calculational procedures fulfil this requirement. In this paper
we concentrate on the effect of the environment in the forms of two independent
SETs on the qubit dynamics, and calculate the qubit QD occupancy and its depen-
dence on the external perturbations. We analyze also the detector currents flowing
in both SETs which are related with the qubit electron oscillations. In our calcula-
tions we use the equation of motion (EOM) approach for the appropriate correlation
functions.

The outline of this paper is as follows. In Sec. 2 we present the model and derive
the set of differential equations for the appropriate correlation functions describing
the QD occupancies and the current flowing through the system. Section 3 is devoted
to the presentation of the numerical results for the qubit charge oscillations and their
reaction to some modifications of the qubit environment and finally we conclude in
Section 4.
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Fig. 1: The sketch of the qubit coupled electrostatically with the upper and bottom SETs.
Both quantum dots (1 and 4) between the left and right electron reservoirs stand for
the qubit charge detectors. Qubit is represented by two coupled quantum dots (2 and 3)
occupied by a single electron. Straight (zig-zag) lines correspond to tunnel matrix elements
(Coulomb interactions, U1, U2) between the appropriate states.

2. Hamiltonian and formalism

We consider the qubit in the form of the DQD coupled electrostatically with two
SETs as depicted in Fig. 1. The Hamiltonian can be written as H = HSET1 +

HSET2 +Hqubit +Hqubit−SETs, where

HSETj =
∑

k,α=Lj ,Rj

εαkc
+
αkcαk + εjc

+
j cj +

∑
k,α=Lj ,Rj

V
(j)
αk c

+
αkcl + h.c. ,(1)

Hqubit =
∑
i=2,3

εic
+
i ci + V23c

+
2 c3 + h.c. ,(2)

Hqubit−SETs = U1c
+
1 c1c

+
2 c2 + U2c

+
3 c3c

+
4 c4 ,(3)

where j = 1, 2 and l = 1(4) for j = 1(2). The operators ci(c+i ) are the creation (an-
nihilation) operators of electrons localized on i−th QD, i = 1, 2, 3, 4 and c+kα(ckα)

are the corresponding operators describing the electrons with k−wave vectors con-
tained in the α-th lead (α = L1, L2, R1, R2). The electron energy spectrum of the
α-th lead is characterized by εαk and εi denotes the energy level of i−th QD. The
interdot tunnel matrix element in the qubit is denoted by V23 = V and V (l)

αk describes
the coupling between α-th lead and l-th QD. U1 and U2 stand for the correspond-
ing Coulomb interactions between electrons localized on the qubit and SET QDs,
respectively. All parameters, εαk, εi, V , and V (l)

αk can be time-dependent.
In order to describe the qubit dynamics, the knowledge of the qubit QDs occu-

pancies and the currents flowing through both SETs are required. We calculate them
using the EOM method for appropriate correlation functions. In general, the current
flowing e.g. from the α−th lead can be written as (e.g. [1]):

jα(t) = −ie〈[H,Nα]〉 = 2eIm
∑
k

V
(l)
αk (t)〈c+l (t)cαk(t)〉 ,(4)
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where Nα =
∑
k c

+
αkcαk and the Heisenberg picture is used. Here 〈. . .〉 denotes the

quantum-statistical average and the index l identifies the QD coupled with the α-th
lead. Using the exact representation for cαk(t), e.g. [12]:

cαk(t) = cαk(0) exp

(
−i
∫ t

0

dt1εαk(t1)

)
−i
∫ t

0

dt1V
(l)∗
αk (t1) exp

(
−
∫ t

t1

dt2εαk(t2)

)
cl(t1) ,(5)

the current jα(t) can be written as follows:

jα(t) = 2eIm
(
S(l)
α (t)− i

∫ t

0

dt1K
(l)
α (t, t1)〈c+l (t)cl(t1)〉

)
.(6)

In the above relation the integral kernel Kα(t, t1) and S(l)
α (t) functions are expressed

by:

S(l)
α (t) =

∑
k

V
(l)
αk (t) exp

(
−
∫ t

0

dt1εαk(t1)

)
〈c+l (t)cαk(0)〉(7)

K(l)
α (t, t1) = |V (l)

α |2uα(t)uα(t1) exp

(
−
∫ t

t1

dt′∆α(t′)

)
Dα(t− t1) ,(8)

where V (l)
αk (t) = V

(l)
αk uα(t), Dα(t) denotes the Fourier transform of the α-th lead

density of states and we have assumed V
(l)
αk = V

(l)
α . The function uα(t) is respon-

sible for the initial switching on the couplings between leads and SET QDs, i.e.
uα(t) = 0 for t < 0 and uα(t) 6= 0 for t ≥ 0. Formula 6 for the current is valid for
the time-dependent α-th lead electron spectrum εαk(t) = ε0

αk + ∆α(t) and can be
used for describing the behaviour of the considered system in the case of the time-
dependent bias voltage. In the following we consider the case for which the lead
energy bandwidth is the largest energy in the system and the so-called wide–band
limit (WBL), e.g. [37], is a good approximation in calculating the integral in Eq. 6.
Now the formula for the current becomes local in time and the second term (with the
time integral) is reduced to iΓ(l)

α

2 〈nl(t)〉 where Γ
(l)
α = 2π

∑
k |V

(l)
αk |2u2(t)δ(ε− ε0

αk).
The current formula requires the knowledge of the QD occupancies, 〈ni(t)〉 ≡

ni(t), and the correlation functions 〈c+j (t)cαk(0)〉. For the QD occupancies within
the EOM method and WBL approximation we obtain:

d

dt
n1(t) = 2eIm

{
S

(1)
L1

(t) + S
(1)
R1

(t)− i
Γ

(1)
L1

+ Γ
(1)
R1

2
n1(t)

}
,(9)

d

dt
n4(t) = 2eIm

{
S

(4)
L2

(t) + S
(4)
R2

(t)− i
Γ

(4)
L2

+ Γ
(4)
R2

2
n4(t)

}
,(10)

d

dt
n2(t) = 2eIm

{
V 〈c+2 (t)c3(t)〉

}
,(11)
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where we assumed constant values for V (l)
αk (t), i.e. uα(t) = 1 and Γ

(l)
α is the time in-

dependent. As usually in the EOM method, writing e.g. the equation for 〈c+2 (t)c3(t)〉
the higher-order functions appear. Note that only two kinds of functions are present
in the subsequent equations of motion. The first one can be written schematically as
〈fn(c+i (t), cj(t))〉, where fn are the products of the QD electron creation and anni-
hilation operators. These functions, n1, n2, n4, 〈c+2 c3〉, 〈c

+
2 c3n1〉, 〈c+2 c3n4〉, 〈n1n2〉,

〈c+2 c3n1n4〉, 〈n2n4〉, 〈n1n2n4〉 and 〈n1n4〉 (here for brevity we have omitted the
time-dependence of all operators) satisfy the closed set of differential equations. The
functions of the second type correspond to the averages of a number of QD elec-
tron operators taken at a given time t and leads electron operators taken at the
initial time t = 0. This class of functions is generated by the EOM method used for
〈c+j (t)cαk(0)〉 (see Eq. 7) for which we have (e.g. for j = 1 and α = L1):

d〈c+1 (t)cL1k(0)〉
dt

=

(
iε1 −

Γ
(1)
L1

+ Γ
(1)
R1

2

)
〈c+1 (t)cL1k(0)〉(12)

+ iU1〈c+1 (t)n2(t)cL1k(0)〉

+ i
∑
q

Ṽ
(l)
L1q

(t)〈n2(t)c+L1q
(0)cL1k(0)〉 ,

where Ṽ (l)
L1q

(t) = V
(l)
L1q

exp
(
−i
∫ t

0
dt1εL1q(t1)

)
. The function 〈n2(t)c+L1q

(0)cL1k(0)〉
which appears in the above equation, generates the next higher-order functions and,
unfortunately, this is never ending process. In order to terminate this infinite set
of equations, one should assume a truncation procedure. We apply the following
decouplings:

〈fn(c+i (t), cj(t))c
+
αk(0)cβq(0)〉 ' 〈fn(c+i (t), cj(t))〉〈c+αk(0)cβq(0)〉

= 〈fn(c+i (t), cj(t))〉δαβδk,q〈nαk(0)〉 ,(13)

〈fn(c+i (t), cj(t))c
+
αk(0)c+βq(0)〉 ' 〈fn(c+i (t), cj(t))〉〈c+αk(0)c+βq(0)〉 = 0 ,(14)

〈fn(c+i (t), cj(t))cαk(0)cβq(0)〉 ' 〈fn(c+i (t), cj(t))〉〈cαk(0)cβq(0)〉 = 0 ,(15)

where 〈nαk(0)〉 is the Fermi distribution function for α-th lead electrons taken at the
initial time t = 0. Such approximation preserves the correlation between electrons
localized on different QDs - compare the mean-field Hartree-Fock approximation,
〈n2(t)c+1 (t)cαk(t)〉 → 〈n2(t)〉〈c+1 (t)cαk(t)〉, where such correlations are destroyed.
The method of calculations and decouplings used here are similar to the well known
Hubbard-I approximation although here we have the time-dependent problem cf. [4].
After doing such decouplings of the higher-order functions we obtain the closed set of
equations for the second type functions: 〈c+1 cαk(0)〉, 〈c+1 n2cαk(0)〉, 〈c+1 c

+
2 c3cαk(0)〉,

〈c+1 n4cαk(0)〉, 〈c+1 c
+
2 c3n4cαk(0)〉, 〈c+1 c2c

+
3 n4cαk(0)〉, 〈c+1 n2n4cαk(0)〉 (here, as before,

we have omitted time-dependence of all QDs operators), where α = L1, R1. The
slightly modified functions appear also for α = L2, R2. Finally, the set of 43 differ-
ential equations for the functions of the first and second types is constructed and
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solved numerically for every k−vector used in the corresponding sums S(l)
α (t). The

number of k-vectors taken in the calculations of S(l)
α (t) usually extends from 501 to

3001 depending on the system parameters. In order to check the correctness of our
calculations we considered a simple qubit-detector system (the qubit coupled only
with one SET detector) and we compared our results with those obtained by other
methods and we found good agreement between them. Thus we believe that the
calculating approach used here can be successfully used also for more complicated
QD systems, see e.g. [26, 30].

3. Numerical results and discussion

In our calculation we set ~ = e = kB = 1 and Γ = 1 as an energy unit is assumed
(ΓL1

= ΓR1
= ΓL2

= ΓR2
= Γ). The current and time are expressed in the units

of 2eΓ/~ and ~/Γ, respectively. We consider the DQD playing the role of the qubit
(dots 2 and 3) containing one excess electron which interacts electrostatically with
two SETs (see Fig. 1). The qubit electron, depending on which qubit QD is localized,
interacts with electrons flowing through the upper or lower SET QD. The bias voltage
is applied symmetrically to the left and right leads, e.g. for the upper SET we assume
µL1/R1

= µ0±eVbias/2 where µ0 = 0 is the chemical potential of the unbiased leads.
Note that for the same bias voltages of both SETs and for U1 = U2 the system is
fully symmetrical and the asymptotic occupations of the qubit QDs should achieve
the stationary value 0.5. This remark is very useful in testing the approximations
done during our calculations. In our studies we analyze the qubit QD occupation
(qubit oscillations) calculated for different parameters characterizing the system,
i.e. the inter-dot tunnelling couplings, the qubit-SET interaction strength and the
bias voltage in both SETs. In addition, we also present the current flowing in both
SETs and show the modifications of the qubit oscillation, n2(t), in response to the
abrupt changes of the SETs QDs energy levels. These studies allow us to find such
experimental setups for which the qubit state is minimally destroyed during the
external disturbances of the SETs QDs.

In Fig. 2 we plot the qubit QD occupation, n2(t), as a function of time and inter-
dot tunnelling amplitude, V23. It is assumed that for t < 0 all detectors elements
are isolated and at t = 0 the couplings between them are switched on. Similarly, up
to t = 0 the qubit electron is localized on the upper qubit QD, n3(t < 0) = 1, and
begins to oscillate at t = 0. The upper and bottom panels correspond to the large
and small bias voltages, respectively. One can observe that the asymptotic values of
n2(t) achieve a half filling independently of the inter-dot tunnelling amplitude and
bias voltages, as expected. The decoupling procedure (performed in order to close
the corresponding set of equation of motion for higher-order correlation functions)
is then justified for the considered system. As one can see the qubit oscillations are
evident and the period of these oscillations strongly depends on the qubit coupling
V23. For very weak couplings the steady-state value of n2(t) is achieved very fast in
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Fig. 2: The qubit QD occupancy n2(t) as a function of time and the qubit inter-dot coupling
V23. The upper (bottom) panel corresponds to µL = −µR = 20 (µL = −µR = 1). The other
parameters are: ε1,2,3,4 = 0, U12 = U34 = 5, ΓL1/L2/R1,R2

= 1 and the initial conditions
are: n1(t) = n2(t) = n4(t) = 0 for t < 0 and n3(t < 0) = 1.

comparison with the case of large V23 parameter for which high-amplitude oscilla-
tions are observed. Note, that these oscillations depend also on the bias voltage and
much faster oscillations with smaller amplitudes appear for larger voltages (upper
panel). On the other hand, weak decoherence takes place for smaller voltages (n2(t)

oscillations survive longer in time).
Next we analyze the qubit dynamics in the presence of external time-dependent

perturbations which can change the qubit decoherence process. In Fig. 3 we show
the oscillations of the qubit QD occupancy and its reaction to the short-time distur-
bances of both SETs. At the specific time moments (here at t = 60 and t = 90) the
SETs QDs energy levels are abruptly changed (by applying the bias voltage to the
appropriate QDs) for a short time from ε1 = ε4 = 0 up to ε1 = 10 and ε4 = −10.
Note that this perturbation was applied to the system after the qubit achieved its
stationary value of both QD occupancies, n1 = n2 = 0.5. Such anti-phase impulses
lead again to the qubit oscillations and appearance of transient current oscillations.
In the lower panel of Fig. 3 we show also the changes of the SETs QDs occupa-
tions, n1(t) and n4(t), which were forced during such short-lived perturbation of the
corresponding SETs QDs energy levels. These abrupt disturbances change the occu-
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Fig. 3: The occupancies of both QD SETs, n1(t) and n4(t) (bottom panel), and the qubit
occupancy n2(t) and the current flowing from the left lead jL ≡ jL1 (upper panel) as a
function of time for the perturbation which changes for a short time the values of the energy
levels from ε1,4 = 0 to ε1 = −ε4 = 10 at t = 60 and t = 90. The other parameters are:
µL = −µR = 1, ε2,3 = 0, U12 = U34 = 2, V23 = 2, Γi = 1.

pancies n1(t) and n4(t) (up to about 0.05 and 0.85, respectively) and are responsible
for the revival of the qubit oscillations. In this case also the repeated current oscil-
lations are observed. In other words, in order to evoke the qubit oscillations again,
even for the qubit in the stationary state (full decoherence has been achieved), it is
sufficient to disturb asymmetrically (for a short time) the SETs QDs energy levels,
e.g. moving ε1 and ε4 in opposite directions on the energy scale.

The behaviour of the qubit oscillations is quite different for in-phase perturba-
tions, e.g in the case when both ε1 and ε4 are changed in the same way, ε1 → ε1 +∆,
ε4 → ε4 + ∆. In Fig. 4 we analyze the reaction of the qubit oscillations to such per-
turbations. Now the SET QDs energy levels are abruptly changed up to new values
(the same for both dots) for some interval of time. The upper panel shows the mod-
ifications of n2(t) when the perturbations act persistently from t = 10 up to t = 25

and from t = 80 up to t = 100. Note, that the first impulse influences the qubit
dynamics before the stationary qubit state is achieved. It is interesting that the
amplitude of the qubit oscillations is ’frozen’ (is nearly constant) in this case. For
t = 25 the perturbation ends and the qubit continues the damped oscillations as
before the perturbation appeared. If, however, the in-phase perturbation acts on the
stationary qubit state, this state is not changed at all, see the occupancy curve for
t > 80, the upper panel. The explanation of such behaviour is relatively simple. As
the QDs energy levels ε1 and ε4 are moved up to higher energies, their occupations
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Fig. 4: The qubit QD occupancy, n2(t), and the current flowing from the left lead jL ≡ jL1

as a function of time for the perturbation which changes the values of the SETs QDs energy
levels from ε1,4 = 0 to ε1 = ε4 = 10 at t = 10 and t = 80 (upper panel, the perturbation
duration is δt = 15 and 20, respectively) and at t = 10 (bottom panel, the perturbation
duration is δt = 70). The broken lines show the time-positions of the QDs energy levels, ε1
and ε4 (not in scale). The other parameters are: µL = −µR = 1, ε2,3 = 0, U12 = U34 = 2,
V23 = 2, Γα = 1.

are considerably reduced but they are still equal to one another. Thus the system
symmetry is not broken in this case and the motion of the qubit electron is nearly not
disturbed. The qubit preserves its state as it was before the perturbation appeared.

The lower panel shows the qubit oscillations when the in-phase perturbation
acts for sufficiently long time (here from t = 10 up to t = 80). In this case we
observe similar behaviour of the qubit dynamics to that in the upper panel. Here
very low occupations of the SET QDs slightly disturb the qubit state which leads
to a relatively slow decrease of the oscillation amplitude. This result indicates that
one can nearly freeze the qubit decoherence by applying the in-phase gate voltage
perturbations. On both panels we also show the current flowing from the left lead,
jL ≡ jL1

. As expected, the time-dependence of the current reflects the values of the
SETs QDs occupancies. In the time interval when ε1 and ε4 are moved up on the
energy scale (much higher than the chemical potentials of both leads i.e. beyond the
voltage windows) the current drops to zero value except the transients observed just
after the abrupt changes of ε1 and ε4 energy levels.

In Fig. 5 we show the effect of another type of perturbations acting on the qubit
state. We assume that energy levels of both SETs QDs are driven harmonically
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Fig. 5: The qubit QD occupancy, n2(t), the SET QD occupation, n1(t), and the current
flowing from the left lead jL ≡ jL1 as a function of time for the harmonic perturbation of
ε1(t) = ∆ sin(ωt) (ε4(t) = −ε1(t)) for ∆ = 2, ω = 1 and for µL = −µR = 1, ε2,3 = 0,
U12 = U34 = 2, V23 = 2, Γα = 1. Curve E for ε1(t) was divided by 10 and shifted by +1
for better visualization.

in time, i.e. εi(t) = ∆i sin(ωit), i = 1, 4, ∆1 = −∆4. The upper curve illustrates
the occupancy of the qubit QD, n2(t), for the constant values of the SETs QDs
energy levels, ∆i = 0. We observe decaying oscillations due to the interaction of the
qubit electron with the environment represented by two SETs. The period of these
oscillations is approximately equal to Tqubit ' π

V , which corresponds to the qubit
decoupled from both SETs. Approximately at t = 100 the oscillations are washed out
completely and the qubit is in the stationary state with the occupancy n2 = n3 = 0.5.
If the anti-phase harmonic perturbations are applied to the SETs energy levels, ε1(t)

and ε4(t), then the qubit oscillations are composed of two overlapping signals: the
first one is related to the driving harmonic force which disturbs the positions of
ε1(t) (curve E) and ε4(t) (not shown here) and the second signal is related to the
dumped oscillations in the absence of the external perturbations (curve A). For
sufficiently long time the period of the qubit oscillations is equal to the period of
the external harmonic perturbations represented by oscillating ε1 and ε4 energy
levels. Note that the minima of ε1 coincidence with the minima of n2(t). Due to
the repulsive interaction between the electrons localized on the first QD, n1(t), (the
upper SET) and on the second qubit QD, n2(t), the occupancy of the qubit QD
possesses local minima at maximal values of n1(t) - compare the curves D and B,
respectively. In Fig. 5 we show also the time-dependent current flowing to the right
lead, jR1

(t) (curve C). As one can see, the qubit dynamics can be detected only in the
time interval which is compared with the decoherence time of the free qubit (see the
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curve A). For longer time the current oscillations (due to harmonic perturbations)
are similar to the occupancy oscillations of a single QD driven harmonically and
coupled with two leads, cf. [37, 38].

4. Conclusions

We have considered the coherent oscillations of the qubit electron in the system in
which the qubit (double QD) is coupled electrostatically with two SETs playing the
role of detectors of the qubit state. The system is fully symmetrical in opposition to
most setups investigated in the literature in which the qubit interacts asymmetri-
cally with one detector. The qubit QD occupancies and the current flowing in SETs
were calculated using the equation of motion method for the appropriate correlation
functions for which a special decoupling procedure for higher-order functions was
applied. We have focused our attention on the qubit dynamics in the presence of
different types of perturbations imposed on both detectors i.e. short and long-time
impulses or harmonic perturbations of the QD energy levels.

It was shown that even for the qubit in the stationary state (occupancy oscilla-
tions are washed out) the oscillation can be again restored using the abrupt short
anti-phase perturbations acting on both SETs QDs (the energy levels are driven
in the opposite directions on the energy scale). On the other hand, if the in-phase
perturbation changes simultaneously the SETs QDs energy levels even during longer
time, the qubit decoherence process can be almost stopped and the damping of the
qubit oscillations is considerably reduced. However, if this perturbation of the energy
levels appears when the qubit is in the stationary state, the qubit does not respond
to such disturbance at all. We have also considered the influence of the oscillating
SETs QDs energy levels on the qubit dynamics. With sufficiently long time from the
moment when the perturbation began to disturb the system, the qubit QD occu-
pancy oscillates with the same frequency as the perturbation, however, for smaller
time we observe additional oscillations with the damped amplitude and frequency
of the free qubit.
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DYNAMIKA ELEKTRONU W KWANTOWYM QUBICIE
SPRZȨŻONYM Z DWOMA JEDNOELEKTRONOWYMI
TRANZYSTORAMI

S t r e s z c z e n i e
Wykonano badania teoretyczne dynamiki qubitu (w postaci podwójnej kropki kwan-

towej) sprzȩżonego elektrostatycznie z dwoma detektorami bȩda̧cymi jednoelektronowymi
tranzystorami. Obliczaja̧c stopień zapełnienia kropek kwantowych i pra̧dy płyna̧ce przez
detektory użyto metody równań ruchu dla odpowiednich funkcji korelacyjnych poła̧czonej
ze specjalna̧ procedura̧ rozszczepienia funkcji wyższego rzȩdu. Zbadano dynamikȩ qubitu w
obecności różnego rodzaju zaburzeń działaja̧cych na oba detektory, tj. dla stałych oraz har-
monicznych zmian wartości poziomów energetycznych detektorów. Pokazano, że oscylacje
qubitu bȩda̧cego już w stanie stacjonarnym moga̧ być ponownie wzbudzone przy użyciu
nagłych, krótkich zaburzeń poziomów energetycznych detektorów. W przypadku zaburzeń
harmonicznych zapełnienie kropek kwantowych qubitu oscyluje z czȩstościa̧ zaburzaja̧ca̧
dla dostatecznie długiego czasu od momentu wła̧czenia zaburzenia. Natomiast dla krót-
szych czasów obserwujemy nałożenie siȩ tych oscylacji na tłumione oscylacje swobodnego
qubitu.

Słowa kluczowe: qubit, kropka kwantowa podwójna, tranzystor jednoelektronowy, deko-
herencja
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MIXED PARTIAL DENSITY TOPOLOGY

Summary
The paper deals with the density-type topology in the plane generated by the lower

density operator Φxy which is defined (in a sense) similarly to the mixed partial derivative
of a function of two variables. This topology is different from ordinary and strong density
topologies in the plane as well as from the product of two linear density topologies.
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1.

Let L1 (L2) be the σ-algebra of Lebesgue measurable subsets of R (resp. R2), B1
(B2) – the σ-algebra of Borel subsets of R (resp. R2), I1 (I2) – the σ-ideal of null
sets in R (resp. R2) and λ1 (λ2) – the linear (planar) Lebesgue measure. If A ⊂ R2,
then, as usual, Ax = {y : (x, y) ∈ A} for x ∈ R and Ay = {x : (x, y) ∈ A} for y ∈ R.
We shall say that the sets A1, A2 ∈ L1 (resp. L2) are equivalent (A1 ∼ A2) if and
only if A14A2 ∈ I1 (resp. I2).

Recall that x0 is a point of density of a set A ∈ L1 if and only if

lim
h→0+

λ1(A ∩ [x0 − h, x0 + h])

2h
= 1.

Let Φ(A) = {x ∈ R : x is a point of density of A} for A ∈ L1. The operator
Φ : L1 → 2R has the following properties (see [O], chapter 22):

1) for each A ∈ L1, A ∼ Φ(A) (the Lebesgue Density Theorem),
2) for each A1, A2 ∈ L1 if A1 ∼ A2, then Φ(A1) = Φ(A2),
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3) Φ(∅) = ∅, Φ(R) = R,
4) for each A1, A2 ∈ L1 Φ(A1 ∩A2) = Φ(A1) ∩ Φ(A2).

The operator fulfilling properties 1)-4) is called the lower density operator.
The family Td = {A ∈ L1 : A ⊂ Φ(A)} is the density topology, which is stronger

than the natural topology on the real line. Observe also, that in fact Φ : L1 → L1

by virtue of the LDT.

2.
Our aim is to introduce a new operator Φxy : L2 → L2 having all properties similar
to that of Φ and to study properties of the topology Txy = {A ∈ L2 : A ⊂ Φxy(A)}
generated by this operator.

Let Φv(B) = {(x, y) : y ∈ Φ(Bx)} and Φh(B) = {(x, y) : x ∈ Φ(By)} for
B ∈ B2. Since Bx ∈ B1 for each B ∈ B2 and also By ∈ B1 for each B ∈ B2, the
operators Φv (of ”vertical” density points) and Φh (of “horizontal” density points)
are well defined. Moreover, Φv(B) and Φh(B) are Borel sets for B ∈ B2 (see [M],
th. 1).

Definition 1. We shall say that (x0, y0) is a mixed (x, y) partial density point of a
set A ∈ L2 if and only if (x0, y0) ∈ Φh(Φv(B)) for some B ∈ B2 such that A ∼ B.
We shall write (x0, y0) ∈ Φxy(A).

To prove that the operator Φxy is uniquely defined we shall need the following
proposition:

Proposition 1. If B1, B2 ∈ B2 and B1 ∼ B2, then Φv(B1) ∼ Φv(B2).

Proof. From Fubini theorem it follows that (B1)x ∼ (B2)x for a.e. x ∈ R, so
Φ((B1)x) = Φ((B2)x) for a.e. x ∈ R by virtue of 2) and finally Φv(B1) ∼ Φv(B2)

again using Fubini theorem. �

Proposition 2. If B1, B2 ∈ B2 and B1 ∼ B2, then (Φv(B1))y ∼ (Φv(B2))y for each
y ∈ R.

Proof. It follows immediately from the proof of Proposition 1. �

Proposition 3. If B1, B2 ∈ B2 and B1 ∼ B2, then Φh(Φv(B1)) = Φh(Φv(B2)).

Proof. By virtue of Proposition 2 we have Φ((Φv(B1))y) = Φ((Φv(B2))y) for each
y ∈ R, so Φh(Φv(B1)) = Φh(Φv(B2)). �

Theorem 1. The operator Φxy : L2 → 2R
2

has the following properties:
0) for each A ∈ L2 Φxy(A) ∈ B2,
1) for each A ∈ L2 A ∼ Φxy(A),

2) for each A1, A2 ∈ L2 if A1 ∼ A2, then Φxy(A1) = Φxy(A2),
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3) Φxy(∅) = ∅, Φxy(R2) = R2,

0) for each A1, A2 ∈ L2 Φxy(A1 ∩A2) = Φxy(A1) ∩ Φxy(A2).

Proof. 0) follows from the theorem of Mauldin ([M], th. 1).
1) Take arbitrary Borel set B ∼ A. Then B ∼ Φxy(B) (see [S], p. 298 ) and so

A ∼ Φxy(A),

2) If A1 ∼ A2, A1 ∼ B1 and A2 ∼ B2, where B1, B2 ∈ B2, then also B1 ∼ B2

and by virtue of Proposition 3 we have Φxy(B1) = Φxy(B2),
3) is obvious.
4) If A1 ∼ B1, A2 ∼ B2, B1, B2 ∈ B2, then we have Φv(B1 ∩ B2) = {(x, y) :

y ∈ Φ((B1 ∩ B2)x)} = {(x, y) : y ∈ Φ((B1)x ∩ (B2)x)} = {(x, y) : y ∈ Φ((B1)x) ∩
Φ((B2)x)} = Φv(B1) ∩ Φv(B2) and similarly for Φh. �

Theorem 2. The family Txy = {A ∈ L2 : A ⊂ Φxy(A)} is a topology stronger than
a natural topology on the plane.

Proof. Since the operator Φxy is a lower density operator and the Lebesgue measure
on the plane fulfills the countable chain condition, the proof that Txy is a topology
is exactly the same as in [O], chapter 22. Observe that (R \Q)×R ∈ Txy and is not
open in the natural topology, simultaneously each open set (in the natural topology)
consists only of mixed partial density points, so is in Txy. �

Theorem 3. The topology Txy has following properties:
a) if A is compact in Txy then card(A) < ℵ0.
b) each segment I = [a, b]× {c} is connected in Txy,

each segment I, which is not horizontal, is not connected.
c) Txy is Hausdorff but not regular.

Proof. Ad a) The proof does not differ from that for Td (see [W], p. 685).

Ad b) Suppose that I = U1 ∪ U2, where U1, U2 ∈ Txy|I , which means that

U1 = I ∩G1, U2 = I ∩G2, G1, G2 ∈ Txy
and

U1 6= ∅, U2 6= ∅, U1 ∩ U2 = ∅.

Observe that if x ∈ [a, b], then (x, c) ∈ U1 if and only if x ∈ Φ((Φv(G1))c), so U c1 =

Φ((Φv(G1))c) and similarly U c2 = Φ((Φv(G2))c). Hence U c1 , U c2 ∈ Td, U c1 ∪U c2 = [a, b],
U c1 6= ∅, U c2 6= ∅, U c1 ∩U c2 = ∅ – a contradiction, because [a, b] is connected in Td (see
[GNN]).

If I ⊂ R2 is not horizontal segment, then let (x0, y0) be the end-point of I.
Observe that if G1 = (R2 \ I) ∪ {(x0, y0)}, G2 = R2 \ {x0, y0)}, then G1, G2 ∈ Txy.
Hence U1 = G1 ∩ I and U2 = G2 ∩ I belong to Txy|I , U1 ∩ U2 = ∅ and I = U1 ∪ U2,
so I is the union of two non-empty sets open in Txy|I .
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Ad c) Txy is Hausdorff since it is stronger than the natural topology in R2. To
prove that Txy is not regular we shall show that (0, 0) cannot be separated from
A = (R × {0}) \ {(0, 0)}. Observe first that A is closed in Txy, because λ2(A) = 0.
Suppose that U1, U2 ∈ Txy, (0, 0) ∈ U1 and A ⊂ U2. The set (Φv(U2))0 is of full
measure (full measure in each interval), because R\{0} ⊂ (Φv(U2))0. Simultaneously
λ1((Φv(U1))0) > 0, because 0 ∈ Φ((Φv(U1))0). Hence (Φv(U1))0 ∩ (Φv(U2))0 6= ∅. If
ξ belongs to both sets, then (U1)ξ ∩ (U2)ξ 6= ∅, because 0 ∈ Φ((U1)ξ) ∩ Φ((U2)ξ).
Finally U1 ∩ U2 6= ∅. �

3.

