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Summary

In the paper we generalise the notion of a microscopic set onto an arbitrary metric

space. We examine microscopic sets in the Cantor space 2ω and give a series of isomorphism

theorems concerning the families of microscopic sets in 2ω, [0, 1], R as well as their finite

products. Moreover, we investigate some connections between cardinal invariants for the

mentioned σ- ideals.
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1. Introduction

The notion of a microscopic set was introduced in 2001 by Appell in [2] (cf. [1, 3]).

Namely, a set A ⊆ R is microscopic if for every ε > 0 there exists a sequence of

intervals (In)n∈N such that A ⊆
⋃
n∈N

In and |In| ≤ εn for n ∈ N. The family of all

microscopic sets on R is in fact a σ-ideal situated between the σ-ideal of measure

zero sets and the σ-ideal of strong measure zero sets. The notion of microscopic sets

has been recently studied by several authors; see for example [4, 5, 6, 7, 8, 9].

In [8] Karasińska and Wagner-Bojakowska have introduced two generalisations of

microscopic sets in R2. They call a set A ⊆ R2 microscopic if for every ε > 0 there

exists a sequence (Rn)n∈N of rectangles (with sides parallel to coordinate axis) such

that λ2(A) ≤ εn for each n ∈ N, whereas the set is called strongly microscopic if the

same condition holds true for squares with sides parallel to coordinate axis (where

λ2 denotes the Lebesgue measure on R2). In this paper we generalise the notion of a

microscopic set onto an arbitrary metric space. Our generalisation is coherent with

the latter approach. We then examine some properties of microscopic sets in metric
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spaces and then concentrate on microscopic sets in the Cantor space 2ω. We construct

several Borel isomoprhisms between the families of microscopic sets in 2ω, [0, 1] and

their finite products. We also prove that the σ-ideal of microscopic sets in R and in

the Cantor space 2ω equipped with the Baire metric are Borel-isomorphic. It is not

uncommon that dealing with the Cantor space is easier that with the real line. We

believe that our result will help in proving combinatorial properties of the σ-ideal of

microscopic sets or will at least simplify the existing proofs. Combinatorial properties

of the σ-ideal of microscopic sets on the real line have been recently studied by A.

Kwela in [9], where he proved that the additivity of this σ-ideal is equal to ω1.

2. Microscopic sets in metric spaces

In this section we examine a natural generalisation of the notion of a microscopic set

onto an arbitrary metric space. We give a series of conditions which are equivalent

to being microscopic. We also formulate some well-known facts about the family of

microscopic sets in the case of a metric space, giving a reader a general overview on

the subject.

Let (X, d) be a metric space. Let x ∈ N and r > 0. We denote the open (closed)

ball with the centre x and radius r by B(x, r) (B(x, r)). Let A ⊆ X. We denote the

diameter of the set A by diam(A).

We call a set A ⊆ X microscopic, if for every, ε > 0 there exists a sequence

(In)n∈N of subsets of X, such that A ⊆
⋃
n∈N

In and diam(In) ≤ εn for every n ∈ N.

We denote the family of all microscopic sets in the space X by MicX .

It turns out, that in an arbitrary metric space, one obtains the following con-

venient result, whose proof is an easy exercise. Before we state it, let us denote

c+0 := {(ak)k∈N ∈ c0 : ∀k∈N ak > 0}.

Proposition 2.1. Let A ⊆ X. The following conditions are equivalent:

(i) A ∈MicX ;

(ii) ∀ε>0 ∃{xn:n∈N}⊆X A ⊆
⋃
n∈N

B(xn, ε
n);

(iii) ∀ε>0 ∃{xn:n∈N}⊆X A ⊆
⋃
n∈N

B(xn, ε
n);

(iv) ∀(ak)k∈N∈c+0 ∀k∈N ∃{xn:n∈N}⊆X A ⊆
⋃
n∈N

B(xn, a
n
k );

(v) ∀(ak)k∈N∈c+0 ∀k∈N ∃(Bn)n∈N

(
A ⊆

⋃
n∈N

Bn ∧ ∀n∈N diam(Bn) ≤ ank
)
,

where (Bn)n∈N is a sequence of open balls in X;

(vi) ∀(ak)k∈N∈c+0 ∀k∈N ∃(Jn)n∈N
(
A ⊆

⋃
n∈N

Jn ∧ ∀n∈N diam(Jn) ≤ ank
)
,

where (Jn)n∈N is a sequence of subsets of X;
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(vii) ∃(ak)k∈N∈c+0 ∀k∈N ∃(Jn)n∈N
(
A ⊆

⋃
n∈N

Jn ∧ ∀n∈N diam(Jn) ≤ ank
)
,

where (Jn)n∈N is a sequence of subsets of X;

(viii) ∃(ak)k∈N∈c+0 ∀k∈N ∃(Bn)n∈N

(
A ⊆

⋃
n∈N

Bn ∧ ∀n∈N diam(Bn) ≤ ank
)
,

where (Bn)n∈N is a sequence of open balls in X;

(ix) ∃(ak)k∈N∈c+0 ∀k∈N ∃{xn:n∈N}⊆X A ⊆
⋃
n∈N

B(xn, a
n
k ).

