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Summary

In the paper we generalise the notion of a microscopic set onto an arbitrary metric
space. We examine microscopic sets in the Cantor space 2“ and give a series of isomorphism
theorems concerning the families of microscopic sets in 2, [0,1], R as well as their finite
products. Moreover, we investigate some connections between cardinal invariants for the
mentioned o- ideals.
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1. Introduction

The notion of a microscopic set was introduced in 2001 by Appell in [2] (cf. [1, 3]).
Namely, a set A C R is microscopic if for every ¢ > 0 there exists a sequence of

intervals (I,)nen such that A C |J I, and |I,,| < €™ for n € N. The family of all
neN
microscopic sets on R is in fact a o-ideal situated between the o-ideal of measure

zero sets and the o-ideal of strong measure zero sets. The notion of microscopic sets
has been recently studied by several authors; see for example [4, 5, 6, 7, 8, 9].

In [8] Karasiniska and Wagner-Bojakowska have introduced two generalisations of
microscopic sets in R?. They call a set A C R? microscopic if for every € > 0 there
exists a sequence (R, )nen of rectangles (with sides parallel to coordinate axis) such
that Ay(A) < e for each n € N, whereas the set is called strongly microscopic if the
same condition holds true for squares with sides parallel to coordinate axis (where
Az denotes the Lebesgue measure on R?). In this paper we generalise the notion of a
microscopic set onto an arbitrary metric space. Our generalisation is coherent with
the latter approach. We then examine some properties of microscopic sets in metric
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spaces and then concentrate on microscopic sets in the Cantor space 2¢. We construct
several Borel isomoprhisms between the families of microscopic sets in 2%, [0, 1] and
their finite products. We also prove that the o-ideal of microscopic sets in R and in
the Cantor space 2¥ equipped with the Baire metric are Borel-isomorphic. It is not
uncommon that dealing with the Cantor space is easier that with the real line. We
believe that our result will help in proving combinatorial properties of the o-ideal of
microscopic sets or will at least simplify the existing proofs. Combinatorial properties
of the o-ideal of microscopic sets on the real line have been recently studied by A.
Kwela in [9], where he proved that the additivity of this o-ideal is equal to w.

2. Microscopic sets in metric spaces

In this section we examine a natural generalisation of the notion of a microscopic set
onto an arbitrary metric space. We give a series of conditions which are equivalent
to being microscopic. We also formulate some well-known facts about the family of
microscopic sets in the case of a metric space, giving a reader a general overview on
the subject.

Let (X, d) be a metric space. Let # € N and r > 0. We denote the open (closed)
ball with the centre x and radius r by B(z,r) (B(z,7)). Let A C X. We denote the
diameter of the set A by diam(A).

We call a set A C X microscopic, if for every, e > 0 there exists a sequence

(In)nen of subsets of X, such that A C |J I, and diam([,) < " for every n € N.
neN
We denote the family of all microscopic sets in the space X by Micx.

It turns out, that in an arbitrary metric space, one obtains the following con-
venient result, whose proof is an easy exercise. Before we state it, let us denote

Car = {(ak)kEN €co: Vien ar > 0}.

Proposition 2.1. Let A C X. The following conditions are equivalent:

(1) Ae Micx;

(1) Yes0 qapmenycx A C nLeJNB(me");
(ii1) Veso Fapmemicx AC nLeJNE(xmgn);

(10) Yo )eneet Ve Ffo,menpcx AC nLeJNB(%a?)?

() V(aoeneet TheN F(Ba)nen (AQ U Bn AVnen diam(By) S%L),

neN
where (Bp)nen 8 a sequence of open balls in X ;

(Ui) V(ak)ke]\'eca- VieN El(Jn)neN (A - LEJN Jn AVinen dlam(Jn) < (Zz),
where (Jp)nen 18 a sequence of subsets of X ;
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(Uii) H(Gk)keNECS' VieN H(Jn)nEN (AC UNJn AVnen dlam(Jn) <GZ>,
ne

where (Jp)nen is a sequence of subsets of X ;

(viid) H(ak)ngecg VieN H(Bn)nEN (Ag UNBn AVpen diam(B,) < CLZ),
ne
where (By)nen 18 a sequence of open balls in X ;

(1) Ja)eeneet YheN Fo,menpcx AC UNB(JCWGZ)-
ne

It is obvious that in the conditions 1., 2. i 8. of the above theorem one can
equivalently take € € (0,1).