Definition 2. We shall say that a function f : R2 → R is Txy-approximately path
continuous at (x0, y0) if and only if there exists a set A ⊂ R2 such that (x0, y0) ∈
Φxy(A) and f|A∪{(x0,y0)} is continuous at (x0, y0), which means

f(x0, y0) = →
(x,y)→(x0,y0)

(x,y)∈A

limf(x, y).

Definiton 3.We shall say that a function f : R2 → R is Txy-approximately continuous
at (x0, y0) if and only if for each ε > 0 we have

(x0, y0) ∈ Φxy(f−1(f(x0, y0)− ε, f(x0, y0) + ε)).

Theorem 4. The Txy-approximate path continuity is equivalent to Txy-approximate
continuity.

Proof. The fact that Txy-approximate path continuity implies Txy-approximate con-
tinuity at (x0, y0) is clear. Suppose now that a function f is Txy-approximately
continuous at (x0, y0) Then for each n ∈ N we have

(x0, y0) ∈ An = Φxy

(
f−1

(
f(x0, y0)− 1

n
, f(x0, y0) +

1

n

))
.

A sequence {An}n∈N is a descending sequence of measurable sets. Let {Bn}n∈N
be a descending sequence of Borel sets such that Bn ∼ An for each n. According
to the definition of Φxy we have x0 ∈ Φ(Φv(Bn)y0) for n ∈ N and the sequence
{Φ(Φv(Bn)y0}n∈N is also descending. Hence by virtue of the condition (J2) (see
[T], p. 29) there exists a decreasing sequence {hn}n∈N convergent to 0 such that
x0 ∈ Φ(B), where

B =

∞⋃
n=1

(Φ(Φv(Bn)y0) \ (x0 − hn, x0 + hn)).

Put

A =

∞⋃
n=1

(An \ ((x0 − hn, x0 + hn)× R)).
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Then (x0, y0) ∈ Φxy(A) and f(x0, y0) = →
(x,y)→(x0,y0)

(x,y)∈A

lim f(x, y). �

Observe now that f : R2 → R is Txy-approximately continuous if and only if
f−1(G) ∈ Txy for each G open in the natural topology in R.

Theorem 5. If f : R2 → R is Txy-approximately continuous, then f is of the third
Baire class.

Proof. We can suppose that f is bounded, f : R2 → [−1, 1]. Put

fn,m(x, y) =
n

2
· m

2

∫ x+ 1
n

x− 1
n

∫ y+ 1
n

y− 1
n

f(ξ, η)dξdη.

It is easy to see that fn,m is continuous for n,m ∈ N.
If

fn(x, y) = lim sup
m→∞

fn,m(x, y),

then obviously fn is of the second Baire class for n ∈ N. We shall show that f =

limn→∞ fn, where the limit is pointwise, which yields that f is of the third Baire
class.

Fix (x, y) ∈ R2. Let k ∈ N and let

Ek = f−1
((

f(x, y)− 1

k
, f(x, y) +

1

k

))
.

Obviously E ∈ L2, moreover (x, y) ∈ Φxy(Ek). To simplify the denotation put
Ak = (Φv(Ek))y. We have x ∈ Φ(Ak) and for each ξ ∈ Ak y ∈ Φ((Ek)ξ).

Again to simplify the denotation put

Kn,m =

[
x− 1

n
, x+

1

n

]
×
[
y − 1

m
, y +

1

m

]
.

We have

fn,m(x, y) =
n

2
· m

2
·
∫∫

Kn,m∩Ek

f(ξ, η)dξdη +

∫∫
Kn,m\Ek

f(ξ, η)dξdη)

≤
(
f(x, y) +

1

k

)
+
n

2
· m

2
λ2(Kn,m \ Ek)

and similarly
n

2
· m

2
λ2(Kn,m \ Ek) + (f(x, y)− 1

k
) ≤ fn,m(x, y).

We have

Kn,m \Ek ⊂ (([x− 1

n
, x+

1

n
] \Ak)× [y− 1

m
, y+

1

m
])∪ ((Ak× [y− 1

m
, y+

1

m
]) \Ek).

There exists n0 ∈ N such that
λ1(Ak ∩ [x− 1

n , x+ 1
n ])

2
n

> 1− 1

k
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for n ≥ n0, so

λ2

(([
x− 1

n
, x+

1

n

]
\Ak

)
×
[
y − 1

m
, y +

1

m

])
≤ 2

n
· 2

m
· 2

k
.

From the fact that y ∈ Φ((Ek)ξ) for each ξ ∈ Aξ using the dominated convergence
theorem we obtain

lim
m→∞

λ2
((

(Ak ∩ [x− 1
n , x+ 1

n ])× [y − 1
m , y + 1

m ]
)
∩ Ek

)
λ1(Ak) · 2

m

= 1,

hence for n ≥ n0 and sufficiently big m ∈ N we have

λ2

((
Ak ×

[
y − 1

m
, y +

1

m

])
\ Ek

)
≤ λ1

(
Ak ∩

[
x− 1

n
, x+

1

n

])
2

m
·1
k
≤ 2

n
· 2
m
·1
k
.

Hence
λ2(Kn,m \ Ek) ≤ 2

n
· 2

m
· 2

k
.

Finally for n ≥ n0 and sufficiently big m ∈ N

−2

k
+ f(x, y)− 1

k
≤ fnm(x, y) ≤ f(x, y) +

1

k
+

2

k

and so
−3

k
+ f(x, y) ≤ fn(x, y) ≤ f(x, y) +

3

k
for n ≥ n0.

It means that
f(x, y) = lim

n→∞
fn(x, y)

and the theorem is proved. �

Problem. Whether Txy-approximately continuous function must be of the second
Baire class?

Theorem 6. If f : R2 → R is separately approximately continuous, then it is Txy-
approximately continuous.

Proof. Fix (x0, y0) ∈ R2 and take ε > 0. There exists a set A ⊂ R, A ∈ L1 such that

x0 ∈ Φ(A) and |f(x, y0)− f(x0, y0)| < ε

2

for x ∈ A, because f(·, y0) is approximately countinuous at x0.
For each x ∈ A there exists a set B(x) ∈ L1 such that

x ∈ Φ(B(x)) and |f(x, y)− f(x, y0)| < ε

2

for y ∈ B(x). Hence⋃
x∈A

({x} ×B(x)) ⊂ f−1((f(x0, y0)− ε, f(x0, y0) + ε))

and the last set is measurable by virtue of [D], th. 1. We see at once that

(x0, y0) ∈ Φxy(f−1((f(x0, y0)− ε, f(x0, y0) + ε))).
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From the arbitrariness of ε it follows that f is Txy-approximately continuous at
(x0, y0). �

Remark. If a function f : R2 → R is defined in the following way:
f(x, y) = 0 if y ≤ x2,
f(x, y) = 1 if y ≥ 2x2, (x, y) 6= (0, 0),

f is linear in y and continuous on each closed interval joining (x, x2) and (x, 2x2),
then f is Txy-approximately continuous but not separately approximately continuous
at (0, 0).

4.

Now we shall compare our topology Txy with other density topologies in the plane
(see [GNN] and [GW]).

Recall that (x0, y0) is a density point (or ordinary density point) of the set A ∈ L2

if and only if

lim
h→0+

λ2([A ∩ (x0 − h, x0 + h]× [y0 − h, y0 + h]))

4h2
= 1.

If Φ0(A) = {(x, y) ∈ R2 : (x, y) is an ordinary density point of A} for A ∈ L2, then
Φ0 is a lower density operator and the family

T0 = {A ∈ L2 : A ⊂ Φ0(A)}

is a topology in the plane called the (ordinary) density topology.
A point (x0, y0) is a strong density point of the set A ∈ L2 if and only if

→
h→0+

k→0+

lim
λ2(A ∩ ([x0 − h, x+ h]× [y0 − k, y0 + k]))

4hk
= 1.

If Φs(A) = {(x, y) ∈ R2 : (x, y) is a strong density point of A} for A ∈ L2, then Φs
is a lower density operator and the family

Ts = {A ∈ L2 : A ⊂ Φs(A)}

is a topology in the plane called the strong density topology.
Also it is known that the (ordinary) density topology in the plane is strictly

stronger than the strong density topology, which in turn is strictly stronger than the
natural topology in the plane.

Observe also that the product topology Td × Td is strictly stronger than the
natural topology and strictly weaker than the strong density topology.

Theorem 7. Txy \ T0 6= ∅, T0 \ Txy 6= ∅.

Proof. Let A = {(x, y) : |y| < x2} ∪ {(0, 0)}. We have A ∈ Txy \ T0. Let now
B = {(x, y) : |y| > x2} ∪ {(0, 0)}. We have B ∈ T0 \ Txy. �

Theorem 8. Txy \ Ts 6= ∅, Ts \ Txy 6= ∅.
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Proof. If A is the set from the proof of the previous theorem, then A ∈ Txy \ Ts.
The construction of the set B which belongs to Ts but not to Txy is a little bit

more complicated.
Let Pn for n ∈ N be an interval set, i.e. the set it the form

Pn =
⋃
k

(an,k, bn,k), 0 < an,k < bn,k < an,k−1

such that:
Pn ⊂ (0, 1) for n ∈ N,

λ1(Pn ∩ (0, h))

h
> 1− 1

n

for each n ∈ N and each h ∈ (0, 1) and

lim inf
h→0+

λ1(Pn ∩ [0, h])

h
< 1.

Put

B = (R2 \ ([0, 1]× [0, 1])) ∪ (

∞⋃
n=1

((
1

n+ 1
,

1

n
)× Pn)) ∪ {(0, 0)}.

We see that if h < 1
n , k is arbitrary in (0, 1), then

λ2(B ∩ ([−h, h]× [−k, k]))

4hk
> 1− 1

n
,

so (0, 0) is a strong density point of B. If (x, y) ∈ B and (x, y) 6= (0, 0), then (x, y)

is an interior point of B, so also a strong density point of B. Hence B ∈ Ts.
Simultaneously 0 /∈ Φ(Bx) for x ∈ (0, 1), so (0, 0) /∈ Φxy(B) and B /∈ Txy. �

Theorem 9. Td × Td $ Txy.

Proof. If A ⊂ Td × Td and (x0, y0) ∈ A, then there exists sets B1, B2 ∈ Td such
that (x0, y0) ∈ B1 ×B2 ⊂ A. It is not difficult to observe that (x0, y0) ∈ Φxy(A), so
A ∈ Txy.

The set A from the proof of Theorem 7 belongs to Txy but not to Td × Td. �

References

[1] R.O.Davies, Separate approximate continuity implies measurability, Proc. Camb.
Phil. Soc. 73 (1973), 461–465.

[2] C.Goffman, C. J.Neugebauer, and T.Nishiura, Density topology and approximate
continuity, Duke Math. J. 28 (1961), 497–505.

[3] C.Goffman and D.Waterman, Approximately continuous transformations, Proc.
Amer. Math. Soc. 12 (1961), 116–121.
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MIESZANE CZA̧STKOWE TOPOLOGIE GȨSTOŚCI

S t r e s z c z e n i e
Praca zawiera konstrukcjȩ topologii na płaszczyźnie typu topologii gȩstości generowana̧

przez operator dolnej gȩstości zdefiniowany (w pewnym sensie) podobnie, jak mieszana
pochodna cza̧stkowa funkcji dwóch zmiennych. Pokazano, że topologia ta różni siȩ od
topologii zwykłej i silnej gȩstości na płaszczyźne oraz od produktu dwóch topologii gȩstości
na prostej.

Słowa kluczowe: topologie gȩstości na płaszczyźnie, funkcje aproksymatywnie cia̧głe
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Summary
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1. Introduction

Let f0 : (Cn, 0) → (C, 0) be an (isolated) singularity, i.e. let f0 be a germ at 0

of a holomorphic function having an isolated critical point at 0 ∈ Cn, and 0 ∈ C
as the corresponding critical value. More specifically, there exists a representative
f̂0 : U → C of f0 holomorphic in an open neighborhood U of the point 0 ∈ Cn such
that:

• f̂0(0) = 0,

• ∇f̂0(0) = 0,

• ∇f̂0(z) 6= 0 for z ∈ U\{0},

where for a holomorphic function f we put ∇f := (∂f/∂z1, . . . , ∂f/∂zn).
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In the sequel we will identify germs of functions with their representatives or the
corresponding convergent power series. The ring of germs of holomorphic functions
of n variables will be denoted by On.

A deformation of the singularity f0 is a germ of a holomorphic function f =

f(s, z) : (C× Cn, 0)→ (C, 0) such that:

• f(0, z) = f0(z),

• f(s, 0) = 0,

The deformation f(s, z) of the singularity f0 will also be treated as a family (fs)

of germs, putting fs(z) := f(s, z). Since f0 is an isolated singularity, fs has also
isolated singularities near the origin, for sufficiently small s [GLS07, Theorem 2.6 in
Chap. I].

Remark 1. Notice that in the deformation (fs) there can occur in particular smooth
germs, that is germs satisfying ∇fs(0) 6= 0. In this context, the symbol ∇fs will
always denote ∇zfs(z).

By the above assumptions it follows that, for every sufficiently small s, one can
define a (finite) number µs as the Milnor number of fs, namely

µs := µ(fs) = dimCOn/(∇fs) = µ

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
,

where the symbol

µ

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
denotes intersection multiplicity of the ideal(

∂f

∂z1
, . . . ,

∂f

∂zn

)
On in On.

Since the Milnor number is upper semi-continuous in the Zariski topology in
families of singularities [GLS07, Theorem 2.57 in Chap. II], there exists an open
neighborhood S of the point 0 ∈ C such that

• µs = const. for s ∈ S \ {0},

• µ0 > µs for s ∈ S.

The (constant) difference µ0 − µs for s ∈ S \ {0} will be called the jump of the
deformation (fs) and denoted by λ((fs)). The smallest nonzero value among all
the jumps of deformations of the singularity f0 (such a value exists because one can
always consider a deformation of f0 built of smooth germs and then for it it is µs = 0;
cf. Remark 1) will be called the jump (of the Milnor number) of the singularity f0
and denoted by λ(f0).

The first general result concerning the jump was S. Gusein-Zade’s [GZ93], who
proved that there exist singularities f0 for which λ(f0) > 1 and that for irreducible
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plane curve singularities it holds λ(f0) = 1. In [BK14] the authors proved that λ(f0)

is not a topological invariant of f0 but it is an invariant of the stable equivalence. The
computation of λ(f0) for a specific reducible singularity (or for a class of reducible
singularities) is not an easy task. It is related to the problem of adjacency of classes
of singularities. Only for a few classess of singularities we know the exact value of
λ(f0). For plane curve singularities (n = 2) we have (see [AGZV85] for terminology):

• for the one-modal family of singularities in the X9 class, that is singularities
of the form

fa0 (x, y) := x4 + y4 + ax2y2, a ∈ C, a2 6= 4,

we have λ(fa0 ) = 2 [BK14],

• for the two-modal family of singularities in the W1,0 class, that is singularities
of the form

fa,b0 (x, y) := x4 + y6 + (a+ by)x2y3, a, b ∈ C, a2 6= 4,

we have

λ(fa,b0 ) =

{
1, if a = 0 [BK14]
> 2, for generic a, b [GZ93],

• for specific homogenous singularities fd0 (x, y) := xd + yd, d > 2, we have
λ(fd0 ) =

[
d
2

]
[BKW14],

• for homogeneous singularities of degree d with generic coefficients f0 we have
λ(f0) <

[
d
2

]
[BKW14]

In the present paper we consider a weaker problem: compute the jump λnd(f0) of
f0 over all non-degenerate deformations of f0 (i.e. the fs in the deformations (fs)

of f0 are non-degenerate singularities). Clearly, we always have λ(f0) 6 λnd(f0). Up
to now, this problem has been studied only for plane curve singularities

• A. Bodin [Bod07] gave a formula for λnd(f0) for f0 convenient with its Newton
polygon reduced to one segment,

• J. Walewska in [Wal13] generalized Bodin’s results to the non-convenient case,

• the authors [BKW14] calculated all possible Milnor numbers of all non-dege-
nerate deformations of homogenous singularities,

• J. Walewska [Wal10] proved that the second non-degenerate jump of f0 satis-
fying Bodin’s assumptions is equal to 1.

In this paper we want to pass to surface singularities (n = 3). We give a for-
mula (more precisely: a simple algorithm) for λnd(f0) in the case where f0 is non-
degenerate, convenient and has its Newton diagram reduced to one triangle, (see
Figure 1) i.e. f0 of the form

f0(x, y, z) = axp + byq + czr + . . . (p, q, r > 2, abc 6= 0).
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p

r

q

Fig. 1: The Newton diagram of f0(x, y, z) = axp + byq + czr + . . .

Moreover, for simplicity reasons, we will only consider the case of p, q, r being
pairwise coprime integers. The general case of arbitrary p, q, r will be the topic of a
next paper.

2. Non-degenerate singularities

In this Section we recall the notion of non-degenerate singularities. We restrict our-
selves to surface singularities. All notions can easily be generalized to higher dimen-
sions. Let

f0(x, y, z) :=
∑

i,j,k∈N
aijkx

iyjzk,

be a singularity. Let

supp(f0) := {(i, j, k) ∈ N3 : aijk 6= 0}

be the support of f0. The Newton polyhedron Γ+(f0) of f0 is the convex hull of the
set ⋃

(i,j,k)∈supp(f0)

(i, j, k) + R3
+,

where R3
+ is the closed octant of R3 consisting of points with nonnegative coordi-

nates. The boundary (in R3) of Γ+(f0) is an unbounded polyhedron with a finite
number of 2-dimensional faces, which are (not necessarily compact) polygons. The
singularity f0 is called convenient if Γ+(f0) has some points in common with all three
coordinate axes in R3. The set of compact faces (of all dimensions) of Γ+(f0) con-
stitutes the Newton diagram of f0 and is denoted by Γ(f0). For each face S ∈ Γ(f0)

we define a weighted homogeneous polynomial

(f0)S :=
∑

(i,j,k)∈S

aijkx
iyjzk.

We call the singularity f0 non-degenerate on S ∈ Γ(f0) if the system of equations

∂(f0)S
∂x

(x, y, z) = 0,
∂(f0)S
∂y

(x, y, z) = 0,
∂(f0)S
∂z

(x, y, z) = 0
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has no solutions in (C∗)3; f0 is non-degenerate (in the Kouchnirenko sense) if f0 is
non-degenerate on every face S ∈ Γ(f0).

Assume now that f0 is convenient. We introduce the following notation:

• Γ−(f0) – the compact polyhedron bounded by Γ(f0) and the three coordinate
planes (labeled in a self-explanatory way as OXY, OXZ, OYZ); in other words,
Γ−(f0) := R3

+ \ Γ+(f0),

• V – the volume of Γ−(f0),

• P1, P2, P3 – the areas of the two-dimensional faces of Γ−(f0) lying in the planes
OXY, OXZ, OYZ, respectively; e.g. P1 is the area of the set Γ−(f0) ∩OXY,

• W1, W2, W3 – the lengths of the edges (= one-dimensional faces) of Γ−(f0)

lying in the axes OX, OY, OZ, respectively (see Figure 2 ).

V

P1

P
3P

2

W
3

W
1

W
2

Fig. 2: Geometric meaning of volume V , areas Pi and lengths Wj .

We define the Newton number ν(f0) of f0 by

(◦) ν(f0) := 3!V − 2!(P1 + P2 + P3) + 1!(W1 +W2 +W3)− 1.

The importance of ν(f0) has its source in the celebrated Kouchnirenko theorem:

Theorem [Kou76] If f0 is a convenient singularity, then

1. µ(f0) > ν(f0),

2. if f0 is non-degenerate then µ(f0) = ν(f0).

Remark 2. The Kouchnirenko theorem is true in any dimension [Kou76].

3. Non-degenerate jump of Milnor numbers of singularities

Let f0 ∈ O3 be a singularity. A deformation (fs) of f0 is called non-degenerate
if fs is non-degenerate for s 6= 0. The set of all non-degenerate deformations of
the singularity f0 will be denoted by Dnd(f0). Non-degenerate jump λnd(f0) of the
singularity f0 is the minimal of non-zero jumps over all non-degenerate deformations
of f0, which means

λnd(f0) := min
(fs)∈Dnd

0 (f0)
λ((fs)),
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where by Dnd
0 (f0) we denote all the non-degenerate deformations (fs) of f0 for which

λ((fs)) 6= 0. Obviously

Proposition 3.1. For each singularity f0 we have the inequality

λ(f0) ≤ λnd(f0).

In investigations concerning λnd(f0) we may restrict our attention to non-degene-
rate f0 because the non-degenerate jump for degenerate singularities can be found us-
ing the proposition below (cf. [Bod07, Lemma 5]). Let fnd0 denote any non-degenerate
singularity for which Γ(f0) = Γ(fnd0 ). Such singularities always exist.

Proposition 3.2. If f0 is degenerate then

λnd(f0) =

{
µ(f0)− µ(fnd0 ), if µ(f0)− µ(fnd0 ) > 0

λnd(fnd0 ), if µ(f0)− µ(fnd0 ) = 0
.

Proof. This follows from the fact that a generic small perturbation of coefficients
of these monomials of f0 which correspond to points belonging to

⋃
Γ(f0) (which

are finite in number) give us non-degenerate singularities with the same Newton
polyhedron as f0. �

Remark 3. By the Płoski theorem ( [Pło90, Lemma 2.2], [Pło99, Theorem 1.1]), for
degenerate plane curve singularities (n = 2) the second possibility in Proposition 3.2
is excluded.

A crucial rôle in the search for the formula for λnd(f0) will be played by the
monotonicity of the Newton number with respect to the Newton polyhedron. Namely,
J. Gwoździewicz [Gwo08] and M. Furuya [Fur04] proved:

Theorem 3.3. (Monotonicity Theorem) Let f0, f̃0 ∈ On be two convenient sin-
gularities such that Γ+(f0) ⊂ Γ+(f̃0). Then ν(f0) > ν(f̃0).

By this theorem the problem of calculation of λnd(f0) can be reduced to a
purely combinatorial one. Namely, we define specific deformations of a convenient
and non-degenerate singularity f0 ∈ On. Denote by J the set of integer points
i = (i1, . . . , in) 6= 0 lying in the closed domain bounded by coordinate hyperplanes
{zi = 0} and the Newton diagram; in other words J := Γ−(f0)∩Zn. Obviously, J is
a finite set. For i = (i1, . . . , in) ∈ J we define the deformation (f i

s)s∈C of f0 by the
formula

f i
s(z1, . . . , zn) := f0(z1, . . . , zn) + szi11 . . . zinn .

Proposition 3.4. For every i ∈ J the deformation (f i
s) of f0 is convenient and

non-degenerate for all sufficiently small |s|.
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Proof. See [Kou76] or [Oka79, Appendix]. �

Combining the Monotonicity Theorem with the above proposition we reach the
conclusion that in order to find λnd(f0) it is enough to consider only the non-
degenerate deformations of the type (f i

s).

Theorem 3.5. If f0 is a convenient and non-degenerate singularity, then

λnd(f0) = min
i∈J0

λ((f i
s))

where J0 ⊂ J is the set of these i ∈ J for which λnd((f i
s)) > 0.

Proof. By the Kouchnirenko theorem it suffices to consider non-degenerate deforma-
tions of f0 of the form

(∗) fs(z1, . . . , zn) = f0(z1, . . . , zn) +
∑
i∈J

ai(s)z
i,

where ai(s) are holomorphic at 0 ∈ C and ai(0) = 0. Then by the Monotonicity
Theorem we may restrict the scope of deformations (3) to deformations with only
one term added i.e. the deformations (f i

s) for i ∈ J0. �

Corollary 3.6. If f0 and f̃0 are non-degenerate and convenient singularities and
Γ(f0) = Γ(f̃0) then λnd(f0) = λnd(f̃0).

4. An algorithm for λnd(f0) in the case of one face
Newton diagram of surface singularities

In this Section we give a simple algorithm for calculating λnd(f0) provided that
f0 ∈ O3 is a convenient and non-degenerate singularity with one two-dimensional
face of its Newton diagram. Let p, q, r be the first (i.e. nearest to the origin) points
of Γ+(f0) lying on the axes OX,OY and OZ, respectively. Then by Corollary 3.6 we
may assume that

f0(x, y, z) = xp + yq + zr, p, q, r > 2.

By formula (◦) we have µ(f0) = (p − 1)(q − 1)(r − 1). Moreover, without loss of
generality we may also assume that

(†) p > q > r.

Additionally, we demand that p, q, r are pairwise coprime

(∗∗) GCD(p, q) = GCD(p, r) = GCD(q, r) = 1.

By Theorem 3.5 we have to compare the jumps of deformations (f i
s)s∈C, where

i ∈ J , i.e. i are integer points lying in the octant of R3 under the triangle with
vertices (p, 0, 0), (0, q, 0), (0, 0, r) (see Figure 1).
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I. First we consider points in J lying on the axes. Using formula (◦) and as-
sumption (†) we easily check that the axes-jump is realized by the deformation
(f

(p−1,0,0)
s ), i.e.

f (p−1,0,0)s (x, y, z) = xp + yq + zr + sxp−1,

and the jump is equal to (q − 1)(r − 1).

II. Now we consider points in J lying in coordinate planes. By the results of
Bodin [Bod07] and Walewska [Wal10] we easily check that the minimal jumps
on respective planes are realized by

i. the deformation (f (b1,q−a1,0)), where a1, b1 ∈ Z are such that a1p−b1q = 1

and 0 < a1 < q, b1 > 0; this delivers the OXY -jump equal to (r − 1),

ii. the deformation (f
(0,b2,r−a2)
s ), where a2, b2 ∈ Z are such that a2q−b2r = 1

and 0 < a2 < r, b2 > 0; this delivers the OY Z-jump equal to (p− 1),

iii. the deformation (f
(b3,0,p−a3)
s ), where a3, b3 ∈ Z are such that a3p−b3r = 1

and 0 < a3 < p, b3 > 0; this delivers the OXZ-jump equal to (q − 1).

The above considerations imply that the jump realized by the points lying either
in coordinate planes or on axes is equal to (r − 1).

III. Let us pass to the deformations (f i
s) for which the point i lies in the interior

of the tetrahedron with vertices (0, 0, 0), (p, 0, 0), (0, q, 0), (0, 0, r). Any such
point (α, β, γ) satisfies the conditions:

(a) 0 < α < p, 0 < β < q, 0 < γ < r,

(b)
α

p
+
β

q
+
γ

r
< 1 or equivalently αqr + βpr + γpq < pqr.

Moreover, the jump of the deformation (f
(α,β,γ)
s ) is equal to 6 times the volume

of the tetrahedron with vertices (p, 0, 0), (0, q, 0), (0, 0, r), (α, β, γ) i.e.

pqr − αqr − βpr − γpq.

Thus, we have reduced our original problem to a number theoretic one.

Problem 1. Given pairwise coprime integers p > q > r greater than 1. Find positive
integers α, β, γ satisfying 0a and 0b for which the expression pqr−αqr−βpr− γpq
attains its positive minimum.

In order to solve it, first notice that GCD(qr, pr, pq) = 1. Consequently, there are
integers a, b, c such that

(‡) aqr + bpr + cpq = 1.

They can be obtained by the Euclid algorithm using the well-known associativity law:
for any integers u, v, w we have GCD(u, v, w) = GCD(GCD(u, v), w). Notice that
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in any identity of the type (‡) it holds abc 6= 0. If we write a = a′p+ a′′, 0 6 a′′ < p,
then, by abuse of notation, we obtain yet another identity aqr + bpr + cpq = 1, but
now 0 < a < p. Next, we write b = b′q − b′′, 0 < b′′ < q, and we use it to obtain a
similar identity aqr − bpr + cpq = 1 in which 0 < a < p and 0 < b < q. Notice that
then 0 < |c| < r. In fact, |cpq| = |1−aqr+ bpr| 6 1+ r|bp−aq| 6 1+ r(pq−p− q) =

pqr − pr − qr + 1 < pqr. Thus, finally we have obtained the identity

(�) aqr − bpr + cpq = 1, where 0 < a < p, 0 < b < q, 0 < |c| < r.

Now we consider two cases:

1. c < 0. Then the triple α = p − a, β = b, γ = −c is the solution that we
seek for. In fact, α, β, γ clearly satisfy 0a, moreover pqr − αqr − βpr − γpq =

aqr−bpr+cpq = 1. This is the optimal value one can hope for, so the Problem is
solved in this case. Hence λnd(f0) = 1 and the deformation (fp−a,b,−cs ) realizes
the jump 1.

2. c > 0. Under this condition, we claim that there is no point (α, β, γ) satisfying
both 0a and 0b and for which the minimum in the Problem is equal to 1. In fact,
if there existed such a point, then from the relation pqr−αqr−βpr−γpq = 1 we
would get (p−α)qr−βpr−γpq = 1, which together with (�) would imply that
(p− (α+ a))qr = (β − b)pr+ (γ + c)pq. But since GCD(p, r) = GCD(p, q) = 1

and |p − (α + a)| < p, this is only possible when α = p − a. Hence, we would
get (β − b)r+ (γ + c)q = 0. Similarly, since GCD(r, q) = 1 and |β − b| < q, we
would obtain β = b and consequently γ = −c < 0, contradictory to 0a.

The above observation means that in case (2) we must further continue our search
for α, β, γ solving the Problem. Accordingly, we repeat the above reasoning for the
identity

aqr + bpr + cpq = 2,

and so on up to
aqr + bpr + cpq = r − 2.

If in one of the above steps we find integers a, b, c such that

aqr + bpr + cpq = i0,

where 1 6 i0 6 r − 2, 0 < a < p, −q < b < 0 and −r < c < 0, then we stop
the procedure and the triple α = p − a, β = −b, γ = −c solves the Problem with
minimum equal to i0. Hence, λnd(f0) = i0 and the deformation (f

(p−a,−b,−c)
s ) realizes

this jump.
If the above search fails, we conclude that λnd(f0) = r−1 because the deformation

(f
(b1,q−a1,0)
s ), where a1p− b1q = 1, 0 < a1 < q, 0 < b1, realizes this jump.
We may sum up the above considerations in the following theorem.

Theorem 4.1. Let f0 ∈ O3 be a convenient and non-degenerate singularity with
only one two-dimensional face in its Newton diagram. Assume that the vertices
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(p, 0, 0), (0, q, 0), (0, 0, r) of this face are such that p > q > r > 2 and the num-
bers p, q, r are pairwise coprime. Then

λnd(f0) =


i0

if there exist integers a, b, c such that
aqr + bpr + cpq = i0, 1 6 i0 6 r − 2,

0 < a < p, 0 < −b < q, 0 < −c < r, i0 – minimal,

r − 1 otherwise.

Moreover, i0 can be found algorithmically using only Euclid’s algorithm.

Corollary 4.2. Under the assumptions of Theorem 4.1, if r = 2 then λnd(f0) = 1.

