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adress complète.
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Adresse de la Rédaction de la Série:
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pp. 11–16

Contribution to the jubilee volume, dedicated

to Professors J.  Lawrynowicz and L. Wojtczak

Henryk Puszkarski and Piotr Tomczak

APPLICATION OF THE SURFACE PINNING DIAGRAM

TO THE STUDY OF EXISTENCE CONDITIONS

OF SURFACE SPIN-WAVE MODES IN (Ga,Mn)As THIN FILMS

Summary
Spin-wave resonance (SWR) is a newly emerged method for studying surface magnetic

anisotropy and surface spin-wave modes in (Ga,Mn)As thin films. On the basis of recent
SWR studies of (Ga,Mn)As thin films we show that the cubic surface anisotropy is an
essential factor determining the configuration regions of existence of surface spin-wave
modes. These proved to exist only for those directions of film magnetization that lie in the
immediate vicinity of hard cubic anisotropy axes.

Keywords and phrases: surface anisotropy, surface spin pinning, spin-wave resonance,
(Ga,Mn)As thin films, surface pinning diagram

1. Introduction

The existence of surface spin-wave modes (SSWMs) in (Ga,Mn)As thin films was first re-
ported by Liu et al. [1], which observed SSWMs in both the out-of-plane configuration,
with variable polar angle ϑM between the magnetization of the film and its surface normal,
and the in-plane configuration, with variable azimuth angle ϕM between the in-plane mag-
netization of the film and the [100] crystal axis. In the former case SSWMs only exist when
the polar angle ϑM is larger than a certain angle – the out-of-plane critical angle – while
in the in-plane configuration SSWMs are observed in the azimuth angle range between two
in-plane critical angles.

These experimental findings are interpreted theoretically in our recent papers [2–4],
in which we propose an appropriate model of surface anisotropy that both explains the
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existence of critical angles and allows to determine the conditions of existence of SSWMs
in full agreement with the experimental data. In our model of surface anisotropy we use
the concept of surface pinning parameter Asurf , which describes the freedom of precessing
surface spins in relation to the freedom of precessing bulk spins. We have determined the
functions Asurf (ϑH) and Asurf (ϕM ) describing the configuration dependence of the surface
parameter in the out-of-plane and in-plane configurations, respectively. The explicit formula
for the in-plane surface parameter reads [3]:

Asurf (ϕM ) = 1 + aiso + auni sin2 (ϕM − 45◦) +

acub

[
(3 + cos4ϕM ) + (3 + cos4ϕM )4

]
.(1)

We will use Eq. (1) as a basis for a pinning diagram construction.
In our model the critical angles are determined by the condition Asurf (ϕM ) = 1, and

the configuration angles for which SSWMs exist by the condition Asurf (ϕM ) > 1. Based
on these conditions, in the present paper we will discuss the impact of each of the surface
anisotropy components appearing in Eq. (1), and provide a physical interpretation of their
respective roles in the generation of SSWMs. To this end we will use a surface pinning
diagram built in the polar coordinate system; using this pinning diagram we will obtain a
graphical representation of the configuration dependence of the pinning felt by the surface
spins.

2. Concept of surface pinning diagram

The proposed new tool that we have named the surface pinning diagram is a planar map
showing how the dynamics of surface spins in a (Ga,Mn)As thin film changes with their
orientation with respect to specific crystal axes that characterize the surface structure. The
pinning diagram is based on a polar coordinate system lying in the plane of the film surface
(see Fig. 1a). In this coordinate system the azimuth angle ϕM describes the orientation of
the magnetization of the sample with respect to a reference axis, which is the [100] crystal
axis; the distance between a point in the diagram and the pole of the coordinate system
measures the value of the surface pinning parameter Asurf = Asurf (ϕM ) corresponding to
a given azimuth angle.

Introduced in papers [5, 6], the concept of surface pinning parameter A was proposed
to describe the degree of freedom of surface spins in their precession. By definition the
surface pinning parameter value A = 1 corresponds to the natural freedom of the surface
spins resulting from breaking their bonds with neighbors eliminated from the system by
surface cut. This particular value of A divides the (Asurf (ϕM ), ϕM ) plane into two different
regions: within the circle of radius Asurf (ϕM ) = 1, where only bulk spin-wave modes exist,
and region beyond this circle, in which SSWMs exist in the spectrum of allowed modes
(see also [7, 8]). Against the pinning diagram in Fig. 1a we have added the crystal axes
characterizing the magnetic anisotropy in the (Ga,Mn)As sample used in the spin-wave
resonance (SWR) study [1] (in which the SWR measurements were performed in the (001)
in-plane configuration).

3. Factors responsible for surface pinning

A satisfactory interpretation of the experimental SWR spectra obtained in the in-plane
configuration [1] is achieved with the surface parameter described by the series presented
above in equation (1) (found in an investigation discussed in detail in [3]) with the following
values of the series coefficients aiso, auni and acub:
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Fig. 1: Graphical representation of the evolution of the in-plane surface spin pinning in
a (Ga,Mn)As thin film as described by Eq. (1) expressing the surface pinning parameter
Asurf (ϕM ) as a function of the in-plane azimuth magnetization angle ϕM . (a) The idea of
surface pinning diagram: each point in the plane represents the surface pinning conditions
described by a specific value of the surface pinning parameter Asurf (ϕM ) corresponding to
the given magnetization direction ϕM . The circle Asurf (ϕM ) = 1 corresponds to natural
pinning conditions. (b) Configuration dependence of the surface spin pinning contributions
resulting from two different factors considered separately (as indicated in the graph). (c)
Magnetization angle dependence Asurf (ϕM ) (solid line) of the in-plane full surface pinning
parameter resulting from our model (see Eq. (1)); this theoretical curve is found to fit very
well the experimental data obtained by Liu et al. [1]. Regions of existence of SSWMs under
these full pinning conditions are marked in green.
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aiso = 0.1058; auni = 0.027; acub = −0.0023.(2)

The series coefficients in equation (1) describe the contributions of different surface
anisotropy components to the surface spin pinning in (Ga,Mn)As thin films: aiso is the
isotropic contribution to the pinning, auni is related to the uniaxial component, and acub

describes the pinning due to the cubic anisotropy. Below we will use equations (1) and (2)
as a basis for building our pinning diagram. First we will build a partial diagram, shown
in Fig. 1b; then we will proceed to the full diagram, presented in Fig. 1c.

Figure 1b shows two curves, each representing the azimuth angle dependence of a part of
surface pinning resulting from selected anisotropies – the total contribution of the isotropic
and uniaxial anisotropies is analyzed independently of the pinning related to the cubic
anisotropy. The first two contributions consonantly introduce the pinning to that region of
the diagram in which SSWMs exist for any azimuth orientation (green ring in the diagram).
In contrast, the pinning resulting from the cubic anisotropy, represented by a quadrifolium-
like curve, is completely embedded in the region within the circle of radius Asurf (ϕM ) = 1;
however, since the circle Asurf (ϕM ) = 1 corresponds to the natural pinning this implies
that the cubic anisotropy alone will not induce SSWMs in any azimuth orientation. Thus,
already at this point, before proceeding to the analysis of the full pinning diagram presented
in Fig. 1c, we must realize that it will result from two above-mentioned opposite tendencies.

4. Regions of SSWM existence vs. cubic surface anisotropy

As a result of the summation of the above-mentioned pinning contributions with different
effects on the spins – one increasing their freedom, the other reducing it – in the full
pinning diagram (Fig. 1c) the green ring is reduced to four islands that still remain within
the region of surface mode existence. Each of these islands is associated with one hard cubic
anisotropy axis, as indicated in Fig. 1a. Also, each island corresponds to an azimuth angle
range between the two critical angles for which Asurf (ϕM ) = 1; each of these angle ranges
surrounds symmetrically the cubic anisotropy axis. It is in these azimuth angle ranges that
SSWMs exist. Beyond them the cubic anisotropy has a destructive effect on the surface
modes; this destruction is apparent in regions symmetric with respect to the easy cubic
anisotropy axes.

Now we can provide physical grounds to these observations. A hard magnetic axis is a
direction in which spins are reluctant to align, and setting them in an equilibrium direction
involves a high energy cost to the system. Thus, the opposite tendency – divergence from the
hard axis – must be more favorable energetically. This implies that a hard cubic anisotropy
axis plays the role of an easy axis for the spin pinning ; we can refer to it as an easy pinning
axis, i.e., an axis from which spins diverge easily, since their pinning along its direction
is weaker. And vice versa: an easy cubic anisotropy axis defines a direction that spins are
reluctant to quit (hard pinning axis).

Thus, the following final conclusion can be drawn from our considerations based on
the pinning diagram: in a (Ga,Mn)As thin film conditions favorable for the occurrence
of surface spin-wave modes in the in-plane configuration are fulfilled first of all for those
azimuth orientations of the magnetization of the sample that lie around the hard axes of
cubic magnetic anisotropy.
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ZASTOSOWANIE DIAGRAMU PRZYPIȨCIA POWIERZCHNIOWEGO
DO STUDIUM WARUNKÓW ISTNIENIA
SPINOWO-FALOWYCH MODÓW POWIERZCHNIOWYCH W CIENKICH
WARSTWACH (Ga,Mn)As

S t r e s z c z e n i e
Rezonans spinowo-falowy (SWR) stwarza nowa̧ metodȩ badania powierzchniowej ani-

zotropii magnetycznej i spinowo-falowych modów powierzchniowych w cienkich warstwach
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(Ga,Mn)As. Na podstawie niedawnych badań SWR cienkich warstw (Ga,Mn)As wykazu-
jemy, że sześcienna powierzchnia anizotropii jest zasadniczym czynnikiem określaja̧cym
konfiguracje obszarów istnienia spinowo-falowych modów powierzchniowych. Wykazujemy
istnienie ich tylko w przypadkach takich kierunków magnetyzacji warstw, które sa̧ po lożone
w bezpośrednim sa̧siedztwie ustalonych sześciennych osi anizotropii.

S lowa kluczowe: anizotropia powierzchniowa, spinowe przypiȩcie powierzchniowe, rezonans
spinowo-falowy, cienkie warstwy (Ga,Mn)As, diagram przypie—cia powierzchniowego¸
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THERMODYNAMIC PROPERTIES OF A HUBBARD MODEL

ON A CUBIC CLUSTER – EXACT DIAGONALIZATION STUDY

AT QUARTER FILLING

Summary
We study the thermodynamics of a zero-dimensional, cubic cluster described with a

Hubbard Hamiltonian, focusing our interest on the magnetic properties. The range in which
the studied cluster is paramagnetic is considered. The results are obtained by means of ex-
act numerical diagonalization. Such thermodynamic quantities as entropy, specific heat,
magnetic susceptibility, spin-spin correlations and double occupancy are discussed. Partic-
ular emphasis is put on the behaviour of local maxima of specific heat and susceptibility,
which are analysed in terms of Schottky anomalies.

Keywords and phrases: Hubbard model, entropy, specific heat, magnetic susceptibility, para-
magnetism, exact diagonalization, Schottky anomaly

1. Introduction

Low-dimensional magnetic systems attract considerable theoretical and experimental

efforts. Within this field, noticeable attention is paid to the theoretical studies of

zero-dimensional magnetic clusters composed of a finite, small number of atoms [1–4].

Although the existence of magnetic ordering and magnetic phase transitions in low

dimensions is severely limited, yet such systems can still exhibit a range of interesting

properties.
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Hubbard model [5–7] is one of the successful theoretical approaches involved,

among others, in the studies of low-dimensional magnetic systems exhibiting strong

correlations (to mention for example its early applications to magnetic thin films

[8–10]). In spite of its simplicity, it still remains a challenge for theorists. In addition

to various approximate approaches to its thermodynamics, a valuable method for this

model is exact diagonalization [11], being essentially free from any artefacts, which

feature is of huge importance due to the complicated phase diagram of the model.

However, such method is computationally very demanding, therefore its applicability

is limited only to the smallest systems. This feature allows to focus the interest on

zero-dimensional clusters described by Hubbard model, the magnetic properties of

which were studied for various geometries and numbers of charge carriers (filling

levels of energy states) [12–20]. In particular, cubic cluster attracted some attention

[13, 19, 20]. However, not all the thermodynamic properties related to magnetism

were systematically explored, especially beyond the half-filling case.

The aim of the present paper is to provide a systematic discussion of thermody-

namics of a cubic Hubbard cluster, selecting the case of quarter-filling of the energy

states.

Fig. 1: A schematic view of a cubic cluster system described with a Hubbard Hamiltonian
with the hopping integral t and on-site Coulombic energy U . The spin-spin correlations
between first, second and third nearest neighbours are indicated with dashed lines.

2. Theoretical model

A schematic view of the system of interest is shown in Fig. 1. It is a zero-dimensional

cluster in a form of a cube, having N = 8 sites with hopping integral t between

nearest neighbours only. The on-site Coulombic interaction energy is parametrized

by the parameter U > 0. In our study we focus on the case with Ne = 4 charge

carriers (electrons) in the system, thus we deal with quarter-filling of the energy
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states. Let us remind that such a molecular-like structure possesses a purely discrete

energy spectrum, so we do not refer to band filling.

The system is described by the following Hubbard Hamiltonian:

H = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↑ni,↓,(1)

in which c†i,σ (ci,σ) creates (annihilates) an electron with spin σ at site labelled

with i = 1, . . . , N , while ni,σ = c†i,σci,σ is the number of electrons with spin σ at

site i. Let us mention that z-component of the spin at site i is therefore equal to

szi = (ni,↑ − ni,↓) /2.

For the case of N = 8 lattice sites with Ne = 4 electrons, the Hilbert space for

the studied system is spanned by

Ns =
(2N)!

Ne! (2N −Ne)!
= 1820

basis vectors. The resulting matrix (Ns × Ns) of the Hamiltonian H for the given

case can be exactly diagonalized numerically, what yields the eigenvalues and corre-

sponding eigenvectors.

10-3 10-2 10-1 100 101
0
1
2
3
4
5
6
7
8

0

4

8

12

16

20

k B T / t

S
 / 

k  B

U / t

Fig. 2: The dependence of the system entropy on the normalized temperature for various
values of normalized Coulombic interactions energy.

The exact thermodynamic description of our system was constructed basing on

the canonical ensemble, with fixed number of electrons and temperature equal to T .

The statistical operator describing the thermal state is:
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ρ =
1

Z
e−βH,(2)

where the statistical sum is given by:

Z = Tr e−βH =
∑
k

gk e
−βEk ,(3)

gk being the degeneracy of the eigenstate with the energy equal to Ek, while β =

1/ (kBT ) with kB denoting the Boltzmann constant. The thermodynamic average of

an arbitrary quantity A is equal to:

〈A〉 = Tr (ρA) .(4)

Knowledge of the statistical operator and the statistical sum allows us to calculate

all further thermodynamic quantities of interest, for instance, entropy, specific heat

or magnetic susceptibility as well as magnetic correlations between first, second and

third neighbours (see Fig. 1 for schematic explanation). In particular, specific heat

Ch and magnetic susceptibility χT can be determined conveniently using fluctuation-

dissipation theorem, which yields:

Ch = kBβ
2
(〈
E2
〉
− 〈E〉2

)
,(5)

where

〈E〉 =
1

Z
∑
k

gkEke
−βEk

is the internal energy and

χT = β
(〈
m2
〉
− 〈m〉2

)
,(6)

where

〈m〉 =

N∑
i=1

〈szi 〉

is the average total magnetization.

The entropy is calculated from S = (〈E〉 − F ) /T , where F = −kBT lnZ is

Helmholtz free energy. The spin-spin correlations are defined as ck =
〈
szi s

z
j

〉
, where

k = 1, 2, 3 means that spin at site i is the k-th nearest neighbour of the spin at site

j (see Fig. 1). Finally, the average double occupancy per site is expressed as

d = (1/N)

N∑
i=1

〈ni,↑ni,↓〉.

In our calculations we found that the ground state (at T = 0) is nonmagnetic,

with total spin equal to S = 0 if U/t . 223.7, what is in agreement with the

results of Refs. [13, 19] (while for stronger Coulombic interactions U we deal with

a ferromagnetic ground state). Since the critical strength of Coulombic interactions

corresponds to extremely high U/t values, we limit our considerations to the range

with zero total ground state spin, assuming 0 ≤ U/t ≤ 50. We believe this range
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is the most physically interesting and the thermodynamic properties of the cubic

Hubbard cluster at quarter filling for this range were not systematically explored.

3. Numerical results and discussion

In this section we discuss the numerical calculations of such thermodynamic quanti-

ties as entropy, specific heat and magnetic susceptibility as well as spin correlation

functions and double occupancy performed within canonical ensemble approach with

exact numerical diagonalization of the Hubbard Hamiltonian. For the numerical cal-

culations we used Wolfram Mathematica software [21].

The dependence of total entropy of the cubic cluster on the temperature in pre-

sented in Fig. 2 in logarithmic temperature scale, in a wide range of normalized

Coulombic energies U/t. For U/t = 0 (i.e. for a pure tight-binding model) a ground

state exhibits 15-fold degeneracy, therefore, the entropy at T = 0 reaches a notice-

able residual value of kB ln 15 ' 2.708 kB. On the contrary, for U/t > 0 (in our

U/t range of interest) the ground state is 2-fold degenerated, so that the residual

entropy is reduced to kB ln 2 ' 0.693 kB. The limiting, high-temperature entropy is

in all cases kB ln 1820 ' 7.507 kB. In Fig. 2 it can be noticed that some low- and

high-temperature ranges can be seen, in which entropy rises fast with the tempera-

ture, signalizing high values of the specific heat.

The variation of specific heat with the temperature can be followed for a range

of U/t values in Fig. 3. It is evident that in the absence of Coulombic interactions a

single peak is present, at the temperature close to kBT/t ' 1, and it remains in that

position when the Coulombic interaction U/t is switched on. What is noticeable, ap-

pearance of U/t > 0 causes a low-temperature specific heat maximum to emerge, as

well as the significant shift of its position with the energy of Coulombic interactions,

what can be clearly seen in Fig. 3.

Contrary to the specific heat, the magnetic susceptibility indicates only a sin-

gle peak in its temperature dependence for U/t > 0, as presented in Fig. 4. The

height of this maximum also significantly drops when Coulombic interactions be-

come stronger, whereas both specific heat maxima show a rather constant height.

It has been verified that the inverse of susceptibility shows a linear dependence on

the temperature at high temperatures, what corresponds to Curie-Weiss law with

positive (ferromagnetic) Curie-Weiss temperature (not shown in the plot); note that

this fact does not imply the presence of magnetic ordering in our zero-dimensional

system.

As both specific heat and magnetic susceptibility exhibit the presence of pro-

nounced maxima, it is interesting to investigate their behaviour as a function of

Coulombic interactions energy as well as to explain their origin.

The temperature values Tmax at which such quantities as the magnetic suscep-

tibility and the specific heat of the studied system reach their local maxima are

plotted in Fig. 5 as a function of reduced Coulombic on-site energy U/t. Let us
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Fig. 3: The dependence of the system specific heat on the normalized temperature for
various values of normalized Coulombic interactions energy.

remind that, in general, susceptibility exhibits a single peak, while specific heat de-

velops two distinct maxima. Therefore, in the main panel of Fig. 5, only the position

of low-temperature maximum of the specific heat is shown, while the inset presents

the evolution of the position of high-temperature maximum. It can be noticed that

the characteristic temperature of local maximum both for χT and for Ch increases

(starting from the zero value) until approximately U/t ' 9. If Coulombic inter-

actions become stronger, the maxima shift back towards lower temperatures. The

characteristic temperature at which the specific heat reaches maximum is at least

twice lower than the corresponding temperature for magnetic susceptibility. The

high-temperature maximum of specific heat shifts monotonically towards lower tem-

peratures when U/t increases, however, this evolution is quite rapid for weaker U/t

and then, for U/t & 9 (where point of inflection is reached) it becomes significantly

slower.

In order to analyse the behaviour of the mentioned thermodynamic quantities

in details, it can be useful to consider only the ground state and the first excited

state. For the studied range of parameters (0 ≤ U/t ≤ 50), the system of interest

has a doubly degenerate ground state with total spin S = 0. The first excited state

is separated in energy from the ground state by the energy gap equal to ∆ and has

a degeneracy of nine, including three states with S = −1, three states with S = 0

and three states with S = 1. The normalized gap value ∆/t is plotted as a function
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Fig. 4: The dependence of the system magnetic susceptibility on the normalized temperature
for various values of normalized Coulombic interactions energy.

of the ratio U/t in Fig. 5 with dashed line (note the right vertical axis). It increases

with increasing U/t reaching a maximum value at U/t ' 9.19 and then a decrease

is noticed. Such a knowledge about the energy spectrum allows us to analyse the

behaviour of the selected thermodynamic quantities basing on a two-level system.

According to fluctuation-dissipation theorem, the specific heat under constant

magnetic field, for the system with energy spectrum limited to the mentioned two

states, can be expressed as:

Ch = kBβ
2 9∆2e−β∆

2 + 9e−β∆

(
1− 9e−β∆

2 + 9e−β∆

)
.(7)

This function exhibits a Schottky anomaly in a form of a broad maximum at

kBTmax/∆ ' 0.3264.

Moreover, the magnetic susceptibility can be expressed under analogous assump-

tions as:

χT =
6βe−β∆

2 + 9e−β∆
,(8)

with a Schottky maximum at somehow higher temperature, equal to kBTmax/∆ '
0.5656.
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Fig. 5: The dependence of the energy gap as well as of characteristic temparatures at which
magnetic susceptibility and specific heat reach local maxima on the normalized Coulombic
interactions energy.

The values of magnetic susceptibility and specific heat predicted by the equations

(7) and (8) based on the calculated energy gap ∆ are shown in Fig. 5 using empty and

filled circles, respectively. It can be noticed, that for specific heat, a perfect agreement

occurs between the results of full exact diagonalization calculations and the model

involving only two states (ground state and the first excited state). Therefore, the

origin of the low-temperature peak in specific heat can be explained in terms of a

Schottky anomaly. In addition, the values for magnetic susceptibility also show a

good agreement with the predictions of the two-level model, except at the highest

studied values of U/t, i.e. for strongest Coulombic interactions. Therefore, it can

be concluded that the magnetic susceptibility peak and the low-temperature peak

in specific heat possess the character of Schottky anomalies and they share the

variability trend with the energy gap ∆ as a function of U/t. Moreover, they can

be accurately described with a model involving only two states lowest in energy and

arise only in the presence of Coulombic interactions. On the other hand, the high-

temperature maximum in specific heat is already present for a pure tight-binding

model with U/t = 0 and is unrelated to Coulombic interactions and only moderately

sensitive to its occurrence.

The presented considerations show that the observed low-temperature maxima

in magnetic susceptibility and specific heat are of Schottky anomaly origin, whereas



Thermodynamic properties of a Hubbard model on a cubic cluster 25

10-3 10-2 10-1 100 101

-0.03

-0.02

-0.01

0.00

0.01

 c1 

 c1 

 c2 

 c2 

 c3 

 c3 

 

 

c 1 ,
 c

2 ,
 c

3

k B T / t

   U / t = 0
   U / t = 5

Fig. 6: The dependence of the spin-spin correlations for first, second and third neighbours
(see Fig. 1) on the normalized temperature for two representative values of normalized
Coulombic interactions energy.

the system of interest remains paramagnetic in the studied range of U/t. It can be

noted that the similar plots in the Ref. [19] concerning specific heat for the case of

7 electrons show the effect of transition to the state with nonzero total spin over

certain critical Coulombic interactions energy (which effect is absent in our case in

the studied range).

In order to complete the characterization of the magnetic properties of the cu-

bic cluster in the paramagnetic range, we illustrate the temperature dependence of

the spin-spin correlations in Fig. 6. In this plot two cases are presented – the ab-

sence of Coulombic interactions (U/t = 0) and the presence of them, for a moderate

value of U/t = 5. As it can be noticed, the correlations between nearest-neighbour

and second-neighbour spins are antiferromagnetic in character in both cases shown.

On the contrary, the correlations between spins being third neighbours possess fer-

romagnetic character. In the absence of Coulombic interactions, the correlations

exhibit almost flat temperature dependences unless the temperature is high, with-

out any low-temperature features. Introducing the Coulombic interactions enhances

very significantly the magnitude of correlations preserving their signs. Moreover, it

leads to the appearance of low-temperature features, as the magnitude of correla-

tions becomes more temperature dependent in some low-temperature range. This
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Fig. 7: The dependence of the average double occupancy per site on the normalized tem-
perature for various values of normalized Coulombic interactions energy.

behaviour is much more pronounced for antiferromagnetic correlations, i.e. those

between nearest-neighbours and second neighbours, whereas the ferromagnetic cor-

relations between third neighbours remain less sensitive.

Last, but not least, we present the results of calculations of average double oc-

cupancy per site. The dependence of d on the temperature for various values of

Coulombic interactions energy is shown in Fig. 7. It is remarkable that the low-

temperature values of double occupancy strongly decrease when U/t increases. Such

a tendency of lowering the double occupancy with the increase of the Coulombic (re-

pulsive) interactions energy is also visible for example in the results of Ref. [22] for

two-dimensional Hubbard model. On the contrary, at high temperature the double

occupancy increases (and tends to a common limit of d = 0.05 at T → ∞). Since

the double occupancy of a site implies that a pair of electrons is in singlet state,

with opposite spins, the increase in double occupancy is connected with a decrease

in average squared magnetization per site (note that in the studied range the system

is paramagnetic and the magnetizations themselves are equal to zero). Therefore,

the temperature reduces the tendency to form magnetic moments (but increasing

Coulombic interactions acts in an opposite direction). Ground-state value of double

occupancy for U/t = 0 is equal to d = 9/160 = 0.05625, but the limiting value for

U/t→ 0 is d ' 0.04575.
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4. Final remarks

In the paper we discussed the thermodynamic properties of a cubic cluster de-

scribed by Hubbard model at quarter-filling. The exact numerical diagonalization

enabled obtaining the artefact-free solution. The studied cluster indicated param-

agnetic properties with no magnetization in the investigated range of Coulombic

interaction energies. The double-peak structure of specific heat was found, with a

low-temperature maximum well described by a Schottky anomaly model, involving

only the ground state and the first excited state. The same model was applied to ex-

plain the origin of a single maximum in magnetic susceptibility. Also the behaviour

of spin-spin correlations and double occupancy was analysed. The obtained exact nu-

merical results may encourage further studies of clusters with other geometries and

numbers of electrons; moreover, also the influence of other factors, such as external

fields, can be worthy of investigation.
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BADANIA W LAŚCIWOŚCI TERMODYNAMICZNYCH MODELU

HUBBARDA DLA KLASTERA O KSZTA LCIE SZEŚCIANU

– DOK LADNA DIAGONALIZACJA DLA WYPE LNIENIA 1/4

S t r e s z c z e n i e
Przedmiotem badań jest termodynamika zerowymiarowego klastera o kszta lcie sześcia-

nu, opisywanego przez Hamiltonian Hubbarda, w tym zw laszcza w laściwości magnetyczne.
Rozważany jest zakres, w którym badany klaster wykazuje paramagnetyzm. Wyniki otrzy-
mano w ramach metody dok ladnej diagonalizacji numerycznej. Przedyskutowano takie
w laściwości termodynamiczne, jak entropia, ciep lo w laściwe, podatność magnetyczna, ko-
relacje spinowe i prawdopodobieństwo podwójnego obsadzenia wȩz la sieci. Szczególny na-
cisk po lożono na zbadanie po lożeń maksimów lokalnych ciep la w laściwego i podatności,
analizujac je w ramach modelu Schottky’ego.

S lowa kluczowe: model Hubbarda, entropia, ciep lo w laściwe, podatność magnetyczna, para-
magnetyzm, dok ladna diagonalizacja, anomalia Schottky’ego
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Summary
This paper is a theoretical study based on the structure of CaCO3, routed the challenge

of developing a material capable of storing hydrogen. Therefore, a theoretical analysis of the
kinetics of decomposition of calcium carbonate taking into account its physical-chemical
properties is given. One of the reactions proposed in the decomposition produce calcium
hydroxide and carbon dioxide in gaseous phase, these states have a material in solid state
intended to hydrogen storage based on the calcium carbonate as a raw material.
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1. Introduction

Gasification of wet biomass accompanied by CO2 absorption is a potential method

for hydrogen rich fuel gas production [1]. The drying of wet biomass generates a

steam-rich atmosphere, in which the reforming of tar and hydrocarbon, the water

gas shift reaction, and the CO2 absorbing by CaO take place [2, 3]. The presence of

the sorbent greatly promotes both hydrogen production from biomass gasification

and CO2 capture. In this process, CaO plays the dual role of catalyst and sorbent.