It is obvious that in the conditions 1., 2. i 3. of the above theorem one can

equivalently take ε ∈ (0, 1).

Clearly countable sets are microscopic. Moreover, if one considers a discrete metric

space, then the opposite implication is true as well. Suppose that A is a microscopic

set in a discrete metric space. By Proposition 2.1 (viii), there exists a sequence

(Bn)n∈N of open balls covering the set A such that diam(Bn) ≤ ( 1
2 )n for n ∈ N.

Since for every n ∈ N the ball Bn is in fact a singleton, A must be countable.

It is a well known fact that the family of all microscopic sets on the real line

(considered with Euclidean metric) forms a σ-ideal, i.e. a family closed under taking

subsets and countable unions. It turns out that the same is true in case of an arbitrary

metric space. Some other facts about microscopic sets are true in arbitrary metric

spaces, namely:

Proposition 2.2. Let (X, d) be a metric space. Then

(a) MicX is a σ-ideal;

(b) if (Y, ρ) is a metric space and f : X → Y is a Lipschitz mapping, then A ∈
MicX implies f(A) ∈MicY ;

(c) if d,ρ are Lipschitz equivalent metrics on X, then Mic(X,d) =Mic(X,ρ);

(d) microscopic sets have Hausdorff dimension zero.

The proof of (a) in the above theorem is analogous to the one in case of R, which

can be found in several papers concerning microscopic sets. Points (b), (c) and (d)

are simple observations.

Recall that we call the ideals A and B on a nonempty set X orthogonal if there

exist sets A ∈ A, B ∈ B such that A ∩B = ∅ and X = A ∪B.

We can now formulate another generalisations of facts concerning families micro-

scopic sets which are well-known in the case of the real line.

Fact 2.3. In every separable and complete metric space, there exists a residual mi-

croscopic set. In other words, the σ-ideals MicX and MX are orthogonal (where

MX denotes the σ-ideal of the sets of the first category).

Proof. First observe that the σ-idealMicX has a base consisting of Gδ-sets. Indeed,

let A ∈MicX . From Proposition 2.1(ii) for every k ∈ N there exists a set {xk,n : n ∈
N} such that A ⊆

⋃
n∈N

B(xk,n, (
1
k )n). Put B :=

⋂
k∈N

⋃
n∈N

B(xk,n, (
1
k )n). Then obviously
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B is a microscopic, Gδ superset of A. Now, let D ⊆ X be dense and countable. Clearly

D is microscopic and its Gδ microscopic superset is residual. �

3. Microscopic sets in the Cantor space 2ω

Let us denote the set of all infinite (finite) binary sequences by 2ω (2<ω). For any

s ∈ 2<ω, s = (s0, s1, ...sn) and i ∈ {0, 1} by ŝ i we denote the concatenation of the

sequence and the term i, i.e. ŝ i = (s0, s1, ..., sn, i) and by |s| we denote the length

of the sequence s (we assume |∅| = 0). Moreover, for t ∈ 2ω, by t|n we denote the

restriction of t to n initial terms.

In this section we take into consideration the family of all microscopic sets in

the Cantor space 2ω, i.e. the set of all infinite binary sequences with the so-called

Baire metric. The metric, which is in fact an ultrametric is defined as follows. For

x, y ∈ 2ω, x = (x(n))n∈ω, y = (y(n))n∈ω we put

ρ(x, y) :=

{
2−min{n∈ω:x(n) 6=y(n)}, if x 6= y;

0, if x = y.

Of course the space (2ω, ρ) is compact and separable. The base of the topology

consists of sets 〈s〉 = {x ∈ 2ω : s ≺ x} for s ∈ 2<ω, where s ≺ x iff x||s| = s. Thus,

the set 〈s〉 consists of all infinite extensions of the finite sequence s.

Let us define a mapping between the Cantor space and the unit interval [0, 1]

which will enable us to identify microscopic sets in 2ω with microscopic subsets of

the unit interval (with Euclidean metric). Consider a mapping g : 2ω −→ [0, 1] given

by:

g(x) =

∞∑
n=0

x(n)

2n+1
, for x = (x(n))n∈ω ∈ 2ω.

Observe, that if x ∈ 2ω, then g(x) is a number in [0, 1], whose binary expansion is

the sequence x. Since there exist numbers which have two binary expansions (the so

called dyadic fractions), g is not injective. Thus, let us consider the set E := {x ∈
2ω : ∃n∈ω ∀m≥n x(m) = 1} \ {(1, 1, 1, ...)} and put h := g �2ω\E . Then the following

is true.