Clearly countable sets are microscopic. Moreover, if one considers a discrete metric
space, then the opposite implication is true as well. Suppose that A is a microscopic
set in a discrete metric space. By Proposition 2.1 (viii), there exists a sequence
(By)nen of open balls covering the set A such that diam(B,) < (3)" for n € N.
Since for every n € N the ball B,, is in fact a singleton, A must be countable.

It is a well known fact that the family of all microscopic sets on the real line
(considered with Euclidean metric) forms a o-ideal, i.e. a family closed under taking
subsets and countable unions. It turns out that the same is true in case of an arbitrary
metric space. Some other facts about microscopic sets are true in arbitrary metric
spaces, namely:

Proposition 2.2. Let (X,d) be a metric space. Then

(a) Micx is a o-ideal;

(b) if (Y,p) is a metric space and f : X — Y is a Lipschitz mapping, then A €
Micx implies f(A) € Micy;

(c) if d,p are Lipschitz equivalent metrics on X, then Mic x qy = Mic(x p);

(d) microscopic sets have Hausdorff dimension zero.

The proof of (a) in the above theorem is analogous to the one in case of R, which
can be found in several papers concerning microscopic sets. Points (b), (¢) and (d)
are simple observations.

Recall that we call the ideals A and B on a nonempty set X orthogonal if there
exist sets A € A, B € Bsuch that ANB =0 and X = AU B.

We can now formulate another generalisations of facts concerning families micro-
scopic sets which are well-known in the case of the real line.

Fact 2.3. In every separable and complete metric space, there exists a residual mi-
croscopic set. In other words, the o-ideals Micx and Mx are orthogonal (where
Mx denotes the o-ideal of the sets of the first category).

Proof. First observe that the o-ideal Micx has a base consisting of Gs-sets. Indeed,
let A € Micx. From Proposition 2.1(ii) for every k € N there exists a set {zg, : n €

N} such that A € U B(@gn, (£)"). Put B:= () U B(zk,n, (3)"). Then obviously
neN keNneN
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B is a microscopic, G superset of A. Now, let D C X be dense and countable. Clearly
D is microscopic and its G5 microscopic superset is residual. g

3. Microscopic sets in the Cantor space 2¥

Let us denote the set of all infinite (finite) binary sequences by 2% (2<“). For any
s € 2<% s = (s0,81,...5n) and i € {0,1} by s we denote the concatenation of the
sequence and the term i, i.e. % = (sg, S1, ..., Sn, %) and by |s| we denote the length
of the sequence s (we assume || = 0). Moreover, for ¢ € 2%, by t|n we denote the
restriction of ¢ to n initial terms.

In this section we take into consideration the family of all microscopic sets in
the Cantor space 2¢, i.e. the set of all infinite binary sequences with the so-called
Baire metric. The metric, which is in fact an ultrametric is defined as follows. For

z,y €2 v = (x(n))new; ¥y = (y(n))new we put

27min{n€w:z(n)7€y(n)}’ if ¢ # v
pla,y) =4 .
0,ifz =y.

Of course the space (2¥,p) is compact and separable. The base of the topology
consists of sets (s) = {z € 2¥ : s < z} for s € 2<%, where s < z iff z||s| = s. Thus,
the set (s) consists of all infinite extensions of the finite sequence s.