Example. For f0(x, y, z) := x11 + y6 + z5 we have p = 11, q = 6, r = 5 and

7 · qr − 5 · pr + 1 · pq = 1 – does not satisfy the conditions in the theorem
3 · qr − 4 · pr + 2 · pq = 2 – does not satisfy the conditions in the theorem

10 · qr − 3 · pr − 2 · pq = 3 – do satisfy the conditions in the theorem.
Hence, λnd(f0) = 3. This jump is realized by the deformation

f (1,3,2)s (x, y, z) := x11 + y6 + z5 + sxy3z2.

The minimal jump realized by the points lying either in coordinate planes or on axes
is equal to r − 1 = 4.
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NIEZDEGENEROWANY SKOK LICZB MILNORA
OSOBLIWOŚCI POWIERZCHNI

S t r e s z c z e n i e
Skok liczby Milnora izolowanej osobliwości f0 jest najważniejsza̧ niezerowa̧ różnica̧

miȩdzy liczbami Milnora rozmaitości f0 i jedna̧ z jej deformacji (fz). Znajdujemy wzór
na skok w pewnej klasie osobliwości powierzchni w przypadku deformacji i niezdegene-
rowanych.

Słowa kluczowe: liczba Milnora, deformacja osobliwości osobliwość niezdegenerowana, wie-
lościan Newtona
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CONSTRUCTION OF ADJUSTABLE PARAMETERIZED
ALGEBRAIC MODEL FOR GRAY LEVEL IMAGE PROCESSING

Summary
This article describes a construction of adjustable, parameterized algebraic model for

processing of gray level images. Algebraic structures are constructed that generalize known
algebraic model. The proposed method determines analytical expressions for the realization
of arithmetic operations that simultaneously model the human perception of images in the
presence of constant intensity light source. To improve the efficiency of the new algebraic
structure its flexibility is provided by using a parameterization. The analytical expressions
for the construction of algebraic structures on two intervals are obtained. Flexibility of built
algebraic structures is demonstrated.

Keywords and phrases: algebraic structure, real vector space, image processing

1. Introduction

Algebraic structures are one of constructing means of mathematical models for image
processing. It is caused by the fact that images are mostly meant for human analysis
or for the decision making by automated systems. As the human visual system is
characterized by the best properties of the image perception, this property is used
as the base of the image processing methods. For today there are many fields, where
pixels are represented by gray levels – it is medicine (the roentgenography and
the computed axial tomography), the non-destructive quality testing of materials
and products, microscopic investigations. And here the human image perception
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is based on the reaction of his visual system to the light influence. A well-known
psycho-physical Weber-Fechner law states that the perception of the human visual
system is proportional to the logarithm of the stimulus intensity [1]. This logarithmic
relation became the base for the construction of different algebraic structures used
in image processing.

Oppenheim [2, 3] initiated using of logarithmic models in 1965. He applied the
logarithmic scale of the data representation, set in the interval (0,∞), described
using the multiplication as the operation of the addition, division as the operation
of the subtraction and raising to the power as multiplication by real scalar. Isomor-
phism was defined by logarithmic function, and inverse function was the exponential
one. Oppenheim realized this model as homomorphic filtering, but he didn’t use op-
erations with gray levels for images. From the other side Jourlin and Pinoli in 1985
in [4–6] showed that it was possible to represent the image as light passing through
translucent environment. They called this approach as Logarithmic Image Process-
ing (LIP) and it was based on algebraic model, in which abstract gray level was a
value from interval (−∞,M), where M > 0. There were defined such operations for
set U = (−∞,M) of gray levels and ∀u1, u2 ∈ U :

addition
u1 ⊕ u2 = u1 + u2 −

u1u2
M

,

subtraction
u1Θu2 = M

u1 − u2
M − u2

,

negative element

Θ = − M · u1
M − u1

,

neutral element
e = 0 : u1 ⊕ e = e⊕ u1,

scalar multiplication by β > 0:

β ⊗ u1 = M

[
1−

(
1− u1

M

)β]
,

isomorphism φ:

R→ U, φ(x) = ln

(
M

M − x

)M
and the inverse function φ−1(y):

U → R, φ−1(y) = M
[
1− exp

( y
M

)]
.

One should notice, that developing homomorphic systems and Oppenheim gen-
eralized addition, Shvayster and Peleg suggested log-ratio approaches in [7, 8], con-
sidering images as elements in a vector space, in which operation ⊕̄ of addition X
and Y was defined by expression

(1) X⊕̄Y = ψ−1[ψ(X) + ψ(Y )],
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multiplication ⊗̄ by real scalar γ ∈ R

(2) γ⊗̄X = ψ−1[γψ(X)].

It was shown in [9], that equations (1) and (2) became the basis of construct-
ing of algebraic structures, where arithmetical operations are modelling logarithmic
properties of the human vision system. Described structures have limited options,
because they aren’t flexible. Therefore the aim of the given article is a construction of
adjustable parameterised algebraic models for gray level image processing, which will
consider conditions of human image analysis. Firstly we will describe some known
algebraic models, which can be parameterised, or have interesting properties. Then
we will present new algebraic models, which are generalizing the well-known one,
and are flexible in the practical application.

2. Selected algebraic LIP models

In [10, 11] was suggested parameterization of LIP model for g1, g2 ∈ [0,M), M > 0

with such operations of the addition ⊕̃, subtraction Θ̃ and the multiplication ∗̃:

g1⊕̃g2 = g1 + g2 −
g1g2
γ(M)

,

g1Θ̃g2 = k(M)
g1 − g2

k(M)− g2 + ε
,

g1∗̃g2 = ϕ−1[ϕ(g1) · ϕ(g2)],

with isomorphism

ϕ(g) = −λ(M) · lnβ
(

1− g

λ(M)

)
,

and the inverse function

ϕ−1(g) = λ(M) ·

[
1− exp

(
−g
λ(M)

) 1
β

]
,

where γ(M), k(M) and λ(M)are linear function of the type γ(M) = AM + B; A,
B – constant parameters; ε is very small constant; β > 0. However this created
parameterized algebraic model doesn’t provide symmetrical gray level processing of
images. When processing the input and inverted images the processed input image
will differ from inverted processing of inverted image. This drawback is present in
another LIP model, named logarithmic-like image processing model [10] that uses
such operations for grey levels of image q1, q2 ∈ G = [0,M):

addition:
q1⊕̂q2 = 1− (1− q1)(1− q2)

1− q1q2
subtraction:

q1Θ̂q2 =
q1 − q2

1 + q1 · q2 − 2q2
, q1 ≥ q2
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multiplication by scalar α > 0

α⊗̂q1 =
α · q1

1 + (α− 1)q1
.

More effective LIP model based on the algebraic structure was proposed by Pa-
trascu in [12–14]. Developing the Shvayster and Peleg approach, being based on
Oppenheim works [2, 3] as well as Jourlin and Pinoli [4–6] Patrascu considered the
vector space of gray levels as set E ∈ (−1, 1). For this set in [13–15] was built alge-
braic structure of the vector space (E, 〈+〉1, 〈×〉1) with operation of addition 〈+〉1
and multiplication by scalar 〈×〉1. These arithmetical operations are described by
such expressions:

for addition

(3) u〈+〉1v =
u+ v

1 + uv
, ∀u, v ∈ E,

for multiplication by real scalar

(4) α〈×〉1u =
(1 + u)α − (1− u)α

(1 + u)α + (1− u)α
, ∀α ∈ R,

for subtraction

(5) u〈−〉1v =
u− v
1− uv

, ∀u, v ∈ E.

Such a vector structure is characterized by an isomorphism

(6) ϕ1 : E → R,ϕ1(x) = ln
1 + x

1− x
with the inverse function

ϕ−1
1 : R→ E,ϕ−1

1 (y) = ln
exp(y) + 1

exp(y)− 1
.

Note that function ϕ1(x) (6) is additive generator for a special case of parametric
Hamacher triangular s-norm for x ∈ [0, 1] [16].

In [9, 17] were generalized the mentioned above LIP models based on algebraic
structures of the vector space. It is shown in [18, 19] that the base of construction
of such models and obtaining of analytical expressions for the implementation of
addition, multiplication on the real scalar and subtraction operations serve gener-
ator functions of strict triangular s-norm [16, 20, 21]. Therefore described algebraic
structures of the vector space are opening the possibility of constructing LIP models.
They are constructed using generator functions of logarithmic type. It is a base of
the fact that received arithmetical operations are modelling the properties of the
Weber-Fechner law of human perception of light. Because of Weber-Fechner law is
psychophysical, it is reflecting only the character of the reaction of the human visual
system and is not valid in the wide range of the light intensity influence. It allows to
exploit different logarithmic functions as generators and to construct corresponding
algebraic structures of vector space for different LIP models. Known for today alge-
braic LIP models are not taking into account the possibility of the presence of the



Construction of adjustable parameterized algebraic model 55

additional light source when modelling the human perception of the image. There-
fore farther we will build the new algebraic models, which are taking into account
the presence of the additional source of the permanent light when modelling the
human perception of the image.

3. New algebraic LIP models

Isomorphism represents the function of human perception of the light in algebraic
model. However, as follows from (1) and (2) and as shown in [9, 18, 19], knowing
mapping function can design logarithmic type algebraic structure. Therefore, to
build new algebraic LIP models, will take as a basis the algebraic model Patrascu
(3), (4) [13–15]. In this first construct an algebraic model that reflects a light source
in the perception of image rights and then add this feature to manage its properties
– that make it flexible. Researchers in image processing use data presentation in the
interval (−1, 1) and the interval (0, 1). So we construct algebraic structures for both
intervals.

3.1. Adjustable parameterized algebraic LIP model

To build an adjustable algebraic model we use construction technology of logarithmic
type algebraic structures described in [9, 18]. We will consider the set E ∈ (−1, 1)

and will build for it algebraic structure (E, 〈+〉2, 〈×〉2) of the vector space with
operations of addition 〈+〉2 and multiplication by scalar 〈×〉2. Therefore, for the
modelling of the additional source of lighting by the algebraic structure we will
present isomorphism as two-component function

(7) ϕ2(x) = a+ ϕ1(x) = a+ ln
1 + x

1− x
.

On this basis we obtain for set E of gray level pixels such expression for arithmetic
operations:

addition

(8) x〈+〉2y =
(b− 1)(1 + xy) + (b+ 1)(x+ y)

(b− 1)(x+ y) + (b+ 1)(1 + xy)
, ∀x, y ∈ E,

where a = ln(b), b > 0,
subtraction

(9) x〈−〉2y =
(b− 1)(1− xy) + (b+ 1)(x− y)

(b− 1)(x− y) + (b+ 1)(1− xy)
, ∀x, y ∈ E,

multiplication by real scalar α ∈ R

(10) α〈×〉2x =
bα−1(1 + x)α − (1− x)α

bα−1(1 + x)α + (1− x)α
.
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Inverse function ϕ−1
2 (x) is defined as

ϕ−1
2 (x) =

exp(x− a)− 1

exp(x− a) + 1
.

Comparing (3) to (8), (4) to (10) and (5) to (9) we see that when b = 1 these
expressions coincide and Patrascu algebraic model is a partial case of the proposed
model.

If we will consider interval (0, 1) as the range of variation of gray levels of pixels
x, y ∈ (0, 1) = G, then from formulas (8)–(10) we obtain the following expressions
for the arithmetic operations for new tuned algebraic structures:

for addition

(11) x〈+̂〉2y = 0, 5 + 0, 5
(b− 1)(1 + x1y1) + (b+ 1)(x1 + y1)

(b− 1)(x1 + y1) + (b+ 1)(1 + x1y1)
,

where x1 = 2x− 1, y1 = 2y − 1;
for subtraction

x〈−̂〉2y = 0, 5 + 0, 5
(b− 1)(1− x1y1) + (b+ 1)(x1 − y1)

(b− 1)(x1 − y1) + (b+ 1)(1− x1y1)
,

for multiplication by real scalar α ∈ R

(12) α〈×̂〉2x = 0, 5 + 0, 5
bα−1(1 + x1)α − (1− x1)α

bα−1(1 + x1)α + (1− x1)α
.

The set E with operations 〈+〉2 of addition (8) and the operation of multiplication
〈×〉2 by real scalar (10) form a real vector space, as the set G with operations 〈+̂〉2
of addition (11) and the operation 〈×̂〉2 of multiplication by real scalar (12).

3.2. Flexible adjustable parameterized algebraic LIP model

To create adjustable algebraic model the flexible one, we use the ability to control
the change character of the argument value of function ϕ2(x) (7) applying a power
transformation and then receiving as xβ , where β > 0.

In this way we get a new function

ϕ3(x) = b+ ln
1 + sign(x) · |x|β

1− sign(x) · |x|β
.

Then, we use the similar technology of constructing logarithmic type algebraic
structures described in [9, 18]. We will consider the set E ∈ (−1, 1) and build it’s
algebraic structure (E, 〈+〉3, 〈×〉3) of the vector space with operation of addition
〈+〉3 and multiplication by scalar 〈×〉3.

On this basis we obtain for set E of gray level pixels such expression for arithmetic
operations:

addition

(13) x〈+〉3y = sign(s1) ·
(

exp |s1| − 1

exp |s1|+ 1

) 1
β

, ∀x, y ∈ E,
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where
s1 = ln(c · x2 · y2), b = ln(c);

x2 =
1 + sign(x) · |x|β

1− sign(x) · |x|β
, y2 =

1 + sign(y) · |y|β

1− sign(y) · |y|β
,

subtraction

(14) x〈−〉3y = sign(s2) ·
(

exp |s2| − 1

exp |s2|+ 1

) 1
β

, ∀x, y ∈ E,

where

s2 = ln

(
c · x2
y2

)
;

multiplication by real scalar k ∈ R

(15) k〈×〉3x = sign(xk) ·
(

exp |xk| − 1

exp |xk|+ 1

) 1
β

,

where

xk = b · (k − 1) + k ln(x2) = (k − 1) ln(c) + k ln(x2) = ln(ck−1xk2).

Inverse function ϕ−1
3 (x) is defined as

ϕ−1
3 (x) = sign(x− b) ·

[
exp(x− b)− 1

exp(x− b) + 1

] 1
β

.

When β = 1 new algebraic model (13)–(15) corresponds to adjustable algebraic
model (8)–(10).

If we will consider interval (0, 1) as the range of variation of gray levels of pixels
x, y ∈ (0, 1) = G, then from formulas (13)–(15) we obtain the following expressions
for the arithmetic operations for new tuned algebraic structures:

addition

(16) x〈+̂〉3y = 0, 5 + 0, 5 · sign(s3) ·
(

exp |s3| − 1

exp |s3|+ 1

) 1
β

,

where
s3 = ln(c · x3 · y3);

x3 =
1 + sign(x1) · |x1|β

1− sign(x1) · |x1|β
, y3 =

1 + sign(y1) · |y1|β

1− sign(y1) · |y1|β
,

x1 = 2x− 1, y1 = 2y − 1,

subtraction

(17) x〈−̂〉3y = 0, 5 + 0, 5 · sign(s4) ·
(

exp |s4| − 1

exp |s4|+ 1

) 1
β

,

where
s4 = ln(

c · x3
y3

);
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multiplication by real scalar k ∈ R

(18) k〈×̂〉3x = 0, 5 + 0, 5 · sign(x4) ·
(

exp |x4| − 1

exp |x4|+ 1

) 1
β

,

where

x4 = b(k − 1) + k ln(x3) = ln(c)(k − 1) + k ln(x3) = ln(ck−1 · xk3).

The set E with operations 〈+〉3 of addition (13) and the operation of multiplica-
tion 〈×〉3 by real scalar (15) form a real vector space, as the set G with operations
〈+̂〉3 of addition (16) and the operation 〈×̂〉3 of multiplication by real scalar (18).

4. Results

New algebraic structures proposed in Section 3 make possible to simulate the pres-
ence of a light source by the human visual system perception of images through
the use of constant component b in expressions that describe arithmetic operations
(8)–(12) and (13)–(18). The use of control parameter β makes the new algebraic
structure flexible. The Fig. 1 shows the first hyperplane, which is formed by the ad-
dition function (13) for the values A = 3 and β = 0, 7, as in Fig. 2 – for the values
A = 0, 7 and β = 1, 5.

These figures confirm adjustability of built algebraic structure and flexibility
through its ability to change the values of control parameter β.
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Fig. 1: Addition function (13) as the hyperplane Add1 (a) with values A = 3 and β = 0, 7.
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Fig. 2: Addition function (13) as the hyperplane Add2 (b) with values A = 0, 7 and β = 1, 5.

5. Conclusions

Application of built algebraic structures improves the efficiency of image processing
by more accurate and precize modelling of human visual image analysis in the pres-
ence of light source of constant intensity. Parameterization of this structure offers
opportunities of adaptive settings of such structures for better image processing.
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KONSTRUOWANIE NASTAWIALNEGO PARAMETRYZOWANEGO
MODELU ALGEBRAICZNEGO DLA OPRACOWANIA OBRAZU
O WIELU POZIOMACH SZAROŚCI

S t r e s z c z e n i e
Wniniejszej pracy opisano konstruowanie nastawialnego parametryzowanego modelu al-

gebraicznego przeznaczonego dla opracowania obrazów rastrowych. Opracowano struktury
algebraiczne uogólniaja̧ce znany model algebraiczny. Opisana została metoda otrzymania
w postaci analitycznej wzorów dla realizacji operacji arytmetycznych, które jednocześnie
modeluja̧ percepcjȩ obrazu człowiekiem przy obecności źródła‚a światła o stałym natȩżeniu.
W celu poprawy wydajności nowej struktury algebraicznej zapewniono jej elastyczność
przez użycie parametryzacji. Również zostały otrzymane wzory analityczne dla konstruowa-
nia struktur algebraicznych na dwóch przedziałach. Zademonstrowano elastyczność nowych
struktur algebraicznych.

Słowa kluczowe: struktury algebraiczne, przestrzeń wektorowa liczb rzeczywistych, przetwa-
rzanie obrazów
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SOME REMARKS ABOUT FIBONACCI ELEMENTS
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Summary
In this paper, we prove some relations between Fibonacci elements in an arbitrary

algebra. Moreover, we define imaginary Fibonacci quaternions and imaginary Fibonacci
octonions and we prove that always three arbitrary imaginary Fibonacci quaternions are
linear independents and the mixed product of three arbitrary imaginary Fibonacci octonions
is zero.
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1. Introduction

Fibonacci elements over some special algebras were intensively studied in the last
time in various papers, as for example: [1]– [13]. All these papers studied properties
of Fibonacci elements in complex numbers, or in quaternions and octonions, or
in generalized Quaternion and Octonion algebras, or studied dual vectors or dual
Fibonacci quaternions.

In this paper, we will prove that some of the obtained identities can be ob-
tained over an arbitrary algebras. We introduce the notions of imaginary Fibonacci
quaternions and imaginary Fibonacci octonions and we prove, using the structure of
the quaternion algebras and octonion algebras, that three arbitrary imaginary Fi-
bonacci quaternions are linear dependents and the mixed product of three arbitrary
imaginary Fibonacci octonions is zero. For other details, properties and applica-
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tions regarding quaternion algebras and octonion algebras, the reader is referred, for
example, to [15], [14].

2. Fibonacci elements in an arbitrary algebra

Let A be a unitary algebra over K (K = R,C) with a basis {e0 = 1, e1, e2, ..., en}.
Let {fn}n∈N be the Fibonacci sequence

fn = fn−1 + fn−2, n ≥ 2, f0 = 0, f1 = 1.

In algebra A, we define the Fibonacci element as follows:

Fm =

n∑
k=0

fm+k ek.

Proposition 2.1. With the above notations, the following relations hold:

1) Fm+2 = Fm+1 + Fm;

2)
p∑
i=1

Fi = Fp+2 − F2.

Proof. 1)

Fm+1 + Fm =

n∑
k=0

fm+k+1ek +

n∑
k=0

fm+kek =

n∑
k=0

(fm+k+1 + fm+k)ek

=

n∑
k=0

fm+k+2 ek = Fm+2.

2)
p∑
i=1

Fi = F1 + F2 + ...+ Fp ==

n∑
k=0

fk+1 ek +

n∑
k=0

fk+2 ek + ...+

n∑
k=0

fk+p ek

= e0 (f1 + ...+ fp) + e1 (f2 + ...+ fp+1) + e2 (f3 + ...+ fp+2) + ...

+en (fk+n + ...+ fp+n)

= e0 (fp+2 − 1) + e1 (fp+3 − 1− f1) + e2 (fp+4 − 1− f1 − f2)

+e3 (fp+5 − 1− f1 − f2 − f3) + ...

+en (fp+n+2 − 1− f1 − f2 − ...− fn) = Fp+2 − F2.

We used the identity
p∑
i=1

fi = fp+2 − 1 (for usual Fibonacci numbers) and 1 +

f1 + f2 + ...+ fn = fn+2. �

Remark 2.2. The equalities 1, 2 from the above proposition generalize the corre-
sponding formulae from [2,7–9]
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Proposition 2.3. We have the following formula (Binet formula):

Fm =
α∗αm − β∗βm

α− β
,

where α = 1+
√
5

2 , β = 1−
√
5

2 , α∗ =
n∑
k=0

αkek, β∗ =
n∑
k=0

βkek.

Proof. Using the formula for the real Fibonacci numbers, fm = αm−βm

α−β , we obtain

Fm =
n∑
k=0

fm+kek = αm−βm

α−β e0 + αm+1−βm+1

α−β e1 + αm+2−βm+2

α−β e2 + . . .

. . .+ αm+n−βm+n

α−β en = am

α−β
(
e0 + αe1 + α2e2 + ...+ αnen

)
+

+ βm

α−β
(
e0 + βe1 + β2e2 + ...+ βnen

)
= α∗αm−β∗βm

α−β . �

Remark 2.4. The above result generalizes the Binet formulae from the papers
[1, 2, 6–9].

Theorem 2.5. The generating function for the Fibonacci number over an algebra
is of the form

G (t) =
F0 + (F1 − F0) t

1− t− t2
.

Proof. We consider the generating function of the form

G (t) =

∞∑
m=0

Fmt
m.

We consider the product

G (t)
(
1− t− t2

)
=
∞∑
m=0

Fmt
m =

∞∑
m=0

Fmt
m −

∞∑
m=0

Fmt
m+1 −

∞∑
m=0

Fmt
m+2 =

= F0 + F1t+ F2t
2 + F3t

3 + ...− F0t− F1t
2 − F2t

3 − ...−
−F0t

2 − F1t
3 − F2t

4 − ... = F0 + (F1 − F0) t. �

Remark 2.6. The above Theorem generalizes results from the papers [1, 2, 6–8].

Proposition 2.7.

F−m = (−1)
m+1

fmF1 + (−1)
m
fm+1F0.

Proof. We use induction. For m = 1, we obtain F−1 = f1F1 − f2F0, which is true.
Now, we assume that it is true for an arbitrary integer k

F−k = (−1)
k+1

fkF1 + (−1)
k
fk+1F0

For k + 1, we obtain
F−(k+1) = (−1)

k+2
fk+1F1 + (−1)

k+1
fk+2F0 = (−1)

k
fkF1 + (−1)

k
fk−1F1+

+ (−1)
k−1

fk+1F0 + (−1)
k−1

fkF0 = F−(n−1) − F−n.
Therefore, this statement is true. �
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Theorem 2.8. (Cassini identity). With the above notations, we have the following
formula

Fm−1Fm+1 − F 2
m = (−1)

m
(F−1F1 − F 2

0 ).

Proof. We consider
Fm−1 = fm−1e0 + fme1 + fm+1e2 + fm+2e3 + ...+ fm+n−1en,

Fm+1 = fm+1e0 + fm+2e1 + fm+3e2 + fm+4e3 + ...+ fm+n+1en,

Fm = fme0 + fm+1e1 + fm+2e2 + fm+2e3 + ...+ fm+nen.

We compute

Fm−1Fm+1 =
[
fm−1fm+1e

2
0 + fm−1fm+2e0e1 + fm−1fm+3e0e2+

+fm−1fm+4e0e3 + . . .+ fm−1fm+n+1e0en

]
+
[
fmfm+1e1e0 + fmfm+2e

2
1+

+fmfm+3e1e2 + fmfm+4e1e3 + . . .+ fmfm+n+1e1en

]
+
[
f2m+1e2e0+

+fm+1fm+2e2e1 + fm+1fm+3e
2
2 + fm+1fm+4e1e3 + . . .+ fm+1fm+n+1e2en

]
+

+
[
fm+2fm+1e3e0 + f2m+2e3e1 + fm+2fm+3e3e2 + fm+2fm+4e

2
3 + . . .

. . .+ fm+2fm+n+1e3en

]
+ . . .+

[
fm+n−1fm+1ene0 + fm+n−1fm+2ene1+

fm+n−1fm+3ene2 + fm+n−1fm+4ene3 + . . .+ fm+n−1fm+n+1e
2
n

]
.

Now, we compute

F 2
m =

[
f2me

2
0 + fmfm+1e0e1 + fmfm+2e0e2 + fmfm+3e0e3 + . . .

. . .+ fmfm+ne0en

]
+
[
fm+1fme1e0 + f2m+1e

2
1 + fm+1fm+2e1e2+

+fm+1fm+3e1e3 + ...+ fm+1fm+ne1en

]
+
[
fm+2fme2e0 + fm+2fm+1e2e1+

+f2m+2e
2
2 + fm+2fm+3e2e3 + . . .+ fm+2fm+ne2en

]
+
[
fm+2fme2e0+

+fm+2fm+1e2e1 + f2m+2e
2
2 + fm+2fm+3e2e3 + ...+ fm+2fm+ne2en

]
+

+
[
fm+3fme3e0 + fm+3fm+1e3e1 + fm+3fm+2e3e2 + f2m+3e

2
3 + . . .

. . .+ fm+3fm+ne3en

]
+ ...+

[
fm+nfmene0 + fm+nfm+1ene1 + fm+nfm+2ene2+

+fm+nfm+3ene3 + ...+ f2m+ne
2
n

]
.

We compute the difference

Fm−1Fm+1 − F 2
m = e0

[
e0
(
fm−1fm+1 − f2m

)
+ e1 (fm−1fm+2 − fmfm+1) + . . .

. . .+ en (fm−1fm+n+1 − fmfm+n)
]

+ e1

[
e0 (fmfm+1 − fm+1fm) +

+e1
(
fmfm+2 − f2m+1

)
+ . . .+ en (fmfm+n+1 − fm+1fm+n)

]
+

+e2

[
e0
(
f2m+1 − fm+2fm

)
+ e1 (fm+1fm+2 − fm+2fm+1) + . . .

. . .+ en (fm+1fm+n+1 − fm+2fm+n)
]

+ e3

[
e0 (fm+2fm+1 − fm+3fm) +

+e1
(
f2m+2 − fm+3fm+1

)
+ . . .+ en (fm+2fm+n+1 − fm+3fm+n)

]
+ . . .+
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+en

[
e0 (fm+n−1fm+1 − fm+nfm) + e1 (fm+n−1fm+2 − fm+nfm+1) + . . .

. . .+ en
(
fm+n−1fm+n+1 − f2m+n

) ]
.

Using formula fifj − fi+kfj−k = (−1)
j−k

fi+k−jfk (see [16, p. 87], formula 2)
and the identities f1 = 1, f−m = (−1)

m+1
fm (see [16, p. 84]), we obtain

Fm−1Fm+1 − F 2
m = e0 (−1)

m+1
[
e0f1 + e1f2 + e2f3 + . . .+ enfn+1

]
+

+e1 (−1)
m+1

[
e0f0 + e1f1 + e2f2 + . . .+ enfn

]
+

+e2 (−1)
m
[
e0f−1 + e1f0 + e2f1 + . . .+ enfn−1

]
+

+e3 (−1)
m
[
e0f−2 + e1f−1 + e2f0 + . . .+ enfn−2

]
+ . . .+

+ (−1)
m+n

en

[
e0f−n+1 + e1f−n+2 + e2f−n+3 + . . .+ enf1

]
=

= (−1)
m
(
e0F1 − e1F0 + e2F−1 − e3F−2 + . . .+ (−1)

n
enF−n+1

)
.

Using Proposition 2.7, we have

Fm−1Fm+1 − F 2
m = (−1)

m
[
e0F1 − e1F0 + e2 (F1 − F0)− e3 (2F0 − F1) +

+e4 (2F1 − 3F0)− e5 (−3F1 + 5F0) + . . .

. . .+ en (−1)
n
(

(−1)
n
fn−1F1 + (−1)

n−1
fnF0

) ]
=

= (−1)
m
[
(e0f−1 + e1f0 + e2f1 + ...+ enfn−1)F1−

− (f0e0 + f1e1 + f2e2 + ...+ fnen)F0

]
= (−1)

m
[
F−1F1 − F 2

0

]
.

The theorem is now proved. �

Remark 2.9. i) Similarly, we can prove an analogue of Cassini’s formula:

Fm+1Fm−1 − F 2
m = (−1)

m [
F1F−1 − F 2

0

]
.

ii) Theorem 2.8 generalizes Cassini’s formula for all real algebras.
iii) If the algebra A is algebra of the real numbers R, we have Fm = fm. From

the above theorem, it results that

fm+1fm−1 − f2m = (−1)
m [

f1f−1 − f20
]

= (−1)
m
,

which it is the classical Cassini’s identity.

3. Imaginary Fibonacci quaternions and imaginary Fibonacci
octonions

Let H (α, β) be the generalized real quaternion algebra, the algebra of the elements
of the form

a = a1 · 1 + a2i + a3j + a4k,

where
ai ∈ R, i2 = −α, j2 = −β, k = ij = −ji.
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We denote by t (a) and n (a) the trace and the norm of a real quaternion a. The
norm of a generalized quaternion has the following expression n (a) = a21 + αa22 +

βa23 + αβa24 and the trace is t (a) = 2a1. It is known that for a ∈ H (α, β) , we have
a2 − t (a) a + n (a) = 0. The quaternion algebra H (α, β) is a division algebra if for
all a ∈ H (α, β) , a 6= 0, we have n (a) 6= 0, otherwise H (α, β) is called a split algebra.

Let O(α, β, γ) be a generalized octonion algebra over R, with basis {1, e1, ..., e7},
the algebra of the elements of the form a = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 +

a6e6 + a7e7 and the multiplication given in the following table:

Table 1.

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −α e3 −αe2 e5 −αe4 − e7 αe6
e2 e2 −e3 −β βe1 e6 e7 −βe4 −βe5
e3 e3 αe2 −βe1 −αβ e7 −αe6 βe5 −αβe4
e4 e4 −e5 − e6 − e7 − γ γe1 γe2 γe3
e5 e5 αe4 − e7 αe6 −γe1 −αγ −γe3 αγe2
e6 e6 e7 βe4 −βe5 −γe2 γe3 −βγ −βγe1
e7 e7 −αe6 βe5 αβe4 −γe3 −αγe2 βγe1 −αβγ

The algebra O(α, β, γ) is non-commutative and non-associative.
If

a ∈ O(α, β, γ), a = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7

then
ā = a0 − a1e1 − a2e2 − a3e3 − a4e4 − a5e5 − a6e6 − a7e7

is called the conjugate of the element a. The scalars t (a) = a+ a ∈ R and

n (a) = aa = a20 + αa21 + βa22 + αβa23 + γa24 + αγa25 + βγa26 + αβγa27 ∈ R,

are called the trace, respectively, the norm of the element a ∈ A. It follows that
a2− t (a) a+n (a) = 0,∀a ∈ A.The octonion algebra O (α, β, γ) is a division algebra
if for all a ∈ O (α, β, γ) , a 6= 0 we have n (a) 6= 0, otherwise O (α, β, γ) is called a
split algebra.

