BULLETIN

Recherches sur les déformations									$\mathrm{no.}3$	
2017									Vol. LXVII	
DE	LA	SOCIÉTÉ	DES	SCIENCES	\mathbf{ET}	DES	LETTRES	DE	ŁÓDŹ	

pp. 51-61

Armen Grigoryan and Dariusz Partyka

LUSIN'S TYPE THEOREMS FOR LIMITABLE FUNCTIONS

Summary

In this paper we introduce limitable functions (the ones which have a limit at each accumulation point of their domains) and prove Lusin's type theorems for such functions. We also give a characterization of limitable functions.

Keywords and phrases: limiting valued function, Lindelöf property, Lusin's theorem

1. Introduction

Let (X, ρ) be a metric space and let A be a subset of X. We denote by cl(A) and fr(A) the closure and boundary of A, respectively. The set of all accumulation points of A will be denoted by A^d . If $x_0 \in X$ then the open ball at the center x_0 and radius r > 0 we denote by $B(x_0, r)$, i.e., $B(x_0, r) = \{x \in X : \rho(x_0, x) < r\}$.

Throughout the paper we assume that (X_1, ρ_1) and (X_2, ρ_2) are metric spaces and Ω is a non-empty subset of X_1 . Moreover, unless otherwise stated the sets cl(A), fr(A) and A^d of a set $A \subset X_1$ are understood in the space (X_1, ρ_1) .

Definition 1.1. A function $f: \Omega \to X_2$ is said to be *limitable* if $\Omega^d = \emptyset$ or $\Omega^d \neq \emptyset$ and for each $x \in \Omega^d$ there exists the limit $\lim_{t\to x} f(t)$.

The class of all limitable functions $f: \Omega \to X_2$ will be denoted by $\mathcal{L}(\Omega)$. It is easy to see that if the metric space (X_2, ρ_2) is complete and $f: \Omega \to X_2$ is uniformly continuous, then $f \in \mathcal{L}(\Omega)$. In particular, $f \in \mathcal{L}(\Omega)$ provided f is Hölder continuous in Ω , i.e., there exist $C \geq 0$ and $\alpha \in (0; 1]$ such that

$$\rho_2(f(t_1), f(t_2)) \le C\rho_1(t_1, t_2)^{\alpha} \quad \text{for } t_1, t_2 \in \Omega.$$
(1.1)

With each $f \in \mathcal{L}(\Omega)$ we assign the function $\hat{f}: \operatorname{cl}(\Omega) \to X_2$ defined by the formula

$$\hat{f}(x) := \begin{cases} f(x) & \text{if } x \in \Omega \setminus \Omega^d, \\ \lim_{t \to x} f(t) & \text{if } x \in \Omega^d. \end{cases}$$
(1.2)

Note that \hat{f} coincides with f on the set of isolated points of Ω , provided $\Omega \setminus \Omega^d \neq \emptyset$.

Remark 1.2. (cf. Problem 8 in [12], Ch. III, §2). If $f \in \mathcal{L}(\Omega)$, then the function $\hat{f}: \operatorname{cl}(\Omega) \to X_2$ defined by (1.2) is continuous. In order to prove this fact fix $x \in \operatorname{cl}(\Omega)$. If $x \in \Omega \setminus \Omega^d$, then the continuity of \hat{f} at x is obvious. Suppose now that $x \in \Omega^d$. Then $\hat{f}(x) = \lim_{t \to x} f(t)$. Fix $\varepsilon > 0$. Then there exists $\delta_{\varepsilon} > 0$ such that

$$\rho_2\left(f(t), \hat{f}(x)\right) < \varepsilon/2 \quad \text{for } t \in \Omega, \ 0 < \rho_1(t, x) < 2\delta_{\varepsilon}.$$
(1.3)

Now fix $t \in B(x, \delta_{\varepsilon}) \setminus \{x\}$. If $t \in \Omega \setminus \Omega^d$ then by (1.3) we have

$$\rho_2\left(\hat{f}(t),\hat{f}(x)\right) = \rho_2\left(f(t),\hat{f}(x)\right) < \varepsilon.$$

If $t \in \Omega^d$, then $\hat{f}(t) = \lim_{t' \to x} f(t')$, and so there exists $\delta'_{\varepsilon} \in (0; \delta_{\varepsilon})$ and $t' \in \Omega \cap B(t, \delta'_{\varepsilon}) \setminus \{t\}$ such that

$$\rho_2\left(f(t'), \hat{f}(t)\right) < \varepsilon/2. \tag{1.4}$$

Since

$$\rho_1(t', x) \le \rho_1(t', t) + \rho_1(t, x) < \delta_{\varepsilon}' + \delta_{\varepsilon} < 2\delta_{\varepsilon}$$

we deduce from (1.3) and (1.4) that

$$\rho_2\left(\hat{f}(t), \hat{f}(x)\right) \le \rho_2\left(\hat{f}(t), f(t')\right) + \rho_2\left(f(t'), \hat{f}(x)\right) < \varepsilon.$$

Consequently,

$$\rho_2\left(\hat{f}(t),\hat{f}(x)\right) < \varepsilon \quad \text{for } t \in B(x,\delta_{\varepsilon}) \cap \mathrm{cl}(\Omega),$$

which is the desired conclusion.