Proposition 3.1. The mapping h : 2ω \ E → [0, 1] is a Lipschitz bijection.

Proof. Since 2ω\E consists precisely of the sequence (1, 1, 1, ...) and binary sequences

which have infinitely many zeros, then h is an injection. Let z ∈ [0, 1]. If z is a dyadic

fraction, i.e. z = m
2k

for some m, k ∈ ω such that m ≤ 2k, then z has two binary

expansions and exactly one of them belongs to 2ω \ E. Otherwise, z has only one

binary expansion and it does not belong to E. Hence h is a bijection. Let x, y ∈ 2ω\E
and assume x 6= y. Put n0 := min{n ∈ ω : x(n) 6= y(n)}. Thus ρ(x, y) = 1

2n0
. We
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have:

|h(x)− h(y)| =
∣∣∣ ∞∑
k=0

x(k)

2k+1
−
∞∑
k=0

y(k)

2k+1

∣∣∣ =
∣∣∣ ∞∑
k=n0+1

x(k)

2k+1
−

∞∑
k=n0+1

y(k)

2k+1

∣∣∣ =

=
∣∣∣ ∞∑
k=n0+1

x(k)− y(k)

2k+1

∣∣∣ ≤ ∞∑
k=n0+1

1

2k+1
=

1

2n0+1
=

1

2
ρ(x, y).

Hence h is Lipschitz (with constant 1
2 ). �

The following technical lemmas will be useful in the proof of the main theorem

in this section.

Lemma 3.2. Let I be a nonempty open subinterval of (0, 1). Then

log2 diam(h−1(I)) = −min{n ∈ N : ∃k∈{0,1,...,2n−1}
k

2n
∈ I}.

Proof. Let an interval ∅ 6= I ⊆ [0, 1] be open in R. For any distinct a, b ∈ I let

us denote: (a, b〉 := (min{a, b},max{a, b}] a, b ∈ I. For arbitrary a < b there exist:

n ∈ N and k ∈ {0, 1, ..., 2n − 1} such that a < k
2n < b. Hence:

log2 diam(h−1(I)) = log2 sup{ρ(x, y) : x, y ∈ h−1(I)}

= log2 sup{2−min{n∈ω:x(n)6=y(n)} : x, y ∈ h−1(I), x 6= y}

= log2(inf{2min{n∈ω:x(n) 6=y(n)} : x, y ∈ h−1(I), x 6= y})−1

= −min{min{n ∈ ω : x(n) 6= y(n)} : x, y ∈ h−1(I), x 6= y}}
(?)
= −min{min{n ∈ ω : ∃k∈{0,1,...,2n+1−1}

k

2n+1
∈ (h(x), h(y)〉} : x, y ∈ h−1(I), x 6= y}

= −min{n ∈ ω : ∃a,b∈I ∃k∈{0,1,...,2n+1−1} a <
k

2n+1
≤ b}

= −min{n ∈ ω : ∃k∈{0,1,...,2n+1−1}
k

2n+1
∈ I}

= −min{n ∈ N : ∃k∈{0,1,...,2n−1}
k

2n
∈ I}.

We will only prove (?). Let x, y ∈ h−1(I), x 6= y. Observe, that x, y 6= (1, 1, 1, ...).

Indeed, if I ⊆ [0, 1] is open in R, then 1 /∈ I, so (1, 1, 1, ...) /∈ h−1(I). It is sufficient

to show that

min{n ∈ ω : x(n) 6= y(n)} = min
{
n ∈ ω : ∃k∈{0,1,...,2n+1−1}

k

2n+1
∈ (h(x), h(y)〉

}
.

” ≥ ” Put n0 := min{n ∈ ω : x(n) 6= y(n)}. Without the loss of generality let us

assume that x(n0) = 0 and y(n0) = 1. Firstly, observe that

h(x) =

n0−1∑
n=0

x(n)

2n+1
+ 0 +

∞∑
n=n0+1

x(n)

2n+1
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and

h(y) =

n0−1∑
n=0

y(n)

2n+1
+

1

2n0+1
+

∞∑
n=n0+1

y(n)

2n+1
.

Then h(y) > h(x), because

h(y)− h(x) =
1

2n0+1
+

∞∑
n=n0+1

y(n)− x(n)

2n+1

(�)
>

1

2n0+1
+

∞∑
n=n0+1

−1

2n+1
= 0,

where (�) results from the fact that
∞∑

n=n0+1

x(n)
2n+1 <

∞∑
n=n0+1

1
2n+1 = 1

2n0+1 , because

x ∈ 2ω \ E and x 6= (1, 1, 1...). Moreover:

n0−1∑
n=0

y(n)

2n+1
+

1

2n0+1
=

(
n0−1∑
n=0

y(n)2n0−n
)