It is noteworthy that the sorbent reveals a stronger effect on the water gas shift

reaction than on the steam reforming of methane.
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The objective of this research is study of calcium carbonate as a raw material

for hydrogen storage. Calcite, a derivative of calcium carbonate is widely deposited

as bio-mineral because of its high thermodynamic stability at room temperature [4].

it has a trigonal-rhombohedral crystal structure, ions comprising Ca+2 and planar

groups CO−2
3 , which are in alternating layers oriented perpendicularly to the c axis.

Each ion Ca+2 has six immediate CO−2
3 neighbors, oriented in such order that an

oxygen atom is calcium immediate neighbor. Calcite belongs to the space group

R32c whose crystal symmetry is trigonal 32m. Ions Ca+2 and CO−2
3 in calcite are

held together by ionic bonds. The dissociation of calcium carbonate is represented

by the reaction [5, 6]:

CaCO3(s)←→ CaO(s) + CO2(g).(1)

Two modes of dissociative evaporation (equimolar and isobaric) were revealed and

identified by B. V. L’Vov et al. [7], and Arrhenius parameters corresponding to

(E and A) were interpreted. That main concept in traditional approach is that the

deviation from equilibrium is related with the existence of theoretically predicted

energy barrier (activation energy) as a reaction. On the other hand, the main con-

cept of the physical approach is that the decomposition of the primary reactive gas

phase proceeds under equilibrium conditions, but the origin and composition of these

commodities may differ from those in balance. For calcite, this difference involves de-

composition of CaCO3 to CO2 molecules and gas molecules of low volatility of CaO

which are subsequently condensed with the formation of solid CaO. The advantage

of the physical approach on the chemical approach is to describe the decomposition

process quantitatively using the laws of thermodynamics.

2. Theoretical analysis

The thermo-chemical approach in determining the activation energy of the dissoci-

ation reaction of calcium carbonate was introduced by L’Vov and is based on the

assumption that an initial step involves evaporation of the reactant followed by

the condensation of product of low volatile calcium oxide. Since primary thermo-

chemical calculations show that in all cases forming solid product in the process

of dissociative consistent vaporization of reactants, the equilibrium partial pressure

of the main product is much higher than its saturation vapor pressure and there-

fore causes appearance of super-saturation vapor. Super-saturation is responsible for

transferring the condensation energy reactant. Because this energy transfer directly

affects the reactant changing the molar enthalpy of the dissociation reaction, if the

theory is correct, the equilibrium temperature of the reaction is increasingly difficult

to determine using standard thermal analysis because energy transfer condensation

is extremely challenging to determine. To calculate the theoretical values of the pa-

rameter E, in the case of the solid compound S decomposed into gaseous products

A and B with simultaneous condensation of low volatility of species A is given by:
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S(s)←→ aA(g) ↓ +bB(g).(2)

The reaction parameter E (2) should be in different modes of decomposition gas,

equimolar (in the absence of gaseous product B in the reactor atmosphere) and

isobaric (in presence of excess of product B). For equimolar mode and isobaric

mode , equations (3) and (4), respectively apply:

Ee =
∆rH

0
T

ν
=

∆rH
0
T

a+ b
,(3)

Ei =
(∆rH

0
T )

ν − b
=

∆rH
0
T

a
,(4)

where υ is the total number of moles of gaseous products, (a + b), rH
0
T its the

enthalpy change in the reaction (2). In both cases, the parameter E corresponds to

the specific enthalpy, i.e.: the enthalpy of the decomposition reaction reduced to one

mole of primary products excluding component in excess. In calcite decomposition

reaction is obtained:

∆rH
0
T = a∆fH

0
T (CaO) + ∆fH

0
T (CO2)−∆fH

0
T (CaCO3) + τ∆CH

0
T (CaO).(5)

The term τ∆CH
0
T (A), where the coefficient τ corresponds to the fraction of energy

transferred to condensation reactant. For the decomposition of calcite, temperatures

equal to solid phases (product and reactant) can be expected by power equalization

between the two phases; that is to say, τ = 0.5.

The magnitudes of the thermodynamic functions (enthalpy and entropy) for the

components of the decomposition reaction and the reaction for calcite as a whole at

800, 900 and 1000 K are indicated in Table 1.

Tab. 1: Thermodynamic functions.

Function Temp. 800 K Temp. 900 K Temp. 1000 K

∆fH
0
T (CaO)(g)) [kJmol−1] 407.7 74.4 78.1

∆fH
0
T (CaO)(s)) [kJmol−1] −600.3 −595.0 −589.7

∆fH
0
T (CO2)(g)) [kJmol−1] −361.0 −355.7 −350.4

∆fH
0
T (CaCO3)(s)) [kJmol−1] −1166.9 −1121.9 −1109.6

∆CH
0
T (CaO) [kJmol−1] −671.0 −669.5 −667.9

∆rH
0
T [kJmol−1] 508.1 505.9 503.5

S0
T (CaO)(g)) [Jmol−1K−1] 254.0 258.4 262.3

S0
T (CO2)(g)) [Jmol−1K−1] 257.4 263.5 269.2

S0
T (CaCO3)(s)) [Jmol−1K−1] 193.2 207.3 220.2

∆rS
0
T [Jmol−1K−1] 318.2 314.6 313.3
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2.1. Thermal decomposition mechanism

Condensation decomposition of calcium carbonate [8]:

CaCO3(s)→ CaO(s) + CO2(g).(6)

Dissociative evaporation decomposition of calcium carbonate is set to reaction (7):

CaCO3(s)→ CaO(g) + CO2(g),(7)

and intermediate hydroxide formation:

CaCO3(s) + H2O(g)→ Ca(OH)2(g) + CO2(g).(8)

The mechanism of decomposition reactions (7) and (8) corresponds to the first state

in the two schemes of gasification mechanism. The subsequent steps of the process

are described by the reactions (9) and (10):

CaO(g)→ CaO(s),(9)

Ca(OH)2(g)→ CaO(s) + H2O(g).(10)

The partial pressure of CO2 is expressed for each of reactions (6)–(8), through the

reaction equilibrium constant Kp of corresponding:

PCO2 = Kp(6),(11)

PCO2 = [Kp(7)]
1
2 ,(12)

PCO2 = [Kp(8)xPH2O]
1
2 .(13)

2.2. Activation energies

From equation of the third law of thermodynamics:

Kp = exp
∆S0

T

R
= exp

−∆H0
T

RT
,(14)

where ∆H0
T and ∆S0

T are the changes in enthalpy and entropy in reactions (7) to

(9), respectively, the ratio can be compared with the Arrhenius equation;

Ea = ∆H0
T(15)

to equation (7); and

Ea =
∆H0

T

2
(16)

to equation (8). As PH2O is constant, then the equation (10) also applies to equation

(16).

2.3. Kinetic analysis

Taking into account the physical-chemical properties of calcium carbonate:

ρ = 2710 kgm−3, M = 0.100 kg mol−1, and M = 0.050 kg mol−1

where ρ is the bulk density, M is the molar mass and M is the geometric mean of the

molar masses of all gaseous particles. The three kinetic parameters characterizing the
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decomposition (P , J and k) are interrelated. The parameters P and J are calculated

using equations (17)–(21). Where the flow of gaseous products J , is connected to

the rate constant k. For spherical particles, the fraction decomposed featured by the

trading volume model is described by equation (20), and according to the relationship

α = 1− m

m0
, m =

(
4

3

)
r3ρ, J = −

(
dm

dt

)
(4r2)−1,

where m, r and ρ are the mass, radius and density, respectively, of reactant spherical

particle (s), the equation (20) and equation (21) are obtained:

JA =
MPA

(2πMRT )
1
2

,(17)

M = M
a
ν

A xM
b
ν

B ,(18)

ν = a+ b,(19)

dα

dt
= 3(1− α)

2
3 k,(20)

J = ρr0k.(21)

The thermodynamic functions used in the calculations are shown in Table 2.

Tab. 2: Thermodynamic functions used in the calculations [9].

Chemical compounds State of aggregation ∆fH
0
900 S0

900

[kJmol−1] [Jmol−1K−1]

CO2 gas 355.7± 0.1 263.5

CaO gas 74.4± 15 258.4

CaO solid −595.0± 0.9 92.2

Ca(OH)2 gas 530.1± 20 392.1

CaCO3 solid 1121.9± 1.0 207.3

PCO2 values are determined by Eqs. (11)–(13) and the activation energies by

Eqs. (15) and (16). For calculations of reaction (8), the water vapor partial pres-

sure is assumed constant and equal to 10−7 atm, takeing into account that in the

decomposition stage the total pressure in the system increased from 10−8 atm to

10−7 atm. Calculated kinetic parameters for the decomposition of calcium carbon-

ate in accordance with reactions (6) to (8) are reported in Table 3. The effect of the

partial pressure of hydrogen in the calcium carbonate given in reaction (22), under

conditions PH2
= 10−7 atm, is consistent with the results obtained in reaction (8):

CaCO3(s) + H2(g)→ Ca(OH)2(g) + CO(g).(22)

The calculated kinetic parameters for the decomposition of calcium carbonate in

accordance with reaction (22) are indicated in Table 4, with PH2
= 10−7 atm [1] and

PH2
= 10−3 atm [2].
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Tab. 3: Kinetic parameters for the decomposition of calcium carbonate in accordance with
reactions (6)–(8).

Reaction T ∆H0
900 ∆S0

900 Ea PCO2

[K] [kJmol−1] [Jmol−1K−1] [kJmol−1] [atm]

(6) 974 171.2 148.4 167 4× 10−2

(7) 974 840.4 314.6 416 5× 10−15

(8) 974 443.1 219.9 218 2× 10−10

Tab. 4: Kinetic parameters for the decomposition of calcium carbonate.

T ∆H0
900 ∆S0

900 Ea PCO2 PCO2

[K] [kJmol−1] [Jmol−1K−1] [kJmol−1] [atm][1] [atm][2]

974 479.0 252.9 228 2× 10−10 2× 10−8

3. Conclusions

In this paper there have been raised three decomposition processes according to the

reactions (6) to (8). In equations (7) and (8) there are considered sources of water

vapor, such as water contained in the samples of calcium carbonate, so there would

be a dissociative evaporation and decomposition of an intermediate result of hydrox-

ide formation. An increase in PH2 up to 10−3 atm results in a hundredfold increase in

the decomposition rate. This growth does not induce a significant change in the rate

of decomposition. As PCO rise in proportion to an average of (PH2)
1
2 is compensated

by an increase in flow diffusion limitation of CO in H2. As a hundred-fold increase

in the decomposition rate corresponds to a reduction in the decomposition temper-

ature of 150 to 160 K. Hence, the enhancement of the carbonate decomposition rate

in a hydrogen atmosphere is further proof of the intermediate hydroxide formation

mechanism. On the other hand, water and hydrogen act as a catalyst in the inter-

action with calcium carbonate. It is likely, that the decomposition temperature of

calcium carbonate can have a reduction, which entails that the reaction proposed

in the decomposition of calcium carbonate, wherein calcium hydroxide and carbon

dioxide are obtained in the gaseous phase, gives indications how to obtain a material

in solid state to hydrogen storage, and starting calcium carbonate as raw material.
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ANALIZA KINETYKI ROZK LADU WȨGLANU WAPNIA

DLA UTWORZENIA SUBSTANCJI ZATRZYMUJA̧CEJ WODÓR

S t r e s z c z e n i e
Praca jest teoretycznym studium bazuja̧cym na CaCO3, prowadza̧cym do wyzwania by

zbadać substancjȩ odpowiedzialna̧ za zwia̧zanie wodoru. W zwia̧zku z tym podana jest teo-
retyczna analiza kinetyki rozk ladu wȩglanu wapnia, uwzglȩdniaja̧ca jego w lasności fizyczno-
chemiczne. Jedna̧ z aproponowanych reakcji rozk ladu jest powstawanie wodorotlenku wap-
nia i dwutlenku wȩgla w fazie gazowej, które to stany maja̧ w substancji cia la sta lego
zamierzone zwia̧zanie wodoru w oparciu o wȩglan wapnia jako surowiec.

S lowa kluczowe: kalcyt, kinetyczny, mechanizm rozk ladu, wodór
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THE PROBLEM OF THE SHADOWS

Summary
We consider the review of results on building generalized convex hull for family consist-

ing of convex sets in Euclidean space. The solution of similar problems in (hyper)complex
Euclidean space is obtained. The unsolved questions related to those problems are dis-
cussed.

Keywords and phrases: sphere, ball, convex set, (hyper)complex line, n-dimensional (hy-
per)complex Euclidean space

1. Introduction

We consider solution of the shadows problem and some adjacent questions.

Definition 1. We say that a set E ⊂ Rn in Euclidean space is m-convex with respect

to the point x ∈ Rn\E, if it exists a m-dimensional plane L such that x ∈ L and

L ∩ E = ∅.

Definition 2. We say that the set E ⊂ Rn is m-convex if it is m-convex with respect

to each point x ∈ Rn\E.

Both definitions satisfy the axiom of convexity: the intersection of any non-empty

subfamily of these sets satisfies the definition also. For every set E ⊂ Rn we can

consider the minimal m-convex set containing E and call it m-hull of the set E.
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As a special case of 1-hull of a set of balls we present the following problem of

shadows posed by G. Hudayberganov [1–3].

The problem of a shade. What is the minimum number of disjoint closed balls

with centres on the given sphere whose radii are smaller than the radius of the sphere

under the condition, that any line passing through the centre of the sphere intersects

at least one of these balls?

In other words, this problem can be reformulated in the following way. How many

closed balls of radii which are smaller than the radius of the given sphere and with

centres on the sphere will provide that the centre of the sphere belongs to the 1-hull

of family of these balls?

2. Real case

We are considering results for convex sets in the real Euclidean space which have

been obtained in our recent papers.

Theorem 1. [4] There exist two closed (open) balls with centres on the unit circle

and radii smaller than one, which provide that the centre of the circle belongs to the

1-hull of these balls.

Theorem 2. [4] In order that the centre of the fixed (n− 1)-sphere in the n-dimen-

sional Euclidean space, n > 2, belongs to the 1-hull of a family of open (closed) balls

with radii and that no more than (less than) the radius of the sphere, with centres

on that sphere, it is necessary and sufficient to take (n + 1) balls.

Now we shall consider the change of the statement if the centres of the balls do

not belong to the sphere, or the family of sets in question differs from balls.

Theorem 3. [5] For a point in the n-dimensional Euclidean space, n ≥ 2, belonging

to the 1-hull of family of disjoint open (closed) balls, which do not contain the given

point, it is necessary and sufficient to take n balls.

Theorem 4. [5] For a point in the n-dimensional Euclidean space, n ≥ 2, belonging

to the 1-hull of family of disjoint closed sets, obtained from the given convex set

with non-empty interior with the help of a group of transformations consisting of

homotheties and motions, it is necessary and sufficient n elements of such family.

Let consider more general objects according to the previous definitions.

Definition 3. We say that the set E ⊂ Rn is m-semiconvex with respect to the point

x ∈ Rn\E if it exists a m-dimensional half-plane P such that x ∈ P and P ∩E = ∅.

Definition 4. We say that the set E ⊂ Rn is m-semiconvex if it is m-semiconvex with

respect to each point x ∈ Rn\E.
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It is easy to verify that these definitions satisfy the axiom of convexity, and we

also can build the m-semiconvex hull of a set according to these definitions.

Now we consider an analogue of the problem of shadow for semiconvex case.

What is the minimum number of disjoint closed (open) balls with centres on the

sphere and whose radii are smaller (no more) than the radius of the given sphere,

sufficient that any ray with the centre of the sphere intersects at least one of these

balls? In [4, 5] we have got the partial answer to this question.

Theorem 5. [4] For the centre of the two-dimensional sphere in three-dimensional

Euclidean space belonging to the 1-semiconvex hull of family of open (closed) balls

with radii not exceeding (smaller) than the radius of the sphere and with the centre

on this sphere it is enough to take ten balls of this family.

Theorem 6. For a point in n-dimensional Euclidean space belonging to the 1-semi-

convex hull of a family of disjoint closed sets, obtained from the given convex set

having a non-empty interior with the help of the transformation group consisting

of movements and homotheties, it is necessary and sufficient n + 1 elements of the

family.

Remark 1. If we exclude rotations from the group of the motion, it follows that

the number of necessary elements is increasing. For instance, if a convex body is a

square-wave parallelepiped in Rn, than the number of necessary elements of a set

for building a 1-semiconvex hull will go up to 2n.

3. (Hyper)complex case

We shall study how to change the situation with the previous problem if we replace

the real Euclidean space by a (hyper)complex Euclidean space Cn(Hn).

Definition 5. We say that the set of E ⊂ Cn(Hn) is m-(hyper)complex convex with

respect to the point z ∈ Cn\E (Hn\E) if there is a m-dimensional (hyper)complex

plane L such that z ∈ L and L ∩ E = ∅. We say that a set E ⊂ Cn(Hn) is

m-(hyper)complex if it is m-(hyper)complex with respect to each point z ∈ Cn(Hn).

The problem of shade. What is the minimum number of disjoint closed balls

with centres on the sphere S2n−1 ⊂ Cn (S4n−1) ⊂ Hn) and a radii which are smaller

than the radius of the given sphere, sufficient that any (hyper)complex line passing

through the centre of the sphere intersects at least one of these balls?

Similarly to the real case for an arbitrary set we consider the least m-(hyper)-

complex set containing E and call it a m-(hyper)complex hull of E.

Theorem 7. For a point in two-dimensional (hyper)complex Euclidean space be-

longing to the 1-(hyper)complex hull of a family of disjoint open (closed) balls that

do not contain the given point it is necessary and sufficient two balls of this family

with centres on the sphere centred at the origin.
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Proof. We give a proof for the complex space Cn. In hypercomplex case Hn the proof

is similar. Let z = (z1, z2) ∈ C2 be an arbitrary point in the space. Select one open

ball B1 with radius equal to one. Put its centre at the point (1, 0) ∈ C2. The tangent

real three-dimensional plane at the origin of this ball is given by equation Re z1 = 0.

The line z1 = 0 is the unique complex line lying in this plane and passing through

the origin. Therefore it is sufficient to select the second ball B2 (its radius can be as

small as desired) so that it has a point of intersection with the line. In particular, it

is possible to select its centre at the point (0, 1). This proves our statement for open

balls. Slightly reducing the radii of these balls, and using a continuous change of the

tangent planes to the ball, we get the theorem in the case of closed balls. �

The following result (see [5]) gives an answer to the question 1.

Theorem 8. For a point in the n-dimensional (hyper)complex Euclidean space

Cn(Hn) belonging to the 1-(hyper)complex hull of a family of disjoint open (closed)

balls that do not contain the given point, it is necessary and sufficient n balls of this

family.

Proof. Now we use the structure of the previous theorem. We define a system of

balls in the three-dimensional complex space C3. We assume that the space C2 is

embedded in the space C3 as the hyperplane L = (z1, z2, 0) built in its balls B1 and

B2. First we prolong these two dimensional balls up to the balls in C3, keeping the

original centres of balls and their designations. Now, increase the ball B2 to the ball

of radius 1−
√

2, which now touches the ball B1. We reduce the ball B1 preserving

its centre (1, 0, 0), but so that in the complex hyperplane L it was impossible to

carry out a complex line through the origin which does not meet any one of the

selected two balls. By the property of continuity, each complex line that is close to

any line from the plane L, intersects one of these balls as well. Now it is enough to

select the ball B3 centred on the axis (0, 0, z3) sufficiently close to the origin, but

with radius less than the distance from its centre to the origin so that each complex

line through the origin crosses one of the chosen three balls. Repeating analogously

the transition from space Cn−1 to space Cn, we obtain the proof of the theorem. In

hypercomplex case the proof is similar. �

Remark 2. The arguments similar to those given in [5] and based on [6, 7] allow us

to show that Theorem 8 remains valid if the balls are replaced by convex sets with

non-empty interior, obtained from one set with action of transformation group.

4. Open problems

Unfortunately, Theorems 5 and 6 give no answer about the minimal number of balls

which are sufficient for the centre on the sphere to be in 1-semiconvex hull. There

remain open questions on constructing of the (hyper)complex hulls as well.
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Question 1. What is the minimum number of closed (open) balls in the n-dimensional

real Euclidean space with centres on the sphere and radii which are smaller (no more)

than the radius of the sphere for n ≥ 3, allowing to the origin of the sphere to be in

their 1-semiconvex hull? Is this number finite for n > 3?

Question 2. What is the minimum number of closed (open) balls in the n-dimensional

(hyper)complex Euclidean space with centres on the sphere and the radii which are

smaller (no more) than the radius of the sphere for n ≥ 3, allowing the origin of the

sphere to belong to their 1-(hyper)complex hull?

Question 3. To define a (hyper)complex semiconvex hull and give an estimation for

a family of sets with a property of belonging the point to its generalized hull.
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PROBLEM CIENI

S t r e s z c z e n i e
Dokonujemy przegla̧du wyników o konstrukcji uogólnionej otoczki wypuk lej z lożonej

ze zbiorów wypuk lych w przestrzeni euklidesowej. Rozwia̧zanie analogicznych zagadnień
jest obecnie uzyskane dla (hiper)zespolonej przestrzeni euklidesowej. Omawiamy też nie-
rozwia̧zane problemy zwia̧zane z tymi zagadnieniami.

S lowa kluczowe: sfera, kula, zbiór wypuk ly, linia (hiper)zespolona, n-wymiarowa (hiper)ze-
spolona przestrzeń
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DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE  LÓDŹ
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REPRESENTATIONS AND CHARACTERS OF SALINGAROS’ vee

GROUPS OF LOW ORDER

Summary
We study irreducible representations and characters of Salingaros’ vee groups of orders

4, 8, and 16 as 2-groups of exponent 4. In particular, we construct complex irreducible
group modules and explicit representations of these groups. We prove a theorem regarding
the number of conjugacy classes and the number of inequivalent irreducible representations
of degree one and two. We show how to decompose a complex group algebra into irreducible
submodules in accordance with Maschke’s Theorem. We formulate two algorithms for find-
ing bases for these submodules which rely on the Groebner basis methods. In the end, we
provide the character tables of these groups.

Keywords and phrases: Clifford algebra, center, character table, conjugacy classes, derived
subgroup, group representation, Groebner basis, Maschke’s Theorem, 2-group

1. Introduction

In a series of papers, Salingaros [18–20] studied a connection between finite groups

and Clifford algebras [14]. He described five types of finite groups that are related

to real Clifford algebras C`p,q and spinors. He called these groups ‘vee groups’ and

the five classes he labelled as Nodd, Neven, Ωodd, Ωeven, and Sk. In 1988 Shaw [21]

studied a group of order 128 which he associated with the Clifford algebra C`0,7,

while O’Brien and Slattery [15] investigated the structure of finite groups associated

with Clifford algebras of signature (0, d), d ≡ 3 (mod 4). Later, Albuquerque and
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Majid [5] viewed Clifford algebras as group algebras of Zn2 twisted by a cocycle.

They obtained periodicity properties of the Clifford algebras and presented a new

approach to their spinor representations through the twisted group algebra. Matrix

representations of generalized Clifford algebras viewed as twisted group rings Zn2
were also studied by Caenepeel and Van Oystaeyen [7]. More recently, the ‘vee

groups’ appeared in [2–4] where (while denoted as Gp,q) their transitive action on

complete sets of mutually annihilating primitive idempotents was studied. Using the

normal stabilizer subgroup Gp,q(f) of a primitive idempotent f , left transversals,

spinor bases, and maps between spinor spaces for different orthogonal idempotents fi
summing up to 1 were described while the finite stabilizer groups according to the

signature in simple and semisimple cases were classified. Most recently, Salingaros’

‘vee groups’ have appeared in Varlamov [22] in his study of CPT groups for spinor

fields in de Sitter and anti-de Sitter spaces.

In this paper we apply methods of representation theory of finite groups and

their characters [12, 16, 17] to construct irreducible representations of Salingaros’

‘vee groups’ of orders 4, 8, and 16. As a byproduct we obtain their character tables.

Throughout, G always denotes a finite group and any action of G on a G-module is

a left action.

To establish notation and the background for later computations, we recall basic

results of the theory of representations and characters of finite groups [12].

Theorem 1. (Maschke) Let G be a finite group and let V be a nonzero G-module.

Then V = W (1)⊕W (2)⊕· · ·⊕W (k), where each W (i) is an irreducible G-submodule

of V .

As a result of Maschke’s theorem, matrices of any representation can be written

in the block-diagonal form once a suitable basis in the representation module is

chosen. Thus, a representation is irreducible or it is completely reducible meaning

that it can be written as a direct sum of irreducible representations.

Corollary 1. Let G be a finite group and let X be a matrix representation of G of

dimension d > 0. Then there is a fixed matrix T such that every matrix X(g), g ∈ G,

has the diagonal form

TX (g)T−1 = diag
(
X(1)(g), X(2)(g), . . . , X(k)(g)

)
.(1)

Given a reducible representation, it is interesting to derive a procedure to find a

basis in the module to completely reduce it per Maschke’s Theorem. Since later we

will work exclusively with group algebras, we recall the following result.

Let V be a complex vector space with an inner product 〈·, ·〉 and let W⊥ denote

the orthogonal complement of a subspace W of V . It is always true that V =

W ⊕W⊥ and that this decomposition is G-invariant as long as the inner product is

G-invariant, that is, 〈gu, gv〉 = 〈u,v〉 for any g ∈ G and u,v ∈ V. This leads to the

following known result [17].
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Proposition 1. Let V be a G-module, W a submodule, and 〈·, ·〉 an inner product

invariant under the action of G. Then W⊥ is also a G-submodule.

Using the G-invariance of the orthogonal complement allows one to find a decom-

position of any representation module into irreducibles. Following [3, 4], we denote

Salingaros’ ‘vee group’ related to the universal Clifford algebra C`p,q as Gp,q. Let

C`p,q be a real universal Clifford algebra with Grassmann basis B sorted by the ad-

missible order InvLex [2]. We begin by recalling an informal definition of Salingaros’

vee group [20].

Definition 1. A vee group Gp,q is defined as the set Gp,q = {±m | m ∈ B} in C`p,q
together with the Clifford product as the group binary operation.

This finite group is of order |Gp,q| = 21+p+q and its commutator subgroup G′p,q =

{±1}. The following result is well known [12,17].

Theorem 2. Let G be a finite group. The number of degree 1 representations of G

is [G : G′] where G′ is the commutator subgroup of G.

Example 1. Let Gp,q be the Salingaros’ vee group of the Clifford algebra C`p,q [18–

20]. The commutator subgroup G′p,q is {1} when p + q = 1 and it is {1,−1} when

p + q ≥ 2. Thus, Gp,q/G
′
p,q
∼= (Z2)n where n = p + q ≥ 2. In the special case

n = p + q = 1 and the signature (1, 0), the group G1,0/G
′
1,0
∼= G1,0

∼= Z2 × Z2,

whereas in the signature (0, 1), the group G0,1/G
′
0,1
∼= G0,1

∼= Z4.

For the remainder of the current section, we recall basic results from the theory

of representations and characters that will be needed in the later sections.

Let x, y ∈ G. Then, x is conjugate to y in G if y = g−1xg for some g ∈ G.

The set of all elements conjugate to x ∈ G is called the conjugacy class of x in G

and it is denoted by xG. Thus, xG = {g−1xg : g ∈ G}. Recall that conjugacy is

an equivalence relation, and that the conjugacy classes are the equivalence classes.

Thus, every group can be represented as a disjoint union (a partition) of conjugacy

classes.

The size of each class is the index of the centralizer of any representative of the

conjugacy class in G. The centralizer of x ∈ G, written CG(x), is the set of elements

of G which commute with x, i.e., CG(x) = {g ∈ G : xg = gx}.

Theorem 3. Let x ∈ G. Then the size of the conjugacy class xG is given by

|xG| = [G : CG(x)] = |G|/|CG(x)|.(2)

In particular, the number of elements of a conjugacy class is a divisor of the order

of the group.

A proof of the theorem is straightforward [12]. To illustrate the theorem, we recall

the conjugacy classes of the dihedral group D2n [12].
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Example 2. Consider the dihedral group

D2n = 〈r, p : rn = p2 = (rp)2 = e〉

of order 2n. When n is odd, D2n has 1
2 (n+ 3) conjugacy classes. Namely,

{e}, {r, r−1}, . . . , {r(n−1)/2, r−(n−1)/2}, {p, rp, . . . , rn−1p}.(3)

When n is even and n = 2m for some positive integer m then D2n has m + 3

conjugacy classes:

{e}, {rm}, {r, r−1}, . . . , {rm−1, r−(m−1)},
{r2jp : 0 ≤ j ≤ m− 1}, {r2j+1p : 0 ≤ j ≤ m− 1}.(4)

An important relation between characters, conjugacy classes, and equivalent repre-

sentations is the following standard result [12,17].

