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Summary

The jump of the Milnor number of an isolated singularity f0 is the minimal non-zero

difference between the Milnor numbers of f0 and one of its deformations fs. We estimate

the jump of homogeneous and semi-homogeneous singularities in the class of linear defor-

mations.
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1. Introduction

Let f0 : (Cn, 0) → (C, 0) be an isolated singularity, i.e. there exists a representative

f̂0 : U → C of f0, holomorphic in an open neighbourhood U of the point 0 ∈ Cn
such that:

1. f̂0(0) = 0,

2. ∇f̂0(0) = 0,

3. ∇f̂0(z) 6= 0 for z ∈ U \ {0},

where for a holomorphic function f we put ∇f :=
(
∂f
∂z1

, . . . , ∂f∂zn

)
.

In the sequel a singularity means an isolated singularity.

A deformation of the singularity f0 is the germ of a holomorphic function

f = f(s, z) : (C× Cn, 0)→ (C, 0) such that

1. f(0, z) = f0(z),

2. f(s, 0) = 0.

[77]
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The deformation f(s, z) of the singularity f0 will also be treated as a family (fs)

of functions germs, taking fs(z) := f(s, z). Since f0 is an isolated singularity then fs
for sufficiently small s also has isolated singularities near 0 ([2] Theorem 2.6 I). By

the above for sufficiently small s one can define µs

µs := µ(fs) = dimCOn/(∇fs),

called the Milnor number of fs, where On is the ring of the holomorphic function

germs at 0, and (∇fs) is the ideal in On generated by ∂f0
∂z1

, . . . , ∂f0∂zn
.

Since the Milnor number is upper semi-continuous in the Zariski topology in

families of singularities ([2], Theorem 2.6 I), there exists an open neighbourhood

S([2], Theorem 2.6 I and Proposition 2.57 II) of the point 0 such that

1. µs = const. for s ∈ S \ {0},
2. µ0 ≥ µs for s ∈ S.

The constant difference µ0−µs (for s 6= 0) will be called the jump of the deforma-

tion (fs) and denoted by λ((fs)). The smallest non-zero value among all the jumps

of deformations of the singularity f0 will be called the jump of the Milnor number of

the singularity f0 and denoted by λ(f0).

From now we will consider only plane curve singularities f0 :
(
C2, 0

)
→ (C, 0).

The first general result concerning the jump of the Milnor number was obtained

by Sabir Gusein-Zade([1]), who proved that there exist singularities f0 for which

λ(f0) > 1. Later the same problem was consider by:

• A. Bodin ([7]) who gave a formula for λ(f0) for f0 convenient with its Newton

polygon reduced to one segment for non-degenerate deformations,

• J. Walewska ([6]) who generalized Bodins results to the non-convenient case

for non-degenerate deformations,

• S. Brzostowski, T. Krasiski and J. Walewska ([5]) who calculated all possible

Milnor numbers of all non-degenerate deformations of homogeneous singulari-

ties,

• in the same paper they proved that for the singularity fn0 (x, y) = xn + yn

(n ≥ 2) we have λ(f0) =
[
n
2

]
.

In this paper we consider the jump of the Milnor number of homogeneous and

semi-homogeneous singularities for all linear deformations of f0 i.e. deformations of

the form fs = f0 + sg, where g is a holomorphic function in the neighbourhood of

0 such that g(0) = 0. The smallest non-zero value among all the jumps of linear

deformations of the singularity f0 will be denoted λlin(f0).

To get the main result the Enriques diagrams will be used. For any singularity we

can assign its weighted Enriques diagram (D, ν) which represents the whole resolution

process of this singularity ([3] Chapter 3.9). It is a finite graph with two types of edges

and the weight function ν : D → Z on vertices of the diagram. Moreover M. Alberich-
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Carraminñana and J. Roé ([4] Lemma 1.1) gave a necessary and sufficient condition

for two Enriques diagrams of singularities to be linear adjacent. It means that one

singularity is a linear deformation of an another. We estimate from above the jump

of Milnor number for homogeneous and semi-homogeneous singularities for linear

deformations.

2. Abstract Enriques diagrams

Information about abstract Enriques diagrams can be found in [4] and [8].