+ 1

2n0+1

(when n0 = 0, we put
n0−1∑
n=0

y(n)
2n+1 = 0). Put k :=

(
n0−1∑
n=0

y(n)2n0−n
)

+ 1 ∈ Z. Then

1 ≤ k ≤
n0∑
n=0

2n0−n =
n0∑
n=0

2n = 2n0+1− 1. It is obvious that h(y) ≥ k
2n0+1 and h(x) <

k
2n0+1 , because

∞∑
n=n0+1

x(n)
2n+1 < 1

2n0+1 . Hence k
2n0+1 ∈ (h(x), h(y)] = (h(x), h(y)〉, so

n0 ≥ min{n ∈ ω : ∃k∈{0,1,...,2n+1−1}
k

2n+1 ∈ (h(x), h(y)〉}.
” ≤ ” Let n0 = min{n ∈ ω : ∃k∈{0,1,...,2n+1−1}

k
2n+1 ∈ (h(x), h(y)〉}. Suppose that

min{n ∈ ω : x(n) 6= y(n)} > n0, that is for n ≤ n0 we have x(n) = y(n). Hence:

h(x) =

n0∑
n=0

x(n)

2n+1
+

∞∑
n=n0+1

x(n)

2n+1

once

h(y) =

n0∑
n=0

y(n)

2n+1
+

∞∑
n=n0+1

y(n)

2n+1
.

Analogously as in the first part:
n0∑
n=0

x(n)
2n+1 = k0

2n0+1 for some k0 ∈ {0, ..., 2n0+1 − 1}.

Observe that h(x), h(y) ≥ k0
2n0+1 . If k0 = 2n0+1 − 1, then we immediately reach a

contradiction with the definition of n0. If k0 < 2n0+1 − 1, then let us consider the

number k0+1
2n0+1 . Since x, y ∈ 2ω \ E and x, y 6= (1, 1, 1, ...), then binary expansions of

x, y contain infinitely many zeros and therefore we have that h(x), h(y) < k0
2n0+1 +

∞∑
n=n0+1

1
2n+1 = k0

2n0+1 +
1

2n0+2

1
2

= k0
2n0+1 + 1

2n0+1 = k0+1
2n0+1 , so k0+1

2n0+1 > h(x), h(y)〉, which

again contradicts the definition of n0. �

Lemma 3.3. Let n ∈ N. Let I ⊆ [0, 1] be an interval, open in R of length not greater
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than 1
2n . If

∃m≤n ∃k∈{0,...,2m−1}
k

2m
∈ I,

then

∀l≤n ∀r∈{0,...,2l−1}
( r

2l
∈ I ⇒ r

2l
=

k

2m

)
.

In other words, I contains at most one element with binary expansion of length not

greater than n.

Proof. Assume that there are m ≤ n and k ∈ {0, ..., 2m − 1} such that k
2m ∈ I. Let

l ≤ n and r ∈ {0, 1, ..., 2l − 1} be such that r
2l
∈ I. Suppose that r

2l
6= k

2m . Then

r2n−l

2n
6= k2n−m

2n
⇐⇒ r2n−l 6= k2n−m ⇐⇒ |r2n−l − k2n−m| ≥ 1.

Hence we obtain that ∣∣∣ r
2l
− k

2m

∣∣∣ =
|r2n−l − k2n−m|

2n
≥ 1

2n
.

Since r
2l
, k
2m inI and I is open of length not greater than 1

2n , we reach a contradic-

tion. �

Theorem 3.4. A ⊆ 2ω \E is microscopic if and only if h(A) ⊆ [0, 1] is microscopic.

Proof. ⇒ By Proposition 2.2 (b), an image of a microscopic set through a Lipschitz

mapping is also microscopic, so by Proposition 3.1, the proof of this implication is

done.

⇐ Let A ⊆ [0, 1] be microscopic. Without the loss of generality assume that 0, 1 /∈ A.

Put an = 1
23n , for n ∈ N. Let k ∈ N. By Proposition 2.1 (viii) there is a sequence

(In)n∈N of open intervals covering the set A such that diam(In) ≤ 1
23kn . Fix n ∈ N and

assume that In = (a, b) for some 0 ≤ a < b ≤ 1. By Lemma 3.2, log2 diam(h−1(In)) =

−min{m ∈ N : ∃p∈{0,1,...,2m−1} p
2m ∈ In}. Let us consider two cases:

1. min{m ∈ N : ∃p∈{0,1,...,2m−1} p
2m ∈ In} ≥ 3kn. Then:

log2 diam(h−1(In)) = −min{m ∈ N : ∃p∈{0,1,...,2m−1}
p

2m
∈ In} ≤ −3kn.

In this case put J3n−2 := ∅, J3n−1 := ∅, J3n := h−1(In). Observe that

diam(J3n−2) = diam(J3n−1) = 0 < 1
2(3n−1)k <

1
2(3n−2)k and diam(J3n) ≤ 1

23kn .