Let V be a real vector space of dimension n and <,> be the inner product. The
cross product on V is a continuous map

X : V s → V, s ∈ {1, 2, ..., n}
with the following properties:

1) < X (x1, ...xs) , xi >= 0, i ∈ {1, 2, ..., s};
2) < X (x1, ...xs) , X (x1, ...xs) >= det (< xi, xj >) (see [17]).
In [18], was proved that if d = dimR V, therefore d ∈ {0, 1, 3, 7} (see [18], Propo-

sition 3).
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The values 0, 1, 3 and 7 for dimension are obtained from Hurwitz’s theorem,
since the real Hurwitz division algebras H exist only for dimensions 1, 2, 4 and 8.

In this situations, the cross product is obtained from the product of the normed
division algebra, restricting it to imaginary subspace of the algebra H, which can
be of dimension 0, 1, 3 or 7 (see [19]). It is known that the real Hurwitz division
algebras are only: the real numbers, the complex numbers, the quaternions and the
octonions (see [14]).

In R3 with the canonical basis {i1, i2, i3}, the cross product of two linearly inde-
pendent vectors x = x1i1 +x2i2 +x3i3 and y = y1i1 +y2i2 +y3i3 is a vector, denoted
by x× y, which can be expressed computing the following formal determinant

x× y =

∣∣∣∣∣∣
i1 i2 i3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ .
The cross product can also be described using the quaternions and the basis

{i1, i2, i3} as a standard basis for R3. If a vector x ∈ R3 has the form x = x1i1 +

x2i2 +x3i3 and it is represented as the quaternion x = x1i+x2j+x3k, therefore the
cross product of two vectors has the form x × y = xy+ < x, y >, where < x, y >=

x1y1 + x2y2 + x3y3 is the inner product.
A cross product for 7-dimensional vectors can be obtained in the same way, by

using the octonions instead of the quaternions. If

x =

7∑
i=0

xiei and y =

7∑
i=0

yiei

are two imaginary octonions, therefore

(1)

x× y = (x2y4 − x4y2 + x3y7 − x7y3 + x5y6 − x6y5) e1+

+(x3y5 − x5y3 + x4y1 − x1y4 + x6y7 − x7y6) e2+

+(x4y6 − x6y4 + x5y2 − x2y5 + x7y1 − x1y7) e3+

+(x5y7 − x7y5 + x6y3 − x3y6 + x1y2 − x2y1) e4+

+(x6y1 − x1y6 + x7y4 − x4y7 + x2y3 − x3y2) e5+

+(x7y2 − x2y7 + x1y5 − x5y1 + x3y4 − x4y3) e6+

+(x1y3 − x3y1 + x2y6 − x6y2 + x4y5 − x5y4) e7,

see [20] and [21].
Let H be the real division quaternion algebra (obtained for α = β = 1) and

H0 = {x ∈ H | t (x) = 0}. An element Fn ∈ H0 is called an imaginary Fibonacci
quaternion element if it is on the form

Fn = fn+1i + fn+2j + fn+3k,

where (fn)n∈N is the Fibonacci numbers sequence.
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In the proof of the following results, we will use some relations between Fibonacci
numbers, namely:

D’Ocagne’s identity

(2) fmfn+1 − fnfm+1 = (−1)
n
fm−n

see relation (33) from [22], and
Johnson’s identity

(3) fafb − fcfd = (−1)
r

(fa−rfb−r − fc−rfd−r) ,

for arbitrary integers a, b, c, d, and r with a+ b = c+ d, see relation (36) from [22].
Let Fk, Fm, Fn be three imaginary Fibonacci quaternions. We have the following

results.

Proposition 3.1. With the above notations, for three arbitrary Fibonacci imaginary
quaternions, we have

< Fk × Fm, Fn >= 0.

Therefore, the vectors Fk, Fm, Fn are linear dependents.
The above result is similar with the result for dual Fibonacci vectors obtained

in [6], Theorem 11.
Let O be the real division octonion algebra (obtained for α = β = γ = 1) and

O0 = {x ∈ H | t (x) = 0}.

An element Fn ∈ O0 is called an imaginary Fibonacci octonion element if it is of the
form

Fn = fn+1e1 + fn+2e2 + fn+3e3 + fn+4e4 + fn+5e5 + fn+6e6 + fn+7e7,

where (fn)n∈N
is the Fibonacci numbers sequence. Let Fk, Fm, Fn be three imaginary Fibonacci
octonions.

Proposition 3.2. With the above notations, for three arbitrary Fibonacci imaginary
octonions, we have

< Fk × Fm, Fn >= 0.

Proof. Using formulae (1), (2) and (3), we will compute Fk × Fm.

The coefficient of e1 is
fm+2fk+4 − fk+2fm+4 + fm+3fk+7 − fk+3fm+7 + fm+5fk+6− fk+5fm+6 =

= fmfk+2 − fkfm+2 − fmfk+4 + fkfm+4 − fmfk+1+ fkfm+1 =

= fm (fk+2 − fk+4 − fk+1) + fk (−fm+2 + fm+4 + fm+1) =

= fm (fk − fk+4) + fk (fm+4 − fm) =

= −fm (3fk+1 + fk) + fk (3fm+1 + fm) =

= −3 (fmfk+1 − fkfm+1) = −3 (−1)
k
fm−k.
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The coefficient of e2 is
fm+3fk+5 − fk+3fm+5 + fm+4fk+1 − fk+4fm+1 + fm+6fk+7− fk+6fm+7 =

= −fmfk+2 + fkfm+2 − fm+3fk + fk+3fm + fmfk+1− fkfm+1 =

= fm (−fk+2 + fk+3 + fk+1) + fk (fm+2 − fm+3 − fm+1) =

= 2 (fmfk+1 − fkfm+1) = 2 (−1)
k
fm−k.

The coefficient of e3 is
fm+4fk+6 − fm+3fk+5 + fm+5fk+2 − fm+2fk+5 + fm+7fk+1− fk+7fm+1 =

= fmfk+2 − fm+2fk + fm+3fk − fmfk+3 − fm+6fk + fmfk+6 =

= fm (fk+2 − fk+3 + fk+6) + fk (−fm+2 + fm+3 − fm+6) =

= 7 (fmfk+1 − fkfm+1) = 7 (−1)
k
fm−k.

The coefficient of e4 is
fm+5fk+7 − fk+5fm+7 + fm+6fk+3 − fk+6fm+3 + fm+1fk+2− fm+2fk+1 =

= −fmfk+2 + fkfm+2 − fm+3fk + fk+3fm − fmfk+1 + fkfm+1 =

= fm (−fk+2 + fk+3 − fk+1) = 0.

The coefficient of e5 is
fm+6fk+1 − fk+6fm+1 + fm+7fk+4 − fk+7fm+4 + fm+2fk+3− fk+2fm+3 =

= −fm+5fk + fk+5fm + fm+3fk − fk+3fm + fmfk+1 − fkfm+1 =

= fm (fk+5 − fk+3 + fk+1) + fk (−fm+5 + fm+3 − fm+1) =

= 4 (fmfk+1 − fkfm+1) = 4 (−1)
k
fm−k.

The coefficient of e6 is
fm+7fk+2 − fk+7fm+2 + fm+1fk+5 − fk+1fm+5 + fm+3fk+4− fk+3fm+4 =

= fm+5fk − fk+5fm − fmfk+4 + fkfm+4 − fmfk+1+ fkfm+1 =

= fm (−fk+5 − fk+4 − fk−1) + fk (fk+5 + fk+4 + fk−1) =

= −9 (fmfk+1 − fkfm+1) = −9 (−1)
k
fm−k.

The coefficient of e7 is
fm+1fk+3 − fk+1fm+3 + fm+2fk+6 − fk+2fm+6 + fm+4fk+5− fk+4fm+5 =

= fm (−fk+2 + fk+4 + fk+1) + fk (fm+2 − fm+4 − fm+1) =

= 3 (fmfk+1 − fkfm+1) = 3 (−1)
k
fm−k.

We obtain that
Fk × Fm = (−1)

k
fm−k (−3e1 + 2e2 + 7e3 + 4e5 − 9e6 + 3e7) .

Therefore
< Fk × Fm, Fn >= (−1)

k
fm−k

(
− 3fn+1 + 2fn+2 + 7fn+3 + 4fn+5−

−9fn+6 + 3fn+7

)
= −2fn+2 + 2fn+1 + 2fn = 0.

The proposition is proved. �

Conclusions

In this paper, we proved that some of the identities obtained for Fibonacci quater-
nions and Fibonacci octonions can be obtained in an arbitrary algebras. In the same
manner, similar identities and their applications, as for example D’Ocagne’s iden-
tity or Johnson’s identity, can be obtained. We introduced the notions of imaginary
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Fibonacci quaternions and imaginary Fibonacci octonions and we proved that three
arbitrary imaginary Fibonacci quaternions are linear dependents and the mixed
product of three arbitrary imaginary Fibonacci octonions is zero.
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UWAGI O ELEMENTACH FIBONACCIEGO DOWOLNEJ ALGEBRY

S t r e s z c z e n i e
W pracy dowodzimy pewnych relacji miȩdzy elementami Fibonacciego w dowolnej alge-

brze. Ponadto definiujemy urojone kwaterniony Fibonacciego i urojone oktoniony Fibonac-
ciego oraz dowodzimy, że zawsze trzy dowolne urojone kwaterniony Fibonacciego sa̧ liniowo
niezależne, a mieszane iloczyny trzech dowolnych urojonych oktonionów Fibonacciego sa̧
równe zeru.

Słowa kluczowe: kwaterniony Fibonacciego, oktoniony Fibonacciego, elementy Fibonacciego
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SPIN WAVE RESONANCE PROFILES IN MAGNETIC
TRIPLE LAYERS

Summary
Spin wave resonance spectra for the system of three ferromagnetic layers divided by

nonmagnetic spacers have been calculated. The Green function method has been used to
calculate basics characteristics of spin wave resonance spectra. The effects of damping due
spin-spin interaction leading to non-zero line-width of ferromagnetic resonance peaks have
been additionally taken into account. The influence of interaction parameters appearing in
used model on the spin wave patterns and the shape of resonance lines has been shown.

Keywords and phrases: spin wave resonance, Green function method, magnetic layered
systems

1. Introduction

Interest in properties of magnetic ultrathin metallic films exchange coupled by non-
magnetic spacer has been growing considerably in last two decades due to increasing
ability to produce samples of controlled quality and their technical importance (see
e.g. [1, 2]). Beside of the problem of interlayer exchange coupling, which has been
investigated by means of various theoretical methods also, basic magnetic properties
of multilayer systems have been examined both by experimentalists and theoretician
[3–10].
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In particular the problem of elementary magnetic excitations in multilayers has
been considered in many papers, where magnon dispersion relation or spin wave spec-
tra have been obtained [11–17]. Recently, theoretical and experimental approaches
dedicated to layered systems showed the role of the anisotropic factors is very im-
portant for proper description of their properties [18–20]. However, little attention
has been up to now paid to the problem of magnon damping effects and its influence
on the shape of spin wave resonance lines. In presented paper a Green’s function
method allowing to calculate spin wave spectra including profiles of FMR lines [21]
is applied to a triple layer system.

2. Method and calculations

A system consisting of three homogeneous ferromagnetic layers separated by non-
magnetic spacers is considered. Each ferromagnetic sublayer is made of Nl (l =

1, 2, 3) monolayers. To avoid the problem connected with detailed magnetic struc-
ture and rearrangement [3] we assume that an externally applied static magnetic field
of the strength in the range corresponding to the ferromagnetic resonance condition
is oriented perpendicularly to the film surface and all the spins can be considered
statically as parallel to the external field.

We focus our attention on the exchange modes that can be separated from the
magnetostatic ones by the proper choice of radiofrequencies. The effective field Heff

acting on a spin is taken as a sum of the external uniform field, the demagnetising
field and the uniaxial bulk anisotropy field. The system is described by Heisenberg
Hamiltonian consisting of the exchange, single ion anisotropy, Zeeman and dipolar
coupling terms. We denote by Jl the exchange integrals for sublayers, while J12 and
J23 stand for the parameters of exchange interaction between spins belonging to
interface layers in different magnetic sublayers.

Below we will focus our on low temperature properties of layered composite and
use in calculations the Green function method in Random Phase Approximation
(RPA) [10, 21]. Magnetisation of the monolayer layer ν in the layered system con-
sisting of N1 +N2 +N3 monolayers is given by:

〈Szν 〉 = S − ϕν ,
(1)

ϕν =
1

n

∑
~h

N1+N2+N3∑
i=1

b2ν(ki)

e

(
E(ki,

~h)

kBT

)
− 1

,

where bν(ki) stand for amplitudes of spin waves with wave vectors ki and energy
E(ki,h) propagating in the system. The following set of equations for coefficients
bν(ki) can be obtained:
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[
D1

J
− α(ki0

]
b1(ki) + b2(ki) = 0,

. . . . . . . . . . . .

bν−1(ki)− α(ki)bν(ki) + bν+1(ki) = 0,

. . . . . . . . . . . .

bN1−1(ki)−
[
A12

J
− α(ki)

]
bN1(ki) +

J12

J
bN1+1(ki) = 0,

J12

J
bN1−1(ki)−

[
AI
J
− α(ki)

]
bN1+1(ki) + bN1+2(ki) = 0,

. . . . . . . . . . . .

bN1+ν−1(ki)− α(ki)bN1+ν(ki) + bN1+ν+1(ki) = 0,(2)

. . . . . . . . . . . .

bN2−1(ki)−
[
A23

J
− α(ki)

]
+
J23

J
bN2+1(ki) = 0,

J23

J
bN2 −

[
A23

J − α(ki)

]
bN2+1(ki) + bN2+2(ki) = 0,

. . . . . . . . . . . .

bN2+ν−1(ki)− α(ki)bN2+ν(ki) + bN2+ν+1(ki) = 0,

. . . . . . . . . . . .

bN3−1(ki)−
[
D3

J
− α(ki)

]
bN3

(ki) = 0.

The anisotropy in the layer ν is assumed to be in the following form:

(3) Aν′ = A+A12δN,N+1 +A23δN2,N2+1 +D1δ1,2 +D3δN3−1,N3
.

A12 and A23 are the anisotropy at the interface between fist and second and second
and third magnetic layer, respectively. D1 and D3 denote surface anisotropy at the
surface belonging to external layers. The term α(ki) = 2 cos(ki) is proportional to
the energy of elementary excitation [10]. The set of allowed values of ki can be
found by solving the characteristic equation obtained employing the transfer matrix
method [22]. For the sake of simplicity we assume N1 = N2 = N3 = N . Then the
characteristics equation reads:

[X + (1−D1)] [X + (1−D3)]

× {x1 − (1−D1)x2 + (1−D3) [(1−D1)x3 − x2]}
− [X + (1−D3)] {x1 − (1−D3)x2 + [X + 2(1−D1)]

× [(1−D3)x3 − x2]}(4)

− J23 [X + (1−D1)] {x1 − (1−D1)x2 + [X + 2(1−D3)]

× [(1−D1)x3 − x2]}
+ J12J23 {x1 − 2 [X + (1−D1) + (1−D3)x2]

+ [X + 2(1−D1)] [X + 2(1−D3)]x3} = 0,
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where

(5) X =
sin(N + 1)k − sinNk

sin(N − 1)k − sinNk
,

(6) x1 = sin(N + 1)k,

(7) x2 = sinNk,

(8) x3 = sin(N − 1)k.

The characteristic equation for the wave vectors ki is convenient for calculation of
the positions and relative intensities of spin wave resonance modes. Described up
to now method doesn’t, however, allow to obtain the line shape of the resonance
picture.

To take into account the effects of damping which may be due to spin-spin
interaction, existence of magnetic surface single-ion anisotropy and interaction of
the magnetic system with lattice vibrations, the two-dimensional Fourier transform
gνjν′j′(E) of the Green function Gνjν′j′(t− t′) should be written [21, 23–24] as:

(9) gνjν′j′(E) =
Aν (〈Sz〉)
E − Ẽνjν′j′

,

with

(10) Ẽνjν′j′ = Eνjν′j′ + iΓνjν′j′ .

Then the transformation coefficients to the momentum space take the form [21]:

(11) Qνν′(E) =
1

2π

3N∑
i=1

bν(ki)bν′(ki)

E − Ẽ(ki,~h)
,

where

(12) Ẽ(ki~h) = E(ki,~h) + iΓ(ki,~h).

The imaginary part of energy term can be calculated on the base of relaxation
equation [25]:

(13) Γ(ki,~h) =
1

2τ

3N∑
i=1

b2ν(ki)Aν [〈Szν 〉 − 〈Szν 〉eq] ,

where the parameter τ stands for relaxation time. It has been, for example, estimated
by Wesselinova [26, 27 ] for damping due to magnon-magnon interaction.

Equation (13) allows one to write the spectral density as [23]:

(14) I(E, ki) =
〈Sz〉
π

1

e
Ẽ(ki,

~h)

kT − 1

Γ(ki,~h)(
E − E(ki,~h)

)2

+ Γ2(ki~h)
.

The spectral density can be used to calculate the spin wave resonance spectra in the
way described in [21]. For the magnetic field polarized in x direction the formula for
absorbed power is in the form:
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(15) W (E) ∝
∑
l

E2ElrezΓl

(E2 − E2
lrez − Γ2)

2
+ (2EΓl)2

,

where l denotes the number of resonance line. Equation (15) gives a continuous
distribution of resonance intensity, therefore it reflects better the real situations
observed in FMR experiments than calculations neglecting damping effects.

Fig. 1: Intensity distribution for the magnetic field polarized in x direction for triple layer
consisting of 60 magnetic monolayers (N1 = N2 = N3 = 20) for J12/J = J23/J = 0.1 and
D1/J = D3/J = 1.0.
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The numerical calculations based on the presented above formalism have been
carried out for the exchange triple layer system. Positions of resonance peaks have
been calculated employing method proposed in [28, 29] and next the spin wave
spectrum has been obtained including the damping term derived on the basis of
results of Wesselinowa [26, 27]. The results obtained are presented in Figs 1–4 as a
function of interaction parameters.

Fig. 2: Intensity distribution for the magnetic field polarized in x direction for triple layer
consisting of 60 magnetic monolayers (N1 = N2 = N3 = 20) for J12/J = J23/J = −0.1
and D1/J = D3/J = 1.0.
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Fig. 3: Intensity distribution for the magnetic field polarized in x direction for triple layer
consisting of 60 magnetic monolayers (N1 = N2 = N3 = 20) for J12/J = J23/J = 0.25
and D1/J = D3/J = 0.0.

3. Final remarks

The results presented in this paper show that introducing damping effect even on
the basis of phenomenological relaxation equation gives possibility of calculation of
more realistic resonance spectra with non-zero line-width. It would be interesting
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Fig. 4: Intensity distribution for the magnetic field polarized in x direction for triple layer
consisting of 60 magnetic monolayers (N1 = N2 = N3 = 20) for J12/J = J23/J = −0.25
and D1/J = D3/J = 0.0.

to compare spectra obtained introducing different sources of dumping. An attempt
to calculate spin wave characteristics for materials of anisotropy distribution across
layers has been done in [30]. The results obtained which are only of qualitative
character show that introducing of non-uniform anisotropy leads to modification of
resonance spectra which is similar to the effect caused by the existence of roughness
at the surface and interfaces of the sample.
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PROFILE REZONANSU FAL SPINOWYCH
W POTRÓJNYCH WARSTWACH MAGNETYCZNYCH

S t r e s z c z e n i e
W pracy wyliczone sa̧ widma rezonansu fal spinowych dla układu trzech warstw fer-

romagnetycznych przedzielonych niemagnetycznymi przekładkami. Metoda funkcji Greena
jest zastosowana dla wyznaczenia podstawowych charakterystyk rezonansu fal spinowych.
Efekty tłumienia zwia̧zane z oddziaływaniem spin-spin, które prowadza̧ do niezerowej sze-
rokości linii rezonansowych, zostały dodatkowo wziȩte pod uwagȩ. Pokazano jaki wpływ na
widma rezonansowe i kształt linii maja̧ parametry oddziaływań wystȩpujace w stosowanym
modelu.

Słowa kluczowe: rezonans fal spinowych, metoda funkcji Greena, magnetyczne układy
warstwowe
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Summary
We study a constrained minimum energy problem with an external field relative to

the α-Riesz kernel |x − y|α−n of an arbitrary order α ∈ (0, n) for a generalized condenser
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1. Introduction

This paper is devoted to the well-known Gauss variational problem of minimizing

the α-Riesz energy, α ∈ (0, n), in the presence of an external field, treated for

a generalized condenser A with touching oppositely-charged plates A1, A2 ⊂ Rn,

n > 2. In the case where the Euclidean distance dist(A1, A2) between A1 and A2 is

nonzero (which might happen if A1 and A2 touch each other only at the Alexandroff

point ωRn), a fairly complete investigation of this problem has been provided in [17,

18] (see also the bibliography therein; see Section 3.3 below for a short review).

However, the results obtained in [17,18] and the approach developed are no longer

valid if dist(A1, A2) = 0 (e.g, if A1 and A2 touch each other at a finite point x ∈ Rn).



86 N. Zorii

Then the infimum of the Gauss functional can not, in general, be attained among

the admissible measures. Using the electrostatic interpretation, which is possible

for the Coulomb kernel |x − y|−1 on R3, a short-circuit between A1 and A2 might

occur. Therefore, it is meaningful to ask what kind of additional requirements on

the charges (measures) under consideration would prevent this phenomenon.

A natural idea, to be exploited below, is to impose an upper constraint on vector

measures associated with A so that the infimum of the Gauss functional over the

corresponding (narrower) class of constrained admissible vector measures would be

already an actual minimum. See Section 3.4 for a precise formulation of the con-

strained problem; as for the history of the question, cf. Remarks 3.10–3.12.

A statement on the solvability of the constrained Gauss variational problem is

given by Theorem 4.1, the main result of the study. Its proof is based on the definition

of an appropriate metric structure on a set of vector measures associated with A

and the establishment of a completeness theorem for the corresponding metric space

(see Theorem 5.1). The results obtained are illustrated by Example 4.2.

2. Preliminaries

Let X be a locally compact Hausdorff space, to be specified below, and M(X) the

linear space of all real-valued scalar Radon measures µ on X, equipped with the

vague topology, i.e. the topology of pointwise convergence on the class C0(X) of

all real-valued continuous functions on X with compact support. We denote by µ+

and µ− the positive and the negative parts in the Hahn–Jordan decomposition of a

measure µ ∈ M(X), respectively, and by SµX its support. These and other notions

of the theory of measures and integration in a locally compact space, to be used

throughout the paper, can be found in [3, 8] (see also [9] for a short review).

A kernel κ(x, y) on X is a symmetric, lower semicontinuous function κ : X×X→
[0,∞]. Given µ, µ1 ∈M(X), let Eκ(µ, µ1) and Uµκ (·) denote the mutual energy and

the potential relative to the kernel κ, respectively, i.e.

Eκ(µ, µ1) :=

∫
κ(x, y) d(µ⊗ µ1)(x, y),

Uµκ (x) :=

∫
κ(x, y) dµ(y), x ∈ X.

(When introducing notation, we assume the corresponding object on the right to be

well defined — as a finite number or ±∞.)

For µ = µ1, the mutual energy Eκ(µ, µ1) defines the energy Eκ(µ) := Eκ(µ, µ).

Let Eκ(X) consist of all µ ∈M(X) whose energy Eκ(µ) is finite.

Having denoted by M+(X) the convex cone of all nonnegative µ ∈ M(X), we

write

E+
κ (X) := M+(X) ∩ Eκ(X).

Given a set B ⊂ X, B 6= X, let M+(B; X) consist of all µ ∈ M+(X) concentrated

in B, and let E+
κ (B; X) := Eκ(X) ∩M+(B; X).
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Observe that, if B is closed, then µ ∈ M+(X) belongs to M+(B; X) if and only

if the set X \ B is µ-negligible (or, equivalently, if SµX ⊂ B). Furthermore, then

M+(B; X) and E+
κ (B; X) are closed in the induced vague topology (see, e.g., [9]).

Let Cκ(B) be the interior capacity of B relative to the kernel κ, given by

Cκ(B) :=
[

inf
µ∈E+κ (B;X): µ(B)=1

Eκ(µ)
]−1

;

see, e.g., [9,13]. Then 0 6 Cκ(B) 6∞. (Here, as usual, the infimum over the empty

set is taken to be +∞. We also put 1
/

(+∞) = 0 and 1
/

0 = +∞.)

A kernel κ is called strictly positive definite if the energy Eκ(µ), µ ∈ M(X), is

nonnegative whenever defined and Eκ(µ) = 0 implies µ = 0. Then Eκ(X) forms a

pre-Hilbert space with the scalar product Eκ(µ, µ1) and the norm ‖µ‖κ :=
√
Eκ(µ)

(see [9]). The topology on Eκ(X) defined by ‖ · ‖κ is said to be strong .

Following Fuglede [9], we call a strictly positive definite kernel κ perfect if any

strong Cauchy sequence in E+
κ (X) converges strongly and, in addition, the strong

topology on E+
κ (X) is finer than the induced vague topology on E+

κ (X). Note that

then E+
κ (X) is a strongly complete metric space.

3. Unconstrained and constrained Gauss variational problems

Throughout the paper, let n > 2, n ∈ N, and α ∈ (0, n) be fixed. In X = Rn,

consider the α-Riesz kernel κα(x, y) := |x− y|α−n of order α, where |x− y| denotes

the Euclidean distance between x and y in Rn. The α-Riesz kernel is known to be

strictly positive definite and, moreover, perfect (see [5, 6]); hence, the metric space

E+
κα(Rn) is complete in the induced strong topology. However, by Cartan [4] (see

also [12, Theorem 1.19]), the whole pre-Hilbert space Eκα(Rn) for α ∈ (1, n) is

strongly incomplete (compare with Theorem 5.1 and Remark 5.2 below).

From now on we shall write simply α instead of κα if it serves as an index. E.g.,

Cα(·) = Cκα(·) denotes the α-Riesz interior capacity of a set. An expression U(x),

involving a variable point x ∈ Rn, is said to subsist nearly everywhere (n.e.) in a set

B ⊂ Rn if Cα(N) = 0, where N consists of all x ∈ B for which U(x) fails to hold.

3.1. Generalized condensers. Vector measures and their α-Riesz energies

Given B ⊂ Rn, write Bc := Rn \ B. Recall that a (standard) condenser in Rn
is usually meant as an ordered pair of nonempty, closed (though not necessarily

compact), nonintersecting sets in Rn. We extend this notion as follows.

Definition 3.1. An ordered pair A := (A1, A2) of nonempty sets in Rn is called a

generalized condenser if the following two conditions are fulfilled for every i = 1, 2:

(a) Ai ⊂ Di, where Di :=
(
C`RnAj

)c
, j 6= i;

(b) Ai is closed in the relative topology of the (open) set Di.
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Observe that the notion of a generalized condenser A = (A1, A2) is reduced to

that of a standard one if and only if the sets Ai, i = 1, 2, are closed in Rn.

In the example below, n = 3 and B(x, 1) is the closed three-dimensional ball of

radius 1 centered at x ∈ R3.

Example 3.2. Consider B(ξ1, 1) and B(ξ2, 1) with ξ1 = (0, 0, 0) and ξ2 = (2, 0, 0);

these balls intersect each other at ξ0 = (1, 0, 0). Then the sets Ai := B(ξi, 1) \ {ξ0},
i = 1, 2, satisfy both assumptions (a) and (b) from Definition 3.1 and, hence, form

a generalized condenser A in R3, which certainly is not a standard one.

In all that follows, fix a generalized condenser A = (A1, A2) such that Ai 6= Di

for all i = 1, 2. To avoid triviality, suppose∏
i=1,2

Cα(Ai) > 0.

Let M+(A) stand for the Cartesian product
∏
i=1,2 M+(Ai;Di), where Di is

thought of as a locally compact space. Then ν ∈ M+(A) is a nonnegative vector

measure (νi)i=1,2 with the components νi ∈M+(Ai;Di); it is said to be associated

with the condenser A.

Definition 3.3. The A-vague topology on M+(A) is the topology of the product

space
∏
i=1,2 M+(Ai;Di), where each of the factors M+(Ai;Di), i = 1, 2, is endowed

with the vague topology induced from M(Di).

As Ai is closed in Di, M
+(A) is A-vaguely closed. Besides, since every M(Di) is

Hausdorff, so is M+(A) (see [11, Chapter 3, Theorem 5]). Hence, an A-vague limit

of any {νk}k∈N ⊂M+(A) belongs to M+(A) and is unique (provided it exists).

If ν ∈M+(A) and a vector-valued function u = (ui)i=1,2 with the νi-measurable

components ui : Ai → [−∞,∞] are given, then we write

〈u,ν〉 :=
∑
i=1,2

∫
ui dν

i.

We call A1 and A2 the positive and the negative plates of A, respectively. In

accordance with the electrostatic interpretation of a condenser, assume that the

interaction between the charges lying on the conductors Ai, i = 1, 2, is characterized

by the matrix (sisj)i,j=1,2, where

si := signAi =

{
+1 if i = 1,

−1 if i = 2.

Then the α-Riesz mutual energy of ν,ν1 ∈M+(A) is given formally by

(3.1) Eα(ν,ν1) :=
∑

i,j=1,2

sisj

∫
|x− y|α−n d(νi ⊗ νj1)(x, y).

For ν = ν1, Eα(ν,ν1) defines the α-Riesz energy Eα(ν) := Eα(ν,ν) of ν. We

denote by E+
α (A) the set of all ν ∈M+(A) whose energy Eα(ν) is finite.
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3.2. Metric structure on classes of vector measures

Let M̆+(A) consist of all ν ∈M+(A) such that each of its components νi, i = 1, 2,

can be extended to a Radon measure on Rn (denote it again by νi) by setting

νi(ϕ) := 〈χDiϕ, νi〉 for all ϕ ∈ C0(Rn),

where χDi is the characteristic function of Di. A sufficient condition for ν ∈M+(A)

to belong to M̆+(A) is that νi(Ai) <∞ for all i = 1, 2. Also note that

(3.2) M̆+(A) = M+(A) ⇐⇒ A is standard;

otherwise, M̆+(A) forms a proper subset of M+(A) that is not A-vaguely closed.

For any ν ∈ M̆+(A), write

(3.3) Rν :=
∑
i=1,2

siν
i;

then Rν is a signed scalar Radon measure on Rn. Since A1 ∩ A2 = ∅, R is a

one-to-one mapping between M̆+(A) and its R-image,

R
(
M̆+(A)

)
=
{
ν ∈M(Rn) : ν+ ∈M+(A1;D1), ν− ∈M+(A2;D2)

}
.

Lemma 3.4. For any ν,ν1 ∈ M̆+(A), Eα(ν,ν1) is well defined if and only if so is

Eα(Rν, Rν1), and then they coincide:

(3.4) Eα(ν,ν1) = Eα(Rν, Rν1).

Proof. Indeed, this can be obtained directly from (3.1) and (3.3). �

In view of the strict positive definiteness of the α-Riesz kernel, Lemma 3.4 yields

that Eα(ν), ν ∈ M̆+(A), is > 0 whenever defined, and it is zero only for ν = 0.