Proposition 2. Let X be a matrix representation of a group G of degree d with

character χ.

(i) χ(1) = d.

(ii) If g, h belong to a conjugacy class K in G, then χ(g) = χ(h).

(iii) If Y is a representation of G with character ψ, and if X ∼= Y then χ(g) =

ψ(g) for all g ∈ G.

A proof of this proposition can be easily given, see [17].

Let X(g), g ∈ G, be a matrix representation, that is, a homomorphism G →
GL(n,C) (in this paper we always consider representations over the complex field).

Then the character χ of X is the map G
trX−−→ C such that χ(g) = trX(g) where tr

denotes the trace of a matrix. If V is a G-module, then its character is the character

of a matrix representation X on V .

Consider a character χ of a group G as a row vector with complex entries

χ = (χ(g1), χ(g2), . . . , χ(gn)),(5)

where G = {g1, g2, . . . , gn}. Inner product of characters can be defined as follows.

Definition 2. Let χ and ψ be two characters of a group G. The inner product of χ

and ψ is defined as the following sum over G:

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).(6)

Based on the above definition, it may be impossible to find the inner product for

an arbitrary field because it may lack the conjugation operation. So, the following

proposition gives an equivalent form of the inner product which can be used for any

field. Also, since all elements in the same conjugacy class have the same character,

the formula for the inner product can be further simplified.
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Proposition 3. Let G have k conjugacy classes with representatives g1, g2, . . . , gk.

Also, let χ and ψ be some characters of G. Then, 〈χ, ψ〉 = 〈ψ, χ〉, and

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g−1) =

k∑
i=1

χ(gi)ψ(gi)

|CG(gi)|
.(7)

Theorem 4. Let χ and φ be irreducible characters of a group G. The characters are

orthonormal with respect to the inner product, i.e., 〈χ, ψ〉 = δχ,ψ.

As a consequence of the above theorem, several results can be stated in relation

to representations, irreducibility, etc. The following theorem will be used extensively

in finding irreducible characters of certain groups in Section 2.

Theorem 5. Let X be a representation of G with character χ, and

X ∼= m1X
(1) ⊕m2X

(2) ⊕ · · · ⊕mkX
(k),

where the X(i) are pairwise inequivalent irreducibles with characters χ(i) and multi-

plicities mi.

1. χ = m1χ
(1) ⊕m2χ

(2) ⊕ · · · ⊕mkχ
(k).

2. 〈χ, χ(i)〉 = mi for all i.

3. 〈χ, χ〉 = m1
2 +m2

2 + · · ·+mk
2.

4. χ is irreducible if and only if 〈χ, χ〉 = 1.

5. Let Y be another representation of G with character ψ. Then X ∼= Y if and

only if χ(g) = ψ(g) for all g ∈ G.

Observe that pairwise inequivalent irreducible G-modules give pairwise inequiv-

alent irreducible representations. Then, Maschke’s theorem implies that the group

algebra C[G] can be written as C[G] = ⊕imiV
(i) where mi is the multiplicity of V (i)

stating how many times V (i) appears in the decomposition.

Proposition 4. Let G be a finite group and consider a decomposition of its group

algebra C[G] = ⊕imiV
(i) where the V (i) form a complete list of pairwise inequivalent

irreducible G-modules. Then,

1. mi = dimV (i),

2.
∑
i(dimV (i))2 = |G|, and

3. The number of V (i) equals the number of conjugacy classes of G.

Example 3. Let G = Sn. Of course it is well known that the number of conju-

gacy classes for any Sn equals the number of partitions of n. Furthermore, each

class consists of permutations having the same cycle structure because the action of

conjugation preserves the cycle structure.
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Example 4. Let G = D2n. The number of conjugacy classes for the dihedral group

was discussed in Example 2. For example, D6 and D8 have three and five conjugacy

classes, respectively. Thus,

Conjugacy classes of D6 : {e}, {r, r2}, {p, rp, r2p},(8)

Conjugacy classes of D8 : {e}, {r2}, {r, r3}, {p, r2p}, {rp, r3p}.(9)

Example 5. Conjugacy classes of the quaternionic (or, dicyclic) group Q2n which

appears, along with the dihedral group D2n, among the Salingaros’ vee groups [18–20],

can be found by hand (for low orders) or by using a computer software such as the

Maple package [1]. For example, the group

Q8 = {±1,±i,±j,±k} where i2 = j2 = k2 = ijk = −1,

has the following five conjugacy classes:

{1}, {−1}, {i,−i}, {j,−j}, {k,−k}.(10)

The orthogonality relations of the first kind stated in Theorem 4 are comple-

mented by the so called orthogonality relations of the second kind. While the rela-

tions of the first kind refer to the rows of the character table, the relations of the

second kind refer to the columns.

Theorem 6. Let K,L be conjugacy classes of G. Then∑
χ

χK χ̄L =
|G|
|K|

δK,L,

where the sum is over all irreducible characters of G.

In Section 2, we will compute all irreducible representations and characters of all

Salingaros’ vee groups of orders 4, 8 and 16, and verify Theorems 4 and 6.

2. Salingaros’ vee groups

In this section, we state the definition of Salingaros’ vee groups and discuss some

of their properties. Then, Salingaros’ classification of these groups will be reviewed.

Furthermore, irreducible representations and their character tables will be presented

for a few sample groups.

2.1. General definitions and properties

The vee groups were introduced by Salingaros in [18–20]. They were more recently

studied in [2–4,22] where they were denoted as Gp,q. In particular, these groups are

central extensions of extra-special 2-groups. [6, 9–11,13,22]
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Definition 3. Let C`p,q be the real Clifford algebra of a non-degenerate quadratic

form with signature (p, q) and let B = {ei | 0 ≤ |i| ≤ n} be a basis for C`p,q
consisting of basis monomials ei = ei1ei2 · · · eik , i1 < i2 < · · · < ik, for 0 ≤ k ≤ n

where n = p+q. The 1-vector generators ei, 1 ≤ i ≤ n, satisfy the following relations:

e2i =

{
1 if 1 ≤ i ≤ p,
−1 if p+ 1 ≤ i ≤ n,

and eiej = −ejei for i 6= j.

The Salingaros’ vee group Gp,q ⊂ C`p,q is the set Gp,q = {±ei | ei ∈ B} with the

Clifford algebra multiplication as the group binary operation. Thus, |Gp,q| = 2·2p+q =

2n+1.

Notice that Gp,q may be presented as follows:

Gp,q = 〈−1, e1, . . . , en | eiej = −ejei for i 6= j and e2i = ±1〉,(11)

where e2i = 1 for 1 ≤ i ≤ p and e2i = −1 for p+ 1 ≤ i ≤ n = p+ q. In the following,

the elements ei = ei1ei2 · · · eik will be denoted for short as ei1i2···ik for k ≥ 1 while

e∅ will be denoted as 1, the identity element of Gp,q (and C`p,q).

For the properties of the prime power groups we refer to [10,13,16].

Theorem 7. (Cauchy) If G is a finite group whose order is divisible by a prime p

then G contains an element of order p.

Since all Salingaros’ vee groups are of order 2n for some positive integer n, there

are elements of order 2 in Gp,q. In fact, as it will be seen later, any element in Gp,q
is of order 1, 2, or 4 only.

Let G = Gp,q. Since each CGp,q
(xi) is a proper subgroup of Gp,q for xi /∈ Z(Gp,q)

and Gp,q is a 2-group, Lagrange’s theorem gives that [Gp,q : CGp,q (xi)] is a divisor of

|Gp,q|, hence it is a power of 2. This implies that 2 | |Z(Gp,q)|. Thus, Z(Gp,q) 6= {1},
which gives the following result.

Lemma 1. The center of any Salingaros’ vee group is non trivial and it is of order

2n for some n ≥ 1.

In fact, from the structure theorem of Clifford algebras (see [2, 3] and references

therein) one can learn that

Z(C`p,q) =

{
{1} if p+ q is even;

{1, β} if p+ q is odd,
(12)

where β = e1e2 · · · en, n = p+ q, is the unit pseudoscalar in C`p,q. This leads to the

following conclusion (see also [22]).
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Theorem 8. Let Gp,q ⊂ C`p,q. Then,

Z(Gp,q) =


{±1} ∼= Z2 if p− q ≡ 0, 2, 4, 6 (mod 8);

{±1,±β} ∼= Z2 × Z2 if p− q ≡ 1, 5 (mod 8);

{±1,±β} ∼= Z4 if p− q ≡ 3, 7 (mod 8).

(13)

The following result implies that the vee groups of order 22 are abelian. For the

proof of this proposition, see [16].

Proposition 5. If p is a prime, then every group G of order p2 is abelian.

It is worth to know the order relation of the normal subgroups of the Salingaros’

vee groups.

Proposition 6. If a group G is of order |G| = pn, then G has a normal subgroup

of order pm for every m ≤ n.

So, this result tells that Gp,q of order 2p+q+1 has a normal subgroup of order 2m for

any m ≤ p+ q + 1, which implies that Gp,q are not simple groups.

2.2. Conjugacy classes

In this section we discuss the conjugacy classes of Gp,q using Theorem 8. It is con-

venient to separately address the two cases when n = p+ q is odd or even.

Suppose that n is even. Then, Z(Gp,q) = {±1} (see Theorem 8) and so {1} and

{−1} are the only conjugacy classes in Gp,q with a single element. This is because the

unit pseudoscalar β is not in the center. All other classes always have two elements

{g,−g} for any non central group element g. Thus, the number of conjugacy classes

is N = 1 + 2p+q and the classes are:

{1}, {−1}, {e1,−e1}, . . . , {β,−β}.(14)

Now consider the second case when n is odd. The center Z(Gp,q) has four elements

{±1,±β}. Hence, {1}, {−1}, {β}, and {−β} are the only classes with a single element

whereas all other classes have two elements {g,−g} for any non central element g.

Thus, the number of conjugacy classes is N = 2 + 2p+q and the classes are:

{1}, {−1}, {β}, {β}, {e1,−e1}, . . . , {e12...(n−1),−e12...(n−1)}.(15)

The above results can be given as the following theorem.

Theorem 9. Let N be the number of conjugacy classes in Gp,q. Then,

N =

{
1 + 2p+q if p+ q is even;

2 + 2p+q if p+ q is odd.
(16)



Representations and characters of Salingaros’ vee groups of low order 51

Proof. Note that any two elements τ, g ∈ Gp,q are basis monomials from C`p,q which

either commute τg = gτ or anticommute τg = −gτ . If τ ∈ Z(Gp,q) then gτg−1 = τ

for all g ∈ Gp,q. So τGp,q = {τ} for all τ ∈ Z(Gp,q). If τ /∈ Z(Gp,q), then there

exists g ∈ Gp,q such that τg = −gτ , i.e., gτg−1 = −τ . Hence, τGp,q = {τ,−τ} for all

τ /∈ Z(Gp,q). From Lemma 8, the number of elements in Z(Gp,q) for even and odd

cases are known. Then, the formulas for N follow immediately.

Salingaros lists five classes of vee groups in [18] and references therein. He denotes

these groups as: N2k−1, N2k, Ω2k−1, Ω2k, Sk. The groups N2k−1 and N2k are included

in the Clifford algebras C`p,q when p + q is even, whereas Ω2k−1, Ω2k, and Sk are

included in the Clifford algebras C`p,q when p+q is odd. In particular, the groups Sk
are included in those Clifford algebras in which the unit pseudoscalar β squares to

−1 whereas Ω2k−1 and Ω2k are included in those semisimple algebras in which β

squares to 1. The basic information about these groups is summarized in Table 1.

One other distinguishing feature of these groups is their order structure which is

different from one class to another. Knowing the order structure of Gp,q allows one

to determine its class. For example, the first few vee groups corresponding to the

Clifford algebras in dimensions one, two and three, are:

Groups of order 4: G1,0 = D4, G0,1 = Z4,

Groups of order 8: G2,0 = D8 = N1, G1,1 = D4 = N1, G0,2 = Q8 = N2,

Groups of order 16: G3,0 = S1, G2,1 = Ω1, G1,2 = S1, G0,3 = Ω2,

where D8 is the dihedral group of a square from Example 4 whereas Q8 is the

quaternionic group from Example 10.

Tab. 1: Vee groups Gp,q in Clifford algebras C`p,q.

Group Center Group order dimR C`p,q
N2k−1 Z2 22k+1 22k

N2k Z2 22k+1 22k

Ω2k−1 Z2 × Z2 22k+2 22k+1

Ω2k Z2 × Z2 22k+2 22k+1

Sk Z4 22k+2 22k+1

Definition 4. The order structure of Gp,q is a 3-tuple (n1, n2, n3) of nonnegative

integers where n1, n2 and n3 give the number of elements in Gp,q of order one, two

and four, respectively.

The following theorem gives the number of inequivalent representations of degree

one of the group Gp,q.

Theorem 10. Let M be the number of inequivalent representations of degree one

of Gp,q. Then,
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M =

{
2 · 2p+q = 4 if p+ q = 1;

2p+q if p+ q ≥ 2.
(17)

Proof. From Theorem 2, the number of degree one representations of Gp,q is the

index of its commutator subgroup [Gp,q : G′p,q]. When p + q = 1, the commutator

subgroup G′p,q = {1} and so

M = [Gp,q : G′p,q] = (2 · 21)/1 = 4.

For p+ q ≥ 2, G′p,q = {1,−1}, so

M = [Gp,q : G′p,q] = (2 · 2p+q)/2 = 2p+q,

as desired.

Note that Maschke’s Theorem 1 gives the decomposition C[Gp,q] = ⊕iNmiV
(i) and

from Proposition 4, one gets |C[Gp,q]| =
N∑
i=1

mi
2. From the above theorem, provided

that M is the number of degree one representations of the group, the dimension of

the group algebra C[Gp,q] can be rewritten as

|C[Gp,q]| = M +

N∑
i=M+1

m2
i .(18)

Thus, the difference N−M is the number of inequivalent irreducible representations

of Gp,q with degree two or more. This can be formally stated as the following result.

Theorem 11. Let L be the number of inequivalent irreducible representations with

degree two or more of Gp,q. (i) Let p+ q ≥ 2. If p+ q is even, then L = 1 otherwise

L = 2. (ii) When p+ q = 1, then L = 0.

Proof. The proof follows immediately from Theorems 9 and 10.

In the remainder of this section, we give the order structure and conjugacy classes

of Salingaros’ vee groups of orders 4, 8, and 16.

Example 6. Consider the abelian groups G1,0 and G0,1. The number of conjugacy

classes is N = 2 + 21 = 4 as predicted by Theorem 9, and the conjugacy classes are:

K1 = {1}, K2 = {−1}, K3 = {e1}, K4 = {−e1}.(19)

Since the groups G1,0 and G0,1 have the same conjugacy classes, what distinguishes

them is their order structure. The order structure of these groups is summarized

in Table 2 where C.O.S. and G.O.S. give the center order structure and the group

order structure, respectively, of each group. Also, 2Mat(1,R) denotes Mat(1,R) ⊕
Mat(1,R).
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Tab. 2: Vee groups Gp,q of order 4 for p+ q = 1.

(p,q) Group C`p,q Center β2 C.O.S. G.O.S. L M N

(1, 0) G1,0 = D4
2Mat(1,R) Z2 × Z2 +1 (1, 3, 0) (1, 3, 0) 0 4 4

(0, 1) G0,1 = Z4 Mat(1,C) Z4 −1 (1, 1, 2) (1, 1, 2) 0 4 4

Example 7. Consider the non-abelian groups G2,0, G1,1, and G0,2. It is easy to

check that the conjugacy classes for these groups are:

K1 = {1}, K2 = {−1}, K3 = {e1,−e1}, K4 = {e2,−e2}, K5 = {e12,−e12}(20)

which matches the formula N = 1 + 22 = 5. The order structure of these groups is

summarized in Table 3.

Example 8. Consider the non-abelian groups G3,0, G2,1, G1,2, and G0,3. The num-

ber of conjugacy classes is N = 2+23 = 10 as predicted earlier by Theorem 9. Thus,

the conjugacy classes for each of these groups are:

K1 = {1}, K2 = {−1}, K3 = {e123}, K4 = {−e123}, K5 = {e1,−e1},
K6 = {e2,−e2}, K7 = {e3,−e3}, K8 = {e12,−e12},

K9 = {e13,−e13}, K10 = {e23,−e23}.(21)

The order structure for each group is given in Table 4.

In the next section, we will present all irreducible representations of all distinct

classes of Salingaros’ vee groups of orders 4, 8, and 16.

Tab. 3: Vee groups Gp,q of order 8 for p+ q = 2.

(p, q) Group Class C`p,q Center β2 C.O.S. G.O.S. L M N

(2, 0) G2,0=D8 N1 Mat(2,R) Z2 −1 (1, 1, 0) (1, 5, 2) 1 4 5

(1, 1) G1,1=D8 N1 Mat(2,R) Z2 +1 (1, 1, 0) (1, 5, 2) 1 4 5

(0, 2) G0,2=Q8 N2 Mat(1,H) Z2 −1 (1, 1, 0) (1, 1, 6) 1 4 5

Tab. 4: Vee groups Gp,q of order 16 for p+ q = 3.

(p, q) Group Class C`p,q Center β2 C.O.S. G.O.S. L M N

(3, 0) G3,0 S1 Mat(2,C) Z4 −1 (1, 1, 2) (1, 7, 8) 2 8 10

(2, 1) G2,1 Ω1
2Mat(2,R) Z2 × Z2 +1 (1, 3, 0) (1, 11, 4) 2 8 10

(1, 2) G1,2 S1 Mat(2,C) Z4 −1 (1, 1, 2) (1, 7, 8) 2 8 10

(0, 3) G0,3 Ω2
2Mat(1,H) Z2 × Z2 +1 (1, 3, 0) (1, 3, 12) 2 8 10
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3. Irreducible representations of vee groups of order 4, 8, and 16

In this section we compute all irreducible representations and their characters of

Salingaros vee groups of orders 4, 8 and 16.

It is convenient and relatively easy to find decompositions and G-invariant sub-

modules in the group algebras of the symmetric group and of its subgroups by using

SymGroupAlgebra, a package for Maple [1]. Therefore, in order to decompose the

group algebra C[Gp,q] into irreducible submodules, for each vee group of interest,

one first finds a subgroup S of the symmetric group Sn, n = 21+p+q, isomorphic

to Gp,q. For each vee group, its isomorphic copy S can be found from the Cayley’s

multiplication table of Gp,q. In fact, it is enough to find images of the generators

of Gp,q under the group isomorphism Gp,q
F∼= S < Sn. This isomorphism extends

uniquely to a linear isomorphism, also denoted by F , of the corresponding group al-

gebras C[Gp,q]
F∼= S < C[Sn]. Thus, all computations have been performed in C[Sn]

and the results have been brought back to C[Gp,q] by F−1.

In the following, we consider the irreducible representations and their charac-

ters of Gp,q for p + q = 1, 2, 3. While the character tables of all groups of order

less than 32 can be found in the literature, for example in [12], the path followed

here is to, first, explicitly decompose the group algebras C[Gp,q] into irreducible

Gp,q-submodules by finding bases for these submodules, and, second, compute the

irreducible representations for Gp,q and their character tables using the elements of

the representation theory presented earlier. In the process, one discovers a useful

application for the Groebner basis technique [8] when searching for the bases in the

Gp,q-invariant submodules.

3.1. Groups of order 4

Since the vee groups G1,0 and G0,1 of order 4 are isomorphic to D4
∼= Z2 × Z2 and

Z4, respectively, their character tables are easy to compute by hand and are well-

known. For completeness and in preparation for handling groups of higher orders, it

is worth to describe an algorithm for finding irreducible representations, and their

characters, of these groups. Since both groups are abelian, their conjugacy classes

are one-element classes.

3.1.1. The group G1,0 = D4

The group G1,0 is generated by −1 and e1 with e21 = 1 while the group S ⊂ S4

isomorphic to it is generated by the permutations (1, 2)(3, 4) and (1, 3)(2, 4) (see

Table 5). That is, −1 7→ (1, 2)(3, 4) and e1 7→ (1, 3)(2, 4) under the isomorphism F

mentioned above. For completeness, −e1 7→ (1, 4)(2, 3) and 1 7→ (1).

One needs to find four vectors u1, u2, u3, and u4 which span 1-dimensional

G1,0-invariant subspaces V (1), V (2), V (3), and V (4) such that

C[G1,0] = V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4)(22)
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and V (i) = span{ui}, i = 1, . . . , 4. Notice that all V (i) are of dimension 1 since

the group is abelian and all irreducible modules are one dimensional. The following

algorithm can be used to find the basis vectors.

Algorithm 1.

1: Let G = S ∼= G1,0 and V = C[S] ∼= C[G1,0].

2: Let u1 be the sum of all basis elements in V and define V (1) = span{u1}. Such

subspace always carries the trivial representation and it is G-invariant since

gu1 = u1 for every g ∈ G.

3: Compute a basis for the orthogonal complement of V (1) in V and rename this

complement as V . This orthogonal complement is obviously 3-dimensional and

it is G-invariant by Proposition 1.

4: Using Groebner basis technique [8], find a 1-dimensional G-invariant subspace

V (2) in V and find its spanning vector u2.

5: Find a 2-dimensional orthogonal complement of V (2) in V . Call this comple-

ment V . By the same reasoning, it is G-invariant.

6: Find a 1-dimensional G-invariant subspace V (3) in V different from V (2) and

its spanning vector u3.

7: Find a basis for the orthogonal complement V (4) of V (1)⊕V (2)⊕V (3) in C[G1,0]

and its spanning vector u4.

8: The algorithm terminates since the dimension of C[G1,0] is finite.

From the above procedure, one obtains all basis vectors ui as linear combinations

of the standard basis B = {1,−1, e1,−e1} of C[G1,0] as follows:

V (1) = span{u1}, u1 = (1)1 + (1)(−1) + (1)(e1) + (1)(−e1),

V (2) = span{u2}, u2 = (1)1 + (−1)(−1) + (−1)(e1) + (1)(−e1),(23)

V (3) = span{u3}, u3 = (−1)1 + (1)(−1) + (−1)(e1) + (1)(−e1),

V (4) = span{u4}, u4 = (−1)1 + (−1)(−1) + (1)(e1) + (1)(−e1).

Once the decomposition (22) has been determined, one can find all four irreducible

inequivalent representations X(1), X(2), X(3), and X(4) in the corresponding sub-

spaces V (1), V (2), V (3), and V (4). These are all 1-dimensional and can be read off

from the following character table.

char/class K1 K2 K3 K4

χ(1) 1 1 1 1

χ(2) 1 −1 −1 1

χ(3) 1 −1 1 −1

χ(4) 1 1 −1 −1

(24)
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The explicit matrix representations are shown in Table 12 in Appendix B. Note

that in the character table, rows and columns are orthonormal. Let χ(i) denote

the character of the representation X(i). So, for example, the inner product of the

characters χ(2) and χ(3) from the above table is computed as follows:

〈χ(2), χ(3)〉 =
1

4

4∑
i=1

|Ki|χ(2)
Ki
χ
(3)
Ki

=
1

4
((1)(1) + (−1)(−1) + (−1)(1) + (1)(−1)) = 0

since |Ki| = 1 for each class. This verifies the character orthogonality relation of the

first kind. In a similar manner one can verify the character relation of the second

kind.

3.1.2. The group G0,1 = Z4

The group G0,1 is generated by −1 and e1 with e21 = −1 while the group S ⊂ S4

isomorphic to it is generated by the permutations (1, 2)(3, 4) and (1, 3, 2, 4) (see

Table 5). That is, −1 7→ (1, 2)(3, 4) and e1 7→ (1, 3, 2, 4) under the isomorphism F .

For completeness, −e1 7→ (1, 4, 2, 3) and 1 7→ (1).

One needs to again find four vectors u1,u2,u3,u4 which span 1-dimensional

G0,1-invariant subspaces V (1), V (2), V (3), and V (4) such that

C[G0,1] = V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4)(25)

and V (i) = span{ui}, i = 1, . . . , 4. The subspaces V (i) again are of dimension 1 since

G0,1 is abelian and so all its irreducible modules are one dimensional. Applying now

Algorithm 1 to C[G0,1], one finds this basis:

V (1) = span{u1}, u1 = (1)(1) + (1)(−1) + (1)(e1) + (1)(−e1),

V (2) = span{u2}, u2 = (−i)1 + (i)(−1) + (−1)(e1) + (1)(−e1),(26)

V (3) = span{u3}, u3 = (−1)1 + (−1)(−1) + (1)(e1) + (−1)(−e1),

V (4) = span{u4}, u4 = (i)1 + (−i)(−1) + (−1)(e1) + (1)(−e1).

Once the decomposition (25) has been found, one can determine all four irreducible

inequivalent representations X(1), X(2), X(3), and X(4) in the corresponding sub-

spaces V (1), V (2), V (3), and V (4). These are all 1-dimensional and can be read off

from the character table.

char/class K1 K2 K3 K4

χ(1) 1 1 1 1

χ(2) 1 −1 i −i
χ(3) 1 1 −1 −1

χ(4) 1 −1 −i i

(27)

The explicit matrix representations are shown in Table 13 in Appendix B. Like in

the previous example, one can verify that the columns and rows in the above char-

acter table are orthonormal. This is in agreement with the character orthogonality

relations of the first and of the second kind.
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3.2. Groups of order 8

Since the vee groups G2,0, G1,1 and G0,2 are isomorphic to D8, D8 and Q8, re-

spectively, their character tables are easy to compute by hand and are well-known.

However, computation of their representations is not so simple. For completeness and

in preparation for handling groups of order 16, we describe an algorithm for finding

irreducible representations and characters of these groups. Note that the conjugacy

classes for these groups are shown in (20).

3.2.1. The extra-special group G2,0 = D8 = N1

The group G2,0 is generated by −1, e1 and e2 with e21 = e22 = 1, e1e2 = −e2e1,
while the group S ⊂ S8 isomorphic to G2,0 is generated by the permutations

(1, 2)(3, 4)(5, 6)(7, 8), (1, 3)(2, 4)(5, 7)(6, 8) and (1, 5)(2, 6)(3, 8)(4, 7) (see Table 6).

That is,

−1 7→ (1, 2)(3, 4)(5, 6)(7, 8), e1 7→ (1, 3)(2, 4)(5, 7)(6, 8), e2 7→ (1, 5)(2, 6)(3, 8)(4, 7)

under the isomorphism F mentioned above.

In a manner similar to G1,0, we describe an algorithm for finding the decompo-

sition of C[G2,0] into invariant subspaces

C[G2,0] =

6⊕
i=1

V (i),(28)

where V (i) = span{ui}, i = 1, . . . , 4, are one-dimensional subspaces while V (5) and

V (6) are two-dimensional subspaces carrying equivalent representations according to

Proposition 4, Theorem 10 and Theorem 11.

The basis vectors ui, i = 1, . . . , 8, are displayed in (43) in Appendix B. They have

been found by using the following algorithm.

Algorithm 2.

1: Let G = S ∼= G2,0 and V = C[S] ∼= C[G2,0].

2: Apply Algorithm 1 to find vectors u1,u2,u3,u4 providing bases for the one-

dimensional G-invariant submodules V (1), V (2), V (3), V (4) in V .

3: Find a basis for the orthogonal complement of V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4) in V

and call it V . It is 4-dimensional.

4: Using Groebner basis technique, find any 2-dimensional G-invariant subspace

in V and call it V (5). That is, find its basis vectors u5 and u6.

5: Find a basis for the orthogonal complement of V (5) in V and call it V (6). That

is, find its spanning vectors u7 and u8.

6: The algorithm terminates when all eight vectors u1, . . . ,u8 are found and these

vectors provide a basis for the decomposition of C[G2,0].



58 K. D. G. Maduranga and R. Ab lamowicz

Once the decomposition of C[G2,0] has been found, one can compute all irreducible

representations X(i), i = 1, . . . , 6, of G2,0 in the six invariant submodules V (i). The

degree-one representations X(1), X(2), X(3), and X(4) are all inequivalent since their

characters are different as shown in the character table below. The two irreducible

representations X(5) and X(6) of degree two are equivalent. All representations are

displayed in Table 14 in Appendix B. The extended character table with all repre-

sentations, including the equivalent ones, for G2,0 is as follows:

char/class K1 K2 K3 K4 K5

χ(1) 1 1 1 1 1

χ(2) 1 1 −1 −1 1

χ(3) 1 1 1 −1 −1

χ(4) 1 1 −1 1 −1

χ(5) 2 −2 0 0 0

χ(6) 2 −2 0 0 0

(29)

Note that X(5) and X(6) are equivalent since their characters are the same. To

illustrate the character orthogonality relations, compute the inner product of the

characters χ(2) and χ(3) while taking into consideration the number of elements in

each conjugacy class:

〈χ(2), χ(3)〉 =
1

8

5∑
i=1

|Ki|χ(2)
Ki
χ
(3)
Ki

=
1

8
(1 · (1)(1) + 1 · (1)(1) + 2 · (−1)(1) + 2 · (−1)(−1) + 2 · (1)(−1))(30)

= 0.