2. N := min{m ∈ N : ∃p∈{0,1,...,2m−1} p
2m ∈ In} < 3kn. Then there is p ∈

{0, 1, ..., 2N−1} such that p
2N
∈ In. By Lemma 3.3: ∀l≤3kn ∀r∈{0,...,2l−1}

(
r
2l
∈

(a, b) ⇒ r
2l

= p
2N

)
, so p

2N
= 23kn−Np

23kn is the only number of the form q
23kn

in (a, b). Consider the intervals (a, p
2N

) and ( p
2N
, b). Observe that no number

of the form q
23kn belongs to (a, p

2N
). By Lemma 3.2: diam

(
h−1

((
a, p

2N

)))
≤

1
23kn . Analogously diam

(
h−1

((
p
2N
, b
)))
≤ 1

23kn . Note that h−1(In) = J3n−2 ∪
J3n−1 ∪ J3n, where J3n−2 := h−1

({
p
2N

})
, J3n−1 := h−1

((
a, p

2N

))
, J3n :=
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h−1
((

p
2N
, b
))

. Moreover diam(J3n−2) = 0 < 1
2(3n−2)k , diam(J3n−1) ≤ 1

23kn <
1

2(3n−1)k and diam(J3n) ≤ 1
23kn .

Proceeding analogously with all the intervals from the sequence (In)n∈N, we construct

a sequence (Jn)n∈N of subsets of 2ω \ E with the property diam(Jn) ≤ 1
2kn . By

Proposition 2.1 (vi) h−1(A) is microscopic in 2ω \ E. �

4. Isomorphisms of ideals

Theorem 3.4 enables us to compare microscopic sets on the unit interval and in the

Cantor space 2ω. To be more precise, in this section we will give attention to the

existence of an isomorphism between ideals Mic[0,1] and Mic2ω . Let us first recall

the definition of an isomoprhism of ideals.

Definition 4.1. Let X,Y be nonempty sets, I and J be ideals on X and Y , respec-

tively. We call the ideals I and J isomorphic, if there exists a bijection F : X → Y

such that

∀A⊆X
(
A ∈ I ⇐⇒ F (A) ∈ J

)
.

We denote this fact by I ∼= J and call the bijection F an isomorphism of the ideals I
and J . If F is a Borel isomorphism, then we say that I and J are Borel isomorphic.

Thanks to Theorem 3.4, we can prove the following result.

Theorem 4.2. The ideals Mic[0,1] and Mic2ω are Borel isomorphic.

Proof. Put P := { 1
2n : n ∈ N} ⊆ [0, 1]. Observe that E ∪ h−1(P ) (where E is the

same as in Proposition 3.1) is countable. Fix a bijection b : E ∪ h−1(P )→ P . Define

F : 2ω → [0, 1] as follows: for α ∈ 2ω, put:

F (α) :=

{
b(α), where α ∈ E ∪ h−1(P ),

h(α), where α ∈ 2ω \ (E ∪ h−1(P )).

Clearly, F is a Borel isomorphism. We will now show that it is the desired isomor-

phism of the ideals. Let A ∈Mic2ω . F (A) = h(A\(E∪h−1(P )))∪b(A∩(E∪h−1(P ))),

so it is a sum of two microscopic sets, because h(A \ (E ∪ h−1(P ))) is microscopic

by Theorem 3.4 and b(A ∩ (E ∪ h−1(P ))) is countable. Now, let A ⊆ 2ω and F (A)

be microscopic on [0, 1]. Note that A = F−1(F (A)) = h−1
(
h
(
A \

(
E ∪ h−1(P )

)))
∪

b−1
(
b
(
A∩

(
E ∪h−1(P )

)))
. Again using Theorem 3.4 one can show that A is micro-

scopic as well. �

We will now present further theorems concerning ideal isomorphisms. Note that

all product spaces will be considered with the maximum metric.

Theorem 4.3. The ideals Mic2ω×2ω and Mic2ω are Borel isomoprhic.
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Proof. Let H : 2ω × 2ω → 2ω be defined as follows:

H(x, y) := (x(0), y(0), x(1), y(1), x(2), y(2), ...).

H is of course a homeomorphism. By Proposition 2.1 (vii) A is microscopic in 2ω×2ω

with the maximum metric, if

∀n∈N ∃(〈sk〉×〈tk〉)k∈N
sk,tk∈2kn

A ⊆
⋃
k∈N
〈sk〉 × 〈tk〉. (on)