Definition 2.1. An abstract Enriques diagram is a tree D with the root and binary

relation between vertices, called proximity, which satisfies:

1. The root is proximate to no vertex.

2. Every vertex that is not the root is proximate to its immediate predecessor.

3. No vertex is proximate to more than two vertices.

4. If a vertex Q is proximate to two vertices, then one of them is the immediate

predecessor of Q and it is proximate to the other.

5. Given two vertices P,Q with Q proximate to P , there is at most one vertex

proximate to both of them.

The fact that Q is proximate to P we will denoted Q → P . The vertices which

are proximate to two points are called satellite, the other vertices (except the root)

are called free.

The vertex is final if is has no successor.

To show graphically the proximity relation, Enriques diagrams are drawn accord-

ing to the following rules:

1. If Q is a free successor of P , then the edge going from P to Q is smooth and

curved and, if P is not the root, it has at P the same tangent as the edge

joining P to its predecessor.

2. The sequence of edges connecting a maximal succession of vertices proximate

to the same vertex P are shaped into a line segment, orthogonal to the edge

joining P to the first vertex of the sequence.

Example 2.2. Let D = {R,S1, ..., S12} be an abstract Enriques Diagram as in

Figure 1 where R is the root. Proximate relation is: S1, S9, S10 → R; S2, S6, S7 → S1;

S3, S6 → S2; S4, S5 → S3; S7 → S6; S8 → S7; S10 → S9 and S11, S12 → S10.

Definition 2.3. A system of multiplicities is any function ν : D → Z.

Definition 2.4. A pair (D, ν), where D is an abstract Enriques diagram and ν a

system of multiplicities for it, is called a weighted Enriques diagram.
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•S2
•S4

•S1
•S3

•S9 •S6 •S5

•R
•S10

•S7

•S11 •S12 •S8

Fig. 1. Graphic presentation of an Enriques diagram D.

Definition 2.5. A consistent Enriques diagram is a weighted Enriques diagram such

that, for all P ∈ D
ν(P ) ≥

∑
Q→P

ν(Q).

Definition 2.6. To every system of multiplicities ν for a diagram D we associate a

system of values, which is another map ordν : D → Z, defined recursively as

ordν(P ) =

 ν(P ), P is the root,

ν(P ) +
∑
P→Q

ordν(Q), otherwise.

Definition 2.7. A subdiagram of an abstract Enriques diagram D is a subtree D0 ⊂
D with the same proximity relation such that if Q ∈ D0 then its predecessor belongs

to D0.

Definition 2.8. Let (D, ν) and (D′, ν′) be weighted Enriques diagrams, with (D′, ν′)

consistent. We will write (D′, ν′) ≥ (D, ν) when there exists isomorphic subdiagrams

D0 ⊂ D, D′0 ⊂ D′ and an isomorphism

i : D0 → D′0

such that the new system of multiplicities µ : D → Z for D defined as

µ(P ) =

{
ν′(i(P )), P ∈ D0

0, P /∈ D0

satisfy

ordν(P ) ≤ ordµ(P )

for any P ∈ D.

Example 2.9. Let (D, ν) and (D′, ν′) be weighted Enriques diagrams with roots R

and Q respectively shown below (Figure 2 and Figure 3). The numbers above bullets

are multiplicities of vertices.
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•2S

•3R •1T

•1U

Fig. 2. Graphic presentation of an Enriques diagram (D, ν).

•2W

•4Q

Fig. 3. Graphic presentation of an Enriques diagram (D′, ν′).

We can easily check that (D′, ν′) ≥ (D, ν). Indeed, let D0 = {R,S} ⊂ D and

D′0 = D′ be subdiagrams, i : D0 → D′0 be isomorphism such that i(R) = Q and

i(S) = W . By the definition new system of multiplicities µ : D → Z for D is:

µ(P ) =


4, P = R

2, P = S

0, P = U

0, P = T

.

Then we can check that ordν(P ) ≤ ordµ(P ) for any P ∈ D because:

• ordν(R) = 3 ≤ 4 = ordµ(R),

• ordν(S) = 5 ≤ 6 = ordµ(S),

• ordν(T ) = 6 ≤ 6 = ordµ(T ),

• ordν(U) = 9 ≤ 10 = ordµ(U).