Let us define a mapping between the Cantor space and the unit interval [0, 1]
which will enable us to identify microscopic sets in 2% with microscopic subsets of
the unit interval (with Euclidean metric). Consider a mapping g : 2* — [0, 1] given
by:

Observe, that if € 29, then g(z) is a number in [0, 1], whose binary expansion is
the sequence x. Since there exist numbers which have two binary expansions (the so
called dyadic fractions), g is not injective. Thus, let us consider the set F := {z €
2“ : Jnew Ymsn x(m) = 1} \ {(1,1,1,...)} and put h := g [\ g. Then the following
is true.

Proposition 3.1. The mapping h : 2¥ \ E — [0,1] is a Lipschitz bijection.

Proof. Since 2¥\ E consists precisely of the sequence (1,1, 1, ...) and binary sequences
which have infinitely many zeros, then h is an injection. Let z € [0, 1]. If 2z is a dyadic
fraction, i.e. 2 =  for some m,k € w such that m < 2% then z has two binary
expansions and exactly one of them belongs to 2¥ \ E. Otherwise, z has only one
binary expansion and it does not belong to E. Hence h is a bijection. Let =,y € 2“\ E
and assume x # y. Put ng := min{n € w : z(n) # y(n)}. Thus p(z,y) = 5. We
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have:

o~ 2(k) < y(k) o~ z(k) o~ y(k)

@) = bt = | 3 G = X g | =| 2 G- X gwer|-
k=0 k=0 k=no+1 k=ng+1
2 z(k) —y(k) =1 1 1
= ‘ Z ok+1 ‘ < Z ok+1 — notl §p(:17,y).
k=no+1 k=no+1

Hence h is Lipschitz (with constant 3). O

The following technical lemmas will be useful in the proof of the main theorem
in this section.

Lemma 3.2. Let I be a nonempty open subinterval of (0,1). Then

k
log, diam(h~*(I)) = —min{n € N : reto,....27—1} on eI}

Proof. Let an interval @ # I C [0,1] be open in R. For any distinct a,b € I let
us denote: (a,b) := (min{a, b}, max{a,b}] a,b € I. For arbitrary a < b there exist:
n € Nand k € {0,1,...,2" — 1} such that a < 2% < b. Hence:

logy diam(h™ (1)) = logy sup{p(z,y) : z,y € h= (1)}
= log, sup{2~mir{newz(m)Zy(m)} . 4 e BT, = # y}
— 10g2(inf{2min{n6w:x(n);ﬁy(n)} cx,y € h—l(])7 z 75 y})—l

= —min{min{n € w: z(n) #yn)}:x,y € h (1), z #y}}

* . . k _
® —min{min{n € w: Jpeqo,1,... 2n+1-1} STESY € (h(x),h(y)} s z,y € 1),z # y}

. k
= —min{n € w: Jgpers Jrefo,1,..2n1-13 a < onFT < b}
. k
= 7m1n{n cw: Eke{o’l,m’gnJrl,l} W € I}

. k
= —mln{n eN: ElkE{O,l,..qQ"fl} 27 S I}

We will only prove (x). Let x,y € h=1(I), x # y. Observe, that z,y # (1,1,1,...).

Indeed, if I C [0,1] is open in R, then 1 ¢ I, so (1,1,1,...) ¢ h=1(I). It is sufficient
to show that

min{n € w: z(n) # y(n)} = min {n € w: Jpefo,1,...2n+1-1} Qn% € (h(x), h(y))}

7 >7 Put ng := min{n € w: z(n) # y(n)}. Without the loss of generality let us
assume that x(ng) = 0 and y(ng) = 1. Firstly, observe that