Let (x, y) ∈ A, n ∈ N and (〈sk〉 × 〈tk〉)k∈N be as in (on). Then there is k ∈ N
such that x ∈ 〈sk〉 and y ∈ 〈tk〉, namely x(i) = sk(i) for i ∈ {0, 1, ..., kn − 1} and

y(i) = tk(i) for i ∈ {0, 1, ..., kn − 1}. Hence H(x, y) = (x(0), y(0), x(1), y(1), ...) ∈
〈sk(0), tk(0), sk(1), tk(1), ..., sk(kn− 1), tk(kn− 1)〉 = H(〈sk〉 × 〈tk〉). Because

diam(〈sk(0), tk(0), sk(1), tk(1), ..., sk(kn− 1), tk(kn− 1)〉) = 1
22kn and

H(A) ⊆
⋃
k∈N

H((〈sk〉 × 〈tk〉)), so for n ∈ N, the set H(A) can be covered with a

countable union of the sets H(〈sk〉 × 〈tk〉) with diameters ( 1
4n )1, ( 1

4n )2, ( 1
4n )3, ... ,

respectively. So by Proposition 2.1 (vii) H(A) is microscopic in 2ω.

Let A ∈Mic2ω . By Proposition 2.1 (iv)

∀n∈N ∃ (sk)k∈N
sk∈22kn

A ⊆
⋃
k∈N
〈sk〉.

Observe that H−1(〈sk〉) = 〈sk(0), sk(2), ..., sk(2kn− 2)〉 × 〈sk(1), sk(3), ..., sk(2kn−
1)〉. Hence diam(H−1(〈sk〉)) = 1

2kn . Moreover H−1(A) ⊆
⋃
k∈N

H−1(〈sk〉), which

proves that H−1(A) ∈Mic2ω×2ω . �

Theorem 4.4. The ideals Mic[0,1]×[0,1] and Mic2ω×2ω are Borel isomorphic.

Proof. Let D : 2ω × 2ω → [0, 1] × [0, 1] be given by D(x, y) = (F (x), F (y)) (where

F is the same as in the proof of Theorem 4.2). Then D is a Borel isomorphism.

Put Q := E ∪ h−1(P ). Let A ∈ Mic2ω×2ω . Note that A ⊆ Ã ∪ B, where Ã :=

A \ ((Q× π2(A)) ∪ (π1(A)×Q)), B := ((Q× π2(A)) ∪ (π1(A)×Q)) and πi denotes

the projection on the i-th coordinate. Observe that D(A) ⊆ D(Ã) ∪ D(B) and

D(B) = F (Q) × F (π2(A)) ∪ F (π1(A)) × F (Q). Let F (Q) = {q1, q2, ...}. Since

A ∈Mic2ω×2ω and projections are Lipschitz mappings, then π1(A), π2(A) ∈Mic2ω .

Hence F (πi(A)) ∈ Mic[0,1] for i = 1, 2. It is an easy observation that {qn} ×
F (π2(A)) ∈ Mic[0,1]×[0,1] for n ∈ N, so F (Q)× F (π2(A)) ∈ Mic[0,1]×[0,1] because Q

is countable. Similarly, F (π1(A))× F (Q) ∈Mic[0,1]×[0,1], so D(B) ∈Mic[0,1]×[0,1].

We will show that D(Ã) ∈ Mic[0,1]×[0,1]. Let ε > 0. A ∈ Mic2ω×2ω , so by

Proposition 2.1 there is a sequence (〈sn〉 × 〈tn〉)n∈N such that A ⊆
⋃
n∈N
〈sn〉 × 〈tn〉 i

diam(〈sn〉),diam(〈tn〉) ≤ εn for n ∈ N. Observe that (D((〈sn〉×〈tn〉)∩Ã))n∈N covers

the set D(Ã) and for n ∈ N:

D((〈sn〉 × 〈tn〉) ∩ Ã) ⊆ D(π1((〈sn〉 × 〈tn〉) ∩ Ã)× π2((〈sn〉 × 〈tn〉) ∩ Ã))
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= F (π1((〈sn〉 × 〈tn〉) ∩ Ã))× F (π2((〈sn〉 × 〈tn〉) ∩ Ã))

= h(π1((〈sn〉 × 〈tn〉) ∩ Ã))× h(π2((〈sn〉 × 〈tn〉) ∩ Ã))

⊆ h(π1(〈sn〉 × 〈tn〉))× h(π2(〈sn〉 × 〈tn〉))

⊆ h(〈sn〉)× h(〈tn〉).

At the same time, diam(h(〈sn〉)) = diam(〈sn〉) ≤ εn and diam(h(〈tn〉)) = diam(〈tn〉)
≤ εn. Finally, we obtain that diam(D((〈sn〉 × 〈tn〉) ∩ Ã)) ≤ εn, which finishes the

first part of the proof.

Now, let A ∈ Mic[0,1]×[0,1]. We will show that D−1(A) ∈ Mic2ω×2ω . For x, y ∈
[0, 1], D−1(x, y) = (F−1(x), F−1(y)). Similarly to the first part of the proof, A ⊆
Ã ∪ B, where Ã = A \ ((F (Q) × π2(A)) ∪ (π1(A) × F (Q))) and B = (F (Q) ×
π2(A))∪ (π1(A)×F (Q)). It is sufficient to show that D−1(Ã), D−1(B) ∈Mic2ω×2ω .