Definition 2.10. We say that weighted diagrams (D, ν) i (D′, ν′) are equivalent if

they differ at most in some free vertices of multiplicity 1 i.e. there exist subdiagrams

D0 ⊂ D i D′0 ⊂ D′ and an isomorphism i : D0 → D′0 such that

1. P
D−→ Q⇔ i(P )

D′−−→ i(Q) for P,Q ∈ D0,

2. for any P ∈ D \D0, ν(P ) = 1 and P is free,

3. for any P ∈ D′ \D′0 ν′(P ) = 1 and P is free.

This is an equivalence relation. The type [(D, ν)] is the equivalence class, which

representative is (D, ν).

Definition 2.11. A minimal Enriques diagram is a consistent Enriques diagram

(D, ν) with no free vertices with multiplicity 1.
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Theorem 2.12. Let (D, ν) be a consistent weighted diagram. There exists exactly

one minimal diagram which belongs to [(D, ν)].

Proof. Let E = {P ∈ D : ν(P ) = 1 and P is free}. Then (D0, ν|D0
) is an abstract

Enriques diagram where D0 = D \ E. It is obvious that (D0, ν|D0
) is minimal and

(D0, ν|D0
) ∈ [(D, ν)]. The uniqueness follows from Definition 2.10. �

The theory of Enriques diagram has its root in the theory of plane singularities.

The resolution of a singularity using blow-ups can be explicitly presented as an

consistent Enriques diagram. More precise description can be found in [3] Chapter

3.9. We need only the fact which easily follows from these results.

Theorem 2.13. Let f be any singularity and (D, ν) its consistent diagram. There

exists the unique minimal diagram which belongs to [(D, ν)].

Definition 2.14 ([4]). Let [(D, ν)] and [(D̃, ν̃)] be types of weighted diagrams.

[(D̃, ν̃)] is linearly adjacent to [(D, ν)] if there exist consistent diagram (D′, ν′) ∈
[(D̃, ν̃)] such that (D′, ν′) ≥ (D, ν).

In the paper [4] M. Alberich-Carramiñana and J.Roé gave a necessary and suffi-

cient condition for two Enriques diagrams of singularities to be linear adjacent. This

is a key result which we will use in the sequel.

Theorem 2.15 ([4] Lemma 1.1). Let [(D, ν)] and [(D̃, ν̃)] be types of Enriques dia-

grams representing singularities f i f0. [(D̃, ν̃)] is linearly adjacent to [(D, ν)] if and

only if the singularity f is a linear deformation of f0.

The Milnor number of a singularity can be ”read off” its Enriques diagram. The

definition of Milnor number of a consistent Enriques diagram is as follows.

Definition 2.16. For any consistent (D, ν) we define Milnor number of the diagram

(D, ν) by

µ((D, ν)) =
∑
P∈D

ν(P )(ν(P )− 1) + 1− r,

where

r =
∑
P∈D

ν(P )−
∑
Q→P

ν(Q)

 .

Theorem 2.17. Let f0 :
(
C2, 0

)
→ (C, 0) be a singularity and (D, ν) corresponding

consistent diagram then µ((D, ν)) = µ(f0). In this case r is the number of branches

(irreducible components) of f0.

Proof. It follows from above definition and Definition 6.4.1 in [3]. �

Example 2.18. Let f(x, y) = (x2 − y3)(x2 + y3)(x3 − y)(x3 + y)(x4 − y3) be a

singularity. Its Enriques diagram and minimal Enriques diagram are presented in

Figure 4 and 5.
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•3 •1

•5 •2

•2 •1 •1

•9

•2 •1

•1 •1 •1

Fig. 4. The consistent Enriques diagram of singularity f (the numbers above bullets are
multiplicities of vertices).

•3

•5 •2

•2 •1

•9

•2 •1

Fig. 5. The minimal Enriques diagram of singularity f .

From this minimal diagram we can compute the number of branches and the

Milnor number

r = (9− 5− 2− 2) + (5− 3− 1− 1) + (3− 2− 1) + 2 + (1− 1) + 1 + (2− 2) + 2 = 5,

µ(f) = µ((D, ν)) = 9 · 8 + 5 · 4 + 3 · 2 + 3 · 2 · 1 + 1− r = 120.

3. Homogeneous singularities

In this Section we will first consider simple homogeneous singularities of the form

f0(x, y) = xn + yn, n ≥ 2, and estimate the jump of its Milnor number in the class

of linear deformations. The case of arbitrary homogeneous singularities and even

semi-homogeneous (called also ordinary) singularities will follow from this case.