N~ x(n) o o(n)

h(x) = Z on+1 +0+ Z gn+1

n=0 n=nop+1
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and
oy ) |
h(y) = 2n+1 2n0+1 + Z 2n+1 :
n=0 n=no+1
Then h(y) > h(x), because
y(n) —z(n) © 1 — -1
h(y) - h(CU) 2n0+1 Z 2n+1 > 2n0+1 + Z 2n+1 - 0’
n=no+1 n=ng+1
where (¢) results from the fact that > ;Sﬂ < Y 35T = gmsr, because
n=ng+1 n=ng+1

x €2¥\ E and z # (1,1, 1...). Moreover:

ml (’:gy(n)wn) +1

on+1 ono+1 = 9no+1

n=0

’I’Lofl
(when ng = 0, we put Y, é’ﬁ)l =0). Put k := ( > y(n)2"0_") +1 € Z. Then
n=0 n=0
no no
1<k< Z 2no—n = 3 2m = 2motl 1 Tt is obvious that h(y) > 52 and h(z) <

n=0
0

siber, because Y. 2 < Lo Hence siter € (h(z),h(y)] = (h(x), h(y)), so
n=no+1

no > min{n € w: Jpeqo1,...2n+1 -1} 271% € (h(z), h(y))}-

7 <7 Let ng = min{n € w: Jpeqo,1,... 2n+1-1} 5 € (h(z), h(y))}. Suppose that
min{n € w : z(n) # y(n)} > ng, that is for n < ng we have z(n) = y(n). Hence:
Z n+1 Z 2n+1

n=0 n=no+1

once
no

h(y) Z 2n+1 + Z 2n+1

n=no+1

Analogously as in the first part: Z 2n+ = 2’2—"“ for some ko € {0,...,270 Tt — 1},

Observe that h(z),h(y) > 2ﬂ0+1 If ko = 270t — 1, then we immediately reach a

contradiction with the definition of ng. If kg < 2™ 1 — 1, then let us consider the

number 2’“,5’(;&11 Since z,y € 2¥ \ FE and z,y # (1,1,1,...), then binary expansions of

2,y contain infinitely many zeros and therefore we have that h(x),h(y) < % +
[e.e] 1
k 2 k41 k .
Z 1 2”,% = 2n0[1#1 + 2 [)%+2 == 2n0+1 + 2n0+1 = 27?(;:»1 ) S0 27?(;:»11 > h( ) h’(y)>) Wthh
n=no+
again contradicts the definition of ng. |

Lemma 3.3. Letn € N. Let I C [0, 1] be an interval, open in R of length not greater
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than —. If

k
Fm<n E'ke{o,...,Qm—l} om €l
then

k
Vi<n Vre{o,..20-1} (21 €l= 2[ 271)

In other words, I contains at most one element with binary expansion of length not
greater than n.

Proof. Assume that there are m < n and k € {0, .. — 1} such that 5 € I. Let
I<nandre€{0,1,..,2" — 1} be such that 5 € I. Suppose that £ K S - Then
r2n—t g2
2n 2n
Hence we obtain that

= 2Tl L g™ = 2Tl g2 > 1.

ro k| |r2nt— k2T o1

ol om| T gm % 27'
Since 27,, swind and I is open of length not greater than 2”, we reach a contradic-
tion. (]

Theorem 3.4. A C 2¥\ E is microscopic if and only if h(A) C [0,1] is microscopic.

Proof. = By Proposition 2.2 (b), an image of a microscopic set through a Lipschitz
mapping is also microscopic, so by Proposition 3.1, the proof of this implication is
done.

< Let A C [0, 1] be microscopic. Without the loss of generality assume that 0,1 ¢ A.
Put a, = ﬁ, for n € N. Let k € N. By Proposition 2.1 (viii) there is a sequence
(I)nen of open intervals covering the set A such that diam(7,,) < 23xm Fixn € Nand
assume that I,, = (a,b) for some 0 < a < b < 1. By Lemma 3.2, log, diam(h~1(1,,)) =
—min{m € N: 3,cq01,...2mn—1} 5m € In}. Let us consider two cases:

L min{m € N: 3,cq01,..2m—1} 5 € In} > 3kn. Then:
log, diam(h™'(I,)) = —min{m € N: 3pe(0.1, . 2m_1} 2% €I,} < —-3kn.