Write Ĕ+
α (A) := E+

α (A) ∩ M̆+(A). Having defined

‖ν − ν1‖Ĕ+α (A) :=
[ ∑
i,j=1,2

sisjEα(νi − νi1, νj − ν
j
1)
]1/2

for all ν,ν1 ∈ Ĕ+
α (A),

we also see from (3.4) by means of a straightforward calculation that, in fact,

(3.5) ‖ν − ν1‖Ĕ+α (A) = ‖Rν −Rν1‖α,

so that Ĕ+
α (A) forms a metric space with the metric ‖ν − ν1‖Ĕ+α (A). Since, in con-

sequence of (3.5), Ĕ+
α (A) and its R-image are isometric, similar to the terminology

in Eα(Rn) we shall call the topology of the metric space Ĕ+
α (A) strong.

3.3. Unconstrained f-weighted minimum α-Riesz energy problem

Given a locally compact space X, let Φ(X) consist of all lower semicontinuous func-

tions ψ : X→ (−∞,∞] such that ψ > 0 unless X is compact. Then for any ψ ∈ Φ(X),

the map

µ 7→ 〈ψ, µ〉, µ ∈M+(X),
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is vaguely lower semicontinuous (see, e.g., [9, Section 1.1]).

Fix a vector-valued function f = (fi)i=1,2, where each fi : Ai → [−∞,∞] is

universally measurable and it is treated as an external field acting on the charges

from M+(Ai;Di). Then the f -weighted α-Riesz energy of ν ∈ E+
α (A) is defined by

(3.6) Gα,f (ν) := Eα(ν) + 2〈f ,ν〉;

Gα,f (·) is also known as the Gauss functional (see, e.g., [13]). Let E+
α,f (A) consist of

all ν ∈ E+
α (A) with finite Gα,f (ν).

In this paper, we tacitly assume that one of the following Cases I or II holds:

I. For every i = 1, 2, fi ∈ Φ(Ai), where Ai is thought of as a locally compact

space;

II. For every i = 1, 2, fi = siU
ζ
α

∣∣
Ai

, where a (signed) scalar measure ζ ∈ Eα(Rn)

is given.

For any ν ∈ Ĕ+
α (A), Gα,f (ν) is then well defined in both Cases I and II. Furthermore,

if Case II takes place, then, by (3.6) and (3.4),

Gα,f (ν) = ‖Rν‖2α + 2
∑
i=1,2

siEα(ζ, νi)(3.7)

= ‖Rν‖2α + 2Eα(ζ,Rν) = ‖Rν + ζ‖2α − ‖ζ‖2α
and, consequently,

(3.8) −∞ < −‖ζ‖2α 6 Gα,f (ν) <∞ for all ν ∈ Ĕ+
α (A).

Also fix a numerical vector a = (ai)i=1,2 with ai > 0 and a vector-valued function

g = (gi)i=1,2, where all the gi : Di → (0,∞) are continuous and such that

(3.9) gi,inf := inf
x∈Ai

gi(x) > 0.

Write

M+(A,a,g) :=
{
ν ∈M+(A) : 〈gi, νi〉 = ai for all i = 1, 2

}
,

E+
α,f (A,a,g) := M+(A,a,g) ∩ E+

α,f (A),

Gα,f (A,a,g) := inf
ν∈E+α,f (A,a,g)

Gα,f (ν).

Observe that, because of (3.9),

νi(Ai) 6 aig
−1
i,inf <∞ for all ν ∈M+(A,a,g)

and, therefore,

(3.10) M+(A,a,g) ⊂ M̆+(A), E+
α,f (A,a,g) ⊂ Ĕ+

α (A).

Combined these with Lemma 3.4 and the fact that a lower semicontinuous function

is bounded from below on a compact set, in Case I we obtain

Gα,f (A,a,g) > −∞.

The same holds true in Case II as well, which is obvious from (3.8) and (3.10).
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If the class E+
α,f (A,a,g) is nonempty or, equivalently, if

(3.11) Gα,f (A,a,g) <∞,

then the following (unconstrained) f -weighted minimum α-Riesz energy problem,

also known as the Gauss variational problem (see [10,13]), makes sense.

Problem 3.5. Does there exist λA ∈ E+
α,f (A,a,g) with Gα,f (λA) = Gα,f (A,a,g)?

Remark 3.6. Analysis similar to that for a standard condenser (cf. Lemma 6.2

in [17]) shows that assumption (3.11) is equivalent to the following one:

fi(x) <∞ n.e. in Ai, i = 1, 2.

In turn, this yields that (3.11) holds automatically whenever Case II takes place, for

the α-Riesz potential of ζ ∈ Eα(Rn) is finite n.e. in Rn.

Remark 3.7. In the case where every Ai is compact in Di (i.e., A is a compact

standard condenser) and Case I takes place, the solvability of Problem 3.5 can easily

be established by exploiting the A-vague topology only, since then M+(A,a,g) is

A-vaguely compact, while Gα,f (·) is A-vaguely lower semicontinuous on E+
α,f (A)

(see [13, Theorem 2.30]). However, these arguments break down if any of the two

requirements is not satisfied, and then Problem 3.5 becomes rather nontrivial. E.g.,

M+(A,a,g) is no longer A-vaguely compact if some of the Ai is noncompact in Di.

Remark 3.8. Assume that A is still a standard condenser, though now, in contrast

to Remark 3.7, its plates might be noncompact in Rn. Under the assumption

(3.12) dist (A1, A2) := inf
x∈A1, y∈A2

|x− y| > 0,

in [17, 18] we worked out an approach based on both the A-vague and the strong

topologies on E+
α (A) and a certain strong completeness result, which made it possible

to provide a fairly complete analysis of Problem 3.5. In more detail, it has been shown

that, if gi|Ai , i = 1, 2, are bounded from above, then, in both Cases I and II,

(3.13) Cα(A1 ∪A2) <∞

is sufficient for Problem 3.5 to be (uniquely) solvable for every a (see [17], Theo-

rem 8.1). However, if (3.13) does not hold, then, in general, there exists a vector a′

such that the Gauss variational problem admits no solution [17]. Therefore, it was

interesting to give a description of the set of all vectors a for which the problem would

be, nevertheless, solvable. Such a characterization has been established in [18].

In the rest of the paper, except for Remark 3.10, we do not assume (3.12) nec-

essarily to hold. Then the results obtained in [17, 18] and the approach developed

are no longer valid. In particular, assumption (3.13) does not guarantee anymore

that Gα,f (A,a,g) is attained among ν ∈ E+
α,f (A,a,g). Using the electrostatic in-

terpretation, a short-circuit between the touching oppositely-charged plates of the
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condenser might occur. Therefore, it is meaningful to ask what kind of additional

requirements on the measures under consideration would prevent this phenomenon,

and a solution to the corresponding f -weighted minimum α-Riesz energy problem

would, nevertheless, exist.

The idea discussed below is to find out such an upper constraint on the measures

from M+(A,a,g) which would not allow the ”blow-up” effect between A1 and A2.

3.4. Constrained f-weighted minimum α-Riesz energy problem

Let C(A) consist of all σ = (σi)i=1,2 ∈M+(A) such that

(3.14) Sσ
i

Di = Ai and 〈gi, σi〉 > ai for all i = 1, 2;

these σ will serve as constraints for ν ∈M+(A). Given σ ∈ C(A), write

Mσ(A) :=
{
ν ∈M+(A) : νi 6 σi for all i = 1, 2

}
,

where νi 6 σi means that σi − νi is a nonnegative scalar measure, and

Mσ(A,a,g) := Mσ(A) ∩M+(A,a,g),

Eσα,f (A,a,g) := Mσ(A,a,g) ∩ E+
α,f (A).

Since Eσα,f (A,a,g) ⊂ E+
α,f (A,a,g), we get

−∞ < Gα,f (A,a,g) 6 Gσ
α,f (A,a,g) := inf

ν∈Eσα,f (A,a,g)
Gα,f (ν) 6∞.

If the class Eσα,f (A,a,g) is nonempty or, equivalently, if

(3.15) Gσ
α,f (A,a,g) <∞,

then the following constrained f -weighted minimum α-Riesz energy problem, also

known as the constrained Gauss variational problem, makes sense.

Problem 3.9. Given σ ∈ C(A), does there exist λσ
A ∈ Eσα,f (A,a,g) with

Gα,f (λ
σ
A) = Gσ

α,f (A,a,g)?

Remark 3.10. Assume for a moment that (3.12) holds. It has been shown by [16,

Theorem 6.2] that if, in addition, gi|Ai , i = 1, 2, are bounded from above and con-

ditions (3.13) and (3.15) are satisfied, then, in both Cases I and II, Problem 3.9 is

(uniquely) solvable. But this does not remain true if requirement (3.12) is dropped.

Remark 3.11. If 0 < α 6 2 < n, a1 = a2, g = 1, A2 is not α-thin at ωRn ,

f2 = 0 and σ2 = ∞ (i.e., no external field and no constraint act on the measures

concentrated in A2), then sufficient and/or necessary conditions for the solvability

of Problem 3.9 have been established in [7]. Crucial to the arguments exploited in [7]

is that, in this special case, Problem 3.9 can be reduced to the problem of minimizing

the f1-weighted gαD1
-Green energy over the class E+

gαD1

(A1;D1). However, under the

assumptions of the present study, such an observation is no longer valid.
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Remark 3.12. If a1 = a2, g = 1, f = 0 and Ai, i = 1, 2, are bounded, then

the constrained minimum logarithmic energy problem for a condenser with touching

plates in C has been investigated by Beckermann and Gryson (see [1, Theorem 2.2]).

Our paper is related to the α-Riesz kernels, 0 < α < n, in Rn, n > 2, and the results

obtained and the approaches developed are rather different from those in [1].

4. Sufficient conditions for the solvability of Problem 3.9

Denote by B the closure of B ⊂ Rn in Rn := Rn ∪ {ωRn}, the one-point compactifi-

cation of Rn.

Theorem 4.1. Let A, f , g and σ ∈ C(A) possess the following four properties:

(a′) A1∩A2 consists of at most one point, i.e., A1∩A2 = ∅∨{x0} where x0 ∈ Rn;

(b′) fi(x) <∞ n.e. in Ai, i = 1, 2;

(c′) Eα
(
σi
∣∣
Ki

)
<∞ for every compact Ki ⊂ Ai, i = 1, 2;

(d′) 〈gi, σi〉 <∞, i = 1, 2.

Then, in both Cases I and II, Problem 3.9 is uniquely solvable for every vector a.

The proof of Theorem 4.1 is given in Section 6; it is based on Theorem 5.1, which

provides a strong completeness result for metric subspaces of Ĕ+
α (A).

Example 4.2. Let A = (A1, A2) be as in Example 3.2. Having fixed α ∈ (0, 3),

assume that g = 1 and either Case II holds or fi(x) < ∞ n.e. in Ai, i = 1, 2.

For any a = (ai)i=1,2 define σi := cim3|Ai , where ci ∈ (ai,∞) is chosen arbitrarily

and m3 denotes the 3-dimensional Lebesgue measure on R3. Then, by Theorem 4.1,

Problem 3.9 admits a solution; hence, no short-circuit between A1 and A2 occurs,

though these conductors touch each other at the point ξ0 (see Example 3.2).

5. Strong completeness theorem for metric subspaces of Ĕ+α (A)

Let M+(A,6a,g) consist of all ν ∈M+(A) such that 〈gi, νi〉 6 ai for all i = 1, 2.

In view of (3.9),

(5.1) νi(Ai) 6 aig
−1
i,inf <∞ for all ν ∈M+(A,6a,g).

Hence, E+
α (A,6 a,g) := E+

α (A) ∩M+(A,6 a,g) can be thought of as a metric

subspace of Ĕ+
α (A); its topology will likewise be called strong.

Theorem 5.1. Suppose that a generalized condenser A satisfies condition (a′) of

Theorem 4.1. Then the metric space E+
α (A,6 a,g) is strongly complete and the

strong topology on this space is finer than the induced A-vague topology.
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Remark 5.2. In view of the fact that the metric space E+
α (A,6 a,g) is isometric

to its R-image, Theorem 5.1 has singled out a strongly complete topological subspace

of the pre-Hilbert space Eα(Rn), whose elements are signed Radon measures. This is

of independent interest since, according to a well-known counterexample by Cartan,

the whole pre-Hilbert space Eα(Rn) is, in general, strongly incomplete.

5.1. Auxiliary results

Based on the definition of the A-vague topology (see Definition 3.3), we call a set

F ⊂M+(A) A-vaguely bounded if, for every i = 1, 2 and every ϕ ∈ C0(Di),

sup
ν∈F
|νi(ϕ)| <∞.

Lemma 5.3. If F ⊂M+(A) is A-vaguely bounded, then it is A-vaguely relatively

compact.

Proof. Since by [3, Chapter III, Section 2, Proposition 9] any vaguely bounded

part of M+(Di) is vaguely relatively compact, the lemma follows from Tychonoff’s

theorem on the product of compact spaces (see, e.g., [11, Chapter 5, Theorem 13]).�

Lemma 5.4. M+(A,6a,g) is A-vaguely bounded and A-vaguely closed; hence, it

is A-vaguely compact.

Proof. Indeed, it is obvious from (5.1) that M+(A,6 a,g) is A-vaguely bounded.

Fix an arbitrary {νk}k∈N ⊂M+(A,6a,g); then, by Lemma 5.3, it has an A-vague

cluster point ν0. In fact, ν0 ∈ M+(A), for M+(A) is A-vaguely closed. Choose a

subsequence {νkm}m∈N of {νk}k∈N that converges A-vaguely to ν0. As gi is positive

and continuous, we get

〈gi, νi0〉 6 lim inf
m→∞

〈gi, νikm〉 6 ai for all i = 1, 2,

and the lemma follows. �

Lemma 5.5. Assume that A is a standard condenser; i.e., A1 ∩ A2 = ∅ ∨ {ωRn}.
Then the metric space E+

α (A)
(

= Ĕ+
α (A)

)
is strongly complete. In more detail, any

strong Cauchy sequence {νk}k∈N ⊂ E+
α (A) converges both strongly and A-vaguely

to some ν0 ∈ E+
α (A), and this limit is unique.

Proof. It is clear from (3.2) that, for a standard A,

E+
α (A) = Ĕ+

α (A).

Since Ĕ+
α (A) and R

(
Ĕ+
α (A)

)
, the latter being treated as a metric subspace of the

pre-Hilbert space Eα(Rn), are isometric to each other by (3.5), the lemma follows

from [15] (see Theorem 1 and Corollary 1 therein). �
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5.2. Proof of Theorem 5.1

Fix a strong Cauchy sequence {νk}k∈N ⊂ E+
α (A,6a,g). According to Lemma 5.4,

it has an A-vague cluster point ν0 ∈ M+(A,6 a,g). Let {νkm}m∈N be a (strong

Cauchy) subsequence of {νk}k∈N that converges A-vaguely to ν0, i.e.

(5.2) νikm → νi0 vaguely in M(Di), i = 1, 2.

We proceed by showing that Eα(ν0) is finite, so that

(5.3) ν0 ∈ E+
α (A,6a,g)

(
⊂ Ĕ+

α (A)
)
,

and, moreover, νkm → ν0 strongly as m→∞, i.e.

(5.4) lim
m→∞

‖νkm − ν0‖Ĕ+α (A) = 0.

To establish these assertions, it is enough to analyze the case

(5.5) A1 ∩A2 = {x0} where x0 ∈ Rn,

since otherwise they are obtained directly from Lemma 5.5.

Consider the inversion I with respect to the (n − 1)-dimensional unit sphere

centered at x0; namely, each point x 6= x0 is mapped to the point x∗ on the ray

through x which issues from x0, determined uniquely by

|x− x0| · |x∗ − x0| = 1.

This is a one-to-one, bicontinuous mapping of Rn \ {x0} onto itself; furthermore,

(5.6) |x∗ − y∗| = |x− y|
|x0 − x||x0 − y|

.

Extend it to a one-to-one, bicontinuous map of Rn onto itself by setting I(x0) = ωRn .

To each signed scalar measure ν ∈ M(Rn) with ν
(
{x0}

)
= 0 there corresponds

the Kelvin transform ν∗ ∈M(Rn) by means of the formula

dν∗(x∗) = |x− x0|α−n dν(x), x∗ ∈ Rn

(see [14] or [12, Chapter IV, Section 5, n◦ 19]). Then, in view of (5.6),

Uν
∗

α (x∗) = |x− x0|n−αUνα(x), x∗ ∈ Rn,

and therefore

(5.7) Eα(ν∗) = Eα(ν).

It is clear that the Kelvin transformation is additive and it is an involution, i.e.(
ν1 + ν2

)∗
= ν∗1 + ν∗2 ,(5.8)

(ν∗)∗ = ν.(5.9)

Write A∗i := I
(
Ai
)
∩Rn, i = 1, 2; then A∗ = (A∗1, A

∗
2) forms a standard condenser

in Rn, which is obvious from (5.5) and the above-mentioned properties of I.

Applying the Kelvin transformation to each of the components of any given

ν = (νi)i=1,2 ∈ M̆+(A), we get ν∗ :=
(
(νi)∗

)
i=1,2

∈ M+(A∗); and the other way

around. Based on Lemma 3.4 and relations (3.5) and (5.7)–(5.9), we also see that
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the α-Riesz energy of ν ∈ M̆+(A) is well defined if and only if so is that of ν∗, and

then they coincide; and, furthermore,

(5.10) ‖ν∗1 − ν∗2‖E+α (A∗) = ‖ν1 − ν2‖Ĕ+α (A) for all ν1,ν2 ∈ Ĕ+
α (A).

Summarizing what has thus been observed, we conclude that the Kelvin transfor-

mation is a one-to-one, isometric mapping of Ĕ+
α (A) onto E+

α (A∗).

Let νkm , m ∈ N, and ν0 be as above. In view of (5.1) and (5.2), for each i = 1, 2

one can apply [12, Lemma 4.3] to νikm , k ∈ N, and νi0, and consequently

(5.11) ν∗km → ν∗0 A-vaguely as m→∞.

But
{
ν∗km

}
m∈N is a strong Cauchy sequence in E+

α (A∗), which is clear from (5.10).

This together with (5.11) implies, by Lemma 5.5, that ν∗0 ∈ E+
α (A∗) and

lim
m→∞

‖ν∗km − ν
∗
0‖E+α (A∗) = 0.

Repeated application of (5.10) then leads to relations (5.3) and (5.4) as claimed.

In turn, (5.4) yields νk → ν0 strongly as k → ∞, for {νk}k∈N is strongly fun-

damental. It has thus been established that {νk}k∈N converges strongly to any of

its A-vague cluster points. As ‖ν1 − ν2‖Ĕ+α (A) is a metric, ν0 has to be the unique

A-vague cluster point of {νk}k∈N. Since the A-vague topology is Hausdorff, ν0 is

actually also the A-vague limit of {νk}k∈N (cf. [2, Chapter I, Section 9, n◦ 1]). This

completes the proof. �

6. Proof of Theorem 4.1

We start by observing that Eσα,f (A,a,g) is nonempty and, hence, (3.15) holds. In-

deed, it is seen from assumptions (3.14) and (b′) in consequence of [9, Lemma 1.2.2]

that, for every i = 1, 2, there is a compact set Ki ⊂ Ai such that 〈gi, σi|Ki〉 > ai and

fi(x) 6M <∞ for all x ∈ Ki. Define θi := σi|Ki
/
〈gi, σi|Ki〉. Due to assumption (c′)

and Lemma 3.4, we then obtain θ := (θi)i=1,2 ∈ Eσα,f (A,a,g) as claimed.

Therefore, the class Mσ
α,f (A,a,g) of all {νk}k∈N ⊂ Eσα,f (A,a,g) with

(6.1) lim
k→∞

Gα,f (νk) = Gσ
α,f (A,a,g)

is nonempty. Fix arbitrary {νk}k∈N and {µm}m∈N in Mσ
α,f (A,a,g). Taking (3.10)

into account, we proceed by proving that

(6.2) lim
k,m→∞

‖νk − µm‖Ĕ+α (A) = 0.

Based on the convexity of Eσα,f (A,a,g), from (3.4) and (3.6) we get

4Gσ
α,f (A,a,g) 6 4Gα,f

(νk + µm
2

)
= ‖Rνk +Rµm‖2α + 4〈f ,νk + µm〉.

On the other hand, applying the parallelogram identity in the pre-Hilbert space

Eα(Rn) to Rνk and Rµm and then adding and subtracting 4〈f ,νk + µm〉, we have

‖Rνk −Rµm‖2α = −‖Rνk +Rµm‖2α − 4〈f ,νk + µm〉+ 2Gα,f (νk) + 2Gα,f (µm).
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When combined with the preceding relation, this gives

0 6 ‖Rνk −Rµm‖2α 6 −4Gσ
α,f (A,a,g) + 2Gα,f (νk) + 2Gα,f (µm).

On account of (3.5), (6.1) and the fact that Gσ
α,f (A,a,g) is finite, we derive (6.2)

from the very relation by letting k,m→∞.

Assuming now {νk}k∈N and {µm}m∈N in (6.2) to be equal, we see that any

fixed sequence {νk}k∈N ∈Mσ
α,f (A,a,g) is strongly fundamental in the metric space

E+
α (A,6 a,g). Thus, by Theorem 5.1, there exists the unique ν0 ∈ E+

α (A,6 a,g)

such that

(6.3) νk → ν0 A-vaguely (as k →∞),

(6.4) lim
k→∞

‖νk − ν0‖Ĕ+α (A) = 0.

We assert that this ν0 gives a solution to Problem 3.9, i.e.

(6.5) ν0 ∈ Eσα,f (A,a,g) and Gα,f (ν0) = Gσ
α,f (A,a,g).

Observe that

Gα,f (ν0) 6 lim inf
k→∞

Gα,f (νk).

Indeed, if Case I holds, then this inequality can be obtained directly from (6.3)

and (6.4), while otherwise it follows from (6.4) with the help of (3.7). Combining it

with (6.1) and (3.15), we get Gα,f (ν0) 6 Gσ
α,f (A,a,g) <∞.

As Mσ(A) is A-vaguely closed, we therefore conclude that relation (6.5) will

have been established once for each i = 1, 2 we show

(6.6) 〈gi, νi0〉 = ai.

Consider an exhaustion of Ai by an increasing sequence of compact sets K` ⊂ Ai,

` ∈ N. In view of the positivity and continuity of gi on Ai, from (6.3) and [9,

Lemma 1.2.2] we get

ai > 〈gi, νi0〉 = lim
`→∞

〈
giχK` , ν

i
0

〉
> lim
`→∞

lim sup
k→∞

〈
giχK` , ν

i
k

〉
= ai − lim

`→∞
lim inf
k→∞

〈
giχAi\K` , ν

i
k

〉
.

Hence, to prove (6.6), it is enough to verify the relation

(6.7) lim
`→∞

lim inf
k→∞

〈
giχAi\K` , ν

i
k

〉
= 0.

Since, by (d′),

∞ > 〈gi, σi〉 = lim
`→∞

〈
giχK` , σ

i
〉
,

we have

lim
`→∞

〈
giχAi\K` , σ

i
〉

= 0.

When combined with〈
giχAi\K` , ν

i
k

〉
6
〈
giχAi\K` , σ

i
〉

for all `, k ∈ N,

this implies (6.7), hence (6.6), and consequently (6.5).
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It is left to establish the statement on the uniqueness. Let, on the contrary, ν̂0

be an other solution of Problem 3.9. Then trivial sequences {ν0} and {ν̂0} are both

elements of Mσ
α,f (A,a,g) and therefore, by (6.2), ‖ν0 − ν̂0‖Ĕ+α (A) = 0. As Ĕ+

α (A) is

a metric space, this results in ν0 = ν̂0, and the proof is complete. �
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WARIACYJNY PROBLEM GAUSSA Z WARUNKAMI

POBOCZNYMI DLA KONDENSATORÓW ZE STYKAJA̧CYMI

SIȨ OK LADKAMI

S t r e s z c z e n i e
Badany problem minimum energii z warunkami pobocznymi przy zewnȩtrznym polu

zwia̧zanym z ja̧drem α-Riesza |x − y|α−n dowolnego rzȩdu α ∈ (0, n) dla uogólnionego
kondensatora A = (A1, A2) ze stykaja̧cymi siȩ przeciwnie na ladowanymi ok ladkami w Rn,
n > 2. Uzyskujemy warunki wystarczaja̧ce dla rozwia̧zalności tak postawionego problemu.
Nasze rozumowanie opiera siȩ g lównie na definicji stosowanej struktury metrycznej na
zbiorze miar wektorowych stowarzyszonych z kondensatorem A i na uzyskaniu twierdzenia
o zupe lności dla odpowiedniej przestrzeni metrycznej.

S lowa kluczowe: zagadnienia minimalizacji energii typu Riesza, pole zewnȩtrzne, warunek
poboczny, kondensator ze stykaja̧cymi siȩ ok ladkami, twierdzenie o silnej zupe lności dla
miar wektorowych
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EXACTLY MAXIMALLY CONVERGENT SEQUENCES

OF MULTIPOINT PADÉ APPROXIMANTS

Summary
Given a regular compact set E in C, a unit measure µ supported by E, a triangular

point set β := {{βn,k}nk=1}∞n=1, β ⊂ E and a function f , holomorphic on E, let πβ,fn,m be the
associated multipoint β-Padé approximant of order (n,m). Under the condition that the
points β are uniformly distributed relatively to the measure µ, we provide results about the
existence of exactly maximally convergent sequences πβ,fn,m as n → ∞,m− fixed relatively
to µ and the domain of the m− meromorphy of the function f .

Keywords and phrases: multipoint Padé approximants, maximal convergence, domain of
m-meromorphy

1. Introduction

We first introduce some needed notations.

Let Πn, n ∈ N be the class of the polynomials of degree ≤ n and Rn,m := {r =

p/q, p ∈ Πn, q ∈ Πm, q 6≡ 0}.
Given a compact set E, we say that E is regular, if the unbounded component

of the complement Ec := C \ E is solvable with respect to Dirichlet problem. We

will assume throughout the paper that E possesses a connected complement Ec. In

what follows, we will be working with the max-norm ||...||E on E; that is ||...||E :=

maxz∈E |...|(z).
Let B(E) be the class of the unit measures supported on E; that is supp(...) ⊆ E.

We say that the infinite sequence of Borel measures {µn} ∈ B(E) converges in the

weak topology to a measure µ and write µn −→ µ, if



102 R. K. Kovacheva

∫
g(t)dµn →

∫
g(t)dµ

for every function g continuous on E. We associate with a measure µ ∈ B(E) the

logarithmic potential Uµ(z); that is,

Uµ(z) :=

∫
log

1

|z − t|
dµ.

Recall that Uµ ( [1]) is a function superharmonic in C, subharmonic in C \ supp(µ),

harmonic in C \ supp(µ) and

Uµ(z) = ln
1

|z|
+ o(1), z →∞.

We now associate with a polynomial p ∈ Πn the normalized counting measure

µp of p, that is

µp(F ) :=
number of zeros of p on F

deg p
,

where F is a point set in C.
Given a domain B ⊂ C, a function g and a number m ∈ N, we say that g is

m-meromorphic in B (g ∈ Mm(B)) if g has no more than m poles in B (poles are

counted with their multiplicities). We say that a function f is holomorphic on the

compactum E and write f ∈ A(E), if it is holomorphic in some open neighborhood

of E.

Let β be an infinite triangular table of points, β := {{βn,k}nk=1}n=1,2,..., βn,k ∈ E,

with no limit points outside E (we write β ∈ E). Set

ωn(z) :=

n∏
k=1

(z − βn,k).

Let f ∈ A(E) and (n,m) be a fixed pair of nonnegative integers. The rational

function πβ,fn,m := p/q, where the polynomials p ∈ Πn and q ∈ Πm are such that

fq − p
ωn+m+1

∈ A(E)

is called a β-multipoint Padé approximant of f of order (n,m). As is well known,

the function πβ,fn,m always exists and is unique ( [2], [3]). In the particular case when

β ≡ 0, the multipoint Padé approximant πβ,fn,m coincides with the classical Padé

approximant πfn,m of order (n,m) ( [4]).

Set

(1) πβ,fn,m :=
P β,fn,m

Qβ,fn,m
,

where the polynomials P β,fn,m and Qβ,fn,m do not have common divisors. The zeros of

Qβ,fn,m are called free zeros of πβ,fn,m; degQn,m ≤ m.
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We say that the points βn,k are uniformly distributed relatively to the measure µ,

if

µωn −→ µ, n→∞.

We recall the notion of m1-Hausdorff measure (cf. [5]). For Ω ⊂ C, we set

m1(Ω) := inf

{∑
ν

|Vν |

}
where the infimum is taken over all coverings {

∑
Vν} of Ω by disks and |Vν | is the

radius of the disk Vν .

Let D be a domain in C and ϕ a function defined in D with values in C. A

sequence of functions {ϕn}, meromorphic in D, is said to converge to a function ϕ

m1-almost uniformly inside D if for any compact subset K ⊂ D and every ε > 0

there exists a set Kε ⊂ K such that m1(K\Kε) < ε and the sequence {ϕn} converges

uniformly to ϕ on Kε.

For µ ∈ B(E), define

ρmin := inf
z∈E

e−U
µ(z)

and

%max := max
z∈E

e−U
µ(z);

(Uµ is superharmonic on E; hence it attains its minimum (on E)). As is known

( [6], [1]),

e−U
µ(z) ≥ ρmin, z ∈ E

c.

Set, for r > ρmin,

Eµ(r) := {z ∈ C, e−U
µ(z) < r}.

Because of the upper semicontinuity of the function e−U
µ(z), the set Eµ(r) is open;

clearly Eµ(r1) ⊂ Eµ(r2) if r1 ≤ r2 and Eµ(r) ⊃ E if r > %max.

Let f ∈ A(E) and m ∈ N be fixed. Let Rm,µ(f) = Rm,µ and Dm,µ(f) = Dm,µ :=

Eµ(Rm,µ) denote, respectively, the radius and domain of m-meromorphy with respect

to µ; that is

Rm,µ := sup{r, f ∈Mm(Eµ(r))}.

Furthermore, we introduce the notion of a µ-maximal convergence to f with

respect to the m-meromorphy of a sequence of rational functions {rn,ν} (a µ-maximal

convergence): that is, for any ε > 0 and each compact set K ⊂ Dm, there exists a

set Kε ⊂ K such that m1(K \Kε) < ε and

lim sup
n+ν→∞

||f − rn,ν ||1/nKε
≤ ||e

−Uµ ||K
Rm,µ(f)

.

Hernandez and Calle Ysern proved the following:

Theorem A [7]. Let E,µ, β and ωn, n = 1, 2, ..., be defined as above. Suppose that

µωn −→ µ as n→∞ and f ∈ A(E). Then, for each fixed m ∈ N, the sequence πβ,fn,m
converges to f µ-maximally with respect to the m-meromorphy.
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Theorem A generalizes E. B. Saff’s theorem of Montessus de Ballore’s type about

multipoint Padé approximants (see [2]).