Limitable functions appear naturally in various aspects of complex analysis. In what follows we present few examples dealing with mappings in the complex plane $E(\mathbb{C}) := (\mathbb{C}, \rho_e)$ where ρ_e is the standard Euclidean metric.

Example 1.3. Suppose that (X_1, ρ_1) and (X_2, ρ_2) coincide with $E(\mathbb{C})$ and set $\Omega := B(0, 1)$. Let $f: \Omega \to \mathbb{C}$ be a K-quasiconformal mapping for some $K \ge 1$. By the Riemann mapping theorem there exists a conformal mapping f_0 of Ω onto $f(\Omega)$ such that $f_0(0) = f(0)$; cf. [10, p. 283]. Then $f_1 := f_0^{-1} \circ f$ is a K-quasiconformal self-mapping of the unit disk Ω keeping the origin fixed. From Mori's theorem it follows that f_1 satisfies the Hölder condition (1.1) with C := 16 and $\alpha := 1/K$; cf. [1, p. 47] and [6, pp. 66–67]. Therefore $f_1 \in \mathcal{L}(\Omega)$. If additionally each point of fr $(f(\Omega))$ is a simple boundary point of the domain $f(\Omega)$, then $f_0 \in \mathcal{L}(\Omega)$, and so $f \in \mathcal{L}(\Omega)$; cf. [10, p. 290].

Example 1.4. Let (X_1, ρ_1) , (X_2, ρ_2) and Ω be like in Example 1.3. Suppose that f is a conformal mapping of Ω onto $f(\Omega)$ bounded by a Dini-smooth Jordan curve. As shown by Warschawski, $f' \in \mathcal{L}(\Omega)$; cf. [9, p. 298].

Example 1.5. Let (X_1, ρ_1) , (X_2, ρ_2) and Ω be like in Example 1.3. Suppose that f is a harmonic injective mapping of Ω onto itself. Then Choquet theorem implies that $f \in \mathcal{L}(\Omega)$; cf. [2], see also [3, Sect. 3.3].

Example 1.6. Let (X_1, ρ_1) , (X_2, ρ_2) and Ω be like in Example 1.3. Suppose that φ : fr $(\Omega) \to \mathbb{C}$ is a continuous function. Then $f := \mathbb{P}[\varphi] \in \mathcal{L}(\Omega)$, where $\mathbb{P}[\varphi]$ is the Poisson integral of φ , i.e.,

$$\mathbf{P}[f](z) := \frac{1}{2\pi} \int_0^{2\pi} f(\mathbf{e}^{it}) \frac{1 - |z|^2}{|\mathbf{e}^{it} - z|^2} dt \quad \text{for } z \in \Omega;$$

cf. e.g. [10, p. 233–234] and [5, Chap. I, Sect. 3].

In the next section we prove a crucial lemma which has its own interest. In Section 3 our main results relevant to Lusin's theorem are stated and proved. In the last section we give sufficient and necessary conditions for a function to be limitable.

2. An auxiliary lemma

We start with an auxiliary lemma, which plays an important role later on.

Lemma 2.1. If $cl(\Omega)$ is compact in (X_1, ρ_1) and $f \in \mathcal{L}(\Omega)$, then for each $\varepsilon > 0$ there exist $\delta_{\varepsilon} > 0$ and a finite set $A_{\varepsilon} \subset \Omega^d$ such that $\Omega \setminus A_{\varepsilon} \neq \emptyset$ and

$$\rho_2\left(f(t_1), f(t_2)\right) < \varepsilon \quad \text{for } t_1, t_2 \in \Omega \setminus A_{\varepsilon}, \ \rho_1(t_1, t_2) < \delta_{\varepsilon}. \tag{2.1}$$

Proof. Given $f \in \mathcal{L}(\Omega)$ fix $\varepsilon > 0$. Suppose first that $\Omega^d = \emptyset$. Then each point of Ω is isolated, and so $cl(\Omega) = \Omega$. Since $cl(\Omega)$ is a compact set in (X_1, ρ_1) , it follows that Ω is finite. Therefore the property (2.1) holds with $A_{\varepsilon} := \emptyset$ and $\delta_{\varepsilon} := \frac{1}{2} \min \left(\{ \rho_1(t_1, t_2) : t_1, t_2 \in \Omega, t_1 \neq t_2 \} \right) > 0.$