In this case put J3,_o := 0, J3,,_1 := 0, J3n =h" ( n)- Observe that
diam(J3,_2) = diam(J3,_1) =0 < 2(3,L,1>k < 2(3,,L,2)k and diam(J3,) < 33 -
2. N := min{m € N : Jpcro1,..2m—1} 3% € In} < 3kn. Then there is p €

{0,1,...,2N 1} such that J € I,,. By Lemma 3.3: Vi<3rn Vreqo,.. 21-1} (% €

3kn—N
(a,0) = & = &), so & = 277 P is the only number of the form =2
, o N | 5N 23kn y 33kn

n (a,b). Consider the intervals (a,
of the form i belongs to (a, 5%
QS,W Analogously diam (h~ ((L
Jgn 1 U Jgn7 where Jgn 9 =

s%) and (5% ,b). Observe that no number
) By emma 3.2: diam (h’l ((a, %)) <
b))) < g Note that h™'(I,,) = Jap_2 U
({QLN}) Jan—1 == h” (( 72N)) J3n =
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h=! ((3,b)). Moreover diam(Js,—2) = 0 < gmrayr, diam(Jsp—1) < 550 <
m and diam(Js,) < 23%

Proceeding analogously with all the intervals from the sequence (I, ),en, we construct
a sequence (J,)nen of subsets of 2 \ E with the property diam(.J,) < . By

Proposition 2.1 (vi) h=1(A) is microscopic in 2¥ \ E. O

4. Isomorphisms of ideals

Theorem 3.4 enables us to compare microscopic sets on the unit interval and in the
Cantor space 2“. To be more precise, in this section we will give attention to the
existence of an isomorphism between ideals Micpg ) and Micgw. Let us first recall
the definition of an isomoprhism of ideals.

Definition 4.1. Let X, Y be nonempty sets, Z and J be ideals on X and Y, respec-
tively. We call the ideals Z and J isomorphic, if there exists a bijection F' : X — Y
such that

Vacx (A €T < F(A) e j).
We denote this fact by Z =& J and call the bijection F' an isomorphism of the ideals 7
and J. If F' is a Borel isomorphism, then we say that I and J are Borel isomorphic.
Thanks to Theorem 3.4, we can prove the following result.

Theorem 4.2. The ideals Micy 1) and Micy. are Borel isomorphic.

Proof. Put P := {5~ : n € N} C [0,1]. Observe that E Uh~*(P) (where E is the
same as in Proposition 3.1) is countable. Fix a bijection b : EUh~!(P) — P. Define
F:2% —[0,1] as follows: for a € 2%, put:

Flo) b(a), where a € EUh™1(P),
) =
h(a), where o € 2%\ (E U h™(P)).
Clearly, F' is a Borel isomorphism. We will now show that it is the desired isomor-
phism of the ideals. Let A € Micaw. F(A) = h(A\(EUL™1(P)))Ub(AN(EUR™1(P))),

so it is a sum of two microscopic sets, because h(A \ (E U h~1(P))) is microscopic
by Theorem 3.4 and b(A N (E'Uh~1(P))) is countable. Now, let A C 2¢ and F(A)

be microscopic on [0, 1]. Note that A = F~}(F(A)) = h~! (h(A\ (EU hil(P)))) u
bt (b(A N(EU h*I(P)))) Again using Theorem 3.4 one can show that A is micro-

scopic as well. O

We will now present further theorems concerning ideal isomorphisms. Note that
all product spaces will be considered with the maximum metric.

Theorem 4.3. The ideals Micow o and Micow are Borel isomoprhic.
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Proof. Let H : 2¥ x 2 — 2“ be defined as follows:

H(z,y) := (2(0),(0),2(1),y(1), 2(2), y(2), -..)-

H is of course a homeomorphism. By Proposition 2.1 (vii) A is microscopic in 2% x 2%
with the maximum metric, if

VneN Jepxpen A C U<3k> X (tr)- ()