From Theorem A, it follows that for every compact set K ⊂ Dm,µ which does not

contain poles of f and concentration points of free poles, as n→∞, the estimation

lim sup
n+ν→∞

||f − rn,ν ||1/nKε
≤ ||e

−Uµ ||K
Rm,µ(f)

holds.

We now utilize the normalization of the polynomials Qn,m(z) with respect to a

given open set Dm,µ; that is,

(2) Qn,m(z) =
∏

(z − α′n,k)
∏

(1− z/α′′n,k),

where α′n,k, α
′′
n,k are the zeros lying inside, resp. outside Dm,µ. Under this normal-

ization, for every compact set K and n large enough there holds

‖Qβ,fn,m‖K ≤ C1,

where C1 = C1(K) is a positive constant, depending on K. In the sequel, we denote

by Ci positive constant, independent on n and different at different occurrences.

Let Q be the monic polynomial, the zeros of which coincide with the poles of f in

Dm,µ; degQ ≤ m. It was proved in [7] (Proof of Lemma 2.3) that for every compact

subset K of Dm,µ

(3) lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
K ≤ ||e

−Uµ ||K
Rm,µ

.

Hence, −Uµ(z)− lnRm,µ is a harmonic majorant of the family

{|(fQQβ,fn,m −QP β,fn,m)(z)|1/n}∞n=1 in Dm,µ.

In the present paper, we pose the question about sufficient conditions of the

function above to be an exact harmonic majorant, with other words,

lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
K =

||e−Uµ ||K
Rm,µ

on every compactum in Dm,µ. Clearly, if −Uµ − lnRm,µ is an exact harmonic ma-

jorant, then there is a infinite sequence Λ such that

(4) lim
n→∞,n∈Λ

‖QfQβ,fn,m − P β,fn,mQ‖
1/n
K = ‖e−U

µ

‖K/Rm,µ

(see [9], [10]) for a discussion of exact harmonic majorant)). We will refer to the

sequences Λ as to an exactly maximally convergent sequence relatively the measure

µ with respect to the m-meromorphy of f .

In [8], the validity of the following result was established:

Theorem B. Under the same conditions on E, assume that µ ∈ B(E) and that

β ⊂ E is a triangular set of points uniformly distributed relatively to the measure

µ. Let m ∈ N be fixed, f ∈ A(E) and %max < Rm,µ < ∞. Suppose that Dm,µ
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is connected. Then the function −Uµ − lnRm,µ is an exact harmonic majorant in

Dm,µ − E%max of the family {|fQQβ,fn,m −QP β,fn,m|1/n}

Before announcing the next result in the named area, we introduce the notion

on a triangle point set of Newtonian type.

Given a triangle point set ω with no concentration points outside E, we say that

it is of Newtonian type, if ωn/ωn+1 for every n ∈ N.
The next result was established in [7].

Theorem C. Preserving the conditions on E and ω from Theorem B, assume that

ω is of Newtonian type and m ∈ N is fixed. Then on each compactum K ⊂ Dm,µ

which does not contain poles of f and concentration points of free poles of πβn,m as

n→∞ and such that ρµ(K) is not attained at a point belonging to E there holds

lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
K =

||e−Uµ ||K
Rm,µ

.

2. Main results and Proofs

Before presenting the new result, we introduce the term of a multivalued singu-

larity.

Given a function g and an point z0 ∈ C we say that z0 is a multivalued singularity

of g if g can not be continued as a holomorhic function (analytic and single valued)

in any neighborhood of z0.

The main result of the present paper is

Theorem 1. Under the above conditions on E, assume that µ ∈ B(E) and that

β ⊂ E is a triangular set of points uniformly distributed relatively the measure µ.

Let m ∈ N be fixed, f ∈ A(E) and %max < Rm,µ < ∞. Assume that Dm,µ is a

domain and f has at least one multivalued singularity on ∂Dm,µ. Then the function

−Uµ − lnRm,µ is an exact harmonic majorant in Dm,µ of the family {|fQQβ,fn,m −
QP β,fn,m|1/n}.

As a consequence of Theorem 1, we derive

Theorem 2. Under the conditions of Theorem 1, there is a sequence Λ ⊂ N such

that on each compact set K ⊂ Dm,µ \E%max and non containing poles of f and free

poles of {πβn,m} there holds

lim sup
n∈Λ

||f − πβn,m||
1/n
K =

||e−Uµ ||K
Rm,µ

.

In what follows, we lay out the main ideas of the proof of Theorem 1. As noticed

above, Theorem 2 follows directly from Theorem 1.
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From (3), it follows that

lim
r→Rm,µ

lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
Eµ(r) ≤ 1.

Let us suppose that we have a strong inequality, i.e.,

lim
r→Rm,µ

lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
Eµ(r) < 1.

Using now Theorem 1 in [12], and repeating the proof on Theorem 4 in [13], we

conclude that the function f should be singlevalued in an appropriate neighborhood

of the set ∂Dm,µ. This contradicts the assertion that f has at least one multivalued

singularity on ∂Dm,µ - contradiction to the conditions of Theorem 2. Therefore,

(5) lim
r→Rm,µ

lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
Eµ(r) = 1.

We now prove, that for every r < Rm,µ

lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
Eµ(r) = 1.

Indeed, suppose that for some r, r ∈ (ρmax, Rm,µ

lim sup
n→∞

‖fQQβ,fn,m −QP β,fn,m‖
1/n
Eµ(r) ≤ e

−τ r

Rm,µ
.

The functions

χn(z) :=
1

n+m+ 1
ln |QQn+1P

β,f
n,m −QQnP

β,f
n+1,m| − Uµ(z)

are subharmonic in Eµ(r)c, and thus obey the maximum principle. Then it is easy

to see that lim supn χn(z) < 1 for z ∈ ∂Dm,µ. This opposes (5).

On this, the proof of Theorem 1 is completed.
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[9] J. L. Walsh, Overconvergence, degree of convergence, and zeros of sequences of ana-
lytic functions, Duke Math. J. 13 (1946), 195–234.

[10] J. L. Walsh, The analogue for maximally convergent polynomials of Jentzsch’s theo-
rem, Duke Math. J. 26 (1959), 605–616.

[11] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex
Domain, Amer. Math. Soc. Colloq. Pub. 20, New York 1969.

[12] A. A. Gonchar, The rate of rational approximation and the property of single valued-
ness of an analytic function in a neighborhood of an isolated singular point, Matem.
Sb. 94, no. 136 (1974), 265–282; English translation in Math. UdSSR Sb. 23, no. 2
(1974), 254–270.

[13] H. P. Blatt and R. K. Kovacheva, Growth behavior and zero distribution of rational
approximants Constructive approximation 34 (2011), 393–420.

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. Bonchev str, 1113 Sofia
Bulgaria
e-mail:rkovach@math.bas.bg

Presented by Zbigniew Jakubowski at the Session of the Mathematical-Physical
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DOK LADNIE MAKSYMALNIE ZBIEŻNE CIA̧GI

WIELOPUNKTOWYCH APPROKSYMANT PADÉ

S t r e s z c z e n i e
Przy danym regularnym zwartym zbiorze E na p laszczyźnie C, mierze jednostkowej µ

o nośniku E, trjka̧tnym zbiorze punktów β := {{βn,k}nk=1}∞n=1, β ⊂ E i funkcji f holomor-
ficznej na zbiorze E, niech πβ,fn,m bȩdzie stowarzyszona̧ β-aproksymanta̧ Padé rzȩdu (n,m).
Przy warunku, że punkty β sa̧ jednostajnie rozmieszczone relatywnie do miary µ, uzysku-
jemy wyniki o istnieniu dok ladnie maksymalnie zbieżnych cia̧gów πβ,fn,m przy n → ∞, zaś
m-liczba̧ naturalna̧ ustalona̧ relatywnie do µ i obszaru m-meromorficzności funkcji f .

S lowa kluczowe: wielopunktowe aproksymanty Padé, zbieżność maksymalna, obszar
m-meromorficzności
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MOISIL-THÉODORESCU QUATERNIONIC F (p, q, s)

FUNCTION SPACES

Summary
In this paper we define differentiability in the sense of Moisil-Théodorescu associated to

a particular embeding of R3 in the quaternionic space H. Using the Moisil-Théodorescu
derivative we introduce and study the analogous to the function spaces F (p, q, s) and
F0(p, q, s) introduced in the paper [30] R. Zhao. We obtain similar results that in the mono-
genic case, see [9, 11] and [21].

Keywords and phrases: Moisil-Théodorescu, Qi
p, i-Bloch and Fi(p, q, s) spaces.

1. Introduction

In [30], R. Zhao defined and studied the F (p, q, s) spaces that consist of analytic

functions f : D→ C such that

sup
a∈D

∫∫
D
|f ′(z)|p(1− |z|2)qgs(z, a) dx dy <∞

where 0 < p < ∞, −2 < q < ∞, 0 < s < ∞ and g is the Green’s function of the

unit disk D, given by

g(z, a) = ln

∣∣∣∣1− aza− z

∣∣∣∣ .
These spaces are the generalization of the Qs = F (2, 0, s) spaces introduced by R.

Aulaskari and Lappan in [1] for 1 ≤ s < ∞ and for 0 < s < 1 by R. Aulaskari,



110 A. Hernández Montes and L. F. Reséndis Ocampo

J. Xiao and R. Zhao in [2]. The family F (p, q, s) is quite general, includes, among

others, BMOA, Dirichlet and α-Bloch spaces. In this articles was proved that the

weight function g(z, a) can be replace by the weight

1−
∣∣∣∣ a− z1− az

∣∣∣∣2 .
Analogous F̃ (p, q, s) Bergman spaces were studied in [17] and [5].

There are several approaches to study these spaces in higher dimensions, see

[6–12,15] and [21] in the quaternionic case, [16] in hyperkählerian case and [22,24,25]

in the holomorphic case.

Let H be the skew field of real quaternions, that is, each element a ∈ H can be

written in the form

a := a0 + a1i+ a2j + a3k, al ∈ R, l = 0, 1, 2, 3

where 1, i, j, k are the basis elements of H, with the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j .

The product is extended by linearity. The quaternionic conjugation defined by a =

a0 − a1i− a2j − a3k permits to define the norm |a| of a ∈ H by

|a|2 = aa = aa = a2
0 + a2

1 + a2
2 + a2

3 .

Therefore, if a ∈ H \ {0}, the quaternion

a−1 :=
1

|a|2
a

is the multiplicative inverse of a. Also, the norm satisfies |ab| = |a||b| for each

a, b ∈ H.

The standard Moisil-Théodorescu operator (MT -operator) and its conjugate are

given by

DMT := i
∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
,

DMT := −i ∂
∂x1
− j ∂

∂x2
− k ∂

∂x3
.

Let f : Ω ⊂ R3 −→ H be a function of (C1,Ω). We say that f is Moisil-Théodorescu

hyperholomorphic (MT hyperholomorphic) ifDMT f = 0 andMTΩ denote the kernel

of DMT .

This operator does not have a good derivative for MT hyperholomorphic funtions

as we will show below.

One way is extending the domain of the function and to use the Fueter operator,

that has a good derivative, see [28] and [20]. Other one is using differential forms to

define a good derivative.

Let Ω̃ := R × Ω ⊂ H and f : Ω ⊂ R3 −→ H. Define f̃ : Ω̃ −→ H by
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f̃(x0, x1, x2, x3) := f(x1, x2, x3) for all x0 ∈ R. If f ∈MTΩ, then

DF [f̃ ] =
∂f̃

∂x0
(x0, x1, x2, x3) +DMT [f̃ ](x0, x1, x2, x3) = 0

and

DF [f̃ ] =
∂f̃

∂x0
(x0, x1, x2, x3) +DMT [f̃ ](x0, x1, x2, x3) = 0.

where DF is the Fueter operator and DF its conjugate. Then f(x) = h̃(z) + l̃(z)j

where h̃ and l̃ are two holomorphic complex functions of the complex variable z =

x1 + x2i.

By other way, following [20], if f ∈MTΩ and there exist a 1-differential form σ1
x

and a 2-differential form σ2
x such that

d(σ1
xf(x)) =

1

2
σ2
xDMT [f ](x) +

1

2
σ2
xDMT [f ](x)

= −1

2
σ2
xDMT [f ](x) +

1

2
σ2
xDMT [f ](x)

=
1

2
(−σ2

x + σ2
x)DMT [f ](x)

= 0.

For this reason all MT hyperholomorphic functions have derivative zero.

Now, we define an analogous of the Moisil-Théodorescu operator

Di
MT :=

∂

∂x1
− k ∂

∂x2
+ j

∂

∂x3

Observe that Di
MT := iDMT , then f ∈ MTΩ if and only if f belongs to the kernel

of Di
MT .

The conjugate of Di
MT is given by

D
i

MT :=
∂

∂x1
+ k

∂

∂x2
− j ∂

∂x3
.

In general if f ∈MTΩ then D
i

MT 6= 0 as f(x1, x2, x3) = x1 − kx2 shows.

To justify that D
i

MT is a good derivative we will use differential forms. In this

way we need to embed R3 in H. Motivated by the definition of the Di
MT operator we

choose the following isometric embedding: R3 3 x = (x1, x2, x3) 7→ x1−kx2 + jx3 =

x ∈ H that will denote by the i-embedding of R3 in H. We define R3
i := {x ∈ H :

x = x1 − kx2 + jx3} with basis {1,−k, j}.
Thus if we use differential forms to write the normal vector on a 2-surface in Ri3

we get

σ2
i := dx2 ∧ dx3 + kdx1 ∧ dx3 + jdx1 ∧ dx2.
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Let f : R3
i −→ H be a C1 function and ω = σ2

i f . The total differential of ω is:

dw = d(σ2
i f) = σ2

i ∧ df

= (dx2 ∧ dx3 + kdx1 ∧ dx3 + jdx1 ∧ dx2) ∧
[
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3

]
= Di

MT [f ]dx1 ∧ dx2 ∧ dx3.

Then f ∈MTΩ if and only if d(σ2
i f) = 0. By other way, similarly to σ2

i , we define

τi := −kdx3 − jdx2

and ω1 = τif . Thus

dω1 = d(τif) = τi ∧ df

= k

(
∂f

∂x1
dx1 ∧ dx3 +

∂f

∂x2
dx2 ∧ dx3

)
+ j

(
∂f

∂x1
dx1 ∧ dx2 −

∂f

∂x3
dx2 ∧ dx3

)
.

By other way:

σ2
iD

i

MT [f ]− σ2
iD

i
MT [f ]

= (dx2 ∧ dx3 + kdx1 ∧ dx3 + jdx1 ∧ dx2)

(
∂f

∂x1
+ k

∂f

∂x2
− j ∂f

∂x3

)
− (dx2 ∧ dx3 − kdx1 ∧ dx3 − jdx1 ∧ dx2)

(
∂f

∂x1
− k ∂f

∂x2
+ j

∂f

∂x3

)
= 2

[
k

(
∂f

∂x1
dx1 ∧ dx3 +

∂f

∂x2
dx2 ∧ dx3

)
+ j

(
∂f

∂x1
dx1 ∧ dx2 −

∂f

∂x3
dx2 ∧ dx3

)]
.

If we used the previous results we obtain

1

2

[
σ2
iD

i
MT [f ]− σ2

iD
i
MT [f ]

]
= d(τif).

Therefore if f ∈MTΩ and following [20], we define the i-hyper derivative of f as

f ′i := D
i

MT [f ].

Proposition 1.1. Let f : R3
i → H be a MT -hyperholomorphic function. Then

f ′i = 2
∂f

∂x1
.

Proof. By definition

iDi
MT [f ] = i

[
∂f

∂x1
+ k

∂f

∂x2
− j ∂f

∂x3

]
= i

∂f

∂x1
− j ∂f

∂x2
− k ∂f

∂x3
,

thus

−2i
∂f

∂x1
+ iDi

MT [f ] = −2i
∂f

∂x1
+ i

∂f

∂x1
− j ∂f

∂x2
− k ∂f

∂x3
= −i ∂f

∂x1
− j ∂f

∂x2
− k ∂f

∂x3

= DMT [f ] = −DMT [f ] = 0,

since f ∈MTΩ. This concludes the proof. �
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The operator Di
MT and its conjugate factorize the Laplace operator in R3, that

is.

Di
MT ◦Di

MT = ∆R3 .

As a consequence each f ∈ MTΩ is a harmonic function. Let a ∈ R3
i with |a| < 1,

we define the Möbius transform

ϕia : R3
i −

{
a

|a|2

}
→ H

by

ϕia(x) := (a− x)(1− ax)−1.

For R > 0, we define

Bi(R) := {x ∈ R3
i : |x| < R}, Bi := Bi(1), Si := ∂Bi

and Ai(R) := Bi \Bi(R).

Proposition 1.2. Let a ∈ Bi, then ϕia maps conformally the unit ball Bi onto

itself.

Proof. Its well known that ϕia is a conformal mapping, but we will give other proof,

see ( [4], Theorem 3.2.7). For x ∈ R3
i , a ∈ Bi a 6= 0 let

T0(x) =
a

|a|
x
a

|a|
, T1(x) =

(
|a|2

1− |a|2

)
x, T2(x) = x+

a

|a|2 − 1
,

T3(x) = x−1, x 6= 0, T4(x) =
a

|a|2
+ x,

then (
T4 ◦ T3 ◦ T2 ◦ T1 ◦ T0

)
(x) = (a− x)(1− ax)−1 = ϕia(x).

It is easy to see that each Ti preserves cross ratios. For example, by definition of

cross ratios, for T3 and x, y, z, w ∈ R3
i we have:

[T3(x), T3(y), T3(z), T3(w)] =
|T3(x)− T3(z)||T3(y)− T3(w)|
|T3(x)− T3(y)||T3(z)− T3(w)|

=

∣∣∣ x
|x|2 −

z
|z|2

∣∣∣ ∣∣∣ y
|y|2 −

w
|w|2

∣∣∣∣∣∣ x
|x|2 −

y
|y|2

∣∣∣ ∣∣∣ z
|z|2 −

w
|w|2

∣∣∣ .
As ∣∣∣∣ x|x|2 − z

|z|2

∣∣∣∣ =

∣∣∣∣ |z|2x− |x|2z|x|2|z|2

∣∣∣∣ =

∣∣∣∣x|z|2 − |x|2z|x|2|z|2

∣∣∣∣ =
1

|x|2|z|2
|xzz − xxz|

=
1

|x|2|z|2
|x(z − x)z| = |x− z|

|x||z|
then

[T3(x), T3(y), T3(z), T3(w)] = [x, y, z, w].
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We now proof that ϕia(x) ∈ R3
i . Let a, x ∈ R3

i with a = a1 − ka2 + ja3 and x =

x1 − kx2 + jx3 with x 6= a
|a|2 , then

ϕia(x) =(a− x)(1− ax) = (a1 − x1)
(
1− (a1x1 + a2x2 + a3x3)

)
− < (0, a3 − x3, x2 − a2), (a3x2 − a2x3, a1x3 − a3x1, a2x1 − a1x2) >

+ (a1 − x1)
(
i(a3x2 − a2x3) + j(a1x3 − a3x1) + k(a2x1 − a1x2)

)
+
(
1− (a1x1 + a2x2 + a3x3))((x2 − a2)k + (a3 − x3)j

)
+
(
(x2 − a2)k + (a3 − x3)j

)
×
(
i(a3x2 − a2x3) + j(a1x3 − a3x1)

+ k(a2x1 − a1x2)
)

and its i-component is

(a1 − x1)(a3x2 − x3a2) + (a3 − x3)(x1a2 − a1x2)− (a1x3 − x1a3)(x2 − a2)

= a1a3x2 − a1x3a2 + x1x3a2 + a3x1a2 − a3a1x2 − x3x1a2 + x3a1x2

− a1x3x2 + a1x3a2 + x1a3x2 − x1a3a2 = 0.

Since xa+ ax = ax+ xa, then

|a|2 − (ax+ xa) + 1 = 1− (xa+ ax) + |a|2

or equivalently

(a− x)(a− x) = (1− ax)(1− xa).

That is

|ϕia(x)| = 1, if |x| = 1.

Since ϕia(0) = a ∈ Bi then ϕia(x) ∈ Bi for all x ∈ Bi and we finished the proof. �

The set of MT-hyperholomorphic functions defined on the unit ball Bi is denoted

by M := MTBi .

Our previous definitions are used to generalize the Qs type spaces (see [10, 21]).

More precisely, we have the following definitions. Let 0 < p < ∞, −2 < q < ∞,

0 < s <∞ and f ∈M. Define J ip,q,sf : Bi → [0,∞) by

J ip,q,sf(a) =

∫
Bi

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q (
1−

∣∣ϕia(x
)∣∣2)s dx .

The sets F iϕ(p, q, s) and F iϕ,0(p, q, s) are defined as

F iϕ(p, q, s) = { f ∈M : sup
a∈B

J ip,q,sf(a) <∞} ,

and

F iϕ,0(p, q, s) = { f ∈M : lim
|a|→1−

J ip,q,sf(a) = 0}.

The corresponding Besov spaces Bi,p and Bi,q,p are

F iϕ(p,
3p

2
− 3, 3) and F iϕ(p,

3p

2
− q, q)
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respectively. In this definitions we are using the weight function 1 −
∣∣ϕia(x)

∣∣2 and

we will proof in Theorem 4.2 that the weight function can by replace by a modified

Green’s function in quaternionic sense.

The set F iϕ(p, q, s) is a H-right module (also is left). This can be easily seen by

the inequality (x+ y)p ≤ 2p(xp + yp). From the definition of the sets they are right

H modules.

For 0 < p <∞, −1 < q <∞, define the Di
p,q weighted Dirichlet space, as the set

of f ∈M satisfying ∫
Bi

|Di

MT f(x)|p(1− |x|2)q dx <∞ .

From the definition of F iϕ(p, q, s) space the following result became immediate with

a = 0 .

Lemma 1.1. Let 0 < p < ∞, −1 < q < ∞ and 0 < s < ∞. Then F iϕ(p, q, s) ⊂
Di
p,q+s.

The i-Bloch spaces will be motivated and defined more later.

2. Preliminaries

Given a ∈ Bi, the Möbius transform ϕia : Bi → Bi satisfies

(2.1)
1−

∣∣ϕia (x)
∣∣2

1− |x|2
=

1− |a|2

|1− ax|2
= |Jϕia(x)| 13 for all x ∈ Bi,

where Jϕia denotes the Jacobian of the function ϕia. For 0 < R < 1 the pseudohy-

perbolic ball Di (a,R) is defined by

Di(a,R) =
{
x ∈ Bi :

∣∣ϕia (x)
∣∣ < R

}
.

This is an euclidean ball, with center and radius given respectively by

(2.2) c =
1−R2

1−R2 |a|2
a , r =

1− |a|2

1−R2 |a|2
R .

The next result is a consequence of Cauchy-Schwartz inequality.

Theorem 2.1. Let Ω ⊂ Rm be a domain, f : Ω → Rn be an integrable function on

Ω. Then ∣∣∣∣∫
Ω

f

∣∣∣∣ ≤ ∫
Ω

|f | .

Corollary 2.1. Let Ω ⊂ Rm be a domain and f : Ω → Rn with f = (f1, . . . , fn)

and 1 ≤ p <∞. If each coordinate function fi : Ω→ R is subharmonic, then |f |p is

subharmonic on Ω.
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The following result was proved in [12].

Lemma 2.1. Let 0 < p ≤ 2, 0 < r < 1, |a| < 1 and S ⊂ R be the unit sphere. Then

there exists C > 0 such that

(2.3)

∫
S

dσ (ζ)

|1− arζ|2p
≤ C

(1− |a| r)p
≤ C

(1− |a|)p
.

We reformulate the following result proved in [21].

Proposition 2.1. Let 0 < R < 1 and h : Bi → R be a continuous function. If

−2 < q <∞, 0 < s <∞ with −1 < q + s then

sup
a∈Bi

∫
Bi(R)

h(x)(1− |ϕia(x)|2)s dx <∞, lim
|a|→1−

∫
Bi(R)

h(x)(1− |ϕia(x)|2)s dx = 0

and

sup
a∈Bi

∫
Bi

(1−|x|2)q(1−|ϕia(x)|2)s dx <∞, lim
|a|→1−

∫
Bi

(1−|x|2)q(1−|ϕia(x)|2)s dx = 0.

Like in [29], we have (see [23]) :

Lemma 2.2. Let 1 ≤ p < ∞, a ∈ Bi and f : Bi → H be a MT-hyperholomorphic

function. Let ψif,a : Bi → H given by

(2.4) ψif,a(x) =
1− xa
|1− ax|3

D
i

MT f(ϕia(x)) .

Then ψif,a is a MT-hyperholomorphic function and |ψif,a|p is a subharmonic func-

tion.

The following result was proved in [26].

Lemma 2.3. Let q(r) and p(r) be two integrable and nonnegative functions on [0, 1).

If exists τ ′ with 0 < τ ′ < 1 and a positive constant C such that q(r) ≤ Cp(r) for

r ∈ [τ ′, 1). Then for all τ with τ ′ < τ ≤ 1 and all nondecreasing and nonnegative

function h(r) on [0, 1), there exists a constant K = K(τ) ≥ C independent of τ ′ and

h, such that ∫ τ

0

h(r)q(r) dr ≤ K
∫ τ

0

h(r)p(r) dr.

The hyperholomorphic constants of the i-Moisil-Théodorescu operator are char-

acterized by the following result.

Lemma 2.4. Let f : Bi → H such that D
i

MT f(x) = 0 = Di
MT f(x) for all x ∈ Bi.

Then f(x) = h̃(z) + l̃(z)j where h̃ and l̃ are two holomorphic complex functions of

the complex variable z = x2 + ix3.
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Proof. If

Di
MT f(x) = 0 = D

i

MT f(x)

for all x ∈ Bi, then

0 = Di
MT f(x) +D

i

MT f(x) = 2
∂f

∂x1
,

for this reason f does not depend of x1. Those

0 = Di
MT f(x) = −k ∂f

∂x2
+ j

∂f

∂x3

or equivalently

k
∂f

∂x2
= j

∂f

∂x3
.

If f = f1 + if2 + jf3 + kf4 then we get the following equations

∂f3

∂x2
= − ∂f4

∂x3
;

∂f4

∂x2
=
∂f3

∂x3

∂f1

∂x2
= − ∂f2

∂x3
;

∂f2

∂x2
=
∂f1

∂x3
.

Define h̃(z) = f4(z) + if3(z) and l̃(z) = f2(z) + if1(z), where z = x2 + ix3. These

functions are holomorphic by the previous relations. �

We say that f, g ∈M are equivalents (∼) if f(x)− g(x) = h̃(z) + jl̃(z) where h̃

and l̃ are two holomorphic complex functions of the complex variable z = x2 + ix3.

If we consider M with this equivalence relation then for 1 ≤ p <∞, by Minkowski’s

inequality

‖ f ‖ = sup
a∈Bi

(Ip,q,sf(a))
1
p

= sup
a∈Bi

(∫
Bi

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
(1− |ϕia(x)|2)s dx

) 1
p

defines a norm in F iϕ(p, q, s).

3. Properties of MT-spaces

In this section we present several basic properties and some examples of different

quaternionic spaces.

Proposition 3.1. Let 1 ≤ p < ∞ and −2 < q < ∞. If 0 < s < ∞ and q + s ≤ −1

then F iϕ(p, q, s) consists only of constant functions.

Proof. Let f ∈ F iϕ(p, q, s) be a non constant function. Then there exist x0 ∈ Bi

and 0 < R < 1 such that |Di

MT f(x)| > 0 for all x ∈ Bi(x0, R) ⊂ Bi. Thus by

subharmonicity of |Di

MT f |p we have
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∞ >

∫
Bi

|Di

MT f(x)|p(1− |x|2)q(1− |x|2)s dx

≥
∫
Ai(|x0|)

|Di

MT f(x)|p(1− r2)(q+s) dx

≥
∫ 1

|x0|
(1− r2)(q+s)r2

∫
Si

|Di

MT f(rζ)|p dσ(ζ) dr

≥
∫
Si

|Di

MT f(|x0|ζ)|p dσ(ζ)

∫ 1

|x0|
(1− r2)(q+s)r2 dr =∞

as q + s ≤ −1, we get a contradiction; therefore f is constant. �

From now on, we will suppose −1 < q + s <∞.

Example 3.1. Let −2 < q < ∞, 0 < s < ∞ with −1 < q + s < ∞. The spaces

F iϕ(p, q, s) and F iϕ,0(p, q, s) are not empty. More precisely, let f : Bi → H, f ∈ M.

If there exists M > 0 such that |Di

MT f(x)| < M for all x ∈ Bi, then∫
Bi

|Di

MT f(x)|p(1− |x|2)q(1− |ϕia(x)|2)s dx ≤M
∫
Bi

(1− |x|2)q(1− |ϕia(x)|2)s dx

and apply Proposition 2.1. Thus f belongs to the quoted spaces. The previous condi-

tion is satisfied, for example, if f ∈M ∩ C1(Bi).

Theorem 3.1. Let 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞. Then the function

a 7→ J ip,q,sf(a) is continuous.

Proof. Let a ∈ Bi be fixed and ε > 0. Let

r =
1− |a|

2

and define the function

h(x, b) =
(1− |b|2)s

|1− bx|2s
for all (x, b) ∈ Bi ×Bi(a, r) .

Since h(x, b) is uniformly continuous, there exists δ > 0 such that if |b− b′| < δ then

|J ip,q,sf(b)− J ip,q,sf(b′)| ≤ ε

J ip,q,sf(0)
.

Thus if |b− a| < δ then

|J ip,q,sf(b)− J ip,q,sf(a)| ≤
∫
Bi

|Di

MT f(x)|p(1− |x|2)q+s|h(x, b)− h(x, a)| dx < ε.

�

Theorem 3.2. Let 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞. Then F iϕ,0(p, q, s) ⊂
F iϕ(p, q, s).
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Proof. Let f ∈ F iϕ,0(p, q, s). Thus, by Theorem 3.1 we can extend continuously the

definition of J ip,q,sf to Bi by setting J ip,q,sf(a) = 0 when |a| = 1. Then

sup
a∈B

J ip,q,sf(a) = max
a∈Bi

J ip,q,sf(a) <∞ .

Moreover, there is b ∈ Bi, such that maxa∈Bi J
i
p,q,sf(a) = J ip,q,sf(b). �

4. Characterizations of F i
ϕ(p, q, s) spaces

Let a ∈ Bi fix, and for x 6= a define

g (x, a) =
1

|ϕia (x)|
− 1.

Thus g(x, a) is a translation of a multiple scalar of the fundamental solution of

the Laplacian in R3
i applied to the Möbius transform ϕia, i.e. g(x, a) is the modi-

fied Green’s function in quaternion sense. We prove in this section that the spaces

F iϕ(p, q, s) can be characterized using the g(x, a) as a weight function. Likewise we

give a characterization of these spaces using Carleson measures on boxes.

The next results are more general than the analogous results in (see [11]) Lemma

5.1, Theorem 5.1, Proposition 5.1 and Theorem 2.2 from [9], like in [21].

The following result is other characterization of the Dirichlet type spaces.

Theorem 4.1. Let 1 ≤ p < ∞, −2 < q < ∞ and 0 < s < 3. Let f : Bi → H a

MT -hyperholomorphic function. Then f belongs to the Dirichlet space Dip,q+s if and

only if ∫
Bi

|Di

MT f(x)|p(1− |x|2)qgs(x, 0) dx <∞ .