In a similar manner one can verify the character relation of the second kind.

Since the group G1,1 since it belongs to the same class N1 as G2,0, it will be not

discussed separately.

3.2.2. The extra-special group G0,2 = Q8 = N2

The group G0,2 is generated by −1, e1 and e2 with e21 = e22 = −1, e1e2 = −e2e1
while the group S ⊂ S8 isomorphic to G0,2 is generated by the permutations

(1, 2)(3, 4)(5, 6)(7, 8), (1, 3, 2, 4)(5, 7, 6, 8) and (1, 5, 2, 6)(3, 8, 4, 7) (see Table 6). So,

−1 7→ (1, 2)(3, 4)(5, 6)(7, 8), e1 7→ (1, 3, 2, 4)(5, 7, 6, 8), e2 7→ (1, 5, 2, 6)(3, 8, 4, 7)

under the isomorphism F .

Since the group algebra C[G0,2] formally decomposes like (28), using Algorithm 2

one can find the decomposition of C[G0,2]. The basis vectors spanning the invari-

ant subspaces are shown in (45) in Appendix B. Once the decomposition has been

found, one can compute all six irreducible representations X(i), i = 1, . . . 6, in the

corresponding submodules V (i). These representations are shown in Table 15 in Ap-

pendix B. The character table with all representations for G0,2 is as follows:
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char/class K1 K2 K3 K4 K5

χ(1) 1 1 1 1 1

χ(2) 1 1 −1 1 −1

χ(3) 1 1 1 −1 −1

χ(4) 1 1 −1 −1 1

χ(5) 2 −2 0 0 0

χ(6) 2 −2 0 0 0

(31)

Note that since the characters of X(5) and X(6) are the same, these representa-

tions are equivalent. The character table without the last row again shows that the

characters satisfy the two orthogonality relations.

3.3. Groups of order 16

In this section we discuss the vee groups G3,0, G2,1, G1,2 and G0,3. Conjugacy classes

of these groups are given in (21). Their character tables can be computed using a

combination of Algorithm 1 and Algorithm 2, as required.

3.3.1. The group G3,0 = S1

The group G3,0 is generated by −1, e1, e2 and e3 with e21 = e22 = e23 = 1, eiej =

−ejei, i 6= j, while the group S ⊂ S16 isomorphic to G3,0 and generated by corre-

sponding permutations is shown in Table 8 in Appendix A.

In a manner similar to the groups of orders 4 and 8, one can find the decompo-

sition of C[G3,0] into invariant subspaces

C[G3,0] =

12⊕
i=1

V (i),(32)

where V (i) = span{ui}, i = 1, . . . , 8, are one-dimensional while

V (9) = span{u9,u10}, V (10) = span{u11,u12},

V (11) = span{u13,u14}, V (12) = span{u15,u16}(33)

are two-dimensional subspaces carrying two pairwise equivalent representations ac-

cording to Proposition 4, Theorem 10 and Theorem 11.

The basis vectors ui are displayed in (47) in Appendix B. They have been found

by using the above two algorithms.

Once the decomposition of C[G3,0] has been determined, one can compute all ir-

reducible representations X(i) of G3,0. The representations are displayed in Table 16

in Appendix B. The extended character table for G3,0 is as follows:
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char/class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

χ(1) 1 1 1 1 1 1 1 1 1 1

χ(2) 1 1 −1 −1 1 1 −1 1 −1 −1

χ(3) 1 1 −1 −1 1 −1 1 −1 1 −1

χ(4) 1 1 1 1 1 −1 −1 −1 −1 1

χ(5) 1 1 −1 −1 −1 1 1 −1 −1 1

χ(6) 1 1 1 1 −1 1 −1 −1 1 −1

χ(7) 1 1 1 1 −1 −1 1 1 −1 −1

χ(8) 1 1 −1 −1 −1 −1 −1 1 1 1

χ(9) 2 −2 2i −2i 0 0 0 0 0 0

χ(10) 2 −2 −2i 2i 0 0 0 0 0 0

χ(11) 2 −2 −2i 2i 0 0 0 0 0 0

χ(12) 2 −2 2i −2i 0 0 0 0 0 0

(34)

Note that X(9) ∼= X(12) and X(9) ∼= X(12) since their characters are the same. To

illustrate orthogonality of the characters, consider the inner product of the characters

χ(2) and χ(3):

〈χ(2), χ(3)〉 =
1

16

10∑
i=1

|Ki|χ(2)
Ki
χ
(3)
Ki

=
1

16
(1 · (1)(1) + 1 · (1)(1) + 1 · (−1)(−1) + 1 · (−1)(−1)

+ 2 · (1)(1) + 2 · (1)(−1) + 2 · (−1)(1)

+ 2 · (1)(−1) + 2 · (−1)(1) + 2 · (−1)(−1))

= 0.(35)

which verifies the character orthogonality relation of the first kind. In a similar

manner one can verify the character relation of the second kind.

Since the group G1,2 belongs to the same class S1 as G3,0, it will not be discussed

separately.

3.3.2. The group G2,1 = Ω1

The group G2,1 is generated by −1, e1, e2 and e3 with e21 = e22 = 1 and e23 = −1,

eiej = −ejei, i 6= j, while the group S ⊂ S16 isomorphic to G2,1 is generated by the

permutations of S16 as shown in Table 9 in Appendix A.

The decomposition of C[G2,1] looks the same as that of C[G3,0] displayed in (32),

while the basis vectors ui for this decomposition are displayed in (49) in Appendix B.

They have been found by using the above two algorithms.

Once the decomposition of C[G2,1] has been found, one can compute all irre-

ducible representations X(i) of G2,1. The representations are displayed in Table 17

in Appendix B. The extended character table for G2,1 is as follows:
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char/class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

χ(1) 1 1 1 1 1 1 1 1 1 1

χ(2) 1 1 −1 −1 1 1 −1 1 −1 −1

χ(3) 1 1 −1 −1 1 −1 1 −1 1 −1

χ(4) 1 1 1 1 1 −1 −1 −1 −1 1

χ(5) 1 1 −1 −1 −1 1 1 −1 −1 1

χ(6) 1 1 1 1 −1 1 −1 −1 1 −1

χ(7) 1 1 1 1 −1 −1 1 1 −1 −1

χ(8) 1 1 −1 −1 −1 −1 −1 1 1 1

χ(9) 2 −2 −2 2 0 0 0 0 0 0

χ(10) 2 −2 2 −2 0 0 0 0 0 0

χ(11) 2 −2 −2 2 0 0 0 0 0 0

χ(12) 2 −2 2 −2 0 0 0 0 0 0

(36)

Note that X(9) ∼= X(11) and X(10) ∼= X(12) since their characters are the same.

3.3.3. The group G0,3 = Ω2

The group G0,3 is generated by −1, e1, e2 and e3 with e21 = e22 = e23 = −1,

eiej = −ejei, i 6= j, while the group S ⊂ S16 isomorphic to G0,3 is generated by

the corresponding permutations of S16 shown in Table 11 in Appendix A.

The decomposition of C[G0,3] again looks the same as that of C[G3,0] in (32),

while the basis vectors ui are displayed in (51) in Appendix B. They have been found

by using the above two algorithms. The irreducible representations X(i) of G0,3 have

been computed in the same manner. They are displayed in Table 17 in Appendix B.

The extended character table for G0,3 is as follows:

char/class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

χ(1) 1 1 1 1 1 1 1 1 1 1

χ(2) 1 1 −1 −1 1 1 −1 1 −1 −1

χ(3) 1 1 −1 −1 1 −1 1 −1 1 −1

χ(4) 1 1 1 1 1 −1 −1 −1 −1 1

χ(5) 1 1 −1 −1 −1 1 1 −1 −1 1

χ(6) 1 1 1 1 −1 1 −1 −1 1 −1

χ(7) 1 1 1 1 −1 −1 1 1 −1 −1

χ(8) 1 1 −1 −1 −1 −1 −1 1 1 1

χ(9) 2 −2 −2 2 0 0 0 0 0 0

χ(10) 2 −2 2 −2 0 0 0 0 0 0

χ(11) 2 −2 −2 2 0 0 0 0 0 0

χ(12) 2 −2 2 −2 0 0 0 0 0 0

(37)

Note that X(9) ∼= X(11) and X(10) ∼= X(12) since their characters are the same.
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4. Conclusions

Due to the renewed interest in the relationship between finite Salingaros’ vee groups

G = Gp,q and Clifford algebras, the main goal of this paper has been to show how one

can construct irreducible representations of these groups by decomposing their regu-

lar modules. In the process, two algorithms have been formulated which have allowed

us to completely decompose regular modules of groups of orders 4, 8, and 16 into

irreducible G-submodules. These algorithms have used Groebner basis approach to

find bases in these G-submodules as well as the G-invariance of an inner product de-

fined on the complex regular module CG. In the process, we have computed character

tables of these groups. Of course, the character tables of these groups are known and

can be found in the literature, e.g., see [12] and references therein. It is much more

efficient to derive the character tables using the character theory instead of finding

the actual representations first. Furthermore, knowing the irreducible characters of

a finite group G, one can use them to decompose any G-module, let it be regular or,

for example, a permutation module, into a direct sum of G-submodules without a

common composition factor. This approach is based on defining, for each irreducible

character χi of G an idempotent element ei in the group algebra CG such that these

(not necessarily primitive) idempotents provide an orthogonal decomposition of the

unity in CG. This way, for example, the regular module CG can be decomposed into

a direct sum of two sided ideals CGei generated by the idempotents. These ideals

as G-submodules, do not share a common composition factor and are reducible if

the degree of χi is greater than 1. [12] Then, to achieve a complete decomposition,

these reducible G-modules can be further decomposed by an algorithm similar to

the Algorithm 2. The two algorithms can be applied to groups of higher order than

16, if needed.

A. Images of the generators of the vee groups

In this Appendix, we show images of the generators of the vee groups Gp,q for

p+ q ≤ 3 in the symmetric groups Sn where n = 21+p+q.

Tab. 5: Generators for G1,0 and G0,1 in S4.

G1,0 Order G0,1 Order

−1 (1, 2)(3, 4) 2 (1, 2)(3, 4) 2

e1 (1, 3)(2, 4) 2 (1, 3, 2, 4) 4

B. Irreducible representations of the vee groups

In this Appendix, we show matrices for one representative g from each conjugacy

class Ki in each irreducible representation X(j) for all vee groups of orders 4, 8,

and 16. Here, the index i runs through all conjugacy classes whereas the index j

runs through all irreducible representations including equivalent ones.
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Tab. 6: Generators for G2,0 and G1,1 in S8.

G2,0 Order G1,1 Order

−1 (1, 2)(3, 4)(5, 6)(7, 8) 2 (1, 2)(3, 4)(5, 6)(7, 8) 2

e1 (1, 3)(2, 4)(5, 7)(6, 8) 2 (1, 3)(2, 4)(5, 7)(6, 8) 2

e2 (1, 5)(2, 6)(3, 8)(4, 7) 2 (1, 5, 2, 6)(3, 8, 4, 7) 4

Tab. 7: Generators for G0,2 in S8.

G0,2 Order

−1 (1, 2)(3, 4)(5, 6)(7, 8) 2

e1 (1, 3, 2, 4)(5, 7, 6, 8) 4

e2 (1, 5, 2, 6)(3, 8, 4, 7) 4

Tab. 8: Generators for G3,0 in S16.

G3,0 Order

−1 (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16) 2

e1 (1, 3)(2, 4)(5, 9)(6, 10)(7, 11)(8, 12)(13, 15)(14, 16) 2

e2 (1, 5)(2, 6)(3, 10)(4, 9)(7, 13)(8, 14)(11, 16)(12, 15) 2

e3 (1, 7)(2, 8)(3, 12)(4, 11)(5, 14)(6, 13)(9, 15)(10, 16) 2

For consistency, matrices shown in the tables below always represent the first

element in each class. For the groups of order 4, all representations are inequivalent,

and are shown in Tables 12 and 13.

In Table 12, the irreducible representations X(i) of G1,0 are realized in irreducible

G1,0-invariant submodules of the group algebra C[G1,0] which is decomposed as

follows:

C[G1,0] = V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4).(38)

The one-dimensional submodules V (i) are spanned by the corresponding vectors ui,

i = 1, . . . , 4. The coordinates of these vectors in the basis B = {1,−1, e1,−e1} are

as follows:

V (1) = span{u1}, u1 = (1, 1, 1, 1),

V (2) = span{u2}, u2 = (1,−1,−1, 1),(39)

V (3) = span{u3}, u3 = (−1, 1,−1, 1),

V (4) = span{u4}, u4 = (−1,−1, 1, 1).

In Table 13, the irreducible representations X(i) of G0,1 are realized in irreducible

G0,1-invariant submodules of the group algebra C[G0,1] which is decomposed as

follows:
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Tab. 9: Generators for G2,1 in S16.

G2,1 Order

−1 (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16) 2

e1 (1, 3)(2, 4)(5, 9)(6, 10)(7, 11)(8, 12)(13, 15)(14, 16) 2

e2 (1, 5)(2, 6)(3, 10)(4, 9)(7, 13)(8, 14)(11, 16)(12, 15) 2

e3 (1, 7, 2, 8)(3, 12, 4, 11)(5, 14, 6, 13)(9, 15, 10, 16) 4

Tab. 10: Generators for G1,2 in S16.

G1,2 Order

−1 (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16) 2

e1 (1, 3)(2, 4)(5, 9)(6, 10)(7, 11)(8, 12)(13, 15)(14, 16) 2

e2 (1, 5, 2, 6)(3, 10, 4, 9)(7, 13, 8, 14)(11, 16, 12, 15) 4

e3 (1, 7, 2, 8)(3, 12, 4, 11)(5, 14, 6, 13)(9, 15, 10, 16) 4

Tab. 11: Generators for G0,3 in S16.

G0,3 Order

−1 (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16) 2

e1 (1, 3, 2, 4)(5, 9, 6, 10)(7, 11, 8, 12)(13, 15, 14, 16) 4

e2 (1, 5, 2, 6)(3, 10, 4, 9)(7, 13, 8, 14)(11, 16, 12, 15) 4

e3 (1, 7, 2, 8)(3, 12, 4, 11)(5, 14, 6, 13)(9, 15, 10, 16) 4

C[G0,1] = V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4).(40)

The one-dimensional submodules V (i) are spanned by the corresponding vectors

ui, i = 1, . . . , 4. The complex-valued coordinates of these vectors in the basis B =

{1,−1, e1,−e1} are as follows:

V (1) = span{u1}, u1 = (1, 1, 1, 1),

V (2) = span{u2}, u2 = (i,−i,−1, 1),

V (3) = span{u3}, u3 = (−1,−1, 1,−1),

V (4) = span{u4}, u4 = (i,−i,−1, 1).(41)

In Table 14, the irreducible representations X(i) of G2,0 = D8 = N1 are real-

ized in irreducible G2,0-invariant submodules of the group algebra C[G2,0] which is

decomposed as follows:

C[G2,0] = V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4) ⊕ V (5) ⊕ V (6).(42)

The submodules V (i) are spanned by the corresponding vectors ui, i = 1, . . . , 8,

as shown below. The coordinates of these vectors in the standard basis
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Tab. 12: Representations of G1,0 = D4.

K1 K2 K3 K4

g 1 −1 e1 −e1
X(1)

(
1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

−1
) (

−1
) (

1
)

X(3)
(
1
) (

−1
) (

1
) (

−1
)

X(4)
(
1
) (

1
) (

−1
) (

−1
)

Tab. 13: Representations of G0,1 = Z4.

K1 K2 K3 K4

g 1 −1 e1 −e1
X(1)

(
1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

−1
) (

i
) (

−i
)

X(3)
(
1
) (

1
) (

−1
) (

−1
)

X(4)
(
1
) (

−1
) (

−i
) (

i
)

B = {1,−1, e1,−e1, e2,−e2, e12,−e12}

are as follows:

V (1) = span{u1}, u1 = (1, 1, 1, 1, 1, 1, 1, 1),

V (2) = span{u2}, u2 = (−1,−1, 1, 1, 1, 1,−1,−1),

V (3) = span{u3}, u3 = (−1,−1,−1,−1, 1, 1, 1, 1),

V (4) = span{u4}, u4 = (1, 1,−1,−1, 1, 1,−1,−1),

V (5) = span{u5,u6}, u5 = (−1, 1,−1, 1,−1, 1, 1,−1),

u6 = (−5, 5,−5, 5,−1, 1, 1,−1),

V (6) = span{u7,u8}, u7 = (1,−1,−1, 1, 0, 0, 0, 0),

u8 = (1,−1,−1, 1,−1, 1,−1, 1).(43)

While the one-dimensional representations X(1), X(2), X(3), X(4) are inequivalent,

the two-dimensional representations X(5) and X(6) are equivalent.

In Table 15, the irreducible representations X(i) of G0,2 = Q8 = N2 are real-

ized in irreducible G0,2-invariant submodules of the group algebra C[G0,2] which is

decomposed as follows:

C[G0,2] = V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4) ⊕ V (5) ⊕ V (6).(44)

The submodules V (i) are spanned by the corresponding vectors ui, i = 1, . . . , 8, as

shown below. The coordinates of these vectors in the standard basis

B = {1,−1, e1,−e1, e2,−e2, e12,−e12}
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Tab. 14: Representations of G2,0 = D4 = N1.

K1 K2 K3 K4 K5

g 1 −1 e1 e2 e12
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(3)
(
1
) (

1
) (

1
) (

−1
) (

−1
)

X(4)
(
1
) (

1
) (

−1
) (

1
) (

−1
)

X(5)

(
1 0

0 1

) (
−1 0

0 −1

) (
− 3

2
− 5

2
1
2

3
2

) (
1 6

0 −1

) (
− 3

2
− 13

2
1
2

3
2

)
X(6)

(
1 0

0 1

) (
−1 0

0 −1

) (
−1 −2

0 1

) (
1 0

−1 −1

) (
1 2

−1 −1

)

are as follows:

V (1) = span{u1}, u1 = (1, 1, 1, 1, 1, 1, 1, 1),

V (2) = span{u2}, u2 = (−1,−1, 1, 1,−1,−1, 1, 1),

V (3) = span{u3}, u3 = (−1,−1,−1,−1, 1, 1, 1, 1),

V (4) = span{u4}, u4 = (1, 1,−1,−1,−1,−1, 1, 1),

V (5) = span{u5,u6}, u5 = (0, 0, 0, 0,−i, i, 1,−1),

u6 = (−i, i,−1, 1,−i, i, 1,−1),

V (6) = span{u7,u8}, u7 = (1,−1, i,−i, 0, 0, 0, 0),

u8 = (0, 0, 0, 0, 1,−1,−i, i).(45)

While the one-dimensional representations X(1), X(2), X(3), X(4) are inequivalent,

the two-dimensional representations X(5) and X(6) are equivalent.

Tab. 15: Representations of G0,2 = Q8 = N2.

K1 K2 K3 K4 K5

g 1 −1 e1 e2 e12
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

1
) (

−1
) (

1
) (

−1
)

X(3)
(
1
) (

1
) (

1
) (

−1
) (

−1
)

X(4)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(5)

(
1 0

0 1

) (
−1 0

0 −1

) (
−i −2i

0 i

) (
1 2

−1 −1

) (
i 0

−i −i

)
X(6)

(
1 0

0 1

) (
−1 0

0 −1

) (
−i 0

0 i

) (
0 −1

1 0

) (
0 i

i 0

)

In Table 16, the irreducible representations X(i) of G3,0 = S1 are realized in irre-

ducible G3,0-invariant submodules of the group algebra C[G3,0] which is decomposed

as follows:
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Tab. 16: Part 1: Representations of G3,0 = S1 for Ki, i = 1, . . . , 5.

K1 K2 K3 K4 K5

g 1 −1 e123 −e123 e1
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(3)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(4)
(
1
) (

1
) (

1
) (

1
) (

1
)

X(5)
(
1
) (

1
) (

−1
) (

−1
) (

−1
)

X(6)
(
1
) (

1
) (

1
) (

1
) (

−1
)

X(7)
(
1
) (

1
) (

1
) (

1
) (

−1
)

X(8)
(
1
) (

1
) (

−1
) (

−1
) (

−1
)

X(9)

(
1 0

0 1

) (
−1 0

0 −1

) (
i 0

0 i

) (
−i 0

0 −i

) (
0 1

1 0

)
X(10)

(
1 0

1 0

) (
−1 0

0 −1

) (
−i 0

0 −i

) (
i 0

0 i

) (
1 0

0 −1

)
X(11)

(
1 0

0 1

) (
−1 0

0 −1

) (
−i 0

0 −i

) (
i 0

0 i

) (
−1 0

0 1

)
X(12)

(
1 0

0 1

) (
−1 0

0 −1

) (
i 0

0 i

) (
−i 0

0 −i

) (
0 1

1 0

)

Tab. 16: Part 2: Representations of G3,0 = S1 for Ki, i = 6, . . . , 10.

K6 K7 K8 K9 K10

g e2 e3 e12 e13 e23
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

−1
) (

1
) (

−1
) (

−1
)

X(3)
(
−1

) (
1
) (

−1
) (

1
) (

−1
)

X(4)
(
−1

) (
−1

) (
−1

) (
−1

) (
1
)

X(5)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(6)
(
1
) (

−1
) (

−1
) (

1
) (

−1
)

X(7)
(
−1

) (
1
) (

1
) (

−1
) (

−1
)

X(8)
(
−1

) (
−1

) (
1
) (

1
) (

1
)

X(9)

(
0 −i
i 0

) (
1 0

0 −1

) (
i 0

0 −i

) (
0 −1

1 0

) (
0 i

i 0

)
X(10)

(
0 −1

−1 0

) (
0 −i
i 0

) (
0 −1

1 0

) (
0 −i
−i 0

) (
−i 0

0 i

)
X(11)

(
0 −1

−1 0

) (
0 i

−i 0

) (
0 1

−1 0

) (
0 −i

−i 0

) (
i 0

0 −i

)
X(12)

(
0 −i
i 0

) (
1 0

0 −1

) (
i 0

0 −i

) (
0 −1

1 0

) (
0 i

i 0

)
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C[G3,0] =

12⊕
i=1

V (i).(46)

The submodules V (i) are spanned by the corresponding vectors ui, i = 1, . . . , 16, as

shown below. The coordinates of these vectors in the standard basis

B = {1,−1, e1,−e1, e2,−e2, e3,−e3, e12,−e12, e13,−e13, e23,−e23, e123,−e123}

are as follows:

V (1) = span{u1}, u1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

V (2) = span{u2}, u2 = (−1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1, 1),

V (3) = span{u3}, u3 = (−1,−1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1),

V (4) = span{u4}, u4 = (1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1),

V (5) = span{u5}, u5 = (−1,−1, 1, 1,−1,−1,−1,−1, 1, 1, 1, 1,−1,−1, 1, 1),

V (6) = span{u6}, u6 = (1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1),

V (7) = span{u7}, u7 = (1, 1,−1,−1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1, 1, 1),

V (8) = span{u8}, u8 = (−1,−1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 1, 1),

V (9) = span{u9,u10}, u9 = (−i, i, 0, 0, 0, 0,−i, i,−1, 1, 0, 0, 0, 0,−1, 1),

u10 = (0, 0,−i, i,−1, 1, 0, 0, 0, 0,−i, i,−1, 1, 0, 0),

V (10) = span{u11,u12}, u11 = (0, 0, 0, 0,−i, i,−1, 1,−i, i,−1, 1, 0, 0, 0, 0),

u12 = (i,−i,−i, i, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1,−1, 1),

V (11) = span{u13,u14}, u13 = (0, 0, 0, 0,−i, i, 1,−1, i,−i,−1, 1, 0, 0, 0, 0),

u14 = (i,−i, i,−i, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1,−1, 1),

V (12) = span{u15,u16}, u15 = (0, 0,−i, i, 1,−1, 0, 0, 0, 0, i,−i,−1, 1, 0, 0),

u16 = (−i, i, 0, 0, 0, 0, i,−i, 1,−1, 0, 0, 0, 0,−1, 1).(47)

While the representations X(i), i = 1, . . . , 10, are all inequivalent and irreducible,

the remaining two-dimensional irreducible representations are equivalent as follows:

X(12) ∼= X(9) and X(11) ∼= X(10).

In Table 17, the irreducible representations X(i) of G2,1 = Ω1 are realized in irre-

ducible G2,1-invariant submodules of the group algebra C[G2,1] which is decomposed

as follows:

C[G2,1] =

12⊕
i=1

V (i).(48)

The submodules V (i) are spanned by the corresponding vectors ui, i = 1, . . . , 16, as

shown below. The coordinates of these vectors in the standard basis
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Tab. 17: Part 1: Representations of G2,1 = Ω1 for Ki, i = 1, . . . , 5.

K1 K2 K3 K4 K5

g 1 −1 e123 −e123 e1
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(3)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(4)
(
1
) (

1
) (

1
) (

1
) (

1
)

X(5)
(
1
) (

1
) (

−1
) (

−1
) (

−1
)

X(6)
(
1
) (

1
) (

1
) (

1
) (

−1
)

X(7)
(
1
) (

1
) (

1
) (

1
) (

−1
)

X(8)
(
1
) (

1
) (

−1
) (

−1
) (

−1
)

X(9)

(
1 0

0 1

) (
−1 0

0 −1

) (
−1 0

0 −1

) (
1 0

0 1

) (
1 0

0 −1

)
X(10)

(
1 0

0 1

) (
−1 0

0 −1

) (
1 0

0 1

) (
−1 0

0 −1

) (
−1 0

0 1

)
X(11)

(
1 0

0 1

) (
−1 0

0 −1

) (
−1 0

0 −1

) (
1 0

0 1

) (
1 0

0 −1

)
X(12)

(
1 0

0 1

) (
−1 0

0 −1

) (
1 0

0 1

) (
−1 0

0 −1

) (
1 0

0 −1

)

Tab. 17: Part 2: Representations of G2,1 = Ω1 for Ki, i = 6, . . . , 10.

K6 K7 K8 K9 K10

g e2 e3 e12 e13 e23
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

−1
) (

1
) (

−1
) (

−1
)

X(3)
(
−1

) (
1
) (

−1
) (

1
) (

−1
)

X(4)
(
−1

) (
−1

) (
−1

) (
−1

) (
1
)

X(5)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(6)
(
1
) (

−1
) (

−1
) (

1
) (

−1
)

X(7)
(
−1

) (
1
) (

1
) (

−1
) (

−1
)

X(8)
(
−1

) (
−1

) (
1
) (

1
) (

1
)

X(9)

(
0 −1

−1 0

) (
0 −1

1 0

) (
0 −1

1 0

) (
0 −1

−1 0

) (
−1 0

0 1

)
X(10)

(
0 −1

−1 0

) (
0 −1

1 0

) (
0 1

−1 0

) (
0 1

1 0

) (
−1 0

0 1

)
X(11)

(
0 −1

−1 0

) (
0 −1

1 0

) (
0 −1

1 0

) (
0 −1

−1 0

) (
−1 0

0 1

)
X(12)

(
0 −1

−1 0

) (
0 1

−1 0

) (
0 −1

1 0

) (
0 1

1 0

) (
1 0

0 −1

)
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B = {1,−1, e1,−e1, e2,−e2, e3,−e3, e12,−e12, e13,−e13, e23,−e23, e123,−e123}

are as follows:

V (1) = span{u1}, u1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

V (2) = span{u2}, u2 = (−1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1, 1),

V (3) = span{u3}, u3 = (−1,−1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1),

V (4) = span{u4}, u4 = (1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1),

V (5) = span{u5}, u5 = (−1,−1, 1, 1,−1,−1,−1,−1, 1, 1, 1, 1,−1,−1, 1, 1),

V (6) = span{u6}, u6 = (1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1),

V (7) = span{u7}, u7 = (1, 1,−1,−1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1, 1, 1),

V (8) = span{u8}, u8 = (−1,−1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 1, 1),

V (9) = span{u9,u10}, u9 = (1,−1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1,−1, 1),

u10 = (0, 0, 0, 0,−1, 1, 1,−1, 1,−1,−1, 1, 0, 0, 0, 0),

V (10) = span{u11,u12}, u11 = (0, 0, 0, 0, 1,−1, 1,−1,−1, 1,−1, 1, 0, 0, 0, 0),

u12 = (−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1,−1, 1),

V (11) = span{u13,u14}, u13 = (0, 0, 0, 0,−1, 1,−1, 1,−1, 1,−1, 1, 0, 0, 0, 0),

u14 = (1,−1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1,−1, 1),

V (12) = span{u15,u16}, u15 = (0, 0, 0, 0, 1,−1,−1, 1, 1,−1,−1, 1, 0, 0, 0, 0),

u16 = (−1, 1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1,−1, 1).(49)

While the representations X(i), i = 1, . . . , 10 are all inequivalent and irreducible, the

remaining two-dimensional irreducible representations are equivalent as follows:

X(11) ∼= X(9) and X(12) ∼= X(10).