Skt €2FM keN
Let (z,y) € A, n € N and ((sg) X (tx))ren be as in (x). Then there is k¥ € N
such that = € (sx) and y € (tx), namely z(i) = si(i) for i € {0,1,...,kn — 1} and
y(i) = t(i) for i € {0,1,...,kn — 1}. Hence H(z,y) = (x(0),y(0),z(1),y(1),...) €
(5%(0),11(0), sk (1), tx(1), ..., s (kn — 1), tp(kn — 1)) = H({s) X ( k). Because
diam((s(0),tx(0), sk (1), tx(1), ..., sp(kn — 1), tx(kn — 1))) = 22kn and
H(A) € U H(({sk) x (tr))), so for n € N, the set H(A) can be covered with a
keN

countable union of the sets H((sj) x (t)) with diameters ()%, ()% (53 ...,
respectively. So by Proposition 2.1 (vii) H(A) is microscopic in 2¢.

Let A € Micyw. By Proposition 2.1 (iv)

Vnen EI(Sk)keN AC U <Sk>
s €22k keN

Observe that H~ (( k) = (sx(0), sk(2) o 8K(2kn — 2)) x (sx(1), sk (3), (2kn —
1)). Hence diam(H'((sx))) = zix. Moreover H~(A) C kGNH_1(<sk>), which
proves that H 1(A) € Micow xow. O

Theorem 4.4. The ideals Micp 1)x[0,1] and Micawxaw are Borel isomorphic.

Proof. Let D : 2% x 2 — [0,1] x [0,1] be given by D(x,y) = (F(z), F(y)) (where
F is the same as in the proof of Theorem 4.2). Then D is a Borel 1somorphlsm
Put Q := EUh '(P). Let A € Micywyos. Note that A € AU B, where A :
A\ (@ x m2(A4)) U (m1(A) x Q)), B == ((Q x m2(A)) U (m1(A) x Q)) and 7; denotes
the projection on the i-th coordinate. Observe that D(A) C D(A) U D(B) and
D(B) = F(Q) x F(m(A4)) U F(m(A)) x F(Q). Let F(Q) = {¢1,92,...}. Since
A € Micgw xoe and projections are Lipschitz mappings, then mq(A), m2(A) € Micow.
Hence F(m;(A)) € Micyy) for i = 1,2. Tt is an easy observation that {g,} x
F(my(A)) € Micp 1)x[o,1) for n € N, so F(Q) x F(m2(A)) € Micig1)x[0,1] because Q
is countable. Similarly, F'(m1(A)) x F(Q) € Micjo 1)x[0,1], 0 D(B) € Micy 11x[0,1]-
We will show that D(A) e Micjg 1)x[0,1)- Let € > 0. A € Micgoxaw, so by

Proposition 2.1 there is a sequence ({s,) X {t,))nen such that A C | (s,) X (t,) i
neN

diam((sn)), diam((t,)) < &" for n € N. Observe that (D(({sy) % (tn)) NA)),en covers
the set D(A) and for n € N:

D(({sn) % {tn)) N A) C D(m1(({sn) x (tn)) N A) x m2(((s0) X (ta)) N A))
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= F(m1(((sn) X (ta)) N A)) X F(ma(((sn) X (tn)) N A))
= (i (({sn) % (tn)) N A)) X A(ma(({50) % (ta)) N A))
C h(mi((sn) X (tn))) X h(m2({sn) x (tn)))

C h((sn)) x h((tn)

) )
At the same time, diam(h((s,))) = diam((s,)) < e™ and diam(h({t,))) = diam({t,,))
< i (sn) X (t,)) N A)) < &", which finishes the
first part of the proof.