Note that D−1(F (Q) × π2(A)) = F−1(F (Q)) × F−1(π2(A)) = Q × F−1(π2(A)),

so Q × F−1(π2(A)) ∈ Mic2ω×2ω . Analogously, F−1(π1(A)) × Q ∈ Mic2ω×2ω , so

D−1(B) ∈ Mic2ω×2ω . Consider the set D−1(Ã) ∈ Mic2ω×2ω . Put ak = 1
29k

for

k ∈ N and fix k ∈ N. By Proposition 2.1, there is a sequence (In × Jn)n∈N such

that A ⊆
⋃
n∈N

In × Jn and diam(In),diam(Jn) ≤ 1
29kn for any n ∈ N. Observe that

(D−1((In × Jn) ∩ Ã))n∈N is a covering of the set D−1(Ã) and for n ∈ N we obtain

that:

D−1((In × Jn) ∩ Ã) ⊆ D−1(π1((In × Jn) ∩ Ã)× π2((In × Jn) ∩ Ã))

= F−1(π1((In × Jn) ∩ Ã)× F−1(π2((In × Jn) ∩ Ã)

= h−1(π1((In × Jn) ∩ Ã)× h−1(π2((In × Jn) ∩ Ã)

⊆ h−1(π1(In × Jn))× h−1(π2(In × Jn))

⊆ h−1(In)× h−1(Jn).

Fix n ∈ N. Proceeding as in the proof of Theorem 3.4, we can show that there exist

sets C1
n, C

2
n, C

3
n, D

1
n, D

2
n, D

3
n ⊆ 2ω such that h−1(In) = C1

n ∪ C2
n ∪ C3

n, h−1(Jn) =

D1
n∪D2

n∪D3
n and diam(Cin),diam(Dj

n) ≤ 1
29kn for i, j ∈ {1, 2, 3}. Of course D−1(Ã) ⊆⋃

n∈N

⋃
i,j∈{1,2,3}

Cin × Dj
n. Fix a numeration (Ln)n∈N of the family {Cin × Dj

n : i, j ∈

{1, 2, 3}, n ∈ N} such that for n ∈ N, L9n−8 = C1
n×D1

n, L9n−7 = C1
n×D2

n, ..., L9n−1 =

C3
n×D2

n, L9n = C3
n×D3

n. Observe that for n ∈ N and l ∈ {0, 1, ..., 8}, diam(L9n−l) ≤
1

29nk ≤ 1
2k(9n−l) , so the sequence (Ln)n∈N is the desired covering of the set D−1(Ã). �

From the above theorems we immediately obtain the following. The σ-ideals of

microscopic sets in the spaces [0, 1], 2ω, 2ω × 2ω i [0, 1]× [0, 1], are Borel isomorphic.

In symbols:

Mic[0,1] ∼=Mic2ω ∼=Mic2ω×2ω ∼=Mic[0,1]×[0,1].
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From the above results it is an easy consequence thatMicR ∼=Mic2ω and further,

all ideals of microscopic sets on finite-dimensional Euclidean spaces, i.e. the ideals

MicRn , are pairwise isomorphic. This is particularly interesting, because it implies

that the cardinal invariants for the ideals of microscopic sets in the above mentioned

spaces are equal.

5. Cardinal invariants of microscopic σ-ideals

For a σ-ideal I of subsets of X containing all singletons we define the following

cardinal invariants:

add(I) = min{|A| : A ⊆ I and
⋃
A /∈ I},

cov(I) = min{|A| : A ⊆ I and
⋃
A = X},

non(I) = min{|Y | : Y ⊆ X and Y /∈ I},

cof(I) = min{|A| : A ⊆ I and ∀B∈I ∃A∈A B ⊆ A}.

As we have mentioned in the Introduction the σ-ideal MicR2 coincides with the σ-

ideal of strongly microscopic sets in the sense of Karasińska and Wagner-Bojakowska.

By Mic∗R2 let us denote the σ-ideal of microscopic sets on the plane in sense of

Karasińska and Wagner-Bojakowska. Clearly, the product A×B of two microscopic

sets A,B ∈ MicR is in Mic∗R2 . On the other hand, the product of two micro-

scopic sets on the real line is not necessary microscopic (strongly microscopic in

sense of Karasińska and Wagner-Bojakowska) on the plane. Moreover, Karasińska

and Wagner-Bojakowska proved in [8] a Fubini type result: product A×B ∈Mic∗R2

if and only if A ∈MicR or B ∈MicR. They also proved that A ∈Mic∗R2 if and only

if there exists U ∈MicR such that A ⊆ (U × R) ∪ (R× U).