Proof. We will prove that∫
Bi

|Di

MT f(x)|p(1− |x|2)q+s dx ≈
∫
Bi

|Di

MT f(x)|p(1− |x|2)qgs(x, 0) dx .

Applying spherical coordinates we get∫ 1

0

∫
Si

|Di

MT f(rζ)|p(1− r2)q+sr2 dσ(ζ)dr

≈
∫ 1

0

∫
Si

|Di

MT f(rζ)|p(1− r2)q(1− r)sr2−s dσ(ζ) dr .

Since 1 ≤ 1 + r ≤ 2 and |Di

MT f |p is subharmonic the result follows if we apply

Proposition 2.3 with τ = 1 and

h(r) =

∫
Si

|Di

MT f(rζ)|p dσ(ζ) .

�
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The previous result motivates the following characterization of the spaces

F iϕ(p, q, s).

Theorem 4.2. Let 1 ≤ p <∞, −2 < q <∞ and 0 < s < 3. Then f ∈ F iϕ(p, q, s) if

and only if

sup
a∈Bi

∫
Bi

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
gs (x, a) dx <∞

and f ∈ F iϕ,0(p, q, s) if and only if

lim
|a|→1−

∫
Bi

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
gs (x, a) dx = 0 .

Proof. Since 1− |ϕia(x)| ≤ g(x, a) we prove only

F iϕ(p, q, s) ⊂ F ig(p, q, s) and F iϕ,0(p, q, s) ⊂ F ig,0(p, q, s) .

By the change of variable x = ϕia(w) and (2.4), we have

Ip,q,sf(a) =

∫
Bi

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
gs (x, a) dx

=

∫
Bi

|ψif,a(w)|p(1− |ϕia(w)|2)q
(1− |w|)s

|w|s
(1− |a|2)3

|1− aw|6−2p
dw

while ∫
Bi

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q (
1−

∣∣ϕia(x
)∣∣2)s dx

=

∫
Bi

|ψif,a(w)|p(1− |ϕia(w)|2)q(1− |w|2)s
(1− |a|2)3

|1− aw|6−2p
dw.

Since 1
2 ≤ |w| < 1 implies 1 <

1

|w|s
≤ 2s then∫

Bi\Bi( 1
2 )

|ψif,a(w)|p(1− |ϕa(w)|2)q
(1− |w|)s

|w|s
(1− |a|2)3

|1− aw|6−2p
dw

≈
∫
Bi\Bi( 1

2 )

|ψif,a(w)|p(1− |ϕa(w)|2)q(1− |w|)s (1− |a|2)3

|1− aw|6−2p
dw .

Since 0 ≤ |w| ≤ 1

2
implies

1

22|q−p+3| ≤
1

|1− aw|2(q−p+3)
≤ 22|q−p+3|,

thus, by (2.1) and changing to spherical coordinates, it is enough to prove∫ 1
2

0

∫
Si

|ψif,a(rζ)|p(1− r2)q(1− r)sr2−s dσ(ζ) dr

≈
∫ 1

2

0

∫
Si

|ψif,a(rζ)|p(1− r2)q+sr2 dσ(ζ) dr.
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We have 1 ≤ 1 + r ≤ 2 and by (2.4), |ψif,a|p is subharmonic. Now the result follows

applying Proposition 2.3 with τ =
1

2
and

h(r) =

∫
Si

|ψif,a(rζ)|p dσ(ζ) .

�

Proposition 4.1. The next inclusions are true

i) If 0 < p′ < p <∞ then

F iϕ(p, q, s) ⊂ F iϕ,0(p′, q, s) for − 2 < q <∞, 0 < s <∞ .

ii) If −2 < q′ < q <∞ then

F iϕ(p, q′, s) ⊂ F iϕ(p, q, s), for 0 < p <∞, 0 < s <∞ .

iii) If −2 < q <∞ and 0 < p <∞ then

F iϕ(p, q, s′) ⊂ F iϕ(p, q, s), for 0 < s′ < s <∞ .

Proof. We prove only i). Let f ∈ F iϕ(p, q, s), dµ(x) = (1 − |x|2)q(1 − |ϕia(x)|2)s dx

and 0 < p′ < p <∞. By Hölder’s inequality we have∫
Bi

|Di

MT f(x)|p
′
dµ(x) ≤

(∫
Bi

|Di

MT f(x)|p dµ(x)

) p′
p

(µ(B))
p−p′
p .

By Proposition 4.1 we get the result. �

Corollary 4.1. Let 0 < p <∞, −2 < q <∞ and 0 < s <∞. Then:

i) F iϕ (p, q, s) ⊂
⋂

0<p′<p F
i
ϕ,0 (p′, q, s);

ii) F iϕ (p, q′, s) ⊂
⋂
q′<q F

i
ϕ (p, q, s);

iii) F iϕ (p, q, s′) ⊂
⋂
s′<s F

i
ϕ (p, q, s).

Now, we give a characterization of F iϕ(p, q, s) in terms of Carleson measures.

We assume definitions and results of [14]. Let a ∈ Bi. Define the Carleson tube

by

E(a) =

{
x ∈ Bi :

∣∣∣∣x− a

|a|

∣∣∣∣ < 1− |a|
}
.

For 0 < s <∞, a positive Borel measure µ on Bi is a bounded s-Carleson measure

if

sup
a∈Bi

µ(E(a))

(1− |a|)s
<∞ ,
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and µ is a s-compact Carleson measure if

lim
|a|→1−

µ(E(a))

(1− |a|)s
= 0 .

Theorem 4.3. (Theorems 3.1 and 3.2, [14]). Let 0 < s < ∞ and 0 < τ < ∞.

A positive Borel measure µ on Bi is a bounded s-Carleson measure if and only if

sup
a∈Bi

∫
Bi

(
(1− |a|2)τ

(1 + |a|2|x|2 − 2(x, a))
1+τ
2

)s
dµ(x) <∞

and µ is a compact s-Carleson measure if and only if

lim
|a|→1−

∫
Bi

(
(1− |a|2)τ

(1 + |a|2|x|2 − 2(x, a))
1+τ
2

)s
dµ(x) = 0 .

From this result we obtain the next characterization for F iϕ(p, q, s) spaces in terms

of Carleson measures.

Theorem 4.4. Let 0 < p <∞, −2 < q <∞ and 0 < s <∞. Then

i) f ∈ F iϕ(p, q, s) if and only if dµ(x) = |Di

MT f(x)|p(1− |x|2)q+s dx is a bounded

p-Carleson measure.

ii) f ∈ F iϕ,0(p, q, s) if and only if dµ(x) = |Di

MT f(x)|p(1−|x|2)q+s dx is a compact

s-Carleson measure.

Proof. Consider Theorem 4.3, with τ = 1, the identity (2.1) and the fact that

|1− ax|2 = (1− ax)(1− xa) = 1 + |a|2|x|2 − 2 Re (xa) .

So the result follows from the definition of the spaces. �

For additional information on this topic see [3].

5. The i-Bloch and i-Dirichlet spaces

In this section we define the i-Bloch space and characterize these spaces by some

special family of F iϕ(p, q, s) spaces. Similar results can be proved using the func-

tion gs(z, a) as weight, instead of the weight (1 − |ϕia(z)|2)s. The start point is the

following result.

Proposition 5.1. Let 1 ≤ p <∞, −2 < q <∞, 0 < s <∞ and 0 < R < 1 be fixed.

If f ∈ F iϕ(p, q, s), then there exists C̃ = C̃(R) such that(
1− |a|2

)q+3 ∣∣∣Di

MT f (a)
∣∣∣p ≤ C̃Jp,q,sf(a) for all a ∈ Bi.
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Proof. Let 0 < R < 1 be fixed and a ∈ Bi. By the change of variable x = ϕia(w) and

Lemma 2.2 we have for 0 < s <∞

J ip,q,sf(a)

≥
∫
Di(a,R)

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
(1− |ϕia(x)|2)s dx

≥ (1−R2)s
∫
Bi(R)

∣∣∣Di

MT f
(
ϕia (w)

)∣∣∣p (1−
∣∣ϕia (w)

∣∣2)q ( 1− |a|2

|1− aw|2

)3

dw

= (1−R2)s(1− |a|2)q+3

∫
Bi(R)

∣∣∣∣∣ 1− wa
|1− aw|3

D
i

MT f
(
ϕia (w)

)∣∣∣∣∣
p

(
1− |w|2

)q
|1− aw|2q+6−2p dw

≥
(1−R2)s

(
1− |a|2

)q+3

22(q−p+3)

∫
Bi(R)

∣∣∣∣∣ 1− wa
|1− aw|3

D
i

MT f
(
ϕia (w)

)∣∣∣∣∣
p (

1− |w|2
)q
dw

=
(1−R2)s

(
1− |a|2

)q+3

22(q−p+3)

∫ R

0

∫
Si

∣∣ψif,a (ρζ)
∣∣p (1− ρ2

)q
ρ2dσ(ζ)dρ

≥
(1−R2)s

(
1− |a|2

)q+3

22(q−p+3)

∣∣∣Di

MT f (a)
∣∣∣p ∫ R

0

(
1− ρ2

)q
ρ2dρ

= C(R)
(

1− |a|2
)q+3 ∣∣∣Di

MT f (a)
∣∣∣p .

Now the proposition follows from this estimation, where we have used the subhar-

monicity of |ψif,a|p. �

The previous result motivates the definition of i-Bloch spaces.

Let α > 0. Define the α,i-Bloch space Biα as the set of M functions f : Bi → H
such that

sup
a∈Bi

(1− |x|2)α|Di

MT f(x)| <∞

and the little α-Bloch space Biα,0 as the set of M functions f : Bi → H such that

lim
|a|→1−

(1− |x|2)α|Di

MT f(x)| = 0.

We observe that if 0 < α < α′, then Biα ⊂ Biα′ . By Proposition 5.1 we obtain.

Corollary 5.1. Let 1 ≤ p <∞, −2 < q <∞ and 0 < s <∞. Then

F iϕ(p, q, s) ⊂ Biq+3
p

and F iϕ,0(p, q, s) ⊂ Biq+3
p ,0

.

We have the following partial reciprocal result of Corollary 5.1.
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Proposition 5.2. Let 0 < p < ∞, −2 < q < ∞ and 2 < s < ∞. If f ∈ Biq+3
p

(respectively f ∈ Biq+3
p ,0

), then f ∈ F iϕ(p, q, s), (respectively f ∈ F iϕ,0(p, q, s) ).

Proof. Let f ∈ Biq+3
p

be a non constant function. Then, there exists 0 < M < ∞
such that

(5.5)
(

1− |x|2
) q+3

p
∣∣∣Di

MT f (x)
∣∣∣ ≤M

for all x ∈ Bi. Using the change of variable x = ϕia(w) we get

Jp,q,sf(a) ≤
∫
Bi

Mp

(1− |x|2)q+3
(1− |x|2)q(1− |ϕia(x)|2)s dx

= Mp

∫
Bi

1

(1− |ϕia(w)|2)3
(1− |w|2)s

(1− |a|2)3

|1− aw|6
dw

= Mp

∫
Bi

(1− |w|2)s−3 dw

but the last integral is finite since 2 < s <∞ and so f ∈ F iϕ(p, q, s).

We suppose now that f ∈ Biq+3
p ,0

. Then there exists 0 < R < 1 such that for all

R < |x| < 1 (
1− |x|2

) q+3
p
∣∣∣Di

MT f (x)
∣∣∣ ≤ ε

1
p(∫

Bi

(1− |w|2)s−3 dw

) 1
p

.

By Proposition 2.1 is enough to estimate∫
Ai(R)

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
(1− |ϕia(x)|2)s dx

≤ ε∫
Bi

(1− |w|2)s−3 dw

∫
Ai(R)

1

(1− |x|2)q+3
(1− |x|2)q(1− |ϕia(x)|2)s dx

<
ε∫

Bi

(1− |w|2)s−3 dw

∫
Bi

(1− |w|2)s−3 dw < ε

so this concludes the proof. �

Combining Corollary 5.1 and Proposition 5.2 we have the following theorem:

Theorem 5.1. Let 1 ≤ p < ∞, −2 < q < ∞. The following conditions are equiva-

lent:

i) f ∈ Biq+3
p

(respectively f ∈ Biq+3
p ,0

).

ii) f ∈ F iϕ(p, q, s), (respectively f ∈ F iϕ,0(p, q, s)) for all s > 2.

iii) f ∈ F iϕ(p, q, s), (respectively f ∈ F iϕ,0(p, q, s)) for some s > 2.
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Proposition 5.3. Let 0 < p <∞, −1 < q <∞, 0 < s < 2 and

q + 1

p
< α <

q + s+ 1

p
.

If f ∈ Biα, (respectively f ∈ Biα,0) then f ∈ F iϕ(p, q, s) (respectively f ∈ F iϕ,0(p, q, s)).

In particular ⋃
0<α< q+s+1

p

Biα ⊂ F iϕ(p, q, s) ⊂ Biq+3
p

Proof. Let f ∈ Biα be a non constant function. Then, there exists 0 < M <∞ such

that
(

1− |x|2
)α ∣∣∣Di

MT f (x)
∣∣∣ ≤ M for all x ∈ Bi, and so by the change of variable

x = ϕia(w) and by Lemma 2.1 we have

Jp,q,sf(a) ≤
∫
Bi

Mp

(1− |x|2)αp
(1− |x|2)q(1− |ϕia(x)|2)s dx

= Mp

∫
Bi

(1− |ϕia(w)|2)q−αp(1− |w|2)s
(1− |a|2)3

|1− aw|6
dw

= Mp(1− |a|2)q+3−αp
∫
Bi

(1− |w|2)q+s−αp

|1− aw|6+2q−2αp
dw

= Mp(1− |a|2)q−αp+3

∫ 1

0

(1− r2)q+s−αpr2

∫
Si

dσ(ζ)

|1− arζ|2(q−αp+3)
dr

≈ Mp2q−αp+3λ

∫ 1

0

(1− r)q−pα+sr2dr,

and the last integral is finite. For the little spaces imitate the proof of Pro-

position 5.2. �

Now we prove some results about Dirichlet spaces Di
p,q.

Theorem 5.2. Let 1 ≤ p <∞, −1 < q <∞. Then Di
p,q ⊂ Biq+3

p ,0
.

Proof. Let 0 < R < 1 be fixed. Imitating the proof of Proposition 5.1 we obtain

(5.6)

∫
Di(a,R)

|Di

MT f(x)|p(1− |x|2)q dx ≥ C(R)(1− |a|2)q+3|Di

MT f(a)|p.

Since ∫
Bi

|Di

MT f(x)|p(1− |x|2)q dx <∞

then given ε > 0, there exists 0 < R̃ < 1 such that∫
Ai(R̃)

|Di

MT f(x)|p(1− |x|2)q dx < ε .

By (2.2) there exists R̃ < R′ < 1 such that Di(a,R) ⊂ Ai(R̃) for all a ∈ Bi with

R′ < |a| < 1. From (5.6) we get our result. �
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Theorem 5.3. Let 1 ≤ p <∞, −1 < q <∞. Then

Di
p,q ⊂

⋂
0<s<∞

F iϕ,0(p, q, s) .

Proof. Let f ∈ Di
p,q and ε > 0. By Theorem 5.2, there exists 0 < R′′ < 1 such that

(5.7) (1− |x|2)q+3|Di

MT f(x)|p < ε for all 0 < R′′ < |x| < 1.

Let R, R̃, R′ be as in the previous theorem, where R is fixed and we can choose

R′′ < R̃ < R′ < 1. Then we have

J ip,q,sf(a) =

∫
Bi(R̃)

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
(1− |ϕia(x)|2)s dx

+

∫
Ai(R̃)

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
(1− |ϕia(x)|2)s dx.

By Proposition 2.1 the first integral goes to 0 when |a| → 1−. We consider R′ <

|a| < 1 and the second integral is divided in two integrals. Thus∫
Ai(R̃)\Di(a,R)

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
(1− |ϕia(x)|2)s dx

≤ (1−R2)s
∫
Ai(R̃)\Di(a,R)

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
dx < ε .

Finally by (5.7), the change of variable ϕia(w) = x and (2.1) we have∫
Di(a,R)

∣∣∣Di

MT f (x)
∣∣∣p (1− |x|2

)q
(1− |ϕia(x)|2)s dx

≤
∫
Di(a,R)

ε

(1− |x|2)q+3

(
1− |x|2

)q
(1− |ϕia(x)|2)s dx

≤ ε

∫
Bi(R)

1

(1− |ϕia(w)|2)3
(1− |w|2)s

(1− |a|2)3

|1− aw|6
dw

= ε

∫
Bi(R)

(1− |w|)s−3 dw

so we finish the proof. �
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México
e-mail: lfro@correo.azc.uam.mx

Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Com-
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KWATERNIONOWE PRZESTRZENIE FUNKCYJNE F (p, q, s)

MOISILA-THÉODORESCU

S t r e s z c z e n i e
W pracy definiujemy różniczkowalność w sensie Moisila-Théodororescu przyporza̧dko-

wana̧ szczególnemu w lożeniu przestrzeni R3 w przestrzeń kwaternionowa̧ H. Przy użyciu
pochodnej Moisila-Théodororescu wprowadzamy i badamy odpowiednik przestrzeni funk-
cyjnej F (p, q, s) oraz F0(p, q, s) wprowadzonych w pracy R. Zhao (1996). Uzyskujemy wyniki
podobne do otrzymanych w przypadku monogenicznym; zob. [9, 11, 21].

S lowa kluczowe: Moisila-Théodororescu, Qi
p, przestrzenie i-Blocha i Fi(p, q, s)
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ORBITS IN THE REAL GRASSMANNIAN OF 2-PLANES

UNDER THE ACTION OF THE GROUPS Sp(n) AND Sp(n) · Sp(1)

Summary
The natural action of the unitary group U(n) on Cn induces its action on the Grassmann

manifold GR
k(Cn) consisting of real k-dimensional subspaces in Cn. In [9] it has been shown

that the Kähler angle, used by Chern and Wolfson in the theory of minimal surfaces,
determines the orbit of a 2-plane of a complex vector space in the real Grassmannian under
the action of the unitary group. Generalizing such notion in [15], the multiple Kähler angle
θ(U) of a real subspace U of a complex vector space is defined and it is shown that it is a
complete invariant with respect to the natural action of the unitary group, that is, for two
real subspaces V and W of same dimension in Cn, there exists g in U(n) which satisfies
W = g ·V if and only if θ(V ) = θ(W ). In this article we determine a complete invariant for
a real subspace of dimension 2 with respect to the action of Sp(n) and Sp(n) · Sp(1) – the
groups of automorphisms of a real vector space endowed respectively with an Hermitian
hypercomplex and an Hermitian quaternionic structure. A model of such spaces is the
n-dimensional quaternionic numerical space Hn, a vector space of dimension 4n over R. We
introduce the imaginary measure and the characteristic deviation of a 2-plane and prove
that they characterize completely the orbit in a 2-plane in GR

2 (Hn) under the action of the
groups Sp(n) and Sp(n) · Sp(1), respectively.

Keywords and phrases: hermitian quaternionic structure, principal angles, Kähler angles,
Sp(n), Sp(n) · Sp(1)

1. The Hermitian quaternionic structure

Let V be a real vector space of dimension 4n.

Definition 1.1. 1. A triple H = {J1, J2, J3} of anticommuting complex structures

on V with J1J2 = J3 is called a hypercomplex structure on V .
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2. The 3-dimensional subalgebra

Q = spanR(H) = RJ1 + RJ2 + RJ3 ≈ sp1

of the Lie algebra End(V ) is called a quaternionic structure on V .

Note that two hypercomplex structures H = {J1, J2, J3} and H′ = {J ′1, J ′2, J ′3}
generate the same quaternionic structure Q iff they are related by a rotation, i.e.

J ′α =
∑
β

AβαJβ , (α = 1, 2, 3)

with (Aβα) ∈ SO(3). A hypercomplex structure generating Q is called an admissible

(hypercomplex) basis of Q. We denote by S(Q) the 2-sphere of complex structures

J ∈ Q, i.e.

S(Q) = {aJ1 + bJ2 + cJ3, a, b, c ∈ R, a2 + b2 + c2 = 1}.

Definition 1.2. An Euclidean scalar product < , > in V is called Hermitian with

respect to a hypercomplex structure H = (Jα) (resp. the quaternionic structure

Q = spanR(H)) if and only if, for any X,Y ∈ V ,

< JαX, JαY >=< X,Y >, (α = 1, 2, 3)

(respectively

< JX, JY >=< X,Y >, (∀J ∈ S(Q))).

Definition 1.3. A hypercomplex structure H (resp. quaternionic structure Q) to-

gether with an Hermitian scalar product < , > is called an Hermitian hypercomplex

(resp. Hermitian quaternionic) structure on V and the triple (V 4n,H, <,>) (resp.

(V 4n,Q, <,>)) is an Hermitian hypercomplex (resp. quaternionic) vector space.

For a survey of some results on Hermitian hypercomplex and Hermitian quater-

nionic structures one can refer among others to [2] and [12].

The prototype of an Hermitian hypercomplex vector space is the n-dimensional

quaternionic numerical space Hn which is a real vector space of dimension 4n, a

H-module with respect to right (resp. left) multiplication by quaternions and is

endowed with the canonical positive definite Hermitian product

(1)
h · h′ =

n∑
α=1

hαh
′
α (resp. h · h′ =

n∑
α=1

hαh′α),

h = (h1, . . . , hn), h′ = (h′1, . . . , h
′
n) ∈ Hn.

The real part of the Hermitian product defines an Euclidean scalar product

< , >= Re(·) on the real vector space Hn ' R4n.
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If we consider the basis (1, i, j, k) of H satisfying the multiplication table obtain-

able from the conditions

(2) i2 = j2 = k2 = −1; ij = −ji = k,

one has that the right multiplications by −i,−j,−k (resp. left multiplication by

i, j, k) induce real endomorphisms (I = R−i, J = R−j ,K = R−k) of the H-module

Hn satisfying I2 = J2 = K2 = −Id, IJ = K = −JI and skew-symmetric with

respect to the metric < , > i.e. a Hermitian hypercomplex structure on Hn. The

basis (1, i, j, k) of H is not the only one satisfying the relations (2).

Proposition 1.4. [3] A new basis (1, i′, j′, k′) of H gives rise to the same multipli-

cation table iff (i′, j′, k′) = (i, j, k)C with C ∈ SO(3).

Proof. It is possible to prove the above proposition by a direct calculation. Alterna-

tively we recall that all automorphisms of the algebra H are internal i.e. given by an

application such as

(3) αp : q 7→ pqp−1,

where p is a suitable quaternion that we can always assume unitary (hence p−1 = p̄).

Such an application has a simple geometrical interpretation. By representing any

q = q0 + q1i+ q2j + q3k ∈ H on the Euclidean space E4, the automorphism αp acts

clearly as the identity on the axis where are represented quaternions which reduce

to real number and give rise to a rotation of the E3 orthogonal to such axis. In fact,

for X,Y ∈ H,

< αqX,αqY > = Re(qXq̄qY q̄) = Re(qqXqY q̄) = Re(qX̄q̄qY q̄) =

= Re(qX̄Y q̄) = Re(X̄Y q̄q) = Re(X̄Y ) =< X,Y > .

Then αq ∈ O(3). Moreover, being Sp(1) ≡ S3 connected, it is immediate to verify

that Sp(1) is in the connected components of the identity of O(3). The application

q → αq is an epimorphism of Sp(1) in SO(3). In fact

α′qαq(X) = q′qXq̄q̄′ = q′qXq′q = αq′q(X).

To see that it is surjective we observe that for q = cos θ + i sin θ (resp. q = cos θ +

j sin θ, q = cos θ + k sin θ) we obtain all rotation around the axis i (resp. j, k) of an

angle 2θ. The Kernel of the homomorphism Sp(1)→ SO(3) is Z2 = {1,−1}. �

Making the identification E3 ∼= (Im H,Re( · )) we have then proved the following

well known

Proposition 1.5.

SO(3) = {αq : x′ = qxq̄, x ∈ Im H, q ∈ Sp(1)}; SO(3) ∼= Sp(1)/Z2

We shall denote by B the set of bases of H satisfying the relations (2) and call it

canonical system of bases (see [3]).
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If q = a+ bi+ cj + dk ∈ Sp(1), the orthogonal matrix Cq associated to αq such

that (i′, j′, k′) = (i, j, k)Cq is given by

(4) SO(3) 3 Cq =

 a2 + b2 − c2 − d2 2(bc− ad) 2(ac+ bd)

2(ad+ bc) a2 − b2 + c2 − d2 2(cd− ab)
2(bd− ac) 2(ab+ cd) a2 − b2 − c2 + d2

 .

In [3] it has been proved that

Proposition 1.6. [3] Both the Hermitian product and the scalar product of Hn
have intrinsic meaning with respect to the canonical system of bases B.

Let (1, i, j, k) ∈ B be a chosen basis in H and denote by I = R−i, J = R−j , K =

R−k the real endomorphisms of the H-module Hn. Let Q = spanR(I, J,K).

Proposition 1.7. For the scalar product and the Hermitian product of a pair of

vectors L,M ∈ Hn the following relation holds:

(5) L ·M =< L,M > + < L, IM > i+ < L, JM > j+ < L,KM > k

Proof. We prove that

< L, IM >,< L, JM >,< L,KM >

are respectively the coefficients of i, j, k in the Hermitian product L · M . In fact

< L, IM >= Re(L · −Mi) = −Re(L ·M)i which is exactly the coefficient of i of the

quaternion L ·M and analogously for < L, JM > and < L,KM >. �

If (1, i′, j′, k′) ∈ B and

I ′ = R−i′ , J
′ = R−j′ ,K

′ = R−k′

is an admissible basis of Q, from Proposition 1.6 one has

L ·M = Re(L ·M) + Re(L · I ′M)i′ + Re(L · J ′)j′ + Re(L ·K ′M)k′

= < L,M > + < L, I ′M > i′+ < L, J ′M > j′+ < L,K ′M > k′

= < L,M > + < L, IM > i+ < L, JM > j+ < L,KM > k

The coefficients of the (H-valued) Hermitian product defined in (5) depend clearly

on the chosen basis of H. Since a pair of bases B1, B2 ∈ B of H is related by an

orthogonal transformation which fixes the real axis and is the real part of (L ·M)

independent from the admissible hypercomplex basis, we can state the

Proposition 1.8. The quantity

< L,R−iM >2 + < L,R−jM >2 + < L,R−kM >2

=< L, IM >2 + < L, JM >2 + < L,KM >2

does not depend on the admissible basis (I, J,K) of Q.

Later on we see a geometrical consequence of this proposition.
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2. The groups Sp(n) and Sp(n) · Sp(1)

Let V be a 4n-dimensional real vector space. We regard V ∼= R4n as a right module

over the skew-field H of quaternions by identifying (in the canonical way) R4n with

Hn and by letting H act by right multiplication. For any basis (1, i, j, k) ∈ B of H
the scalar right multiplications

I = R−i, J = R−j , I = R−k

define an Hermitian hypercomplex structure on V (clearly depending on the iden-

tification V ∼= R4n) and consequently an Hermitian quaternionic structure Q =

spanR(I, J,K).

We first recall the following definition appearing in [3] and [5].

Definition 2.1. The subspaces U4h ⊂ Hn of real dimension 4h, being the real im-

age of the subspaces of Hn of quaternionic dimension h, are called characteristic

(quaternionic) subspaces. A subspace Up of V 4n ' Hn is pseudo-characteristic if it

is contained in a Ũ4m characteristic being m the smallest integer such that 4m ≥ p.
Any subspace Up is contained in some characteristic subspaces and the real dimen-

sion 4t of the smallest among them ranges between p and 4p. A subspace Up is

almost characteristic if 4t < 4p.

Observe that for instance a subspace of real dimension 1 is always pseudo-

characteristic and never almostcharacteristic. In the following we shall call char-

acteristic line, (resp. plane, 3-plane, . . .) a characteristic subspace of dimension 4

(resp. 8, 12, . . .). Moreover, for a subspace U ⊂ V we denote by UH the smallest

characteristic subspace containing U , i.e. the subspace spanned over H by a basis of

U .

The group Sp(1) is the group with multiplication of unitary quaternions. It is a

Lie group whose Lie algebra sp1 = Im H ' Q. For any quaternion q ∈ Sp(1), let us

consider the unitary homothety in the H-module V :

q : X 7→ Xq, X ∈ V.

For instance the automorphisms I = R−i, J = R−j ,K = R−k belong yo these

transformations .

Proposition 2.2. [4] The unitary homotheties are rotations of V 4n that leave in-

variant any characteristic line. Moreover for any X ∈ V the angle X̂,Xq does not

depend on X and it is

cos X̂,Xq = Re(q)

Restricting to the action of Sp(1) determines then an inclusion

λ : Sp(1) ↪→ SO(4n).
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We define Sp(n) to be the subgroup of SO(4n) commuting with λ(Sp(1)) i.e.

Sp(n) is the centralizer of λSp(1) in SO(4n). From (5), by

AIA−1 = I, AJA−1 = J,AKA−1 = K, ∀A ∈ Sp(n),

it follows that Sp(n), besides preserving any admissible basis of Q, preserves the

Hermitian product (1), i.e. it is the (quaternionic) unitary group of Hn. It acts transi-

tively on orthonormal (with respect to the Hermitian product (1)) bases

{X1, . . . , Xn} of the right quaternionic vector space Hn. Moreover, with respect to

the structure of a 4n-dimensional real vector space, for any admissible basis (I, J,K)

ofQ it acts transitively on orthonormal (with respect to the Euclidean scalar product

Re(·)) bases such as

{X1, IX1, JX1,KX1, . . . , Xn, IXn, JXn,KXn}.

Let now consider in Hn the transformations T(A,q) : X 7→ AXq with A ∈
Sp(n), q ∈ Sp(1), X ∈ Hn. We denote by Sp(n) · Sp(1) the group of these transfor-

mations. We can write

X 7→ AXq = A(qq̄)Xq = (Aq)(q̄Xq).

Observe that (Aq) ∈ Sp(n) since q is unitary. In fact

B ∈ Sp(n)⇔ BB̄t = Id

and

Aq(Aq)t = Aq(q̄Ā)
t

= Aqq̄(Ā)
t

= AĀt = Id.

In order to study the transformation X 7→ q̄Xq, let {X1, . . . , Xn} be a basis of

Hn over H and (I, J,K) an admissible basis of Q.

The vectors Xi, IXi, JXi,KXi, i = 1, . . . , n form a basis over R of the charac-

teristic lines XH
i ' H = spanR(1, i, j, k). From Proposition (1.5) the action of αq on

H preserves the real axis and rotate the basis (i, j, k). Then

q̄ XH
i q : (Xi, IXi, JXi,KXi) 7→ (Xi, I

′Xi, J
′Xi,K

′Xi), i = 1, . . . , n

where

I ′ = R−i′ , J
′ = R−j′ ,K

′ = R−k′ with (i′, j′, k′) = q(i, j, k)q̄.

Therefore Sp(n)·Sp(1) is the normalizer of λSp(1) in SO(4n) which is isomorphic

to the product Sp(n) ×Z2
Sp(1) where Z2 = {1,−1}. Note that Sp(1) · Sp(1) is

precisely SO(4), whereas, for n ≥ 2, Sp(n) · Sp(1) is a maximal Lie subgroup of

SO(4n). Observe that Sp(n) · Sp(1) is not a subgroup of U(2n).