Suppose now that $\Omega^d \neq \emptyset$. By Definition 1.1, for each $x \in \Omega^d$ there exists $\eta_{\varepsilon,x} > 0$ such that

$$\rho_2(f(t), \hat{f}(x)) < \frac{\varepsilon}{2} \quad \text{for } t \in \Omega \cap B(x, \eta_{\varepsilon, x}) \setminus \{x\}.$$
(2.2)

Obviously,

$$\mathrm{cl}(\Omega) = \Omega^d \cup \left(\Omega \setminus \Omega^d\right)$$

Let $x \in cl(\Omega)$. If $x \in \Omega \setminus \Omega^d$ then there exists $\eta_x > 0$ such that

$$B(x,\eta_x) \cap \Omega = \{x\}. \tag{2.3}$$

Otherwise $x \in \Omega^d$ and we take $\eta_x := \eta_{\varepsilon,x}$. The collection $\{B(x, \eta_x/2) : x \in cl(\Omega)\}$ is an open cover of $cl(\Omega)$. Hence, by the compactness of $cl(\Omega)$, there exists a finite

subset J_{ε} of $cl(\Omega)$ such that

$$\operatorname{cl}(\Omega) \subset \bigcup_{x \in J_{\varepsilon}} B(x, \eta_x/2).$$
 (2.4)

Define

$$A_{\varepsilon} := J_{\varepsilon} \cap \Omega^d$$
 and $\delta_{\varepsilon} := \frac{1}{2} \min \left(\{ \eta_x \colon x \in J_{\varepsilon} \} \right).$

Since J_{ε} is a finite set, $\delta_{\varepsilon} > 0$.

Now fix arbitrary $t_1, t_2 \in \Omega \setminus A_{\varepsilon}$ such that $\rho_1(t_1, t_2) < \delta_{\varepsilon}$. By (2.4) there exists $x \in J_{\varepsilon}$ such that $t_1 \in B(x, \eta_x/2)$. By the definition of δ_{ε} ,

$$\rho_1(t_2, x) \le \rho_1(t_2, t_1) + \rho_1(t_1, x) < \delta_{\varepsilon} + \eta_x/2 \le \eta_x,$$

which means that $t_1, t_2 \in B(x, \eta_x)$. If $x \in J_{\varepsilon} \setminus A_{\varepsilon}$ then by (2.3) we have $t_1 = t_2 = x$, and consequently

$$\rho_2(f(t_1), f(t_2)) = 0 < \varepsilon.$$

If $x \in J_{\varepsilon} \cap A_{\varepsilon}$ then by (2.2) we get

$$\rho_2(f(t_1), f(t_2)) \le \rho_2(f(t_1), \hat{f}(x)) + \rho_2(f(t_2), \hat{f}(x)) < \varepsilon,$$

because $t_1 \neq x$ and $t_2 \neq x$. This completes the proof.

3. Lusin's type theorems

Recall that a set S is countable if $S = \emptyset$ or there exists an injective function $h: S \to \mathbb{N}$ (in particular a countable set can be finite). For every function $f: D \to Y$ and every set $\widetilde{D} \subset D$ the restriction of f to \widetilde{D} will be denoted by $f|_{\widetilde{D}}$. One of the consequences of Lemma 2.1 is the following counterpart of Lusin's theorem for measurable functions, cf. [7], [8, p. 106], [10, p. 55].

Theorem 3.1. If Ω is not countable, $cl(\Omega)$ is compact in (X_1, ρ_1) and $f \in \mathcal{L}(\Omega)$, then there exists a countable subset A of the set Ω^d such that the following two conditions hold:

- (i) $f|_{\Omega\setminus A}$ is uniformly continuous;
- (ii) f is continuous at each point $x \in \Omega \setminus A$.

Proof. Fix $f \in \mathcal{L}(\Omega)$ and consider the sequence $\mathbb{N} \ni n \mapsto \varepsilon_n := 1/n$. By Lemma 2.1 for each $n \in \mathbb{N}$ there exist $\tilde{\delta}_{\varepsilon_n} > 0$ and a finite set $A_{\varepsilon_n} \subset \Omega^d$ such that

$$\rho_2\left(f(t_1), f(t_2)\right) < \varepsilon_n \quad \text{for} \quad t_1, t_2 \in \Omega \setminus A_{\varepsilon_n}, \, \rho_1(t_1, t_2) < \delta_{\varepsilon_n}. \tag{3.1}$$