In Table 18, the irreducible representations X(i) of G0,3 = Ω2 are realized in irre-

ducible G0,3-invariant submodules of the group algebra C[G0,3] which is decomposed

as follows:

C[G0,3] =

12⊕
i=1

V (i).(50)

The submodules V (i) are spanned by the corresponding vectors ui, i = 1, . . . , 16, as

shown below. The coordinates of these vectors in the standard basis

B = {1,−1, e1,−e1, e2,−e2, e3,−e3, e12,−e12, e13,−e13, e23,−e23, e123,−e123}

are as follows:
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Tab. 18: Part 1: Representations of G0,3 = Ω2 for Ki, i = 1, . . . , 5.

K1 K2 K3 K4 K5

g 1 −1 e123 −e123 e1
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(3)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(4)
(
1
) (

1
) (

1
) (

1
) (

1
)

X(5)
(
1
) (

1
) (

−1
) (

−1
) (

−1
)

X(6)
(
1
) (

1
) (

1
) (

1
) (

−1
)

X(7)
(
1
) (

1
) (

1
) (

1
) (

−1
)

X(8)
(
1
) (

1
) (

−1
) (

−1
) (

−1
)

X(9)

(
1 0

0 1

) (
−1 0

0 −1

) (
−1 0

0 −1

) (
1 0

0 1

) (
i 0

0 −i

)
X(10)

(
1 0

0 1

) (
−1 0

0 −1

) (
1 0

0 1

) (
−1 0

0 −1

) (
−i 0

0 i

)
X(11)

(
1 0

0 1

) (
−1 0

0 −1

) (
−1 0

0 −1

) (
1 0

0 1

) (
i 0

0 −i

)
X(12)

(
1 0

0 1

) (
−1 0

0 −1

) (
1 0

0 1

) (
−1 0

0 −1

) (
i 0

0 −i

)

Tab. 18: Part 2: Representations of G0,3 = Ω2 for Ki, i = 6, . . . , 10.

K6 K7 K8 K9 K10

g e2 e3 e12 e13 e23
X(1)

(
1
) (

1
) (

1
) (

1
) (

1
)

X(2)
(
1
) (

−1
) (

1
) (

−1
) (

−1
)

X(3)
(
−1

) (
1
) (

−1
) (

1
) (

−1
)

X(4)
(
−1

) (
−1

) (
−1

) (
−1

) (
1
)

X(5)
(
1
) (

1
) (

−1
) (

−1
) (

1
)

X(6)
(
1
) (

−1
) (

−1
) (

1
) (

−1
)

X(7)
(
−1

) (
1
) (

1
) (

−1
) (

−1
)

X(8)
(
−1

) (
−1

) (
1
) (

1
) (

1
)

X(9)

(
0 −1

1 0

) (
0 −i

−i 0

) (
0 −i

−i 0

) (
0 1

−1 0

) (
i 0

0 −i

)
X(10)

(
0 i

i 0

) (
0 −1

1 0

) (
0 1

−1 0

) (
0 i

i 0

) (
i 0

0 −i

)
X(11)

(
0 1

−1 0

) (
0 i

i 0

) (
0 i

i 0

) (
0 −1

1 0

) (
i 0

0 −i

)
X(12)

(
0 1

−1 0

) (
0 −i

−i 0

) (
0 i

i 0

) (
0 1

−1 0

) (
−i 0

0 i

)



72 K. D. G. Maduranga and R. Ab lamowicz

V (1) = span{u1}, u1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

V (2) = span{u2}, u2 = (−1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1, 1),

V (3) = span{u3}, u3 = (−1,−1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1),

V (4) = span{u4}, u4 = (1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1),

V (5) = span{u5}, u5 = (−1,−1, 1, 1,−1,−1,−1,−1, 1, 1, 1, 1,−1,−1, 1, 1),

V (6) = span{u6}, u6 = (1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1),

V (7) = span{u7}, u7 = (1, 1,−1,−1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1, 1, 1),

V (8) = span{u8}, u8 = (−1,−1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 1, 1),

V (9) = span{u9,u10}, u9 = (1,−1,−i, i, 0, 0, 0, 0, 0, 0, 0, 0,−i, i,−1, 1),

u10 = (0, 0, 0, 0, 1,−1, i,−i, i,−i,−1, 1, 0, 0, 0, 0),

V (10) = span{u11,u12}, u11 = (0, 0, 0, 0, i,−i, 1,−1,−1, 1, i,−i, 0, 0, 0, 0),

u12 = (−1, 1, i,−i, 0, 0, 0, 0, 0, 0, 0, 0,−i, i,−1, 1),

V (11) = span{u13,u14}, u13 = (0, 0, 0, 0, 1,−1,−i, i,−i, i,−1, 1, 0, 0, 0, 0),

u14 = (1,−1, i,−i, 0, 0, 0, 0, 0, 0, 0, 0, i,−i,−1, 1),

V (12) = span{u15,u16}, u15 = (0, 0, 0, 0,−1, 1,−i, i, i,−i,−1, 1, 0, 0, 0, 0),

u16 = (−1, 1,−i, i, 0, 0, 0, 0, 0, 0, 0, 0, i,−i,−1, 1).(51)

While the representations X(i), i = 1, . . . , 10 are all inequivalent and irreducible,

the remaining two-dimensional irreducible representations are equivalent as follows:

X(12) ∼= X(10) and X(11) ∼= X(9).
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REPREZENTACJE I CHARAKTERY GRUP vee SALINGAROSA

NISKIEGO RZȨDU

S t r e s z c z e n i e
Rozpatrujemy nieredukowalne reprezentacje i charaktery grup vee Salingarosa rzȩdów

4, 8 i 16 jako 2-grupy o wyk ladniku 4. W szczególności konstruujemy zespolone niere-
dukowalne modu ly grup i jawne reprezentacje tych grup. Dowodzimy twierdzenie dotycza̧ce
liczby klas sprzȩżenia i liczby nierównoważnych nieredukowalnych reprezentacji stopnia je-
den i dwa. Wskazujemy, jak roz lożyć zespolona̧ algebrȩ grupy na nieredukowalne podmodu ly
w zgodności z twierdzeniem Maschkego. Formu lujemy dwa algorytmy dla znalezienia baz
tych podmodu lów, które zależa̧ od metod baz Groebnera. Wreszcie zestawiamy tablice
charakterów tych grup.

S lowa kluczowe: algebra Clifforda, centrum, tablica charakterów, klasy sprzȩżenia, wyni-
kowa podgrupa, reprezentacja grupy, baza Groebnera, twierdzenie Maschkego, 2-grupa
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MULTI-OBJECTIVE OPTIMIZATION OF VEHICLE ROUTING
PROBLEM USING HYBRID GA-PSO ALGORITHM
WITH MODIFIED BEST COST ROUTE CROSSOVER OPERATOR

Summary
The Vehicle Routing Problem (VRP) is a well-known nondeterministic polynomial (NP)

hard and multi-objective optimization problem in computer science. Moreover, VRP has
many implementations in everyday life problems like cost optimization in logistics. Es-
tablished exact methods known today cannot consistently solve VRP instances with 100
customers and more in reasonable time, while in real-life applications this is still not satis-
factory. Genetic algorithms (GA) and Particle Swarm Optimization (PSO) are well-known
and very promising methods used for solving tasks of this kind. In this paper we propose
a modification of Best Cost Route Crossover (BCRC) operator and use it within particle
swarm optimization technique. This hybrid GA-PSO algorithm is applied to known Solo-
mon’s benchmarks for Vehicle Routing Problem with Time Windows (VRPTW) taking into
account two minimization objectives: overall route length and number of vehicles. Our nu-
merical experiments followed by their statistical analysis show that this modified operator
gives better results than original BCRC one.

Keywords and phrases: vehicle routing problem, time windows, particle swarm optimization,
genetic algorithms, multi-objective optimization

1. Introduction

There are many combinatorial nondeterministic polynomial (NP) hard problems in
computer science that have a real-life applications. One of the most known is Vehicle
Routing Problem (VRP) proposed by Dantzig and Ramser in 1959 [5]. Many versions
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of VRP were already proposed in the literature. In this paper the Vehicle Routing
Problem with Time Windows (VRPTW) is taken into account.

The VRPTW can be described as a task for a depot with an associated fleet of
trucks to deliver a cargo to many customers respecting their time constraints. There
are following rules important during search for an optimal solution:

• every customer can be visited only once,

• every customer has defined a demand of cargo,

• every customer has defined an opening time window for trucks (ready and due
time),

• every customer has defined a service time,

• the time of travel between customers is equal to the distance,

• every truck has defined a capacity and has to deliver supplies to customers
within defined time windows,

• a car that arrives too early to a customer has to wait until a service would
start at the open time for a given customer,

• if a vehicle arrives after the due time, the customer cannot be serviced.

The problem can be interpreted as a multi-objective optimization task because we
have to optimize not only overall distance covered by trucks but also the number of
used vehicles.

Many different approaches to VRP were already proposed: exact [6,10,27], tabu
search [4, 18], heuristic [2, 12], genetic algorithms [3, 17, 19] and swarm intelligence
[7, 15, 22]. In order to be able to compare different methods some benchmark tasks
were defined, the best known benchmarks are known as Solomon’s benchmarks [25].

As it was recalled above, there are some exact methods proposed to solve the
VRPTW tasks. However, the complexity of such combinatorial problems makes this
approaches computationally difficult. For large problem instances it is rarely possible
to obtain an optimal route in reasonable time [14]. Moreover, none of the existing
exact methods can solve optimally all VRPTW problems with 100 customers or
more. That is the reason why meta-heuristic approaches are much more promising
for this kind of optimization problems.

In the paper, we propose a hybrid GA-PSO approach using a new genetic cross-
over operator based on BCRC. Experimental results discussed below show that using
this new crossover operator we obtained better results than with original BCRC.

The paper is organized as follows. In Section 2 the idea of PSO and its hybrid
GA-PSO modification for VRPTW is presented. In the same section one can find
description of the Best Cost Route Crossover operator as well as Confined Inverse
Mutation both used in GA-PSO implementation. In the next Section a proposed
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modification of BCRC operator is described in detail. The Section 4 contains the
obtained numerical results. The article ends with Conclusions and Bibliography.

2. Particle Swarm Optimization for VRPTW

The Particle Swarm Optimization (PSO) is one of evolutionary algorithms based on
observation of a real life. The main idea for this method comes from R.C. Eberhart
and J. Kennedy and it was introduced in 1995 [9]. PSO is a technique based on
observations of a social behaviour of flocking birds. The main goal of PSO is to
find, using agent methodology, the point where a fitness function has a minimal or
maximal value. In order to find the best place the PSO uses a swarm of particles,
each of them moves in a search space and in that way individually search for an
optimal spot. The philosophy behind the original particle swarm optimization is to
conclude the final solution from its own experience of an individual and the best
individual experience of the whole swarm. The rule for particle position changes in
continuous space is defined as:

vk,i = w ∗ vk,i−1 + c1 ∗ (plbk − pk,i−1) + c2 ∗ (pgb − pk,i−1),
pk,i = pk,i−1 + vk,i,

(1)

where pk,i is k-th particle position in i-th iteration of algorithm, vk,i represents
velocity of this particle, plbk is k-th particle local best position and pgb stands for the
global best position in considered swarm, w, c1, c2 are algorithm parameters (weight
coefficients).

Presented PSO approach was originally derived for problems in continuous search
space. However, the search space of VRPTW problem is a discrete space. That
means, in order to use this method for the VRPTW problem one has to redefine the
equation (1) and add a new meaning to a particle and its position. There are at least
two different approaches: one that uses order encoding [1, 15] and the other based
on genetic chromosome representation [19,20]. In this paper we choose the latter.

2.1. VRPTW formulation for PSO

At first, we have to define what we mean by a particle and its position. The particle in
this paper describes one solution of VRPTW and its position contains information of
used vehicles and their routes. Each customer is denoted by a unique integer number
i > 0, the depot is denoted as 0. The position of particle is described as a sequence
of serviced customers. Each vehicle starts and ends at depot, the order of customers
for each vehicle is the same as the order they are visited by a vehicle. For example
we can write the position p of a particle in the form p = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0}
and this describe a solution of VRP problem with 7 customers and 3 trucks. The
graphical representation of such solution is presented on Fig.1.

In order to solve VRPTW problem all vehicle routes have to preserve time win-
dows constraints and vehicles capacities. The hybrid GA-PSO equation for the po-
sition change would have the form:
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Fig. 1: Graphical representation of the particle position p = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0} for
VRP problem with 7 cars and 3 vehicles.

(2) pk,i =

{
pk,i−1 ⊗ plbk , with probability νlb,
pk,i−1 ⊗ pgb, with probability νgb,

where ⊗ denotes crossover operator and probabilities νlb and νgb depending on
overall lengths of plbk and pgb:

(3)
νlb =

|pgb
k |

|plb
k |+|pgb| ,

νgb = |plb|
|plb

k |+|pgb| ,

where |p| denotes the overall length of route p.
In the presented approach a genetic crossover operator ⊗ is used for generation of

a new particle position. There are many available crossover operators in literature.
As a base for our approach we have chosen the Best Cost Route Crossover Operator
(BCRC) [19].

We can observe that if historically best particle route plbi is much longer than
best swarm position pgb, we prefer to operate with global best. In the presented
approach usage of only the crossover operator could produce too fast convergence
to some local optima instead of a global one. That is why we have to introduce
mutation operation acting on particles in the swarm. After each iteration step we
would apply a mutation to a particle with some chosen probability. In the paper we
use the constrained version of the inversion mutation [19].

Then the proposed hybrid GA-PSO algorithm for VRPTW problem has the form:

0. initialize the swarm,

1. for all particles from the swarm,

(a) count new position of a particle using (2),

(b) perform mutations on a particle,

(c) update a particle local best if needed,
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(d) update the swarm global best if needed,

2. repeat step 1 until the maximal number of iterations is reached,

3. return the swarm global best as an optimization result.

The presented hybrid GA-PSO approach preserves the most important elements
from original PSO, the learning from the experience of each individual particle and
the experience of the swarm.

2.2. Best Cost Route Crossover Operator

The crossover operator in genetic algorithms is used to define how parent’s chromo-
somes influence chromosomes of their offspring. In order to use genetic crossover we
need to define a chromosome for VRPTW. In VRPTW a chromosome is a sequence
representation of a particle position (presented earlier). There are many crossover
operators that can be used for combinatorial problems. Many of them were incorpo-
rated to solve the VRP problems [21]. Unfortunately most of such operators applied
to VRPTW chromosome erase all information connected to vehicles. After their ap-
plication we would lose all information about how the route was divided into vehicles.
On the other hand the BCRC operator was introduced specially for VRPTW and
preserves information about used vehicles and their routes. Suppose we have two
parents P1 and P2. The BCRC recombination procedure is as follows:

1. create an offspring O12 chromosome by copying the chromosome of parent P1,

2. select randomly a vehicle v from parent P2,

3. erase all customers serviced by vehicle v from offspring O12,

4. reinsert all customers from v into O12 in the best possible places, respecting
the constraints on truck capacity and customers time windows. If a customer
cannot be inserted into existing vehicles in O12 we add a new vehicle in O12,

5. create offspring O21 repeating the steps from 1 to 4 exchanging the roles of
parents P1 and P2 in the process,

6. select the better of generated offspring O12 or O21.

The presented procedure ensures that if parents P1 and P2 respect conditions
on time and capacity, the obtained offspring also respects these constraints. An easy
example of such procedure is presented below:

Example BCRC operator: Assume that we have two parents of the form:

P1 = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0},

P2 = {0, 1, 6, 0, 5, 7, 2, 0, 3, 4, 0}.
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Their graphical representation is on Fig. 2. We randomly select a vehicle from P2,
suppose it’s v = {5, 7, 2}, then copy P1 into offspring O12. Each customer can be
visited only once, that means we have to erase from O12 all customers from selected
vehicle v then the offspring has the form:

O12 = {0, 4, 0, 1, 0, 3, 6, 0}.

Now, we randomly select an element from v, suppose it’s customer 5. We have to
check where we could put this element. In the example the most optimal position is
after customer 4 is serviced by a second car. We have to repeat the same operation
for the rest of elements in v. If an element cannot be placed anywhere (fulfilling the
time or capacity conditions) we have to add a new car to an offspring.

Thus we have finished creation of the offspring:

O12 = {0, 4, 5, 0, 1, 7, 0, 2, 3, 6, 0}.

The graphical representation of presented example is shown on Fig. 2. As we can see
most of edges from parent P1 was copied into offspring O12, and on the other hand
none of edges from parent P2 was copied into the offspring O12. Similar procedure is
used to create the second offsprings O21. At the end the better of two offspring O12

and O21 is used as a result of presented recombination procedure. The better-worse
relation for two chromosomes is described in details in section 2.4.
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(d) Offspring O21

Fig. 2: Graphical representation of BCRC operator example.
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2.3. Constrained Route Inversion Operator

In order to prevent the hybrid GA-PSO algorithm to stuck on some local optimal
point, we introduce mutation operation. The inversion mutation operator was chosen.
The operator acts as follows:

1. randomly select the cutting points,

2. invert elements between selected cutting points.

Example Inversion Mutation operator: Suppose we have a chromosome in the form
p = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0}, we randomly select two cutting points inside position
p = {0, 2, 4, |5, 0, 1, 7, 0, 3, |6, 0}. Then we have to invert elements between cutting
points, after this operation the resulting position is: p′ = {0, 2, 4, 3, 0, 7, 1, 0, 5, 6, 0}.
Now we have to check if p′ respects conditions on vehicle capacity and arrival times.

The condition on time windows is more probable to be violated if cutpoints are
distant. This is the reason why (following [19]) we employ a constraint inversion
mutation, which is limited in length to 2-3 customers.

2.4. Multi-objectivity and fitness function

At each iteration of presented GA-PSO procedure we have to decide if an actual po-
sition is better than the local best or the global best position. For VRPTW problems
we may formulate four possible fitness criteria:

• Distance – sum of distances travelled by vehicles in selected solution. The lower
value gives a better solution;

• Distance and Vehicles Count – we try to minimize both of these values but we
set the higher priority to the distance;

• Vehicles Count and Distance – similar to previous but the distance has lower
priority;

• Weighted Method – we try to find a minimum of a fitness function F (p) =

α|vp|+β|p|, where |vp| denotes vehicles count in particle p and |p| is a distance
travelled by vehicles in p. The parameters α and β are usually established
empirically and most often the values are: α = 100 and β = 0.001 [17, 19].

During our experiments we have decided to use Weighted Method. The VRPTW
problems were created for the need of logistic companies. Analyzing the cost of such
type of activities, we can stress that overall distance is connected to the costs of
the fuel and the number of vehicles is connected to the cost of the workforce. The
choice of the Weighted Method and the parameters α and β expresses the idea that
for a logistic company it is better (in economical aspects) to spend a little more on
the fuel than on the next truck or driver. The choice of fitness policy has important
impact on the final results.
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3. Modification of BCRC operator for VRPTW

The numerical experiments that use the presented BCRC operator within hybrid
GA-PSO algorithm for selected Solomon’s benchmarks show that there is still place
for improvement (see Sec. 4). Analyzing the structure of BCRC operator one can
observe that there are parts of chromosome of only one of the parents copied into the
offspring, the second parent gives some additional mixing but does not incorporate
any part of its own chromosome. This observation leads to the new Modified BCRC
operator.

First, we introduce a mean route length dm for a vehicle v as an overall length
of route travelled by a car v divided by the number of visited customers. We denote
a distance function between customers ca and cb as dist(ca, cb). Assuming that a
vehicle v visits n customers in sequence c1, c2, ..., cn, we can write formula for mean
route length as:

(4) dm(v) =
dist(0, c1) +

[∑n−1
i=1 dist(ci, ci+1)

]
+ dist(cn, 0)

n
.

Using proposed mean route length we can order all vehicles in a solution from lowest
to highest values of dm. Then we denote the vehicle with lowest mean route length
in the particle as the best vehicle in the particle and the vehicle with highest dm as
the worst vehicle in the solution.

Modified BCRC operator applied to parents P1 and P2:

1. count value of mean length for vehicles in parents P1 and P2,

2. identify the best and the worst vehicles vb1 and vw1 from parent P1 and vb2, vw2
from P2,

3. create offspring O12 chromosome by copying the chromosome of parent P1,

4. erase from O12 all customers serviced by vb2,

5. exchange vw1 with vb2 in offspring O12,

6. select randomly a vehicle v from parent P2,

7. erase all customers serviced by vehicle v from offspring O12,

8. reinsert all customers from v and vw1 into O12 in the best possible places,
respecting the constraints on truck capacity and customers time windows. If a
customer cannot be inserted into existing vehicles in O12 we add a new vehicle
in O12,

9. create offspring O21 repeating the steps from 3 to 8 exchanging the roles of
parents P1, P2 in the process,

10. select better of generated offspring O12 or O21.
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The proposed Modified BCRC operator incorporates elements of chromosomes
from both parents and at the same time finds the best possible places for some of
customers (step 8).

4. Experimental results

The described hybrid GA-PSO algorithm, with two presented crossover operators:
BCRC and Modified BCRC was implemented. For all optimization tasks the Con-
strained Route Inversion Operator was used. The results are obtained for selected
Solomon’s benchmarks with 25, 50 and 100 customers and presented in Tab. 1, 2
and 3. During experiments we used the swarm that contains 30 particles, each run
of the algorithm has a maximal number of iterations set to 2500. The mutation was
applied to a particle at each iteration with probability 0.1.

The proposed hybrid GA-PSO algorithm used with both crossover operators gives
good results comparable with other results published (i.e. [17, 19, 20]), obtained in
approaches based on genetic algorithms or particle swarm optimization. The pre-
sented results are also very similar to known best solutions obtained usually by
exact methods, in every case the known best solution and its reference is given.

Table 1: Results for Solomon’s VRPTW benchmark instances with 25 customers. Best
means the best result obtained in 100 algorithm runs, Worst is the worst result. Results
are presented in the form #V/#D where #V – is the number of vehicles used and #D –
overall distance. The best known results are taken from [11].

Problem
BCRC Modified BCRC Best

Known
#V/#D

Best Worst Best Worst
#V/#D #V/#D #V/#D #V/#D

R101 8/ 8/ 8/ 8/ 8/
618.33 642.1 618.33 625.5 617.1 [11]

R102 7/ 7/ 7/ 7/ 7/
553.2 575.0 553.2 572.1 547.1 [11]

R109 5/ 5/ 5/ 5/ 5/
442.7 456.0 442.7 492.6 441.3 [11]

C201 2/ 2/ 2/ 2/ 2/
215.5 230.4 215.5 247.6 214.7 [11]

RC201 3/ 3/ 3/ 3/ 3/
361.2 370.7 361.2 372.6 360.2 [11]

The method presented in this paper gives satisfying result for each of selected
benchmarks for any number of customers. As was stressed previously the Modified
BCRC operator in most of cases gives better results than BCRC. It is worth to
mention that for cases with 100 customers the use of Modified BCRC gives better
results than BCRC (Tab. 3). The results of both crossover operators are much more
similar for smaller benchmark instances with 25 and 50 customers (Tab. 1, 2).
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In most of presented cases the best result has optimal number of vehicles but
with longer overall distance than in known optimal solutions. This means that the
proposed Modified BCRC operator has still some place for improvements. For cases
R105 and RC101 in Tab. 3 the resulting number of vehicles is higher than in best
known solution. The case RC101 with 100 customers is even more interesting be-
cause our results having higher number of vehicles have also shorter overall travelled
distance. However, according to the economic decisions presented in section 2.4 and
chosen fitness criteria the best known solution is still better than we obtained. The
opposite case is with R201 and R202 for 50 customers (Tab. 2), according to our
Weighted Method criteria the obtained solutions are longer but use smaller number
of vehicles.

Table 2: Results for Solomon’s VRPTW benchmark instances with 50 customers. Best
means the best result obtained in 100 algorithm runs, Worst is the worst result. Results
are presented in the form #V/#D where #V – is the number of vehicles used and #D –
overall distance. The best known results are taken from [8,11,13].

Problem
BCRC Modified BCRC Best

Known
#V/#D

Best Worst Best Worst
#V/#D #V/#D #V/#D #V/#D

R101 12/ 13/ 12/ 14/ 12/
1057.0 1109.8 1058.5 1111.4 1044 [11]

R201 4/ 6/ 4/ 7/ 6/
817.7 873.5 817.7 883.0 791.9 [8]

R202 4/ 5/ 4/ 6/ 5/
729.1 880.4 730.7 825.6 689.5 [8]

C101 5/ 6/ 5/ 6/ 5/
363.2 403.6 363.2 406.8 362.5 [11]

C201 3/ 4/ 3/ 4/ 3
361.8 459.5 361.8 469.2 360.2 [13]

RC101 8/ 10/ 8/ 10/ 8/
949.8 1067.4 949.8 1065.4 944 [11]

The difference between Worst and Best solution is noticeable but when we look
at the chromosomes we can notice that both solutions are very similar. In order to
illustrate this observation we present in Fig. 3 geographical representation of best
and worst solutions for problem C201 with 50 customers (Tab. 2). We can see that
most of chromosomes of both solutions are identical. One of vehicles is totally the
same (blue vehicle), the additional vehicle (green dashed line) in the worst solution
(in Fig. 3b) services some of the customers from orange and black vehicles from the
best solution (in Fig. 3a).

As is shown on plot of convergence (Fig. 4) the operator BCRC converges faster
to the final point and the modified version of BCRC is moving much slower in the
direction of the final position. This behaviour can prevent the situation that the
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Fig. 3: Geographical representation of Best and Worst solutions for C201 problem with 50
customers according to Tab. 2

Table 3: Results for Solomon’s VRPTW benchmark instances with 100 customers. Best
means the best result obtained in 100 algorithm runs, Worst is the worst result. Results
are presented in the form #V/#D where #V – is the number of vehicles used and #D –
overall distance. The best known results are taken from [23,24,26].

Problem
BCRC Modified BCRC Best

Known
#V/#D

Best Worst Best Worst
#V/#D #V/#D #V/#D #V/#D

R101 20/ 21/ 19/ 20/ 19/
1692.6 1758.2 1689.8 1775.8 1650.8 [23]

R102 18/ 19/ 17/ 20/ 17/
1541.4 1581.5 1562.8 1600.7 1486.1 [23]

R105 15/ 17/ 15/ 17/ 14/
1447.4 1582.5 1434.6 1642.7 1377.1 [24]

C101 10/ 11/ 10/ 11/ 10/
828.9 872.4 828.9 869.3 828.9 [23]

RC101 15/ 17/ 15/ 18 14
1706.5 1811.2 1684.0 1894.4 1696.9 [26]

algorithm converges too fast into some local optimal solution. Moreover, the PSO-
GA optimization procedure used with Modified BCRC operator returns more often
better results. This statement is based on consideration of distributions of results
obtained with presented crossover operators. Thus, we present also histograms of
these distributions on Figs. 5, 6, 7, 8, 9 for the instances with 100 customers.
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Fig. 4: Convergence of algorithms for best solution R101 with 100 customers using BCRC
and Modified BCRC operator. |pgbi | – denotes length of global best position in the swarm
after i-th iteration, |popt| – length of final optimal solution.

1,900 2,000 2,100 2,200 2,300

0

20

40

60

80

F

O
cc
ur
re
nc
e
C
ou

nt

(a) BCRC

1,900 2,000 2,100 2,200 2,300

0

20

40

60

80

F

O
cc
ur
re
nc
e
C
ou

nt

(b) Modified BCRC

Fig. 5: Histogram of distribution of the the weighted fitness function (F ) values for instance
R101 with 100 customers using BCRC and Modified BCRC operators. F (p) = α|vp|+β|p|,
where α = 100 and β = 0.001.