For a deeper understanding of the groups Sp(n) and Sp(n) · Sp(1) one can refer

among others to [12] and [7].

In light of what we said we have that the groups of automorphisms of an Her-

mitian hypercomplex and an Hermitian quaternionic vector space are isomorphic

to Sp(n) and Sp(n) · Sp(1) ( [2]), respectively. They may be characterized by the

property of preserving some class of admissible bases of V . For an Hermitian hyper-

complex structure H = (I, J,K) of V the admissible bases are orthonormal basis of
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the form

{X1, IX1, JX1KX1, . . . , Xn, IXn, JXnKXn}.

For an Hermitian quaternionic structure Q on V the class of admissible bases is

the union of those corresponding to the Hermitian hypercomplex structures gener-

ating Q.

3. Angles between subspaces of a Euclidean vector space

Following [13] and [10], we define the (Euclidean) angle between two subspaces of

dimension p and q of a Euclidean vector space by using an exterior algebra. Let En

be an n-dimensional vector space endowed with a Euclidean scalar product. For a

pair of vectors a, b ∈ En we denote by a · b their inner product.

For 1 ≤ p ≤ n, ΛpEn denotes the vector space consisting of p-vectors, i.e. linear

combinations over R of wedges of p-vectors. A p-vector is called decomposable if it

can be decomposed as a single wedge of p-vectors of En.

We extend the scalar product ( · ) in En to a scalar product < , > in the vector

space ΛpEn by defining

< α, β >= det(ai · bj)

for a pair of decomposable vectors

α = a1 ∧ . . . ,∧ap; β = b1 ∧ . . . ,∧bp, ai, bi ∈ En

and then extending for linearity to any pair of vectors in ΛpEn.

It is definite positive and non degenerate; then the pair (ΛpEn, <>) is a Euclidean

vector space. In particular, for the angle between α and β,

(6) cos α̂β =
< α, β >

√
< α,α >

√
< β, β >

=
det(ai · bi)

mis α mis β
.

with

mis α = |α| =
√
< α,α >.

Any decomposable p-vector α = a1∧ . . .∧ap corresponds to a subspace Ap ∈ En and

precisely to that spanned by a1, . . . , ap. Conversely, for any basis of Ap the wedge of

these vectors is a multiple of α (i.e. it is equal to kα, with k ∈ R, k 6= 0).

Given Ap and Bq with α = a1 ∧ . . . ,∧ap ∈ ΛpEn associated to A and β =

b1 ∧ . . . ,∧bq ∈ ΛqEn associated to B, we consider the orthogonal projections of

a1, . . . , ap on B and B⊥. Then ai = aHi + aVi , and α = αH + αV + αM (M means

mixed part).

Lemma 3.1. If we choose another basis in A (then α′ = kα), we have

α′H = kαH , α′V = kαV , α′M = kαM .
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Definition 3.2. The angle between Ap and Bq, p ≤ q is the usual angle (between two

lines, a line and a plane, two planes) i.e. the angle between one subspace and its

orthogonal projection onto the other, i.e.

θ = arccos
|αH |
|α|

.

Then θ ∈ [0, π/2] and, from the previous lemma, it is independent of the chosen

basis in A. In particular, if p = q then we can write

(7) θ = arccos
|det(ai · bj)|
|α| · |β|

i.e. the cosine of the angle between a pair of p-planes A,B ⊂ En equals the absolute

value of the cosine of the angle between any pair of p-vectors α, β ∈ ΛpEn corre-

sponding to A and B.

We recall the definition of the principal angles between a pair of subspaces of a

real vector space V (see [6], [11] among others).

Definition 3.3. Let A,B ⊆ V be subspaces, dim k = dim(A) ≤ dim(B) = l ≥ 1. The

principal angles θi ∈ [0.π/2] are recursively defined for i = 1, . . . , k by

cos θi =
< ai, bi >

||ai|| ||bi||
= max{< a, b >

||a|| ||b||
: a ⊥ am, b ⊥ bm, m = 1, 2, . . . , i− 1},

where aj ∈ A, bj ∈ B.

In words, the procedure is to find the unit vector a1 ∈ A and the unit vector

b1 ∈ B which minimize the angle between them and call this angle θ1. Now take the

orthogonal complement in A to a1 and the orthogonal complement in B to b1 and

iterate.

The principal angles θ1, . . . , θk between the pair of subspaces A,B are some of

the critical values of the angular function

φA,B = A×B → R

associating with each pair of non-zero vectors a ∈ A, b ∈ B the angle between them.

(Other critical values of this function are for instance π − θi).
We recall the theorem of Afriat ( [8], [1]) which states:

Theorem 3.4. [8], [1] In any pair of subspaces Ak and Bl there exist orthonormal

bases {ui}ki=1 and {vj}lj=1 such that

< ui, vi >≥ 0 and < vi × vj >= 0 if i 6= j.

Then, from Definition 3.3, it follows that the values < ui, vi >, i = 1, . . . , k, are

clearly the cosines of the principal angles between the subspaces A and B.
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The principal angles between a pair of subspaces A,B of V are also defined as

the singular value of the orthogonal projector PA : B → A. (or, equivalently, the

singular value of the orthogonal projector PB : A→ B).

We recall the following well known theorem of linear algebra.

Theorem 3.5. (SVD: Singular Value Decomposition) Let M be an m × n-matrix

whose entries come from the field K, which is either the field of real numbers or the

field of complex numbers. Then there exists a factorization of the form

M = UΣV ∗

where U is an m ×m-unitary matrix over K, the matrix Σ is m × n-diagonal ma-

trix with nonnegative real numbers on the diagonal, and V ∗ denotes the conjugate

transpose of V , an n × n-unitary matrix over K. [Such a factorization is called a

singular-value decomposition of M (SVD)].

A common convention is to order the diagonal entries Σii in non-increasing fash-

ion. In this case, the diagonal matrix Σ is uniquely determined by M (though the

matrices U and V are not).

Definition 3.6. A non-negative real number σ is a singular value for M iff there exist

unit-length vectors u in Km and v in Kn such that

Mv = σu, M∗u = σv

The vectors u and v are called respectively left-singular and right-singular vectors

associated to the singular value σ.

In any singular value decomposition

M = UΣV ∗

the diagonal entries of Σ are necessarily equal to the singular values of M . The

columns of U and V are, respectively, left- and right-singular vectors for the cor-

responding singular values. Consequently, the SVD theorem states that an m×n
matrix M has at least one and at most p = min(m,n) distinct singular values, and

that it is always possible to find a unitary basis for Km and a unitary basis for Kn

consisting respectively of left-singular and right-singular vectors vectors of M .

A singular value for which we can find two left (or right) singular vectors that

are linearly independent is called degenerate.

Non-degenerate singular values always have unique left and right singular vectors,

up to multiplication by a unit phase factor eiθ (for the real case up to sign).

Consequently, if all singular values of M are non-degenerate and non-zero, then

its singular value decomposition is unique, up to multiplication of a column of U by

a unit phase factor and simultaneous multiplication of the corresponding column of

V by the same unit phase factor.

Degenerate singular values, by definition, have non-unique singular vectors. Fur-

thermore, if u1 and u2 are two left-singular vectors which both correspond to the
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singular value σ, then any normalized linear combination of the two vectors is also

a left singular vector corresponding to the singular value σ. The similar statement

is true for right singular vectors. Consequently, if M has degenerate singular values,

then its singular value decomposition is not unique (while the diagonal matrix is

always unique).

According to the SVD theorem, there exist orthonormal bases (a1, . . . , ak) in A

and (b1, . . . , bk) in B with respect to which the matrix representing PB (which is

the Gram matrix G(A×B) assumes diagonal form (with non negative entries) plus

a null block i.e

G(A×B) = [ Γ 0 ], (Γ = diag).

Completing the basis of B with an orthonormal basis (bk+1, . . . , bl) of

spanR(b1, . . . , bk)⊥ in case l > k, we have that the Gram matrix G with respect to

the orthonormal bases {ai, i = 1, . . . , k} and {bi, i = 1, . . . , l} assumes the form

above.

By the unicity of the diagonal form (setting the diagonal entries in non increasing

order), the diagonal entries are then exactly the principal angles between of the pair

A,B i.e. Γ = diag(cos θi), i = 1, . . . , k whereas the vectors {ai, i = 1, . . . , k} and

{bi, i = 1, . . . , l} are left and right singular vectors of the SVD.

Definition 3.7. Two subspaces A and B of same dimension are said to be isoclinic

and the angle φ (0 ≤ φ ≤ π
2 ) is said to be angle of isoclinicity between them if either

of the following conditions hold:

1) the angle between any non-zero vectors of one of the subspaces and the other

subspace is equal to φ;

2) GGt = cosφ Id for the Gram matrix G with respect to any orthonormal basis

of A and B;

3) all principal angles between A and B equals φ.

A practical way to determine the principal angles follows from the theory of eigen-

value decomposition of endomorphisms. Given in fact an SVD of M , as described

above, the following two relations hold:

M∗M = V Σ∗U∗UΣV ∗ = V (Σ∗Σ)V ∗

MM∗ = UΣV ∗V Σ∗U∗ = U(ΣΣ∗)U∗

The right-hand sides of these relations describe the eigenvalue decompositions of

the symmetric (or Hermitian if K = C) matrices of the left hand sides. Consequently,

the squares of the non-zero singular values of M are equal to the non-zero eigenvalues

of either M∗M or MM∗ . Furthermore, the columns of U (left singular vectors) are

eigenvectors of MM∗ and the columns of V (right singular vectors) are eigenvectors

of M∗M .

In our case M is the Gram matrix G and the singular values are the cosines of

the principal angles.
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We underline the following relation between the angle and the principal angles

between a pair of subspaces of a real vector space V .

Proposition 3.8. [13] Let Ap and Bq be a pair of subspaces of V n with 1 ≤ p ≤
q ≤ n. Let θ be the angle between the subspaces Ap and Bq of En and θ1, . . . , θp the

principal angles between them realized by the pairs of unitary vectors (ai, bi), i =

1, . . . , p (i.e. θi =< ai, bi >). Then

cos θ = cos θ1 cos θ2 . . . cos θp.

Proof. Let α = a1 ∧ . . . ,∧ap the p-vector corresponding to Ap. Then |α| = 1.

Moreover aHi = bicosθi, i = 1, . . . , p. Then

αH = cos θ1 cos θ2 . . . cos θp b1 ∧ b2 ∧ . . . ∧ bq.

and

cos θ = |αH | = cos θ1 cos θ2 . . . cos θp.

�

This makes perfect sense because the principal angle θi is just the length of the

projection of ai onto B. If we consider a unit cube with edges given by the ai then its

projection onto B will have edges scaled by the appropriate cos θi. Thus, projecting

the cube scales its volume by the product of the cos θi. In particular if p = q the

angle between A and B is given by the determinant of the Gram Matrix G(A×B)

(i.e. the matrix of the projector PA : B → A).

From Afriat Theorem we derive the following

Corollary 3.9. Let Al and Bp a pair of subspaces in V n, l ≤ p, l + p ≤ n, and

θi, i = 1, . . . , p the principal angles between them. There exists an orthonormal basis

{x1, . . . , xn} of V n such that

{a1, . . . , al} = {x1, . . . xl}

is an orthonormal basis of Al, and

{b1, . . . , bp} = {cos θ1x1 + sin θ1xl+1, . . . , cos θlxl + sin θlx2l, xl+1, . . . , xp}

is an orthonormal basis for Bp.

This is a nice choice of the basis for A and B since the angle between ai and bi
is exactly the principal angle θi for all i = 1, . . . , p.

Proof. From Theorem (3.4), there exist orthonormal bases {a1, a2, . . . , al} and

{b1, b2, . . . , bp} such that < ai, bi >= cos θi, i = 1, . . . , p, and < ai, bj >= 0 for

i = 1, . . . , l, j = 1, . . . , p, i 6= j.

Let then (x1, x2, . . . , xl) = (a1, a2, . . . , al). Complete it to an orthonormal basis

{x̃l+1, . . . , x̃n} Then
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bi = cosαixi + hi1x̃l+1 + hi2x̃l+2 + . . .+ hi,n−lx̃n, i = 1, . . . , l

bi = hi1x̃l+1 + hi2x̃l+2 + . . .+ hi,n−lx̃n, i = l + 1, . . . , p

where

h2i1 + h2i2 + . . .+ h2i,n−l = sin2 αi, i = 1, . . . , l

h2i1 + h2i2 + . . .+ h2i,n−l = 1, i = l + 1, . . . , p

Moreover

hi1hj1 + hi2hj2 + . . .+ hi,n−lhj,n−l = 0, i, j = 1, . . . , p, i 6= j.

Consider the vectors

xl+i =
1

sinαi
(hi1x̃k+1 + hi2x̃k+2 + . . .+ hi,n−lx̃n), i = 1 . . . l

xl+i = hi1x̃k+1 + hi2x̃k+2 + . . .+ hi,n−lx̃n, i = l + 1 . . . p

Then {x1, . . . , xl+p, x̃l+p+1, . . . , xn} is an orthonormal basis of Rn and

bi = cosαixi + sinαixi, i = 1, . . . , l.

bi = xi, i = l + 1, . . . , p.

�

Finally we recall the notion of Kähler angle which is defined in a real vector space

V endowed with a complex structure I.

Definition 3.10. Let (V 2n, I) be a real vector space endowed with a complex struc-

ture I. For any pairs of vectors X,Y ∈ V their Kähler angle is given by

(8) θ = arccos
< X, IY >

|X| |Y | sin X̂Y
= arccos

< X, IY >

mis (X ∧ Y )
.

Then 0 ≤ θ ≤ π. If one wants to disregard the orientation of the 2-plane A =

spanR(X,Y ) we can consider the absolute value of the right hand side of equation

(8) restricting the Kähler angle to the interval [0.π/2].

It is straightforward to check that the Kähler angle is an intrinsic property of

the (oriented) 2-plane A. For this reason we will also speak of the Kähler angle of a

2-plane. The Kähler angle measures the deviation of a 2-plane from holomorphicity.

Observe that the Kähler angle of the 2-plane A is one of the two identical principal

angles between the pairs of 2-plane A and IA which are always isoclinic as one can

immediately verify. Therefore for the angle between the pair of 2-planes A and IA

one has:

(9) cos(Â, IA) =
< X, IY >2

mis2 (X ∧ Y )
.

From Proposition (1.8) it follows the
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Corollary 3.11. Let U ⊂ (V 4n,Q, <,>) be a 2 plane. The sum of the cosines of the

angles between the pairs (U, IU), (U, JU), (U,KU) is constant for any admissible

basis (I, J,K) of Q.

Proof. Let U = spanR(X,Y ) and (I, J,K) an admissible basis of Q. By (9) one has

cos(Û, IU) + cos(Û, JU) + cos(Û,KU)

=
(< X, IY >2 + < X, JY >2 + < X,KY >2)

mis2 (X ∧ Y )
.

The conclusion follows from Proposition (1.8). �

The following angular definitions shall apply in the context of an Hermitian

quaternionic vector space (V 4n,Q, <,>).

For a 2-dimensional subspace U ⊂ V , in order to generalize the notion of Kähler

angle, we will need to specify the complex structure we are considering. Therefore

we will speak of J-Kähler angle of U with J ∈ S(Q).

Definition 3.12. For a pair of vectors L,M of V and I ∈ S(Q), we define their

I-complex characteristic angle φ as the angle between the pseudo-characteristic

2-dimensional subspaces spanR(L, IL) and spanR(M, IM). Moreover we call the

quaternionic characteristic angle ϕ between L and M the angle between the char-

acteristic lines LH and MH.

Proposition 3.13. The I-complex characteristic angle φ between a pair of vec-

tors L,M of V is given by

(10) cosφ =
(< L,M >2 + < L, IM >2)

< L,L >< M,M >
,

while the quaternionic characteristic angle ϕ between the same pair of vectors is

given by

cosϕ =
[N (L ·M)]2

mis4 L mis4 M
(11)

=
(< L,M >2 + < L, IM >2 + < L, JM >2 + < L,KM >2)2

< L,L >2< M,M >2

where N (q) = qq̄.

Proof. The proof follows immediately from (7). From Proposition (1.8) we derive the

expected independence of the quaternionic characteristic angle from the admissible

basis (I, J,K). �

As the Euclidean metric give rise to the consideration of Euclidean angles, the

Hermitian metric defined in V allows us to introduce an Hermitian angle between a
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pair of vectors. In [4] the Hermitian angle between a pair of vectors of a quaternionic

vector space V 4n is defined as

cosψ =
|(L ·M)|
|L||M |

(12)

=

√
(< L,M >2 + < L, IM >2 + < L, JM >2 + < L,KM >2)√

< L,L >
√
< M,M >

It does not depend on the admissible basis of Q. Observe that the Hermitian angle

ψ between a pair of vectors L,M is just the angle between such pair (computed

by using the Hermitian product), whereas the characteristic angle ϕ is the angle

between the 4-dimensional characteristic lines they span over H. It is cosϕ = cos4 ψ.

4. The imaginary measure and the characteristic deviation
of a 2-plane

Let (V 4n,Q, <,>) be an Hermitian quaternionic vector space and U ⊂ V a 2-plane.

Consider the purely imaginary quaternion

IM(U) =
Im(L ·M)

mis(L ∧M)
, L,M ∈ U.

Proposition 4.1. IM(U) in an intrinsic property of a 2-plane U ⊂ (V 4n,Q, <,>)

i.e. it does not depend neither on the chosen generators L,M nor on the admissible

basis H of Q. Moreover Sp(n) preserves IM(U).

Proof. If L′ = rL+ sM, M ′ = r′L+ s′M, r, s, r′, s′ ∈ R then

IM(U) =
Im(L′ ·M ′)

mis(L′ ∧M ′)
=
< L′, IM ′ > i+ < L′, JM ′ > j+ < L′,KM ′ > k√

< (L′ ∧M ′), (L′ ∧M ′) >

=
(rs′ − sr′)Im(L ·M)

(rs′ − sr′)
√
< (L ∧M), (L ∧M) >

.

The second statements follows from Proposition (1.6). The invariance of IM(U)

under the action of Sp(n) on V is obvious being Sp(n) the quaternionic unitary

group. �

Definition 4.2. We call

IM(U) =
Im(L ·M)

mis(L ∧M)

the imaginary measure of the 2-plane U in the Hermitian quaternionic vector space

(V 4n,Q, <,>).

In particular, if the pair L,M is an orthonormal Euclidean basis of U , then

IM(U) = L ·M .
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On the contrary, the group Sn(n) ·Sp(1) does not preserve IM(U). If q ∈ Sp(1),

one has ALq · AMq = q̄(AL · AM)q = q̄(L ·M)q. Then the action of Sp(n) · Sp(1)

performs a rotation on the imaginary quaternion IM(U) in ImH (Proposition 1.5).

Extending to an Hermitian quaternionic vector space case some notions and

results of a vector space endowed with a complex structure (see [10]), in [3] it has

been introduced

∆(U) = N (IM(U)) =
N [Im(L ·M)]

mis2(L ∧M)

(13)

=
< L, IM >2 + < L, JM >2 + < L,KM >2

mis2(L ∧M)
.

In particular, in case the basis L,M is orthonormal, ∆(U) = N (L ·M).

From Proposition (1.8 ), one has the

Proposition 4.3. The quantity ∆(U) is an intrinsic property of a 2-plane preserved

by the action of the group Sp(n) · Sp(1) on V .

Claim 4.4. [3] The real number ∆(U) ∈ [0, 1] and equals 1 iff dimUH = 1.

Proof. Choosing a pair of orthonormal vectors L,M in U , it is ∆(U) = |(L ·M)|2
which equals the square of the cosine of the characteristic angle between the char-

acteristic lines LH,MH. Then ∆(U) = 1 iff U is pseudo-characteristic. �

Definition 4.5. The angle δ(U) ∈ [0, π/2] such that cos2 δ(U) = ∆(U) is called the

characteristic deviation of the real 2-plane U ⊂ V .

Lemma 4.6. [3]

∆(U) = cos2δ(U) = cos(Û, IU) + cos(Û, JU) + cos(Û,KU).

where cos(Û, IU) (resp. cos(Û, JU), cos(Û,KU)) denotes the cosine of the angle

between the pairs of 2-planes (U, IU) (resp. (U, JU), (U,KU)).

Proof. Let compute the angle between the pair of isoclinic 2-plane U = spanR(L,M)

and IU . Applying (7) one has

cos(Û, IU) =

∣∣∣∣ < L, IL > < L, IM >

< M, IL > < M, IM >

∣∣∣∣
mis(L ∧M) mis(IL ∧ IM)

i.e.

cos(Û, IU) =
< L, IM >2

mis2(L ∧M)

�
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Observe that, from Proposition (3.8), cos(Û, IU) (resp. cos(Û, JU), cos(Û,KU))

is the product of the cosines of the pair of identical principal angles between the pair

(U, IU) (resp. (U, JU),(U,KU)) which in this case equal the I-Kähler angle (resp.

J-Kähler, K-Kähler) given in (8).

The definition of characteristic deviation of a 2-plane given in [3] has been ex-

tended in [3] and [4] to 3 and 4-dimensional subspaces. In all this cases, the charac-

teristic deviation is an angle δ ∈ [0, π/2] which measures the deviation for a subspace

from being pseudo-characteristic. The definition of characteristic deviation given for

subspaces of dimension 2,3 and 4 has been generalized in [5] to any U t ⊆ V 4n us-

ing the ratio between the Euclidean and Hermitian measure of a simple multivector

that we can always associate to the given subspace. To this aim it has been used the

theory of determinants on a non commutative field developed by Dieudonné. In this

case it is an angle δ ∈ [0, π/2] which measures the deviation for the given subspace

Up ⊂ V 4n from being almost characteristic. For our purposes we will introduce the

following invariant to associate to a subspace Up of any dimension p. To this aim we

give the following lemma whose proof can be found in [3].

Lemma 4.7. Let {X1, . . . , Xm} be a set of linear independent vectors in V. For any

orthogonal transformation

T : Xr 7→ X ′r =
m∑
s=1

crsXs

with (crs) orthogonal matrix of order m, one has∑
r<s

N [Im(Xr ·Xs)] =
∑
r<s

N [Im(X ′r ·X ′s)]

The following definition generalizes the definition of the characteristic deviation

given for a 2-plane.

Definition 4.8. Let (X1, . . . , Xm) be an orthonormal basis of the subspace Um. De-

note by Urs =< Xr, Xs >R. We call the quantity

(14) ∆(U) =

(
m

2

)−1∑
r<s

∆(Urs)

the characteristic deviation of the subspace Um.

From Lemma (4.7) and Proposition (4.3) it follows that the characteristic devi-

ation of a subspace U ⊂ V depends neither on the admissible basis H of Q nor on

the chosen orthonormal basis of U which determines the 2-planes of U appearing in

the (14) then

Proposition 4.9. The characteristic deviation ∆(U) of a subspace U of the Hermi-

tian quaternionic vector space V is an intrinsic property of U .
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5. Orbit of a 2-plane of Hn under the action on Sp(n)
and Sp(n) · Sp(1)

We fix one for all the basis (1, i, j, k) ∈ B of H. Let consider the 4n-dimensional

Hermitian quaternionic vector space (Hn,Q = spanR(I, J,K), <,>= Re(·)) where

(I = R−i, J = R−j ,K = R−k) is the Hermitian hypercomplex structure given by

right multiplications by the imaginary units (−i,−j,−k) on the H-module Hn. Let

(e1, . . . en) be the (Hermitian) orthonormal canonical basis of Hn over H. We denote

by GR
2 (Hn) the real Grassmannian of the 2-planes of Hn and by

GIM2 = {U ∈ GR
2 (Hn) | IM(U) = IM}

the set of subspaces U ⊂ Hn of real dimension 2 sharing the same imaginary measure

equal to IM ∈ ImH. Recall that δ(U) ∈ [0, π/2] is the angle whose square cosine is

the characteristic deviation of U i.e. cos2δ(U) = ∆(U). In particular, if (L,M) is an

orthonormal basis of U , one has ∆(U) = N (IM(U)) = N (L ·M).

Theorem 5.1. The imaginary measure IM(U) determines completely the orbit of

a 2-plane U ⊂ Hn in the Grassmannian GR
2 (Hn) under the action of Sp(n). By

denoting

W = spanR(e1, e1IM(U) + sin δ(U)e2),

we have GIM2 = Sp(n) ·W .

Proof. Let Hn ⊃ U = (u1,u2)R ∈ GIM2 with (u1,u2) an orthonormal basis. Observe

that IM(W ) = IM(U) = IM. From Proposition (4.1), the group Sp(n) preserves

IM(U) then GIM2 ⊇ Sp(n) ·W . We show that GIM2 ⊆ Sp(n) ·W .

The group Sp(n) acts transitively on unitary vectors so there exist A ∈ Sp(n)

such that

A : u1 7→ e1,

A : u2 7→ Au2 = Y = (e1q1 + e2q2 + . . .+ enqn)

= (e1q1) + (e2q2 + . . .+ enqn)

with Y unitary. Let Y1 = e1q1 and Y2 = e2q2 + . . .+ enqn.

By the action of 1⊕B with B ∈ Sp(n− 1) (since Sp(n− 1) acts transitively on

vectors of Hn−1 preserving norms):

B : (Au2) = Y 7→ (e1q1 + e2|Y2|), |Y2| =
√

(Y2 ·Y2) =
√

(q̄2q2 + . . . , q̄nqn))

i.e. by (B ◦A) ∈ Sp(n) we have carrier U to spanR(e1, e1q1 + e2|Y2|)
Since Sp(n) ⊂ SO(4n) preserves Hermitian measures and in particular IM(U)

as well as all Euclidean measures in particular Euclidean norms and angles between

vectors and between subspaces (in particular Kähler angles), it follows that q1 =

IM(U) and |Y2| =
√

1−∆(U) = sin δ(U). In fact:

0 = Re(e1 · (e1q1 + e2|Y2|)) = Re(q1)
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i.e. q1 is purely imaginary; moreover

IM(U) = IM(E) = Im(e1 · (e1q1 + e2|Y2|)) = Im(q1) = q1,

i.e. Y = IM(U)e1 + e2|Y2|. Finally imposing

1 = |Y| = (e1q1+e2|Y2|)·(e1q1+e2|Y2|) = q̄1(e1 ·e1)q1+|Y2|2(e2 ·e2) = ∆(U)+|Y2|2

we have |Y2| =
√

1−∆(U). Then by B ◦A ∈ Sp(n) we have carrier U to

W = spanR(e1, e1IM(U) +
√

1−∆(U)e2) = spanR(e1, e1IM(U) + sin δ(U)e2)

�

We now study the orbit of the same 2-plane U ⊂ Hn under the action of the

group Sp(n) · Sp(1). We recall that the characteristic deviation δ(U) is invariant

under a change of the hypercomplex basis in Hn given by (i′, j′, k′) = p(i, j, k)p−1

with p ∈ Sp(1).

Let denote by Gδ2 = {U ⊂ GR
2 (Hn), | δ(U) = δ} the set of 2-plane in Hn with

characteristic deviation equal to δ.

Theorem 5.2. The characteristic deviation δ determines completely the orbit of the

2-plane U ⊂ Hn in the Grassmannian GR
2 (Hn) under the action of Sp(n) · Sp(1).

Proof. From Proposition (4.3), the group Sp(n) ·Sp(1) preserves δ then Gδ2 ⊇ [Sp(1) ·
Sp(n)]·W . We prove the opposite inclusion. To this aim, let consider a pair of 2-planes

U1, U2 such that δ(U1) = δ(U2) = δ whereas IM(U1) 6= IM(U2). We prove that

they belong to the same orbit. It is IM(U1) = q(IM(U2))q̄ by some quaternion

q that we can always assume to be unitary. We have seen that there exist some

A,A′ ∈ Sp(n) such that

A · U1 = W1 = spanR(e1, e1IM(U1) + sin δ(U1)e2),

A′ · U2 = W2 = spanR(e1, e1IM(U2) + sin δ(U2)e2)).

Left multiplication by q belongs to the group Sp(n) then, by q ◦A′ ∈ Sp(n),

(q ◦A′) · U2 = spanR(qe1, qe1IM(U2) + sin δ(U2)qe2).

and through the left multiplication by q̄ the conclusion follows. �

Conclusions

This article contains some of the results we have obtained so far in a research now in

progress aimed to determine the orbits in GR
k (Hn), 0 < k < 4n under the action of

the groups Sp(n) and Sp(n) · Sp(1). In particular here we consider GR
2 (Hn) i.e. the

real Grassmannian of 2-planes of the 4n-dimensional real vector space Hn chosen as

model of all Hermitian quaternionic vector spaces. The full set of invariants for the

orbit of a 2-plane U ⊂ Hn is given by IM(U) in case we consider the action of Sp(n)

and by the characteristic deviation ∆(U) when the acting group is Sp(n) · Sp(1).
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In the next step we will consider the action of the same groups on the subset

of GR
k (Hn) consisting of 2k-dimensional A-complex subspaces ∀A ∈ S(Q) and 0 <

2k < 4n that is the subset of all complex subspaces by some compatible complex

structure.

Finally, still considering the action of the groups Sp(n) and Sp(n) · Sp(1), we

intend to determine the full set of invariants for the orbit of a generic subspace of

Hn. For this reason we decided to include for completeness in this article, besides the

results related to the 2-planes, also some definitions, like the characteristic deviation

of a k-dimensional subspace of Hn, the I-complex characteristic angle, etc .. , basic

notions and some results that will be used in the following articles.
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ORBITY W RZECZYWISTYM GRASSMANNIANIE 2-P LASZCZYZN

POD DZIA LANIEM GRUP Sp(n) ORAZ Sp(n) · Sp(1)

S t r e s z c z e n i e
Naturalne dzia lanie grupy unitarnej U(n) w przestrzeni Cn indukuje jej dzia lanie na

rozmaitości Grassmanna GR
k(Cn) z lożonej z k-wymiarowych podprzestrzeni rzeczywistych

przestrzeni Cn. W pracy wyznaczamy kompletny niezmiennik dla podprzestrzeni rzeczy-
wistej wymiaru 2 ze wzglȩdu na dzia lanie grup Sp(n) oraz Sp(n) · Sp(1) – grup auto-
morfizmów rzeczywistej przestrzeni wektorowej wyposażonej odpowiednio w hermitowska̧
strukturȩ hiperzespolona̧ i hermitowska̧ strukturȩ kwaternionowa̧. Wprowadzamy miarȩ
urojona̧ i charakterystyczna̧ dewiacjȩ 2-p laszczyzny i dowodzimy, że charakteryzuja̧ one
kompletnie orbity w 2-p laszczyźnie w GR

2 (Hn) odpowiednio przy dzia laniu grup Sp(n) oraz
Sp(n) · Sp(1)

S lowa kluczowe: hermitowska struktura kwaternionowa, ka̧ty pryncypalne, ka̧ty Kählera,
grupy Sp(n), grupy Sp(n) · Sp(1)
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7. M. Moneta, M. Antoszewska-Moneta, and R. Brzozowski,

Heavy ions sputtering and implantation of surface monitored

with PIXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ca. 10 pp.
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