Now, let A € Micjo1)x[0,1]- We will show that D™!(A) € Micgoxoe. For 2,y €
0,1], D~ (z,y) = (F~'(z), F~'(y)). Similarly to the first part of the proof, A C
AU B, where A = A\ (F(Q) x m(A)) U (m1(A) x F(Q))) and B = (F(Q) x
m2(A))U (7 (A) x F(Q)). It is sufficient to show that D~*(A), D~1(B) € Micgw xoe.
Note that D™YF(Q) x m(4)) = FHF(Q)) x F~ (m(A)) = Q x F~Y(m(4)),
50 Q x F~1(my(A)) € Micgwyoe. Analogously, F~1(m(A)) x Q € Micywxaw, S0
D~Y(B) € Micgwxow. Consider the set D’l(fl) € Micowyow. Put ap = 2% for
k € N and fix k € N. By Proposition 2.1, there is a sequence (I, X Jp)nen such

that A C |J I, x J, and diam([,,),diam(J,,) < 555 for any n € N. Observe that
neN

(DY ((I, x Jp) N A))pen is a covering of the set D~(A) and for n € N we obtain
that:

D7Y(I, x J,)NA) € D™y (I, Jn) NA) x mo((I, x J,) N A))
Yy (I x Jp) NA) x F™Y(ma((Iy x Jp) N A)
= h (m (I x Jn) N A) x h*l(m((fn x J,) N A)
Ch Hmi (I x Jp)) x h™H(me (I, x Jp))

C A7 (1) x 7 ().

Fix n € N. Proceeding as in the proof of Theorem 3.4, we can show that there exist
sets CL,C2 C3 DL D2, D3 C 2% such that h=1(I,,) = CLUC2uUC3, h=1(J,) =
DLUD2UD} and diam(C?), diam(DJ)) < 5ok ford, j € {1,2,3}. Of course D~1(A) C
U U €} x DJ. Fix a numeration (Ly)nen of the family {C! x DJ :i,j €
neNi,je{1,2,3}

{1,2,3},n € N} such that forn € N, Ly, g = C:xDL Lo, 7 =CLxD? .. Lo, 1 =
C3x D2, Lo, = C3 x D3. Observe that for n € Nand [ € {0, 1, ...,8}, diam(Lg,—;)

5o < 2,49%,), so the sequence (L, )nen is the desired covering of the set D~1(A). O

IN

From the above theorems we immediately obtain the following. The o-ideals of
microscopic sets in the spaces [0, 1], 2, 2¢ x 2% 1 [0, 1] x [0, 1], are Borel isomorphic.
In symbols:

MiC[OJ] = MiCQw = MiCQw X 2w = M?:C[071]><[071].
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From the above results it is an easy consequence that Micg = Micye and further,
all ideals of microscopic sets on finite-dimensional Euclidean spaces, i.e. the ideals
Micgn, are pairwise isomorphic. This is particularly interesting, because it implies
that the cardinal invariants for the ideals of microscopic sets in the above mentioned
spaces are equal.

5. Cardinal invariants of microscopic o-ideals

For a o-ideal Z of subsets of X containing all singletons we define the following
cardinal invariants:

add(Z) = min{|A|: AC T and | JA ¢ T},
cov(Z) = min{|A| : A C T and UA =X},
non(Z) =min{|Y|: Y C X and Y ¢ 7},
cof(Z) = min{|A| : A C T and Vgez Jaca B C A}

As we have mentioned in the Introduction the o-ideal Micg> coincides with the o-
ideal of strongly microscopic sets in the sense of Karasiniska and Wagner-Bojakowska.
By Micg. let us denote the o-ideal of microscopic sets on the plane in sense of
Karasinska and Wagner-Bojakowska. Clearly, the product A x B of two microscopic
sets A, B € Micg is in Mick,. On the other hand, the product of two micro-
scopic sets on the real line is not necessary microscopic (strongly microscopic in
sense of Karasiniska and Wagner-Bojakowska) on the plane. Moreover, Karasiniska
and Wagner-Bojakowska proved in [8] a Fubini type result: product A x B € Mick.
if and only if A € Micg or B € Micg. They also proved that A € Micg, if and only
if there exists U € Micg such that A C (U x R)U (R x U).

