Option pricing in CRR model with time dependent parameters for two periods of time - part I

Authors

  • Emilia Fraszka-Sobczyk Faculty of Economics and Sociology, University of Łódź, Poland
  • Anna Chojnowska-Michalik Faculty of Mathematics and Informatics, University of Łódź, Poland

Keywords:

Cox-Ross-Rubinstein model (CRR model), Black-Scholes formula, option pricing

Abstract

In this paper we present some generalization of the Cox-Ross-Rubinstein (CRR) option pricing model. We assume that two parameters of the model (an interest rate of a bank account and a volatility of the logarithm of the stock price’s changes) are different in each of two analyzed periods of time.

References

P. Billingsley, Prawdopodobieństwo i miara, Państwowe Wydawnictwo Naukowe, Warszawa 1987.

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81, no. 3 (1973), 637–654.

A. Chojnowska-Michalik and E. Fraszka-Sobczyk, On the uniform convergence of Cox-Ross-Rubinstein formulas Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 66, no. 1 (2016), 29–38.

C. J. Cox, A. S. Ross and M. Rubinstein, Option pricing: a simplified approach, Journal of Financial Economics 7 (1979), 229–263.

R. J. Elliot and P. E. Kopp, Mathematics of Financial Markets, Springer-Verlag, New York 2005.

E. Fraszka-Sobczyk, On some generalization of the Cox-Ross-Rubinstein model and its asymptotics of Black-Scholes type Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 64, no. 1 (2014), 25–34.

J. Jakubowski, Modelowanie rynków finansowych, SCRIPT, Warszawa 2006.

J. Jakubowski, A.Palczewski, M. Rutkowski and L. Stettner, Matematyka finansowa. Instrumenty pochodne, Wydawnictwo Naukowo-Techniczne, Warszawa 2006.

J. Jakubowski and R. Sztencel, Wstęp do teorii prawdopodobieństwa, SCRIPT, Warszawa 2000.

M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, Springer- Verlag, Berlin 2005.

Downloads

Published

2020-10-01

Issue

Section

Articles