The general problem of arbitrary deformations for these singularities was consid-

ered by S. Brzostowski, T. Krasiski and J. Walewska in the paper ([5]). They proved

that:
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• For the singularity fn0 (x, y) = xn + yn, n ≥ 2

λ (fn0 ) =
[n

2

]
.

• For homogeneous singularity f0 of degree n, n ≥ 2

λ
(
f0
)
≥
[n

2

]
.

• For homogeneous singularity f0 of degree n, n ≥ 2, with generic coefficients

λ
(
f0
)
>
[n

2

]
.

A. Bodin also proved ([7]) that for the singularity fn0 (x, y) = xn + yn, n ≥ 2,

λnd (fn0 ) = n− 1,

where λnd is the jump of Milnor number for non-degenerated deformations.

First, we will consider the singularity fn0 (x, y) = xn + yn, for any n ∈ N. Its

consistent diagram is:

•1

•n

•1

.........

n−times

and its minimal diagram is:

•n

We will denote the latter by (Dn, νn), where Dn := {R}, νn(R) = n. For this

diagram we have µ((D,νn)) = n(n− 1) + 1− n = (n− 1)2.

Lemma 3.1. Let n ∈ N, n ≥ 4 and [(Dn, νn)] be the type of minimal diagram

corresponding to the singularity fn0 (x, y) := xn + yn. There exists a minimal (D, ν)

such that [(Dn, νn)] is linearly adjacent to [(D, ν)] and

µ((D, ν)) = (n− 1)2 − (n− 2)

Proof. We will define (D, ν) as following:

• D = {S, T,W1, . . . ,Wn−3},
• T → S, W1 → S, T and for any i = 2, . . . , n− 3 Wi → S,Wi−1,

• ν(S) = n− 1, ν(T ) = 2, ν(W1) = . . . = ν(Wn−3) = 1.

It is easy to check that this is a minimal diagram and its graph is:



The jump of Milnor number 85

•2T

•n−1S

•1W1

•1Wn−3

...,...,...

n−3−times

We will show that [(Dn, νn)] is linearly adjacent to [(D, ν)]. Let D′n = {R,P}
(where P is an additional vertex), P → R and ν′n(R) = n, ν′n(P ) = 1. Thus

(D′n, ν
′
n) ∈ [(Dn, νn)]. Its graph is:

•1P

•nR

Moreover (D′n, ν
′
n) ≥ (D, ν). Indeed, there exist isomorphic subdiagrams D0 =

{S, T} ⊂ D, D′0 = D′n and an isomorphism i : D0 → D′0 such that i(S) = R, i(T ) =

P .

A new multiplicity system µ : D → Z in D is defined by

µ(Q) =


ν′n(i(S)) = ν′n(R) = n, Q = S

ν′n(i(T )) = ν′n(P ) = 1, Q = T

0, Q = Wi for any i = 1, . . . , n− 3

Thus we have for Q ∈ D

• If Q = S then

ordν(S) = ν(S) = n− 1 < n = ν′n(R) = ordµ(S).

• If Q = T then

ordν(T ) = ν(T ) + ordν(S) = 2 + n− 1 = 1 + n = µ(T ) + ordµ(S) = ordµ(T ).

• If Q = W1 then

ordν(W1) = ν(W1) + ordν(S) + ordν(T ) = 1 + n− 1 + n+ 1 = 2n+ 1 =

0 + n+ n+ 1 = µ(W1) + ordµ(S) + ordµ(T ) = ordµ(W1)

• . . .

• If Q = Wn−3 then

ordν(Wn−3) = ν(Wn−3) + ordν(S) + ordν(Wn−4) = 1 + n− 1 + (n− 3)n+ 1 =

= (n− 2)n+ 1 = 0 + n+ (n− 3)n+ 1 = µ(Wn−3) + ordµ(S) + ordµ(Wn−4) =

= ordµ(Wn−3)
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Using definition 2.14 [(Dn, νn)] is linearly adjacent to [(D, ν)].

We can now compute the Milnor number for (D, ν)

µ((D, ν)) = (n− 1)(n− 2) + 2 · 1 + 1− 2 = (n− 1)(n− 2) + 1 =

= (n− 1)2 − (n− 2).