Proposition 5.1. (i) add(MicR) = add(Mic∗R2) = add(MicR2) = ω1;

(ii) cov(N ) ≤ cov(MicR) = cov(Mic∗R2) = cov(MicR2) ≤ non(M), where N
stands for the σ-ideal of null subsets of the real line;

(iii) non(MicR) = non(Mic∗R2) = non(MicR2) ≥ cov(M);

(iv) cof(MicR) = cof(Mic∗R2) = cof(MicR2) ≥ max{cov(M), cov(N )}.

Proof. If two ideals are isomorphic, then their respective cardinal invariants coin-

cide. Therefore, by the results from the previous Section we have add(MicR) =

add(MicR2), cov(MicR) = cov(MicR2), non(MicR) = non(MicR2) and

cof(MicR) = cof(MicR2).

(i) Kwela proved in [9] that add(MicR) = ω1. Let {Aα : α < ω1} be a family of

microscopic sets on the real line such that Aα ⊆ Aβ provided α < β and
⋃

α<ω1

Aα /∈

MicR. Then Aα×Aα ∈Mic∗R2 and
⋃

α<ω1

(Aα×Aα) = (
⋃

α<ω1

Aα)×(
⋃

α<ω1

Aα) /∈Mic∗R2 .

Therefore add(Mic∗R2) = ω1.
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(ii) Since microscopic sets are null, then cov(N ) ≤ cov(MicR). Since the ideals

MicR andM are orthogonal, then by the Rothberger Theorem we get the inequality

cov(MicR) ≤ non(M). Let cov(MicR) = κ and let {Aα : α < κ} ⊆ MicR be

such that
⋃
α<κ

Aα = R. Then Aα × R ∈ Mic∗R2 and
⋃
α<κ

(Aα × R) = R2. Thus

cov(MicR) ≥ cov(Mic∗R2). To prove the second inequality let κ = cov(Mic∗R2) and

let {Bα : α < κ} ⊆ Mic∗R2 be a cover of the plane. By the result of Karasińska

and Wagner-Bojakowska, for every α < κ there exists Uα ∈ MicR such that Bα ⊆
(Uα×R)∪ (R×Uα). Then of course

⋃
α<κ

((Uα×R)∪ (R×Uα)) = R2. Suppose to the

contrary that κ < cov(MicR). Then
⋃
α<κ

Uα 6= R. Thus there is x ∈ R \
⋃
α<κ

Uα and

(x, x) /∈
⋃
α<κ

((Uα × R) ∪ (R× Uα)), contradiction.

(iii) Using the Rothberger Theorem again, we obtain non(MicR) ≥ cov(M).

The inequality non(MicR) ≥ non(Mic∗R2) can be deduced from the following: A /∈
MicR =⇒ A × A /∈ Mic∗R2 . The reverse inequality follows from: B /∈ Mic∗R2 =⇒
π1(B) /∈MicR.

(iv) By (ii) and (iii) we obtain cof(MicR) ≥ max{cov(M), cov(N )}. Assume

that A is a base for MicR. Then {(A× R) ∪ (R× A) : A ∈ A} is a base for Mic∗R2 .

Thus cof(MicR) ≥ cof(Mic∗R2). Let {Bα : α < κ} be a base for Mic∗R2 . Again,

for every α < κ there exists Uα ∈ MicR such that Bα ⊆ (Uα × R) ∪ (R × Uα). Let

A = {Uα : α < κ}. Let A ∈MicR. Find α < κ with A×A ⊆ Bα ⊆ (Uα×R)∪(R×Uα).

Then A ⊆ Uα. Therefore cof(MicR) ≤ cof(Mic∗R2). �

By Proposition 5.1, under Martin’s Axiom, cov(MicR) = non(MicR) =

= cof(MicR) = c. Moreover, consistently cov(MicR) < c. There is an open question

whether the invariants non(MicR) and cof(MicR) are equal to c in ZFC.
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Wólczańska 215, PL-93-005  Lódź,
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Presented by W ladys law Wilczyński at the Session of the Mathematical-Physical
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IZOMORFIZMY σ-IDEA LÓW ZBIORÓW MIKROSKOPIJNYCH

W PRZESTRZENIACH METRYCZNYCH

S t r e s z c z e n i e
W pracy uogólnione zostaje pojȩcie zbioru mikroskopijnego na dowolna̧ przestrzeń me-

tryczna̧. Szczególny nacisk po lożony jest na zbiory mikroskopijne w przestrzeni Cantora 2ω.
Podana zostaje seria twierdzeń dotycza̧cych izomorfizmów pomiȩdzy σ-idea lami zbiorów
mikroskopijnych w przestrzeniach 2ω, [0, 1], R, jak i w ich skończonych produktach. Badane
sa̧ także zależności pomiȩdzy niezmiennikami kardynalnymi powyższych σ-idea lów.

S lowa kluczowe: zbiory mikroskopijne, izomorfizm idea lów, zbiór ma ly, σ-idea l, niezmienniki

kardynalne