5. Statistical comparison of obtained results

The distribution of results obtained in numerical experiments suggests that approach
which uses MBCRC gives better results than the ones with BCRC (Figs. 5, 6, 7, 8,
9). In order to prove this hipothesis we can use Mann-Whitney Test U [16]. This
nonparametric statistical test allows to decide if two independent statistical samples
came from the same population (have the same statistical distribution). The test
defines a statistical number called U , based on elements from both samples, the value
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Fig. 6: Histogram of distribution of the the weighted fitness function (F ) values for instance
R102 with 100 customers using BCRC and Modified BCRC operators. F (p) = α|vp|+β|p|,
where α = 100 and β = 0.001.

2,900 3,000 3,100 3,200 3,300 3,400

0

20

40

60

80

F

O
cc
ur
re
nc
e
C
ou

nt

(a) BCRC

2,900 3,000 3,100 3,200 3,300 3,400

0

20

40

60

80

F

O
cc
ur
re
nc
e
C
ou

nt

(b) Modified BCRC

Fig. 7: Histogram of distribution of the the weighted fitness function (F ) values for instance
R105 with 100 customers using BCRC and Modified BCRC operators. F (p) = α|vp|+β|p|,
where α = 100 and β = 0.001.

of U describes mixing of results in both samples. In many cases Mann-Whitney U
test allows to prove if one sample represents population that has statistically bigger
values than the other.

At first we have to formulate our null hypothesis (H0) and appropriate alternative
hypothesis (H1), then we apply Mann-Whitney Test U in order to decide if we can
accept hypothesis H0.

Hypothesis H0 The distributions of results for both crossover operators BCRC and
MBCRC are statistically the same.
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Fig. 8: Histogram of distribution of the the weighted fitness function (F ) values for instance
RC101 with 100 customers using BCRC and Modified BCRC operators. F (p) = α|vp|+β|p|,
where α = 100 and β = 0.001.
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Fig. 9: Histogram of distribution of the the weighted fitness function (F ) for results obtained
for instance RC201 with 100 customers using BCRC and Modified BCRC operators. F (p) =
α|vp|+ β|p|, where α = 100 and β = 0.001.

Hypothesis H1 The distributions of results for both crossover operators BCRC and
MBCRC are statistically different.

For each of obtained results the distribution for which we have calculated statis-
tical value U and appropriate zU is given by (5).

(5) zu =
|U − (n1n2/2)|√

n1n2(n1+n2+1)
12

,

where n1, n2 are sizes of statistical ensembles.
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The Hypothesis H0 can be accepted with significance set to 0.05 if zU < 2.575.
The results of our statistical tests for instances with 100 customers are presented
in Table. 4. We can conclude that for all considered cases hypothesis H0 has to be
rejected.

Table 4: Results of Mann-Whitney Test U calculated for distributions of obtained results
for instances with 100 customers.

Problem U zU
R101 963 9.86
R102 137 11.88
R105 43 12.11
RC101 968 9.85
RC201 250 11.60

6. Conclusions

In this paper, we present multi-objective approach to the vehicle routing problem
with time windows. A hybrid GA-PSO algorithm is used for numerical experiments
with two crossover operators Best Cost Crossover Operator and its modified version.
The original BCRC [19] operator was specially derived for VRPTW task. Analysis
of this operator lead us to the conclusion that elements of the chromosome of only
one of the parents can be found in an offspring. We introduce a modification of
this operator in order to ensure that elements from both of parents can be found
in an offspring. The results show that for analyzed Solomon’s benchmark tasks the
introduced Modified BCRC operator gives better results than original BCRC, when
used in GA-PSO algorithm for instances with 100 customers. Comparing obtained
results with known optimal results and other presented in literature we conclude that
proposed method gives satisfying results, statistically better than those obtained
using BCRC operator. However there is still place for improvements and the next
modifications of presented algorithm will be investigated in the future works.
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OPTYMALIZACJA WIELOKRYTERIALNA PROBLEMU
MARSZRUTYZACJI WYKORZYSTUJĄCA HYBRYDOWY
ALGORYTM GA-PSO WRAZ Z ZMODYFIKOWANYM
OPERATOREM KRZYŻOWANIA BCRC

S t r e s z c z e n i e
Jednym z ciekawszych znanych problemów optymalizacyjnych jest VRPTW (problem

marszrutyzacji z ograniczeniami czasowymi). W pracy zaproponowano hybrydowy algo-
rytm optymalizacyjny łączący w sobie elementy dwu metod ewolucyjnych: optymalizacji
stadnej (PSO) oraz algorytmów genetycznych (GA). W zaprojektowanym algorytmie wyko-
rzystano znany operator krzyżowania (BCRC) [19], jednocześnie dokonano modyfikacji op-
eratora BCRC tworząc nowy operator MBCRC. Zaimplementowano stworzony algorytm
i zastosowano do znanych przykładowych zadań VRPTW. Numeryczne wyniki doświad-
czalne pokazują dobrą efektywność zaproponowanego algorytmu. Jednocześnie stosowanie
zmodyfikowanego operatora MBCRC pozwala uzyskać lepsze wyniki w porównaniu z tymi
otrzymanymi przy pomocy operatora BCRC.

Słowa kluczowe: optymalizacja globalna, optymalizacja stadna/rojem cząsteczek, genety-
czne operatory krzyżowania, problem marszrutyzacji
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Summary
Characteristic X-rays emitted from surfaces and specially prepared thin films as a result

of impact of slow heavy ions were measured and analysed. Kinematics of the interaction
was simulated numerically with stopping and range of ions matter (SRIM) program in time
intervals and in grazing incident-exit angle geometry in order to determine dynamics of for-
mation of the subsurface region damaged through heavy ions (HI) implantation, sputtering
and interface mixing. It was shown that the structure and composition of surfaces and
films are not stable against HI irradiation due to preferential sputtering and implantation
of ions and recoils and that dynamics of such a modification can be in-situ monitored with
particle-induced X-ray emission(PIXE) technique.
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1. Introduction

Interaction of heavy ions (HI) with surface of a multicomponent material results

in implantation of the beam ions, preferential sputtering of surface elements and

selective implantation of recoils, thus changing primary composition of the surface,

creation of ion tracks and production of structural deffects [1–3]. The intensive kine-

matic mixing of the surface and interfaces combined with local thermal heating

caused by energy deposited in the surface can be observed as the HI slow down [4].

These phenomena determine structural transformations of the materials and influ-

ence their electric and magnetic, as well as thermal properties [5–8].
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The particle induced X-rays emission (PIXE) is one of the methods which can

give an insight into these processes [9, 10]. The method is based on the analysis of

characteristic X-rays emitted by atoms excited through collision with HI. It pro-

vides information on fundamental atomic excitation and subsequent recombination

processes and gives practical information on elemental composition and dynamics

of restructuring of the films and subsurface region measured during irradiation [11].

We use PIXE accompanied with extensive simulations to determine transformations

and dynamics of composition change in case of multicomponent thin film subjected

to prolonged irradiation with HI.

Since HI impact is a destructive event, the X-rays spectra emitted by Si surface

and by Fe/Si and Fe/Cu/Si thin films during the irradiation with Ar ions of the

energy around 200 keV were measured in subsequent time intervals in order to de-

termine stability of the films against HI sputtering, interface mixing, implantation

of HI and creation of recoils and cascades.

Fig. 1: The present experimental setup based on noble-gas-ion beams from 300 keV accel-
erator with vacuum in reaction chamber better than 0.1 mPa.

2. Experimental set-up

The present experimental setup, shown in Fig. 1 was described elsewhere [11]. In

brief it is based on noble-gas-ion beams from 300 keV accelerator with vacuum in

reaction chamber better than 0.1 mPa. Thin films were evaporated from Knudsen

cell on Si surface cleaned from native oxides in HF acid at high temperature. The

targets were mounted on a two axis goniometer in double alignment geometry: the

incident grazing angle was fixed at φin ≤ 5◦ and the exit grazing angle was fixed

at φout ≤ 0.5◦ after preliminary measurements minimizing the signal from the Si

background. PIXE spectra were measured by a SDD (Si drift detector) spectrometer

(fwhm 120 eV@6.4 keV) placed behind a 25µm kapton window.
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3. Results and discussion

3.1. Si surface and Fe/Si film against Ar impact

We measured characteristic X-rays emitted during imact of 240 keV Ar ions into Si

crystal. Spectra were registered in time sequence as a result of impact of 1011 Ar/cm2

ions through 0.25 mm2 collimator per 300 s measurement and thus exciting the sam-

ple and the previously implanted dose. Incident ions were directed at 45 ◦ to the

surface and the emitted radiation was measured at grazing exit angle. In this geom-

etry the penetration depth is L ≈ 170 nm, the sputtering yield is Y ≈ 2.6 Si/Ar [4]

so destruction of the surface is negligible, but the RBS yield is ≈ 1% which means

that nearly all the incident ions are implanted, thus changing subsurface composi-

tion. Spectra in the inset in Fig. 2 reveal clearly shaped Ar peaks and suppressed

bremsstrahlung background. The intensity of signal from Ar, proportional to area

under Ar peak in the PIXE spectrum, related to the intensity of signal from Si

were drawn in Fig. 2 as a function of implanted Ar dose. There are two regions

in the figure: in the first one the signal from Ar fluctuates around the noise level,

as if the X-rays were emitted mainly by incident ions. In the second region, above

1012 Ar/cm2, the signal coming from accumulating Ar could be clearly resolved and

the intensity is proportional to implanted dose.

Another analysis of PIXE induced by Ar impact onto Fe(10nm)/Si(110) film is

shown in Fig. 3. The X-ray intensity from Ar increases monotonically and shortly

becomes comparable with the decreasing signal from Si. Ar atoms in this geometry,

are mainly (53%) scattered out of the surface, whereas the remaining (implanted)

part tends to be uniformly distributed in the film with a slight density increase (up to

0.06%) in the region of mixed Fe/Si interface [4], thus intensifying radiation through

molecular effect in symmetric collisions. The fading radiation from Si substrate can

be understood as an effect of absorption of radiation by additional Ar component

of the film. The decrease of signal from Fe can be explained by intensive surface

sputtering at this geometry Y = 30 Fe/Ar, thus thinning the film at speed of 1 Å of

Fe per 1012 Ar/cm2 dose, as it is illustrated in Fig. 3.

3.2. PIXE from Fe/Cu/Si thin film irradiated with Ar

An example of the PIXE spectrum with Fe, Cu and Si K-shell X-rays emitted by

a trilayer Fe(10 Å)/Cu(10 Å)/Si(110) during irradiation with Ar ions of the energy

200 keV at 3 × 1012 Ar/cm2, is shown in Fig. 4. The spectrum also contains K-shell

signal from Ar which is accumulated during irradiation and signals from trace im-

purities S, Cl and elements contained in the environment Mn, Ni. The ions were

directed at the incidence angle φin = 3◦ to the surface in order to have low penetra-

tion depth. Radiation was measured at the grazing exit angle in order to suppress

bremsstrahlung.

In order to determine stability of the films against HI sputtering and recoil im-

plantation, again we used time sequence in measuring X-ray signals coming from the
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Fig. 2: Ar K-X-rays intensity in the PIXE spectrum induced during irradiation of Si wafer
with 240 keV Ar6+. The detection limit is about 1012Ar/cm2 ∼ 1.2 ppm of Ar in Si. The
ratio of Ar/Si measured with 240 keV He and N ions shown with arrows. The angles are
measured in respect to Si surface.

Fig. 3: Time sequence dependence of the intensity of radiation from Fe, Si and Ar in
the PIXE spectra during impact of 240 keV Ar ions on Fe(10 nm)/Si(110) film. The 300 s
corresponds to an implanted dose of 1012 Ar/cm2. The sputtering yield Y = 30 Fe/Ar, the
Ar RBS = 0.53 [4]. The angles are related to the surface normal.
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Fig. 4: PIXE spectrum induced during irradiation of Fe(10 Å)/Cu(10 Å)/Si(110) with
200 keV Ar6+. The implanted dose 3×1012Ar/cm2 corresponds to about 3.5 ppm of Ar. Thin
films were evaporated from Knudsen cell. Thickness wasmeasured with a quartz resonator.
Angles φin = 3◦ and φout = 0◦ are related to the surface. The SDD X-ray spectrometer
with the resolution of 120 eV/6.4 keV was used. Figure from [11].

films or implanted elements and related them to the signal from Si base. The result

of PIXE analysis for 200 keV Ar impact on Fe(10 Å)/Cu(10 Å)/Si(110) is shown in

Fig. 5. It can be seen that not only signals from Fe and Cu decrease by a few per cent

but also the signal from Si loses intensity, whereas radiation from Ar increases pro-

portionally to the implanted dose and becomes detectable at the concentration of a

few ppm. That means that use of HI at this geometry enables X-ray characterisation

of the film, despite the destructive consequences of HI impact.

In order to get some insight into the ion scattering process, the present experi-

mental arrangement with 50–250 keV Ar ion beam impact on Fe/Cu/Si trilayer and

on Fe/Si bilayer at 5◦ angles of incidence (and other appropriate initial parameters)

were simulated with stopping and range of ions in matter (SRIM) program [4] and

presented in Fig. 6. They reveal that emission of atomic species from the irradiated

surface is strongly energy and incident angle dependent. Also reflection of incident

ions from the surface shows the similar angular dependence. In the grazing inci-

dence geometry φin < 5◦, an Ar ion can sputter about 30 Fe atoms and about 50%

incident Ar ions fluence is scattered back from the surface, whereas the remaining

part is implanted. If an incident fluence of 1015 Ar/cm2 at φin = 5◦ is assumed,

a 3 nm thick layer will be sputtered from the Fe surface. This should be compared
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Fig. 5: Stability of Fe(10 Å)/Cu(10 Å)/Si(110) thin film against the dose of 200 keV Ar
beam at the grazing-exit geometry measured by signals from Ar, Fe, Cu and Si in the
PIXE spectra shown in Fig. 4. Angles φin = 22◦ and φout = 0◦ are related to the surface.
Figure from [11].

with penetration depth of 40 nm and projected range of 100 nm of Ar ions in Fe.

Before backscattering or stopping the ions suffer multiple collisions losing energy

to electrons and creating vacancies and cascades. The Cu film and Si substrate are

expected to be sputtered at a negligible yield of 0.45 Cu/Ar (Cu atoms per incident

Ar ion) and 0.35 Si/Ar respectively, thus being completely screened by Fe film.

In SRIM-simulation of irradiation of Fe(10 Å)/Cu(10 Å)/Si trilayer with 220 keV

Ar ions at the grazing incidence of 5o we observe in Fig. 7 depth distributions: of

the energy absorbed by Fe, Cu and Si recoils – in (a), of these recoils themselves –

in (b), of vacancies left behind these recoils – in (c), and of the energy on ionisation

lost by the ions and recoils – in (d). It can be seen that ions backscattering, recoils

sputtering, transfer of energy, creation of vacancies and recoils cascades are localised

in the surface itself and dominate in the first thin film. The depth distributions of Fe,

Cu and Si recoils prove extensive interface mixing and deep homogenization of the

irradiated trilayer through implantation of recoils. The part of incident ions which is

not backscattered travels in the surface layer, initializes cascades and excites atoms

in the topmost thin films. That means that in this geometry there is measured the

PIXE radiation which is emitted mainly from the excited target atoms leaving the

surface and from the incident ions backscattered in an excited state. Radiation from

deep layers and substrate should be fairly suppressed.
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Fig. 6: Erosion of the surface composed of thin films subjected to HI irradiation as sput-
tering yield of Fe(10 Å)/Cu(10 Å)/Si(111) trilayer under impact of 50–250 keV Ar ions at
different incident angles – simulation with SRIM [4]. Also, the reflection of the ion beam as
backscattering (RBS) of incident Ar ions is shown as a function of initial energy and angle
of impact on the surface.

Fig. 7: From top-left to bottom-right respectively the depth distributions of: a) the energy
absorbed by recoils, b) Fe, Cu, Si recoils, c) vacancies, and d) the energy loss by ions and
recoils on ionisation in Fe(10 Å)/Cu(10 Å)/Si trilayer after irradiation with 220 keV Ar ions
at the grazing incidence of 5o. Calculated with SRIM [4].
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4. Conclusions

There was shown with the use of simulation with SRIM that the structure and

composition of the surface is not stable against HI irradiation due to preferential

sputtering, interface mixing and implantation of ions and recoils and that dynam-

ics of such modification can be quantitatively monitored by means of the PIXE

measurements.
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ROZPYLANIE CIȨŻKIMI JONAMI I IMPLANTACJA

POWIERZCHNI MONITOROWANA PRZY POMOCY PIXE

S t r e s z c z e n i e
Zmierzono i przeanalizowano charakterystyczne promieniowanie X emitowane na skutek

uderzenia powolnych ciȩżkich jonów z powierzchnia̧ i specjalnie przygotowanymi cienkimo
warstwami. W celu określenia dynamiki formowania siȩ obszarów przypowierzchniowych
uszkadzanych w wyniku implantacji ciȩżkich jonów, rozpylania i mieszania siȩ miedzy-
wierzchni, kinematykȩ oddzia lywania przeanalizowano numerycznie programem SRIM
w funkcji czasu oraz w geometrii stycznego padania jonów i detekcji promieniowania.
Pokazano, że struktura i sk lad powierzchni i warstw sa̧ niestabilne wobec napromieniowa-
nia ciȩżkimi jonami, preferencyjnego rozpylania pierwiastków, implantacji jonów i atomów
odrzutu oraz że dynamika takich zmian może być monitorowana w trakcje ich zachodzenia
metoda̧ PIXE.

S lowa kluczowe: implantacja ciȩżkich jonów i rozpylanie powierzchni, PIXE, SRIM
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Summary
Thin films of pentacene of 32-nm thickness obtained by organic molecular beam depo-

sition (OMBD) in high vacuum conditions onto silicon/native silica (Si/SiO2) and fused
silica substrates were examined. Anisotropic optical properties, alignment and morphology
were studied in ambient conditions using variable angle spectroscopic ellipsometry (VASE),
UV-VIS absorption, infrared (IR) transmission and polarized grazing angle attenuated total
reflection (GATR) techniques, and atomic force microscopy (AFM). The symmetry assign-
ment of the vibrational transitions was also discussed. The films exhibit continuous texture
with uniaxial alignment of pentacene molecules and strongly anisotropic optical properties
evidenced in the ellipsometric measurements. For the first time dichroic GATR IR spectra
were recorded for thin films and conclusions on pentacene orientation were deduced on the
basis of dichroic ratio of the IR-active vibrations.

Keywords and phrases: pentacene, optical properties, molecular orientation, ellipsometry,
infrared spectroscopy, atomic force microscopy

1. Introduction

The impact of structure, alignment and morphology on a function, performance,

and lifetime of organic devices is of high interest for organic light emitting diodes

(OLEDs), organic field effect transistors (OFETs) or organic photovoltaic cells
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(OPVs) [1]. Nowadays, the most important growth strategy is based on the use of

surfactants or self-assembled monolayers [2–7]. High-ordered layers can be produced

on organic substrates as interface structures between the active layer and dielectrics

[2]. Different types of organic molecules deposited in ultra-high vacuum (UHV) con-

ditions on inorganic surfaces show various molecular orientation and anisotropic

properties depending on a structure of the molecule and the nature of substrate.

Among many organic semiconducting molecules, pentacene (PEN) is a leading

molecule to have one of the highest field-effect mobility of free charge carriers and

stability among organic semiconducting materials, and it is still the subject of ex-

tensive studies [8–10]. Thin film structures of pentacene were investigated by X-ray

diffraction (XRD) [8, 11], atomic force microscopy (AFM) [9, 11], ellipsometry [10,

12–15], infrared [16–20] and Raman spectroscopy [11], to elucidate the impact of

ordering and grain morphology on OFET performance [9, 21]. Thin pentacene films

on common dielectric layers such as SiO2 exhibit a coexistence of morphologically

multiple phases which, after attaining the appropriate thickness, grow sequentially

during deposition. Vapor-deposited pentacene nucleates as orthorhombic phase with

interlayer spacing 1.57 nm and after obtaining a critical thickness of 16–30 nm starts

to grow as “thin film” phase and further as triclinic phase [8, 11]. The deposition

process is identified as a gradual decrease of a tilt angle of pentacene long axis from

the substrate surface from ∼ 78◦ to ∼ 65◦. The molecular orientation determines

the morphological properties, which strongly affect the charge transport properties

[9, 21].

In this work we present data on optical and structural investigations of pen-

tacene films arising from its organization examined by spectroscopic ellipsometry

and a modern and extremely sensitive infrared (IR) technique, which allows to char-

acterize very thin molecular materials together with determination their molecu-

lar orientation. Thin films of pentacene were deposited in high vacuum by organic

molecular beam deposition (OMBD). Optical and structural measurements were

performed ex situ under ambient conditions. The film growth was monitored by a

quartz crystal microbalance and its thickness was determined from the ellipsometric

measurements. The orientation of pentacene molecules was deduced from vibrational

analysis obtained by Fourier transform infrared spectroscopy (FTIR) with attenu-

ated total reflectance geometry at grazing angle (GATR) and a transmission mode.

Single reflection Ge-GATR with polarized irradiation is a powerful tool for the inves-

tigation of a thin film on a silicon substrate [22, 23]. Although thin pentacene films

were studied previously by IR spectroscopy in the multiple internal reflection geom-

etry [20] and by reflection-absorption mode on gold surface [18, 24], GATR method

is a new approach for pentacene thin films investigation. This method is simple, and

much more available than sophisticated XRD methods [8, 11, 25, 26] and other IR

thin film analyzing techniques [18, 24]. In this paper we show how from the spec-

troscopic ellipsometry (VASE) measurements and polarized IR GATR spectra one

can obtain information on organization of pentacene molecules on silicon substrate.
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The results are consistent with previous IR studies [18]. The detailed results of the

ellipsometric and IR studies were completed by UV-VIS, which can also probe the

mean orientation of the PEN molecules in the thin film. The surface morphology

was examined by AFM. Polarized vibrational modes studied in this work can help

to specify the orientation of the sputtered samples which, in turn, is responsible for

structural properties and consequently for the charge transport properties [9, 27, 28].

2. Experimental methods

Powdered pentacene product of Sigma-Aldrich Co. was used as supplied for samples

preparation. Native Si/SiO2 and fused silica wafers were used as substrates. The

substrates were cleaned in acetone and alcohol in three 15 min. cycles using ultrasonic

bath, and dried in nitrogen stream. Growth of pentacene layers was carried out

using OMBD method in a UHV chamber at pressure of 4 · 10−7 mbar. The chamber

was equipped with a home-made evaporator located at the bottom, whereas the

samples were placed centrally above the evaporator in the upper part of the chamber.

The distance between the source compound and substrate was 12 cm. Pentacene

was deposited on the substrates at temperature of 25◦ C with the deposition rate

1 nm/min. There were more samples deposited in the experiment [29] but the one

of 32-nm thickness is discussed in the article.

Optical parameters of the PEN films were determined by means of spectroscopic

ellipsometry using V-VASE apparatus and software (J. A. Woolam Co. Inc.). The

measurements were taken at four different angles of light incidence from 45◦ to 75◦

in steps of 10◦. Experimental ellipsometric parameters Ψ and ∆ were collected in

steps of 1 nm throughout the spectral range from 260 to 1300 nm. The ellipsom-

etry data were analyzed using the commercial WVASE32 software. Spectroscopic

ellipsometry (SE) is commonly applied for measurements of thin film thickness and

optical constants. The data contain a measured change in a polarization state of

light after interaction with the sample [30]. A beam source produces unpolarized

light which passes through a polarizer. The polarizer axis is set between p- and s-

planes that both can arrive at the sample surface. The polarized light reflects from

the sample surface, becomes elliptically polarized and passes through a rotating po-

larizer (analyzer). The amount of light passing through depends on the orientation

of the polarizer to the electric field coming from the sample. The change in polar-

ization of the reflected light is compared to the input polarization after conversion

of the output polarization into electronic signal by a detector.

The optical properties of PEN films were isotropic within the plane of the film as

it was observed by rotating the sample on the ellipsometer holder. However, the el-

lipsometric parameters of the PEN films could not be properly computer-simulated

using the isotropic model due to a large optical anisotropy between in-plane and

out-of-plane direction. Modeling of experimental data and determination of opto-

electronic properties, and the film thicknesses have been correctly carried out only
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with application of an uniaxial model and a General Oscillator Model. General Os-

cillator (GenOsc) allows to combine a large number of oscillator models and disper-

sion relations to model even very complicated dielectric functions. Complementary

measurements were performed using UV-VIS spectroscopy (HP 8453 diode array

spectrophotometer).

Optical and structural studies were performed to determine the properties of

pentacene layers on SiO2 surface. For this purpose attenuated total reflection spec-

troscopy, which utilizes total internal reflection phenomenon, was used. Vibrational

spectra of pentacene molecules were measured by IR spectroscopy on a Thermo

Nicolet 6700 FTIR spectrometer with 4 cm−1 resolution. Attenuated total reflection

spectra (ATR) were measured using single reflection Golden Gate accessory (Specac)

with a diamond-ATR crystal at 45◦ incident angle. Analysis of thin film was car-

ried out with the VariGATR grazing angle ATR optical system (Harrick Scientific

Products, Inc.) equipped with a slip-clutch exerting 492 gcm−2 of pressure for im-

proving contact between the sample and the Ge-ATR crystal. In the experiment

a KRS-5 gold wire grid polarizer was used. Different bands intensities, related to

characteristic vibrations of chemical bonds in polarized IR spectra in incident plane

(p-polarization) and perpendicular to it (s-polarization), enable for determining of

polarization of transition moments. Internal reflection spectra were measured with

unpolarized and polarized light at 63◦ incidence optimized for the highest sensitivity.

For weakly absorbing pentacene films deposited on a SiO2 substrate, the sensitivity

is even more enhanced when the film thickness is much smaller than the wavelength

of the light. In the GATR experiment a Ge crystal with a high refractive index and

excellent IR transmitting properties is placed in close contact with the sample. The

beam of propagating irradiation undergoes total internal reflection at the sample

interface from a medium with a higher refractive index, n1 into a medium with a

lower refractive index, n2, provided the angle of incidence at the interface exceeds the

critical angle θ (Fig. 1). Total internal reflection of the light at the interface between

two media of different refractive index creates an evanescent wave that penetrates

into the medium of lower refractive index. The evanescent field is a wave which

propagates normal to the surface, whose intensity decreases deeper in the medium,

therefore, the field exists only in the vicinity of the surface. The total electric fileld E

in the medium is splited into two perpendicular vectors: an Ex component parallel to

the surface and an Ez component perpendicular to the surface. Thus the evanescent

wave refers to the Ez component. The component Ex passes continuously through a

layer system of optically different phases and therefore retains its initial field ampli-

tude throughout the layer system. The perpendicular electric field passing through

the interface between media of different densities experiences a strong amplification

that corresponds to enhancement of the perpendicular vibrations in the IR spectrum.

Because in GATR geometry a thin organic film is sandwiched between a germanium

ATR crystal and a silicon substrate, the evanescent wave will be absorbed by the

sample and its intensity is attenuated in regions of the IR spectrum where the sample
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Fig. 1: Scheme of geometrical configuration of a GATR optical element with a definition of
directions of IR polarized beam.

absorbs, thus, less intensity can be reflected. The resultant attenuated radiation as

a function of wavelength produces an ATR spectrum which is similar to the conven-

tional absorption spectrum. Theoretical calculations show that the enhanced electric

field perpendicular to the Ge surface [22, 23, 31] allows detecting weak bands and

molecular orientation of pentacene in a thin film when polarized light is applied.

Preliminary estimation of the sample surface topography and morphology of the

deposited pentacene layers required AFM measurements. The images were recorded

under ambient atmosphere at 25◦ C using a Nanoscope IIIa MultiMode microscope

(Veeco, Santa Barbara, CA) equipped with a commercially available rectangular

probe (RTESP from Veeco) with a scanner of the highest available sampling res-

olution of 512 × 512 data points. The AFM images were analyzed by the WSxM

program [32].

3. Basic theory

Theoretical description of spectroscopic ellipsometry and GATR technique is related

to reflectance expressed by ratio of Fresnel reflection coefficients rp and rs for p- and

s-polarized light:

ρ ≡ rp
rs
.(1)

Expression in Eq. (1) can be developed differently depending on which parameters

are measured in each technique [13, 22]. Fresnel reflection coefficients come from

Snells law which satisfies the Maxwell equations when light entering the material is

refracted at an angle Φt:

n0 sin Φi = n1 sin Φt,(2)

where n0 and n1 are the refractive indexes of the incident and refraction medium,

Φi and Φt are the incident and refractive angles.