�

Lemma 3.2. Let [(D3, ν3)] will be type of minimal diagram corresponding to the

singularity f30 (x, y) := x3 + y3. There exists minimal (D, ν) such that [(D3, ν3)] is

linearly adjacent to [(D, ν)] and

µ((D, ν)) = 3

Proof. Let define (D, ν):

• D = {S, T}
• T → S

• ν(S) = ν(T ) = 2

•2T

•2S

It is easy to check that [(D3, ν3)] is linearly adjacent to [(D, ν)] and

µ((D, ν)) = 2 + 2 + 1− 2 = 3.

�

Theorem 3.3. Let n ∈ N, n ≥ 2 and [(Dn, νn)] be the type of minimal diagram

corresponding to the singularity fn0 (x, y) := xn+yn. There exists a minimal Enriques

diagram (D, ν) such that [(Dn, νn)] is linearly adjacent to [(D, ν)] and

µ((D, ν)) =

{
(n− 1)2 − (n− 2), n ≥ 3

1, n = 2
.

Proof. For n ≥ 3 result follow from Lemmas 3.2 and 3.1. The case n = 2 is trivial

since for f20 (x, y) = x2 + y2 the only adjacent Enriques diagram is ({R}, ν), where

ν(R) = 1. �

From the above result we get an estimation of the jump of Milnor number.

Theorem 3.4. For the singularity fn0 (x, y) := xn + yn (n ≥ 3) the jump of Milnor

number for all linear deformations is estimated by

λlin(fn0 ) ≤ n− 2

We can give linear deformations of fn0 (n ≥ 3) representing diagrams in Lemmas

3.2 and 3.1 in an explicit way.
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Theorem 3.5. For the singularity fn0 (x, y) := xn + yn (n ≥ 3) take linear deforma-

tion given by the formula:

fs(x, y) :=

{
fn0 (x, y) + s(x+ y)n−1, n /∈ 2N
fn0 (x, y) + s(x+ ey)n−1, n ∈ 2N ,

where en = −1.

The Milnor number of fs is µ(fs) = (n− 1)2 − (n− 2) and its minimal diagram

is (D, ν) from the proof of Lemmas 3.2 and 3.1.

Let us pass to the general case of arbitrary homogeneous singularities. Notice

that any homogeneous singularity has the form

f0(x, y) = a0x
n + a1x

n−1y + . . .+ an−1xy
n−1 + any

n, a0, . . . , an ∈ C.

Its Enriques diagram is the same as for the singularity fn0 (x, y) = xn + yn. Hence

the same reasoning gives us the theorem:

Theorem 3.6. For the homogeneous singularity f0 (n ≥ 2) the jump of Milnor

number for all linear deformations is estimated by

λlin(fn0 ) ≤
{
n− 2, n ≥ 3

1, n = 2
.

If we consider more general class of singularities - semi-homogeneous singularities

i.e. singularities of the form

f0 = f ′0 + g,

where f ′0 is a homogeneous singularity and ordg > ordf ′0, then we also easily notice

that their Enriques diagrams are the same as in the case of homogeneous singularities.

Hence we obtain:

Theorem 3.7. For the semi-homogeneous singularity f0 (n ≥ 2) the jump of Milnor

number for all linear deformations is estimated by

λlin(fn0 ) ≤
{
n− 2, n ≥ 3

1, n = 2
.

At the end we pose the conjecture:

Conjecture 3.8. In theorem 3.4 the estimation can be replaced by the equality i.e.:

for the singularity fn0 (x, y) := xn + yn (n ≥ 2) the jump of Milnor number for all

linear deformations equals

λlin(fn0 ) =

{
n− 2, n ≥ 3

1, n = 2
.

This conjecture seems to be true because for n < 10 it was checked by a computer

program.
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SKOK LICZBY MILNORA LINIOWYCH DEFORMACJI

JEDNORODNYCH OSOBLIWOŚCI KRZYWYCH

S t r e s z c z e n i e
Skokiem liczby Milnora osobliwości izolowanej f0 nazywamy najmniejsza̧ niezerowa̧

różnicȩ miȩdzy liczba̧ Milnora f0 a jedna̧ z jej deformacji fs. W pracy zosta l oszacowany
skok liczby Milnora dla osobliwości jednorodnych i semi-jednorodnych w klasie deformacji
liniowych.

S lowa kluczowe: diagram Enriquesa, skok liczby Milnora, osobliwość jednorodna, osobliwość

semi-jednorodna