Proposition 5.1. (i) add(Micg) = add(Micy,) = add(Micgz) = wy;
(ii) cov(N) < cov(Micg) = cov(Mick,) = cov(Micgz) < non(M), where N
stands for the o-ideal of null subsets of the real line;
(i#11) non(Micg) = non(Micy,) = non(Micgz) > cov(M);
(iv) cof (Micg) = cof (Mick,) = cof (Micgz) > max{cov(M),cov(N)}.

Proof. If two ideals are isomorphic, then their respective cardinal invariants coin-
cide. Therefore, by the results from the previous Section we have add(Micr) =
add(Micgz), cov(Micr) = cov(Micgz), non(Micg) = non(Micgz) and
cof (Micg) = cof (Micgz).

(i) Kwela proved in [9] that add(Micg) = w;. Let {4y : @ < wi} be a family of
microscopic sets on the real line such that A, C Ag provided a < S and |J Ay ¢

a<wi

Moicg. Then Ay x A, € Mich, and | (AaxAs) =( U Aa)x( U Aa) ¢ Micg..

a<wi a<wi a<wi
Therefore add(Micy.) = w.
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(ii) Since microscopic sets are null, then cov(N) < cov(Micg). Since the ideals
Miicg and M are orthogonal, then by the Rothberger Theorem we get the inequality
cov(Micg) < non(M). Let cov(Micg) = x and let {4, : o < k} C Micg be
such that |J A, = R. Then A, x R € Mic}, and |J (Aa x R) = R2 Thus

a<lk a<k
cov(Micg) > cov(Micg,). To prove the second inequality let x = cov(Mick,) and

let {By : @ < k} C Miciz be a cover of the plane. By the result of Karasiniska
and Wagner-Bojakowska, for every a < k there exists U, € Micg such that B, C
(Uy x R)U (R x U,,). Then of course |J (U, x R)U (R x U,)) = R2. Suppose to the

a<k
contrary that x < cov(Micg). Then |J U, # R. Thus there is x € R\ | U, and

a<k a<k

(,2) ¢ U (Usy x R)U (R x U,)), contradiction.

(iii) Using the Rothberger Theorem again, we obtain non(Micg) > cov(M).
The inequality non(Micg) > non(Micf.) can be deduced from the following: A ¢
Micg = A x A ¢ Micf,. The reverse inequality follows from: B ¢ Mick, —
m1(B) ¢ Micg.

(iv) By (ii) and (iii) we obtain cof(Micg) > max{cov(M),cov(N)}. Assume
that A is a base for Micg. Then {(A X R) U (R x A) : A € A} is a base for Micg,.
Thus cof(Micg) > cof(Micg.). Let {By : a@ < k} be a base for Mick,. Again,
for every o < k there exists U, € Micg such that B, C (U, x R) U (R x U,). Let
A={U,:a<k}.Let A € Micg. Find a < k with AxA C B, C (U, xR)U(RXU,).
Then A C U,. Therefore cof(Micg) < cof(Micg.). O

By Proposition 5.1, under Martin’s Axiom, cov(Micg) = non(Micg) =
= cof (Micgr) = ¢. Moreover, consistently cov(Moicg) < ¢. There is an open question
whether the invariants non(Moicg) and cof (Micg) are equal to ¢ in ZFC.
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IZOMORFIZMY o-IDEALOW ZBIOROW MIKROSKOPILINYCH
W PRZESTRZENIACH METRYCZNYCH

Streszczenie

W pracy uogdélnione zostaje pojecie zbioru mikroskopijnego na dowolng przestrzen me-
tryczna. Szczegdlny nacisk potozony jest na zbiory mikroskopijne w przestrzeni Cantora 2%.
Podana zostaje seria twierdzen dotyczacych izomorfizméw pomiedzy o-ideatami zbioréw
mikroskopijnych w przestrzeniach 2¢, [0, 1], R, jak i w ich skoficzonych produktach. Badane
sa takze zaleznosci pomiedzy niezmiennikami kardynalnymi powyzszych o-idealéw.

Stowa kluczowe: zbiory mikroskopijne, izomorfizm idealéw, zbiér maty, o-ideal, niezmienniki

kardynalne