In spectroscopic ellipsometry for bulk materials reflected or transmitted light

must be separated into orthogonal components because of the boundary conditions
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providing different solutions for electric fields parallel and perpendicular to the sam-

ple surface. The electric field parallel to the incidence plane is called p-polarized

and the perpendicular one s-polarized. Thus the Fresnel reflection and transmission

coefficients can be calculated independently:

(3a) rp =
n1 cos Φi − n0 cos Φt

n0 cos Φt + n1 cos Φi
,

(3b) rs =
n0 cos Φi − n1 cos Φt

n0 cos Φt + n1 cos Φi
,

(3c) tp =
2n0 cos Φi

n0 cos Φt + n1 cos Φi
,

(3d) ts =
2n0 cos Φi

n0 cos Φi + n1 cos Φt
.

For thin films the phase thickness (optical thickness) of a film is defined as:

β = 2πn1
d

λ
cos Φt = 2π

d

λ

√
n21 − n20 sin2 Φi,(4)

taking into account that beam wavelength is λ and the thickness is d.

In the GATR technique where a beam passes from a more dense medium of Ge

crystal (with a refractive index n1) through a less dense medium of a thin film (n2)

and to a more dense substrate (n3), the reflectance is written as:

ρp =

rP12 + rP23 exp

(
4πikd

√
n22 − n21 sin2 Φi

)
1 + rP12r

P
23 exp

(
4πikd

√
n22 − n21 sin2 Φi

) ,(5)

where P means polarization of incident light, rP12 and rP23 are Fresnel amplitude coef-

ficients for interfaces from medium with n1 to medium with n3, k is the wavenumber

(k = 1/λ) and Φi is the angle of incident beam [22].

The directly measured values in spectroscopic ellipsometry are Ψ and ∆ related

to ellipsometric parameter taken from Eq. (1):

ρ ≡ rp
rs

= tan(Ψ) · exp(i∆) = f(ε1, ε2, d).(6)

The ellipsometric parameters Ψ(λ) and ∆(λ) measured as a function of incidence

wavelength (λ) and incidence angle (α) relative to the surface normal in Eq. (6) are

related to the Fresnel complex reflection coefficients rp and rs for p- and s-polarized

light. On the other hand, they are considered as a function of complex dielectric

constants ε1 and iε2, and thickness d of a thin film. Its exceptional sensitivity is de-

rived from a phase change of the reflected light contained in the parameter ∆. The

amplitude ratio of the complex reflection coefficients is contained in tan(Ψ). When

the ellipsometricaly analyzed material is built from few layers of different compo-

nents, the analysis requires use of several theoretical models. Thus the roughness

of the film surface is included in effective medium approximation (EMA) model.
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Semiconductors below a fundamental bandgap can be described with simple Cauchy

model which assumes one oscillaton [33]. Some materials, depending on their orienta-

tion and symmetry, require more complex descriptions as general oscillator (GenOsc)

model which consists of many functions (i.e. Gauss, Lorentz, etc.) and different oscil-

lations. In EMA the effective optical constants are calculated from optical constants

and volume fractions (f) of the constituent materials in the composite surface. The

Bruggeman EMA used in this model is defined by:

fPEN
εPEN − ε

εPEN + 2ε
+ fvoid

εvoid − ε

εvoid + 2ε
= 0,(7)

where fPEN and fvoid are the volume fractions of pentacene and void, respectively,

εPEN is the pentacene dielectric function, and ε is the EMA layer function.

The simplest modelling of anisotropic thin film on a substrate can be done by

Cauchy model. In a less simple situations, as in our case, adding to Cauchy model a

Biaxial layer is needed with uniaxial anisotropy type and specifying optical constants

with two Cauchy “dummy” dispersion relations. Both dummy layers are coupled to

the Biaxial layer what allows the optical constants to vary within these layers. In

order to improve the modelling of data GenOsc model can be employed. In this

model contributions from a large variety of oscillators is allowed. The GenOsc layer

is built from Cauchy layer defined at the beginning. GenOsc layer can consist of

many different functions, an example of a simple sum including Lorentz oscillator is

shown below:

ε(E) ≡ ε1 + iε2 = ε0 +
A1

E2
1 − E2

+
A1

E2
1 − E2

+
A2

E2
2 − E2 − iB2E

,(8)

where ε(E) is the complex dielectric function as a function of photon energy E and

the first term ε0 is the offset parameter. The second and the third terms are Pole

(or Sellmeier) terms, and the last one is the Lorentz oscillator term. The imaginary

part of this complex function models a Lorentzian absorption and the real part is

its Kramers-Kronig transform. The Pole (Sellmeier) [34] terms are two zero-width

Lorentz oscillators simulating the dispersion in ε1 created by absorption that occurs

outside the measured spectral range of the model. The Lorentzian oscillator models

electron-vibrational progression already successfully applied in deconvolution of the

visible absorption spectrum (Fig. 3b). Having the polarizability (α) as an energy-

dependent function for a single atom n:

αn(E) =
e2

me

1

(E2
n − E2) − iΓnE

,(9)

where e is the electron charge, me – the electron mass, Γ is the broadening of the

oscillator, the DF is given through the polarizability α(E) as follows [35]:

ε(E) ≡ ε1 + iε2 = ε0 +
∑ An

(E2
n − E2) − iΓnE

,(10)

where ε(E) is the complex dielectric function as a function of photon energy E with
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the maximum energy position at En, and ε0 is the additional offset parameter. An

is the amplitude of the nth oscillator defined as:

An =
Ne2

ε0me
fn,(11)

where N is the number of atoms, fn is the oscillator strength which measures the

relative probability of a quantum mechanical transition. For free atoms it satisfies a

sum rule
∑

n fn = 1.

4. Results and discussion

4.1. AFM examinations

Morphological features of a vacuum deposited pentacene film on Si/SiO2 substrate

were observed using tapping mode of AFM in a height and amplitude contrast. The

height resolution of AFM allows identification of the growth mode. Pentacene is

known to grow on SiO2 in the Stranski-Krastanov mode as a thin film phase, forming

3D dendritic islands with 2D layers between them [14, 21, 36]. Above a critical

thickness the islands transform into larger crystallites of a flattened globular shape.

This growth model is called the Vollmer-Weber 3D islands mode. Fig. 2 shows a

representative AFM image of the surface height profile of 32-nm-thick pentacene film

grown on amorphous SiO2 substrate with discernible crystalline grains of globular

shape. The shapes observable under higher resolution are not spherical but strongly

flattened. The lateral dimensions of the grains are 180–380 nm, with 16 nm-heights

and RRMS roughness of 4.3 nm. An example of a single grain is shown in inset of

Fig. 2. The resolution of our AFM measurements allowed inspection of the grains

down as much as to 10–11 monolayers assuming that the length of single pentacene

molecule is 1.62 nm. We do not observe individual pentacene layers ordered in a

well visible flattened terraces, such observations require better resolutions, especially

prepared AFM tip, low temperature and in situ measurements [37, 38]. For the

thickness studied here the pentacene molecules crystalize in orthorhombic phase

with the tilt angle of 12–14◦ with respect to the substrate normal [1, 11].

The grain size determines its surface area to volume ratio. The smaller the grains

are, the more the surface effect influences the properties of pentacene layer. The dis-

tribution of surface potential in organic-semiconductor/insulator interface region is

very important for OFETs operation and has significant implications for charge mo-

bility [9] and electrical transport mechanism [25]. It was already reported that larger

grains with improved mobility could be obtained by reducing the surface roughness

or by modifying the conditions of pentacene deposition such as deposition rate, sub-

strate temperature, or post deposition annealing [39, 40]. Our measurements clearly

indicate that the 32-nm-thick sample has larger and more homogeneous grains than

thicker sample [29] and thus would be more efficient in terms of electron mobility.
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Fig. 2: AFM image and height profile of 32 nm pentacene film deposited on Si/SiO2 sub-
strate. Pentacene forms flattened globular crystallites. The morphology of globules is shown
in the inset. The scan size was 2µm.

4.2. Optical properties

The purpose of our studies was to demonstrate how anisotropy and well defined

molecular ordering of PEN affect the optical and electronic properties which are

important in understanding the performance of organic photoactive devices. The
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examination has been carried out using absorption spectroscopy and spectroscopic

ellipsometry. The sample deposited on fused silica shows uniaxial alignment with

a symmetry axis perpendicular to the surface, as it was established in literature

[41]. Indeed, in polarizing microscope with crossed polarizers, the total extinction

was observed independent of the azimuthal direction of the film. Vibronic progres-

sion in the UV-VIS spectrum is directly connected with IR internal vibrations in

π-conjugated molecular solids by vibronic coupling. UV-VIS absorption spectra of

evaporated PEN thin films on fused silica are similar to the previously reported

(Fig. 3) [44, 46, 48–50]. The energy spacing in vibronic progression between sub-

sequent maxima starting from the low energy peak is 1406, 1327 and 1338 cm−1,

respectively. These wavenumbers match up with oscillating frequencies of PEN ring

breathing vibrations discussed in previous section. The lowest absorption band in

the solid state for the film at 14976 cm−1 is red shifted as compared to that one in

solution due to Coulombic and exchange interactions, and shows Davydov splitting

(∆D) reflecting interactions between molecules having different site symmetries [10,

25]. The red shift exhibits the value of 2421 cm−1 with respect to the position in hot

toluene (60◦ C) while the band splitting of ∆D = 790 cm−1 is smaller with respect to

that in single crystal phase [41]. This lower value could indicate reduced intermolec-

ular interactions, due to a lower molecular-orbital overlapping between molecules

that might be attributed to less ordered “thin-film phase” and/or some structural

defects in our vacuum deposited sample observed for thicker samples [11]. The level

of molecular ordering is significant also for collective interactions or exchange inter-

actions between translationally equivalent molecules and usually manifests itself in

the broad absorption tail. In the film on (Fig. 3, curve 2) the broad tail is hardly

seen which suggests relatively low molecular ordering.

Ellipsometric psi Ψ and delta ∆ angles were measured over the range of 260–

1300 nm, at four incident angles from 45◦ to 75◦ in steps of 10◦, taking 20 analyzer

revolutions for averaging of each measurement point signal. SE spectra were analyzed

by model calculations consisting of a stack of dielectric layers: Si substrate, native

silicon oxide of thickness 1.5 nm, deposited pentacene, and a layer modeling surface

roughness. The surface layer effective optical constants, according to the morpholog-

ical AFM characterization, were modeled using EMA as a physical mixture of 50% of

pentacene under layer and 50% of voids (air). The thickness of the surface roughness

layer, which was calculated from fitting of multilayer model to ellipsometric data,

was 5.9 nm. Similar value was observed for surface roughness measured by AFM

(RRMS), although the calculated roughness from modeling of SE data is higher.

The difference may reflect the well known fact that the apparent depth measured

by AFM arises from the penetration of the tip into the grain boundary, which gives,

due to a tip geometry, underestimation of the grain thickness. The thickness of the

pentacene layer was determined in a transparent range of the spectrum between 0.95

and 1.45 eV using uniaxial parameterized Cauchy model. Even at this simplified case,

the attempts to apply the isotropic model failed, giving poor fit to the experimental
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Fig. 3: (a) UV-VIS absorption spectra of pentacene dissolved in hot toluene (60◦ C) (dashed
line 1) and for thin film deposited on fused silica substrate (solid line 2). (b) Fit of Lorentz
model oscillators to the experimental spectrum of the solid film of spectrum (2) from
part (a).

Fig. 4: (a) SE data collected at angle of incidence 65◦ for thin film. The dashed and solid
lines represent respectively ∆ and Ψ. (b) Dielectric functions for the in-plane (in red) and
normal to the plane (in black) components of PEN film. The dashed and continues lines
represent respectively real (ε1) and imaginary part (ε2) of dielectric function.

data with distinctly higher mean square error (MSE) values than for uniaxial one.

In the energy range of 1–3 eV the experimental data were calculated using a model

of complex dielectric functions (DF) which describes electronic properties of pen-

tacene in terms of electronic polarizability and intrinsic vibrations of a skeleton due

to the vibronic coupling. We use GenOsc model with Lorentzian oscillator to model

electron-vibrational progression already successfully applied in deconvolution of the

visible absorption spectrum (Fig. 3b). Upon a fitting of the Lorentzian model with

the ellipsometric parameters Ψ(λ) and ∆(λ) for 100-nm-thick sample (not shown)
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in-plane and out-of-plane DF components were calculated (Fig. 4). A significant dif-

ference between these components is observed. While for the in-plane component

the shape of the dielectric function shows five optical transitions with values 1.879,

1.970, 2.134, 2.248 cm−1, which are in agreement with previously reported [13, 42],

the perpendicular one is featureless within the measured spectral range (Fig. 4b).

Under our experimental conditions absorption for the perpendicular component of

DF is probably small and is approximated by the fitting algorithm to zero. Conse-

quently, the refractive index decreases monotonically with the energy. This finding is

in agreement with the transition moment being polarized along the short z-axis and

the orientation of PEN molecules on native silica being close to the surface normal

(explained in the subsection 4.3). Note, that the real part ε1 of DF is consistent with

Kramers-Kronig imaginary counterparts ε2 in the uniaxial ellipsometric model. A

similar smaller red shift of the exciton band as for UV-VIS absorption is observed

(Fig. 4). The four low-lying excitonic bands give the Davydov splitting as low as

∆D = 734 cm−1.

4.3. Grazing angle ATR infrared spectroscopy

The average orientation of PEN molecules in the layer can be precisely deduced from

X-ray diffraction pattern. However in this work, we have applied a polarized gazing

angle method already successfully applied to thin polymeric film on Si substrate [23].

At first, the assignment of the infrared vibrations obtained in GATR measurements

in non-polarized light for the vacuum evaporated PEN sample of 32-nm was per-

formed by comparison with PEN microcrystalline powder detected by diamond-ATR

technique (Fig. 5). As can be noted all vibrations recorded by GATR are observed

in the ATR spectra, however, some bands are attenuated and other amplified. It

suggests a change in order or/and interaction between molecules in the deposited

thin film comparing to the powdered polycrystalline sample (Table 1). The first one

is anisotropic with uniaxially distributed molecules on Si/SiO2 surface (vide infra)

whereas the other is composed of randomly oriented microcrystals. Our findings of

vibrations in deposited film using GATR measurements agree with other experi-

mental works for crystalline pentacene samples and thin films as well as with the

computations with the B3LYP DFT level of calculations [17, 18, 20, 43, 44]. The

positions of the most intense IR peaks with defined vibration modes are marked in

Fig. 5 and collected in Table 1.

The analysis of molecular ordering in anisotropic samples with spectroscopic

methods requires knowledge of polarization of each transition moment within molec-

ular framework. Crystalline pentacene is a polyaromatic hydrocarbon molecule con-

sisting of five fused benzene rings in a rod-like order. It belongs to the D2h symmetry

point group [45] specifying 43 infrared active vibrational modes which are assigned

to three irreducible representations B1u (17), B2u (17) and B3u (9) with polarization

directions of IR transitions along the z, y and x molecular axes, respectively (inset

in Fig. 6a) [18]. In the GATR measurements with s- and p-polarized IR radiation
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Fig. 5: Comparison of the infrared spectra of pentacene thin film and pentacene powder.
The upper curve (a) shows grazing angle GATR spectrum of pentacene measured with
non-polarized light at the incidence angle of 63◦. The lower curve (b) presents the ATR
spectrum of pentacene powder (recorded with a non-polarized light at the incidence angle
of 45◦). Relative peak intensities for the samples are different due to molecular orientation.

only those modes are observed which have non-zero components of transition dipole

moments parallel or perpendicular to the surface [22]. Indeed, the both spectra of

deposited film in the sandwich configuration Ge/PEN/SiO2/Si are significantly dif-

ferent, while maintaining the peak position (Fig. 6a and b). Inset in Fig. 6b shows a

scheme of geometry of the GATR accessory with a Ge crystal as an optical element.

In the p-polarized spectrum the bands with a perpendicular dipole component to

the Si surface are more enhanced than the vibrations with a parallel component [22].

Analogously, for the s-polarized light only the vibrations parallel to the substrate

are excited and have distinguished intensity [31, 46].

Transmission spectra of PEN provide additional useful information on molecular

orientation on Si/SiO2 surface (Fig. 6c). For light at normal incidence, unpolarized

IR beam excites only the vibrational modes having transition dipole components

parallel to the substrate surface. In parts c and b of Fig. 6 the transmission spec-
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Tab. 1: Comparison between the experimental major frequencies (cm−1) and relative in-
tensities Ap/As of the IR bands for pentacene powder and thin film on Si/SiO2 substrate
measured in ATR, transmission, and GATR configuration geometry.

o.p. – out-of-plane; i.p. – in-plane vibrations.
a Ref. [16]; b Ref. [19]; c Ref. [17]; d Ref. [18].
e Symmetry assigned from B3LYP calculations [18].
f Intensities relative to 905 cm−1 band.
g Assignment proposed in this work.

trum is compared with the s-polarized GATR spectrum. The most intense bands are

at 730, 836, 860, 904, 955, 1296 and 1344 cm−1 which are assigned to the in-plane

vibrations of B1u symmetry (z-polarized) or out-of-plane vibrations of B3u symme-

try (x-polarized). These modes have their transition dipoles aligned normal to the

long molecular axis and the most intense modes are simultaneously observed in the

transmission spectrum. This finding strongly suggests that the pentacene molecules
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Fig. 6: Comparison of the polarized GATR and transmission spectra of 32-nm thick pen-
tacene film on Si/SiO2. Upper curve (a) presents the p-polarized GATR spectrum with
assignment of transition moment directions of individual bands to x, y and z molecular
axes indicated in the formula [18]. (b) s-polarized GATR spectrum. Selected bands marked
with an asterisk are associated with the y-polarized transitions and are remarkably attenu-
ated as compared to the spectrum in (a). (c) common transmission spectrum of pentacene
thin film.
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are standing more or less perpendicularly to the SiO2 substrate.

In the analyzed wavenumber region (4000–600 cm−1) all vibrational modes, i.e.

stretching, in-plane and out-of-plane deformation vibrations are observed in the spec-

trum measured with the p-polarized IR beam (Fig. 6a) [27, 43, 44, 47]. However, as

was mentioned before, some bands at 730, 904, 955 cm−1 gain their intensity in the

s-polarized spectrum (Fig. 6b), while other vibrations with maxima at 988, 1165,

1222, 1324, 1392, 1500, and 1539 cm−1 (assigned with asterisk in Fig. 6b) are signifi-

cantly reduced. These vibrations are associated with the B2u symmetry (y-polarized)

and are intense in the p-polarized spectrum. Unfortunately it is not possible to de-

termine an average transition moment orientation with respect to the surface and

hence the molecular order, using the ratio of peak intensities Ap and As measured in

the p-polarized and s-polarized absorption spectrum. In the sandwiched geometry

of GATR technique the electric field strength perpendicular to the Ge surface is

enhanced within the film [22] and introduces strengthening of the p-polarized com-

ponent relatively to the s-polarized one. Thus the orientation of pentacene molecules

extracted from the polarized GATR spectra is overestimated and gives values devi-

ating from a perpendicular orientation by the angle as low as ∼ 7◦. On the other

hand one can estimate a degree of orientation measured as the ratio of Ap/As taking

into account the symmetry of transition moments.

Previous experimental verification of computed vibrational modes was based

only on the most intense peaks extracted from the spectra provided by reflection-

absorption infrared (RAIRS) method [18], polarized multiple internal reflection [20,

31], and transmission spectra [18, 46] where the low intensity peaks were out of

detection limit. In the GATR spectra most of the assignments corresponds to the

calculated ones [18]. However, the vibration at 1184 cm−1 reported as B1u type,

according to its GATR dichroism is polarized along the long axis. We are aware

that this change should be accompanied by reassignment of another band of previ-

ous B2u symmetry for which the polarization assignment must be also changed and

which is predicted by quantum mechanical calculations [12]. Though any of addi-

tional reassignment cannot be done unambiguously in the analyzed spectral range

(4000–600 cm−1), this vibration may be located in the far IR spectral range. More-

over two assignments at 764 and 1245 cm−1 (Fig. 5) are not predicted by calculations,

but mentioned in [17].

5. Conclusions

We have investigated optical and structural properties of 32-nm pentacene films

grown by OMBD on native SiO2 and fused silica substrates using spectroscopic el-

lipsometry and polarized GATR infrared spectroscopy with complementary UV-VIS

absorption, and AFM microscopy. The thickness was selected to obtain orthorhombic

phase which exists when the thickness level is below 30 nm [11]. Pentacene molecules

within this phase are oriented almost perpendicularly to the substrate surface. The
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surface morphology obtained from the AFM measurements consists of grainy crys-

tallites of different average sizes. The sample shows grain sizes of 180–380 nm. In the

ellipsometric analysis the GenOsc model with Lorentzian oscillator was used as the

one which reflects the shape of the experimental spectra in the finest way. On this

basis two perpendicular components of dielectric function in uniaxially oriented sam-

ple were calculated. The in-plane component agrees fully with other works, while the

perpendicular component is featureless. This finding is in agreement with the z-axis

polarization of the lowest transition and perpendicular orientation of pentacene on

native silica. We have demonstrated the utility of the IR GATR technique in the

analysis of organization and optical properties of uniaxially oriented organic thin

films. The orientation of pentacene molecules extracted from vibrational modes of

polarized GATR points out that the molecules, in the thin film are standing almost

perpendicular to the SiO2 substrate.
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ORGANIZACJA MOLEKULARNA W WARSTWIE PENTACENU

OSADZONEJ NA POWIERZCHNI SiO2 PRZEBADANA

ELIPSOMETRIA̧, SPEKTROSKOPIA̧ PODCZERWIENI

I MIKROSKOPIA̧ SI L ATOMOWYCH

S t r e s z c z e n i e

W artykule zosta ly opisane cienkie warstwy pentacenu o grubości 32 nm uzyskane
metoda̧ osadzania z organicznej wia̧zki molekularnej (OMBD) w warunkach wysokiej próżni
na pod lożach naturalnie utlenionego krzemu (Si/SiO2) i termicznie uzyskanej krzemionki.
Zosta ly przebadane optyczne w lasności anizotropowe, uporzadkowanie molekul w warst-
wach i morfologia próbek metodami elipsometrii spektroskopowej o zmiennym ka̧cie pada-
nia wia̧zki (VASE), absorpcji UV-VIS, techniki transmisji w podczerwieni (IR) i techniki
os labionego ca lkowitego wewnȩtrznego odbicia dla ka̧ta ślizgowego wia̧zki spolaryzowanej
(GATR), oraz mikroskopii si l atomowych (AFM).

Zosta lo również omówione przypisanie symetrii poszczególnym przej́sciom wibronowym
moleku l pentacenu tworza̧cych warstwȩ. Warstwy wykazuja̧ teksturȩ cia̧g la̧ o jednoosiowym
uporza̧dkowaniu moleku l i silnie anizotropowych w lasnościach optycznych co wykaza ly po-
miary elipsometryczne.
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Po raz pierwszy dichroiczne widma GATR IR zosta ly wykonane dla cienkich warstw
i wnioski dotycza̧ce orientacji molekul pentacenu zosta ly wydedukowane na podstawie sto-
sunku dichroicznego drgań aktywnych w zakresie widma podczerwieni.

S lowa kluczowe: pentacen, w lasności optyczne, orientacja molekularna, elipsometria, spek-
troskopia podczerwieni, mikroskopia si l atomowych



PL ISSN 0459-6854

B U L L E T I N
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pp. 123–133

Contribution to the jubilee volume, dedicated

to Professors J.  Lawrynowicz and L. Wojtczak

on the splendid occasion of the 50th anniversary

of their scientific activity

Ma lgorzata Nowak-Kȩpczyk

AN ALGEBRA GOVERNING REDUCTION OF QUATERNARY

STRUCTURES TO TERNARY STRUCTURES III

A STUDY OF GENERATORS OF THE RESULTING ALGEBRA

Summary
By applying the reduction matrices of Part I we analyzed in Part II the multiplication

tables of generators of the cubic and nonion algebras, deduced the remaining 3×3 sub-
tables for the resulting algebra, determined the remaining 9 generators, and studied the
corresponding multiplication tables. In this, Part III of the paper, we consider the problem
of linear independence of the resulting generators. After checking the dimension 18 of the
algebra (duodevicenion algebra), we extend the Peirce-Sylvester matrix quarter-plane to
the whole plane. Choose in each quarter the generator related bridging scales, and analyse
from that point of view the resulting duodevicenion algebra and other related “daughter al-
gebras”: quasi-quaternion, quasi-para-quaternion, quasi-octonion and quasi-para-octonion.

Keywords and phrases: noncommutative Galois extensions, finite dimensional algebras, as-
sociative rings and algebras, matrix rings

16. The dimension of the algebra in question

The algebra in question, denoted by A, considered in Parts I and II [5, 6] has formally

18 generators:

R1 =

 1 0 0

0 1 0

0 0 1

, Q3 =

 0 1 0

0 0 1

1 0 0

, Q3 =

 0 0 1

1 0 0

0 1 0

,(21)
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R3 =

 1 0 0

0 j2 0

0 0 j

, Q2 =

 0 j2 0

0 0 j

1 0 0

, Q1 =

 0 0 1

j2 0 0

0 j 0

,(22)

R2 =

 1 0 0

0 j 0

0 0 j2

, Q1 =

 0 j 0

0 0 j2

1 0 0

, Q2 =

 0 0 1

j 0 0

0 j2 0

,(23)

R4 =

 0 0 1

0 1 0

1 0 0

, Q6 =

 0 1 0

1 0 0

0 0 1

, Q6 =

 1 0 0

0 0 1

0 1 0

,(24)

R6 =

 0 0 1

0 j2 0

j 0 0

, Q5 =

 0 j2 0

j 0 0

0 0 1

, Q4 =

 1 0 0

0 0 j2

0 j 0

,(25)

R5 =

 0 0 1

0 j 0

j2 0 0

, Q4 =

 0 j 0

j2 0 0

0 0 1

, Q5 =

 1 0 0

0 0 j

0 j2 0

,(26)

where j3 = 1, j 6= 1.

A natural question that arises is about linear independence of these generators.

It is also important to find the base (or bases) of the algebra, i.e. the minimal subset

of the set of generators (21)–(26) that linearly spans A.

We have remarked already in [6] that A might be generated by merely 15 gener-

ators because of 12×12 complex matrices in (10)–(13) of [5] similarly to the case of

nonion algebra and the related 6×6 complex matrices in (8) and (9) of [5]:

12 + (6− 9) = 15.

This is, however, not the case. Precisely, considering the Theorem in [6], Sec-

tion 12, as Theorem 1, we formulate

Theorem 2. We have

dimRA = 18 and A ∼= M3(C).

Proof. Obviously, dimCA ≤ 9. Let us note that

dimRA = dimRC · dimCA.

We shall show that dim CA = 9, namely that matrices (21)–(26) span M3(C). It will

be the case if, for every matrix X ∈M3(C), there exist α1, α2, . . . α18 ∈ C such that

X =

18∑
i=1

αiAi,(27)
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Fig. 3: The multiplication table of the algebra in question with linear subspaces L1, . . . , L6

marked with colours.
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where {A1, A2, . . . A18} is the set of matrices (21)–(26). The latter is equivalent to

the existence of solution of the system of nine equations
α1a

1
11 +α2a

2
11 + . . . +α18

11 = x11

α1a
1
12 +α2a

2
12 + . . . +α18

12 = x12
...

...
...

α1a
1
33 +α2a

2
33 + . . . +α18

33 = x33,

(28)

where akij are entries of matrices Ak, i, j = 1, 2, 3, k = 1, 2, . . . , 18. This, however, is

equivalent to

rank


a111 a

2
11 · · · a1811

a112 a
2
12 · · · a1812

... · · ·
...

a133 a
2
33 · · · a1833

 = 9.(29)

We can naturally divide the generators of the algebra into six groups

L1 = Ls{R1, Q3, Q3}, L2 = Ls{R3, Q2, Q1}, L3 = Ls{R2, Q1, Q2},
L4 = Ls{R4, Q6, Q6}, L5 = Ls{R6, Q5, Q4}, L6 = Ls{R5, Q4, Q5},

(30)

and mark them with different colours as can be seen in Fig. 3. Obviously, 18 matrices

(21)–(26) are too many for the base of A, so we shall choose a smaller set, based on

Fig. 3, namely

{A1, A2, . . . A9} = {R1, Q3, Q3, R3, Q2, Q1, R2, Q1, Q2}(31)

and, by straightforward calculation, thanks to [20], we verify that

rank


a111 a

2
11 · · · a911

a112 a
2
12 · · · a912

... · · ·
...

a133 a
2
33 · · · a933

 = 9.(32)

We have thus also obtained that the set (31) forms a base of the algebra A.

17. Choice of the six generators forming the basic
bridging scales

Following Peirce [11] and Sylvester [13] it is natural to consider a matrix first quarter-

plane uR1v with origin at R1 = I3 and positive half-axes u and v containing points

u = Q2, u2 = Q2, and v = Q1, v2 = Q1,

respectively. Clearly, considering negative half-axes u and v has no sense. However,

observe that u3 = v3 = I3.

More generally, let A be the considered 3×3 matrix algebra over C. Let A ∈ A.

Let rang of A (and we shall write r(A)) denote the smallest positive integer n such

that An = αR1 = αI3, α ∈ {1, j, j2}. We have
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r(A) =


1 for A = R1,

2 for A ∈ {R4, Q6, Q6, R6, Q5, Q4, R5, Q4, Q5},
3 for A ∈ {Q3, Q3, R3, Q2, Q1, R2, Q1, Q2}.

We also have

r(A ·B) =

 3 if r(A) = r(B) 6= 1,

2 if r(A) 6= r(B), and r(A), r(B) 6= 1.

Consider the operator ⊥ defined in the following way

A⊥ =

 a b c

d e f

g h i

⊥ =

 c f i

b e h

a d g

 .(33)

We can easily check that (and it is clearly visible in the colorful table)

r(A⊥) =

 2 if r(A) = 1 or r(A) = 3,

3 if r(A) = 2.

If we construct the diagram with the use of ⊥ operator then the axes scaling matrices

of rang 3 are transformed into matrices of rang 2 and vice-versa.

Therefore, taking into account that, by (33)

aα,β
⊥7−→ aβ,4−α

⊥7−→ a4−α,4−β
⊥7−→ a4−β,α

⊥7−→ aαβ , α, β = 1, 2, 3,(34)

we have

R1
⊥7−→ R4

⊥7−→ R1
⊥7−→ R4

⊥7−→ R1,

Q2
⊥7−→ Q4

⊥7−→ Q2
⊥7−→ Q4

⊥7−→ Q2, Q1
⊥7−→ Q5

⊥7−→ Q1
⊥7−→ Q5

⊥7−→ Q1,

Q2
⊥7−→ Q1

⊥7−→ Q2
⊥7−→ Q4

⊥7−→ Q2, Q1
⊥7−→ Q5

⊥7−→ Q1
⊥7−→ Q5

⊥7−→ Q1.

This means we are naturally led to the six generators

R1, Q2, Q2, Q1, Q1, R4(35)

forming the bridging scales on four matrix quarter-planes

uR1v, u⊥R4v⊥, u⊥⊥R1v⊥⊥, u⊥⊥⊥R4v⊥⊥⊥,

where u and v stand for the positive u and v half-axes, respectively. The motivation

for choosing (35) is visualized on the multiplication table expressed as on Fig. 4.
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Fig. 4: Motivation for the choice of the six generators R1, Q2, Q1 and R4, Q4, Q5 forming
the basic bridging scales.



An algebra governing reduction of quaternary structures to ternary structures III 129

18. The Riemann surface approach. The “daughter algebras”:
quasi-quaternion and quasi-para-quaternion

Studying closer the matrix quarter-plane concerned we can see how to construct

their inner points [6, 8, 11]:

(u, v) = uv = 1
j vu = jQ2, (u2, v2) = u2v2 = j2v2u2 = jQ3,

(u2, v) = u2v = jvu2 = jR2, (u, v2) = uv2 = jv2u = R3.
(36)

Then we have

jQ3 7→ jQ6 7→ jQ3 7→ jQ6 7→ jQ3, Q3 7→ jQ6 7→ Q3 7→ jQ6 7→ jQ3,

jR2 7→ R6 7→ R3 7→ jR5 7→ jR2, R3 7→ jR5 7→ jR2 7→ R6 7→ R3.
(37)

The resulting collection of four matrix quarter-planes is visualized in Fig. 4.

Following [3] we may construct from the quarter-planes concerned a Riemann

surface gluing

v to u⊥, v⊥ to u⊥⊥, v⊥⊥ to u⊥⊥⊥, v⊥⊥⊥ to u,(38)

with piercing two copies of the plane along the cut v⊥⊥⊥ in the case of the

4-sheeted Riemann surface model, or, alternatively, with gluing (38) as before, but

with piercing no copy of the plane along the cut v⊥⊥⊥ , u, in the case of two-sheeted

Riemann surface model.

By relations (36) and (37) we have the following Corollary to Theorem 2.

Corollary 1. The para-nonion algebra spanned by the generators (21)–(23),

discussed in the third matrix quarter-plane in question, coincides with the nonion

algebra. However, different order of the generators allows for a new geometrical

interpretation, analogous to that for para-quaternions in relation to quaternions. In

contrast, the quasi-para-quaternion algebra spanned by

R1 = I3, u⊥⊥ = Q2, v⊥⊥ = Q1, uv⊥⊥ = jQ3(39)

is different from the quasi-quaternion algebra spanned by

R1 = I3, u = Q2, v = Q1, uv = jQ3.(40)

However, the para-quarternion algebra contains, as its subalgebra, the quasi-quater-

nion algebra thanks to the transformation

(I3)2⊥⊥ 7→ I3, u2⊥⊥ 7→ u, v2⊥⊥ 7→ v, (u2v2)⊥⊥ 7→ uv.(41)

For para-quaternions we refer to [17] and references therein. In study of quasi-

quaternions and quasi-para-quatrnions in [3]. Further studies of a Riemann surface

approach to para-quaternions, referring to Vaccaro Obitz [19] will be continued in [8].
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19. Further “daughter algebras”: quasi-octonion,
quasi-para-octonion, and para-duodevicenion

We procede to study still closer the second and fourth matrix quarter-planes con-

cerned; see Fig. 6. In analogy to Corollary 1 we distinguish the following objects:

the quasi octonion algebra, spanned by the generators

R1, R4, u = Q2, u⊥ = Q4,

v = Q1, v⊥ = Q5, uv = jQ3, (uv)⊥ = jQ6;
(42)

the quasi-para-octonion algebra, spanned by the generators

R1, R4, u⊥⊥ = Q2, u⊥⊥⊥ = Q4, v⊥⊥ = Q1, v⊥⊥⊥ = Q5,

(uv)⊥⊥ = jQ3, (uv)⊥⊥⊥ = jQ6;
(43)

the para-duodevicenion algebra, spanned by

(Lα)⊥⊥, α = 1, . . . , 6, with Lα given by (30).(44)

We conclude with the following

Corollary 2. The para-duodevicenion algebra spanned by generators (21)–(26) or

equivalently, by (45) discovered in the 3rd and 4th matrix-quarter-planes in ques-

tions, coincides with the duodeviceinion algebra. However, different order of the

generators allows a new geometrical interpretation, analogous to that for para-

quaternions with quaternions. In contrast, the quasi-para-octonion algebra, spanned

by (43), is different from the quasi-para-octonion algebra spanned by (42). Moreover,

the para-duodevicenion algebra contains, as subalgebra the quasi-octonion algebra

thanks to the transformation consisting of (41) and

(I3)2⊥⊥⊥ 7→ (I3)⊥, u2⊥⊥⊥ 7→ u⊥, v2⊥⊥⊥ 7→ v⊥, (uv)2⊥⊥⊥ 7→ uv⊥.(45)

For nonions we also refer to [14–19], for Clifford-algebraic background – to [12,

1, 2]. Further study of a Riemnann surface approach to nonions and duodevicvenions,

including the corresponding ∂, ∂-type operators and Galois extensions (cf. [2]) will

be continued in [7, 9, 10].

20. Conclusions

Further study mentioned at the end of Sections 18 and 19 has to be connected with

the identifications discussed in the first part of this paper [5] and the relationship

between Observations 1–6 in the second part of this paper [6] and the structures

observed in Figs. 3–6 of the present, third part of the paper in relation with the

group (30) of generators.
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Fig. 5: Four matrix quarter-planes with the chosen generator related bridging scales. The
quasi-quaternion (blue) algebra with the generators (40) and the quasi-para-quaternion
(yellow) algebra with generators (39).

Fig. 6: The quasi-octonion (blue) algebra with the generators (42) and the quasi-para-

octonion (yellow) algebra with generators (43).
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A deeper understanding is needed for comparing the process of construction

cubic algebra −→ nonion algebra −→ duodevicenion algebra

with the Cayley-Dickson doubling process

complex algebra −→ quaternion algebra −→ duodevicenion algebra

as well as the process of construction

ternary approach vs. binary approach −→ quaternary approach vs. ternary

approach

(in connection with fractal and chaos related to Ising-Onsager-Zhang lattices

[1, 2, 4]) with optimization procedures for the total energy in physics of complex

alloys [3].
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(2015), 121–140, to appear.

[19] J. H. M. Wedderburn, On hypercomplex numbers, Proc. London Math. Soc. 26 (1908),
77118.

[20] Calculating software on: www.matrix.reshish.com, c©reshish.com 2011–2015.

Institute of Mathematics and Informatics
The State School of Higher Education in Che lm
54 Pocztowa Street, PL-22-100 Che lm
Poland
e-mail: gosianmk@wp.pl

Presented by Julian  Lawrynowicz at the Session of the Mathematical-Physical Com-
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S t r e s z c z e n i e

Analizowana jest tabela mnożenia generatorów algebry rozważanej w Czȩści I tego
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torów algebr kubicznej i nonionowej i sta̧d wywodzone pozosta le 9 generatorów, a nastȩpnie
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NONCLASSICAL PARAMETERS IN KERNEL ESTIMATION

Summary
In kernel method, using in estimation as well as in hypothesis testing problems, two

parameters should be fixed: kernel function and smoothing parameter. Some methods of
kernel estimation and methods of choosing kernel parameters (classical and nonclassical)
are presented. Basing on simulation study results, chosen kernel estimation methods are
compared, taking into account their properties.
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1. Introduction

Nonparametric methods are becoming more and more popular in statistical analy-

ses of not only economic but also technical, medical, biometric and environmental

problems. The term “nonparametric” is used in a very general sense that broadly

widens the area of nonparametric methods applications on one hand and allows the

users to treat nonparametric methods as fundamental ones on the other. Applying

nonparametric methods in statistical analysis means that the assumption that data

being analyzed do not belong to any particular distribution is not absolutely neces-

sary or that the researchers do not assume that the structure of a statistical model

is fixed.

Using statistical procedures without necessity of assuming the parameterized

family of probability distribution of regarded random variable seems to be very con-

vincing. In many economic problems, a lack of information about analyzed random

variable is noticeable. We cannot rely on the assumption that the data are drawn
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from a given distribution (in mostly cases it is normal distribution). These are situ-

ations where nonparametric methods are the only ones that can be used in practice.

Parametric approach, in which the researchers are obligated to know the form of

distribution is treated as risky one. In many cases we do not have any information

about economic phenomenon, for example we are not able to collect proper histor-

ical data that can be used to verify assumptions. In nonparametric approach there

is no need to take the assumptions that may not be true. From theoretical consid-

erations follows that nonparametric procedures are only slightly less effective than

the procedures based on normal distributions [1].

In statistical literature various nonparametric methods are described and their

properties are presented [2–4].

Kernel methods, belonging to a class of nonparametric procedures, are well-

known and broadly used statistical procedures by nonparametricians. It is caused

by two aspects of these methods, that are particular emphasized in statistical liter-

ature: their simplicity and ease of implementation. Kernel estimation may concern,

for example, density function, distribution function, regression function or hazard

function. There are also kernel methods of estimating numerical characteristics of

random variable, for example mode or quantiles. Among the statistical tests based

on kernel methods there are goodness-of-fit tests, symmetry tests or independence

tests. Some of these procedures are presented in, e.g. [5–7] with studies of these

inference methods properties.

2. Kernel method in estimation

Kernel estimator of density f(x) of random variable X, calculated using the random

sample X1, . . . , Xn, where n is a sample size, was introduced by Parzen [8] and

Rosenblatt [9]. It is defined in the following way (cf.: [10], [11]):

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,(1)

where h is a smoothing parameter (bandwidth) depending on the sample size n (h =

h(n)); K(u) is a kernel function with the following properties:

+∞∫
−∞

K(u)du = 1,

+∞∫
−∞

ulK(u)du = µl(K) = 0 for l = 1, . . . , k − 1,

+∞∫
−∞

ukK(u)du = µk(K) 6= 0;

k is called the order of the kernel function.
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Formula (1) indicates that kernel density estimator is a way of counting the num-

ber of observations that are falling into the interval around x. Bandwidth h controls

the smoothness of the estimator (for bigger values of h, the estimator is smoother)

while kernel function is a weighted function centered at one of the observations from

the sample X1, . . . , Xn.

The bias of the estimator (1) is proportional to h2. Small values of smoothing

parameter guarantee reduction of the bias. While the variance of the estimator is

proportional to 1
nh . To make the variance of the estimator small, the smoothing

parameter should be large. For h→ 0 and nh→∞ Mean Square Error (MSE) goes

to infinity. It means that kernel density estimator f̂(x) is consistent estimator of

unknown density function f(x).

The idea of Parzen-Rosenblatt kernel density estimator (1) is using in many

inference procedure for functional or numerical characteristics of random variable.

Nadaraya kernel distribution function estimator is obtained by integrating ker-

nel density estimator (1). For random variables X1, . . . , Xn with density f(x) and

distribution function F (x) it is defined as:

F̂ (x) =
1

n

n∑
i=1

W

(
x−Xi

h

)
,(2)

where

W (x) =

+∞∫
−∞

K(t)dt,

K(t) ≥ 0 is kernel function of second order.

Kernel distribution function F̂ (x) is asymptotically unbiased and its variance is

the same as for well-known empirical distribution function.

As it is for kernel density estimator, the choice of smoothing parameter in kernel

estimation of distribution function is more important than kernel function choice.

Estimators of distribution function and other functional and numerical prob-

abilistic characteristics of random variable, including estimators of quantiles and

estimators of conditional characteristics, are presented in [12].

In the reliability assessment, for kernel estimates of distribution functions F̂1(x)

and F̂2(x) of samples X11, . . . , X1n1
and X21, . . . , X2n2

, respectively, the kernel es-

timator of ROC (Receiver Operating Characteristic) function can be defined as:

R̂(p) = 1− F̂2

(
F̂−11 (1− p)

)
for 0 ≤ p ≤ 1,(3)

where

F̂j(x) =
1

nj

nj∑
i=1

W

(
x−Xji

hj

)
, j = 1, 2.

For constructing the kernel estimator of ROC it is necessary to use kernel function

K(u) and two smoothing parameters h1 and h2. The quartic kernel function is

recommended in this case:
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K(u) =

{
15
16 (1− u2)2 for |u| ≤ 1,

0 otherwise.

The kernel estimator of the ν-th derivative of the hazard function

λ(x) =
f(x)

1− F (x)

is the convolution of the kernel K(u) and the Nelson estimator of the cumulative

hazard function

Hn(x) =
∑

X(i)≤x

δ(i)

n− i+ 1
,

where δi is indicator whether the observation is censored or not. In the random

censorship model (Xi, δi) for i = 1, . . . , n, Xi = min(Ti, Ci), where T1, . . . , Tn are

survival times with the distribution function F and C1, . . . , Cn are censoring times

with the distribution G (independent from survival times). The kernel estimator of

the ν-th derivative of the hazard function is following:

λ̃(ν)(x) =
1

hν+1

+∞∫
−∞

K(ν)

(
x− u
h

)
dHn(u)

=
1

hν+1

n∑
i=1

K(ν)

(
x−X(i)

h

)
δ(i)

n− i+ 1
,(4)

where K(ν) is ν-th order kernel function.

Nadaraya-Watson kernel estimator of regression function m, in a standard re-

gression model Yi = m(Xi) + εi, i = 1, . . . , n, where {(Xi, Yi)} are n independent

observations, m is unknown regression function, E(εi) = 0 and D2(εi) = σ2 > 0, is

defined as:

m̂(x) =

n∑
i=1

Kh(xi − x)Yi

n∑
i=1

Kh(xi − x)
,(5)

where

Kh(u) =
1

h
K
(u
h

)
.

In Nadaraya-Watson estimator observations Yi obtain more weight in those areas

where the corresponding Xi are sparse. Estimator (5) is consistent estimate of the

regression curve for h→ 0 and nh→∞.

3. Kernel function

Kernel function plays a role of weighting function in the estimation procedure and it

is characterized by its order which indicates both the number of vanishing moments

and the number of existing derivatives for the curve being estimated.
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The choice of kernel function has less of importance in the appropriate construc-

tion of kernel estimator, especially when asymptotic behavior is regarded. It leads

to the situation that the analysis of the influence of kernel function on the estimator

is overlooked by researchers. Nevertheless, it is easy to notice that in many cases the

shape of kernel function has influence on the resulting estimator, especially when

graphical presentation of estimator is taking into consideration.

When the order of the kernel function k is equal to 2 it is called the classical

kernel function. In this class of kernel functions there is, among others, quartic

kernel function used in the ROC estimation and Gaussian kernel function which is

one of the mostly used kernels in practical applications. Gaussian kernel function is

standardized normal density function and has the form:

K(u) =
1√
2π
e

(
−u22

)
.

Other kernel functions (classical and nonclassical) are presented in literature e.g.:

[2, 13–14]. The class Sν,k (for 0 ≤ ν ≤ k) of kernel function K of order k, being a

real valued function and satisfying K ∈ Sν,k, is defined in the following way [15]:

Sν,k =


K ∈ Lip[−1, 1], support(K) = [−1, 1],

1∫
−1
xjK(x)dx =


0 for 0 ≤ j ≤ k, j 6= ν,

(−1)νν! for j = ν,

βk(K) 6= 0 for j = k.

According to this definition, Gaussian kernel does not belong to the class Sν,k be-

cause of its unbounded support. The class Sν,k includes, for example: quartic kernel

mentioned earlier (ν = 0, k = 2) and Epanechnikov kernel (ν = 0, k = 2) of the

form:

K(u) =

{
3
4 (1− u2) for |u| ≤ 1,

0 for |u| > 1.

Examples of nonclassical kernels (kernels of order k > 2) from the class Sν,k
are presented in Tab. 1. It should be noticed that for even k kernel functions are

symmetric, if k is odd kernels are asymmetric.

Kernel density estimator based on classical kernel (second order kernel function)

is easily explainable. Taking negative values of nonclassical kernel seems to be un-

appealing feature in estimation procedure. On the other hand, using classical kernel

in estimation means that the estimate bias is always of order n−2/5 even when the

choice of smoothing parameter is treated as the optimal. It can cause some distor-

tion in graphical representation of structure of the data (for example the number

of modes and the height of the density at the modes). Using higher order kernels

reduces the amount of estimate bias. In this way nonclassical approach in choosing

the shape of kernel function in density estimation provides better properties of the

estimator, especially it is significant in finite-sample situations.
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Tab. 1: Examples of nonclassical kernel functions from the class Sν,k.

4. Smoothing parameter

Smoothing parameter (bandwidth) controls the amount of smoothing in the infer-

ence procedure. Hence, the choice of smoothing parameter is treated as most impor-

tant factor in kernel estimation. Its importance is easy to notice because smoothing

parameter affects the features of the estimated functional characteristic of random
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variable. Smoothing parameter h depends on the sample size n (h = h(n)), it is a

sequence of a nonrandom positive numbers.

Classical approach of the smoothing parameter choice is represented, among oth-

ers, by subjective method. In this method different values of parameters are used

in some estimation procedures and next this smoothing parameter is taken that

fulfills the users’ needs and expectations. This method seems to be quite sufficient

when the kernel density estimator is only the way of exploring the structure of the

data on the initial stage of statistical inference. There is a problem of choosing

the appropriate value of smoothing parameter without a priori information about

distribution of random variable. Different parameter values in kernel density may

indicate, for example, different information about multimodality. Fig. 1 presents the

results of kernel density estimation that are constructed using the sample (n = 50)

taken from population with bimodal asymmetric distribution (mixture of two nor-

mal distributions with unequal parameters and weights). In the kernel estimators of

density functions Gaussian kernel functions are applied with the following smoothing

parameters h = 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9.

Fig. 1: Kernel density estimators for different values of smoothing parameter.

Small values of smoothing parameters result in “jagged” estimators with a great

deal of modes, whereas already for h = 0.6 the estimator of density function becomes

strongly unimodal. Exploring several kernel estimators allows to give more insight

into the data but it is rather inconvenient to decide, especially for inexperienced

users, which value is appropriate in particular research problem.

Another classical method of smoothing parameter choice is a method based on

assuming that population from which data are taken has a standard normal dis-

tribution. According to this assumption for Gaussian kernel, smoothing parameter,

calculated by Silverman’s reference rule, has the value

ĥS = 0.9 min

(
σ,

IQ

1.34

)
n−

1
5 ,

where σ is standard deviation, IQ is interquantile range from the population and

may be estimated from the sample X1, . . . , Xn. This method works quite good when
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the true population is normal, but using this formula in the case of multimodality

of density being estimated results in oversmoothing. When this method is used

for sample from above example the value of smoothing parameter, calculated by

Silverman’s rule, is equal to 0.56.

Fully automatic methods of choosing smoothing parameter may be treated as

nonclassicl ones. They are data-driven methods, in contrast to subjective or Silver-

man’s rule which depend on additional information or assumptions (coming from in

most cases from user’s experience and knowledge). Their relevance to data makes

them more difficult to calculate what results in much longer process of choosing the

parameter.

Cross-validation methods are the earliest among automatic methods of choos-

ing the smoothing parameter. The least-squares cross-validation parameter is the

following:

ĥLSCV = arg minLSCV (h),(6)

where

LSCV (h) =
1

n2h

n∑
i=1

n∑
j=1

K ∗K
(
Xj −Xi

h

)
− 2

n(n− 1)h

n∑
i=1

n∑
j=1
j 6=i

K

(
Xi −Xj

h

)
,

K ∗K(u) =

∫
K(u− ν)K(ν)dν.

The biased cross-validation parameter ĥBCV is as follows:

ĥBCV = arg minBCV (h),(7)

where

BCV (h) =
R(K)

nh
+
h4µ2

2(K)

4n2

n∑
i=1

n∑
j=1
j 6=i

K
(2)
h ∗K

(2)
n (Xi −Xj),

R(g) =

+∞∫
−∞

g2(x)dx,

Kh(Xi −Xj) =
1

h
K

(
Xi −Xj

h

)
.

In least squares cross-validation method, the estimation of Mean Integrated

Square Error (MISE) is used in choosing the smoothing parameter, whereas in bi-

ased cross-validation the asymptotic formula of MISE (AMISE) is involved. The

appropriate estimator of AMISE is also used in iterative method of choosing the

smoothing parameter. The iterative parameter ĥIT is:

ĥIT = arg min ˆAMISE
{
f̂(·, h)

}
,(8)
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where ˆAMISE
{
f̂(·, h)

}
is the estimate of AMISE and has the form:

ˆAMISE
{
f̂(·, h)

}
=
R(K)

nh
+

1

n2h

n∑
i=1

n∑
j=1
j 6=i

(K ∗K ∗K ∗K − 2K ∗K ∗K +K ∗K)

(
Xi −Xj

h

)
.

Plug-in method of smoothing parameter choosing belongs to class of nonclassi-

cal methods though Silverman’s reference rule can be treated as the simplest pos-

sible plug-in method. In minimization of AMISE of kernel density estimator un-

known
∫ +∞
−∞ (f ′′)2(u)du in Silverman’s reference rule is estimated with assumption

that f belongs to a family of normal distributions. Refined version of estimation of∫ +∞
−∞ (f ′′)2(u)du leads to nonclassical plug-in methods. There is a possibility of di-

rect, nonparametric estimation of this term, by using kernel estimate of f and taking

the second derivative from this estimate. The direct plug-in smoothing parameter is

the following:

ĥPI =

[
γ2k+1
0k (k!)2

2nk(−1)kψ̂k(g)

] 1
2k+1

,(9)

where γ0k is the canonical factor of kernel function K, i.e.:

γ0k =

(∫ +∞
−∞ K2(u)du

µ2
k(K)

) 1
2k+1

,

ψ̂k(g) is the kernel estimator with kernel function L and the initial smoothing pa-

rameter g, i.e.:

ψ̂k(g) =
1

n2g

n∑
i,j=1

L(2k)

(
Xi −Xj

g

)
.

5. Simulation study

In order to evaluate properties of chosen nonclassical methods of choosing kernel

density estimation parameters, a study was carried out using simulation methods.

From populations with densities being mixtures of normal distributions, samples

were chosen and kernel density estimators were calculated. Values of smoothing

parameters were compared taken into account different kernel functions (classical

and nonclassical) and the resulting density estimators are presented. An attempt to

compare nonclassical methods with classical ones was made in appropriate types of

densities shapes of populations.

The population density is described by density function:

f(x) = αϕ(x|µ1, σ1) + (1− α)ϕ(x|µ2, σ2),

where ϕ(x|µi, σi) (i = 1, 2) is normal density function with mean µi and standard

deviation σi, i.e.:
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ϕ(x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

α ∈ 〈0, 1〉 is a mixture coefficient. In the simulation study the following values of

normal distributions are regarded:

µ1 = 0, µ2 = 1.5;

σ1 = 1, σ2 = 0.333.

Taking different values of mixture coefficients, i.e. α = 0, 0.05, 0.10, 0.15, . . . , 0.90,

0.95 the simulation study is widened to regard different shapes of population density

functions (evident unimodal to multimodal and symmetric to asymmetric). In this

way, the so-called Gaussians mixtures (populations P1–P20) are only considered

but with diversified both level of density modality and level of density skewness.

Histograms for populations for chosen values of mixture coefficients are presented in

Fig. 2–3.

Population is unimodal and symmetric only in one case, for α = 0. Other pop-

ulations (for α 6= 0) are left-skewed. Asymmetry is stronger for smaller values of

mixture coefficients, but for the bigger α, the bimodality is easier to notice.

The values of smoothing parameters for sample size n = 100 and for chosen values

of mixture coefficients are presented in Tab. 2–5.

As can be seen, value of smoothing parameter in kernel density estimator depends

not only on the population density shape but also on kernel function used in den-

sity estimator. When sample comes from unimodal and symmetric population, the

bandwidths are in most cases smaller than in bimodal and asymmetric populations.

The stronger the population asymmetry is, the bigger smoothing parameter is used.

Fig. 2: Populations histograms (P1 and P6) for chosen values of α.
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Fig. 3: Populations histograms (P11 and P16) for chosen values of α.

Tab. 2: Values of smoothing parameters (sample from P1, sample size n = 100).

Tab. 3: Values of smoothing parameters (sample from P6, sample size n = 100).

Moreover, smaller values of bandwidth are used when asymmetric kernel func-

tions are applied in density estimators. It can be seen especially in the case of the

cross-validation methods of choosing the smoothing parameters. Nonclassical kernel

function K2(u) is that one for which the bandwidth calculated by classical method

(Silverman’s reference rule) is significantly bigger. In almost all regarded populations
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there are similar values of Silverman’s reference rule and plug-in method of choosing

the smoothing parameter.

Tab. 4: Values of smoothing parameters (sample from P11, sample size n = 100).

Tab. 5: Values of smoothing parameters (sample from P16, sample size n = 100).

The kernel density estimators for chosen classical and nonclassical parameters

(sample size n = 100) and chosen values of mixture coefficients for populations (P1,

P6, P11, P16) are presented in Fig. 4.

Using nonclassical kernels functions in kernel density estimators may result in

negative values of density estimators, as it is in the case of regarded samples, what

may be not appealing to users. Furthermore, it is easy to notice that these nonclas-

sical kernel functions influence on the shape of estimator in a large scale. This is

rather a rule, regardless of the population properties from which the samples are

taken.

6. Conclusions

Classical kernel parameters applied in density estimation are easy to use, the pro-

cess of computation is short but their usage is based on assumptions which are

not sometimes fulfilled. For example, Silverman’s reference rule works good when

the population distribution is normal and the kernel function is Gaussian. Apply-

ing nonclassical kernel parameters does not always improve the resulting density

estimator, what is noticeable especially when graphical presentation is taking into

consideration. But using different parameters (classical and nonclassical) is certainly

advantageous because it widens user’s knowledge of analyzed phenomena.
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Fig. 4: Density kernel estimators for classical and nonclassical kernel parameters for samples
from populations P1, P6, P11 and P16.
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[1] C. Domański, Statystyczne testy nieparametryczne, Państwowe Wydawnictwo Eko-
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NIEKLASYCZNE PARAMETRY W ESTYMACJI JA̧DROWEJ

S t r e s z c z e n i e

W metodzie ja̧drowej, stosowanej w estymacji oraz weryfikacji hipotez statystycznych,
konieczne jest ustalenie dwóch parametrów metody: funkcji ja̧dra i parametru wyg ladzania.
W pracy przedstawiono wybrane metody (klasyczne i nieklasyczne) wyboru parametrów
metody ja̧drowej. Dokonano porównania w lasności omawianych metod, opieraja̧c siȩ na
wynikach badania symulacyjnego.
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