Define

$$A := \bigcup_{n=1}^{\infty} A_{\varepsilon_n}$$

The set A is countable as a sum of a countable family of finite sets. Now fix $\varepsilon > 0$. Then there exists $n_0 \in \mathbb{N}$ such that $\varepsilon_{n_0} < \varepsilon$. Hence, by (3.1) we have

$$\rho_2(f(t_1), f(t_2)) < \varepsilon_{n_0} < \varepsilon \quad \text{for} \quad t_1, t_2 \in \Omega \setminus A_{\varepsilon_{n_0}}, \ \rho_1(t_1, t_2) < \delta_{\varepsilon_{n_0}}.$$

Therefore

$$\rho_2(f(t_1), f(t_2)) < \varepsilon \quad \text{for} \quad t_1, t_2 \in \Omega \setminus A, \ \rho_1(t_1, t_2) < \tilde{\delta}_{\varepsilon_{n_0}},$$

which proves (i). In order to prove (ii) suppose that $x \in \Omega \setminus A$ is arbitrarily given. Define

$$\delta_x := \min\left(\{\tilde{\delta}_{\varepsilon_{n_0}}, \min\left(\{\rho_1(x, a) \colon a \in A_{\varepsilon_{n_0}}\}\right)\}\right).$$

For every $t \in \Omega$ such that $\rho_1(t, x) < \delta_x$ we see that

$$t \in \Omega \setminus A_{\varepsilon_{n_0}}$$
 and $\rho_1(t, x) < \tilde{\delta}_{\varepsilon_{n_0}}$

which gives, by the inclusion $\Omega \setminus A \subset \Omega \setminus A_{\varepsilon_{n_0}}$ and (3.1), that

$$\rho_2\left(f(t), f(x)\right) < \varepsilon_{n_0} < \varepsilon.$$

This completes the proof.

Remark 3.2. Theorem 3.1 is trivially valid if Ω is countable. In such a case it is enough to put $A := \Omega \setminus \{x\}$ for an arbitrarily chosen point $x \in \Omega$.

Example 3.3. Consider the Riemann function $\varphi \colon \mathbb{R} \to \mathbb{R}$ given by

$$\varphi(x) := \begin{cases} 1/n, & \text{if } x = m/n, \, n \in \mathbb{N}, \, m \in \mathbb{Z}, \, \gcd(n, m) = 1, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Suppose that (X_1, ρ_1) and (X_2, ρ_2) coincide with $\mathbb{E}(\mathbb{R}) := (\mathbb{R}, \rho_e)$, where ρ_e is the usual Euclidean metric, and set $\Omega := [0; 1]$. Since $\mathbb{R}^d = \mathbb{R}$ and $\lim_{t \to x} \varphi(t) = 0$ for each $x \in \mathbb{R}$ we see that $f := \varphi|_{\Omega} \in \mathcal{L}(\Omega)$ and $\hat{f}(x) = 0$ for each $x \in \text{cl}(\Omega) = \Omega$. The function f is "very discontinuous". Nevertheless, it is uniformly continuous on the set $\Omega \setminus \mathbb{Q}$. Moreover, this example shows that we cannot replace the word "countable" by "finite" in the conclusion of Theorem 3.1.

Recall that a set $A \subset X$ has a *Lindelöf* property in (X, ρ) if each open cover of A contains a countable subcover of A, cf. [11, p. 116], [4, p. 192]. From Theorem 3.1 we can drive a variant of Lusin's type theorem for limitable functions (see Theorem 3.4), where we replace the compactness of $cl(\Omega)$ by the Lindelöf property of $cl(\Omega)$ and add the locally compactness of (X_1, ρ_1) .

Theorem 3.4. If Ω is not countable, $\operatorname{cl}(\Omega)$ has a Lindelöf property in a locally compact metric space (X_1, ρ_1) and $f \in \mathcal{L}(\Omega)$, then there exists a countable subset A of the set Ω^d such that $f|_{\Omega \setminus A}$ is continuous.

Proof. Fix $f \in \mathcal{L}(\Omega)$. Since the space (X_1, ρ_1) is locally compact, for each $x \in cl(\Omega)$ there exists $r_x > 0$ such that $cl(B(x, r_x))$ is compact in (X_1, ρ_1) . The family $\mathcal{F} := \{B(x, r_x) : x \in cl(\Omega)\}$ is an open cover of $cl(\Omega)$. Since $cl(\Omega)$ has a Lindelöf property,

55

there exists a non-empty countable set N such that the subfamily $\{B(x_n, r_{x_n}): n \in N\}$ of \mathcal{F} covers $cl(\Omega)$. Set

$$r_n := r_{x_n} \text{ and } \hat{\Omega}_n := B(x_n, r_n) \cap \Omega \quad \text{for } n \in N.$$
 (3.2)

Obviously,

$$\bigcup_{n \in N} \tilde{\Omega}_n = \Omega$$

Fix $n \in N$. By (3.2) we have

$$\operatorname{cl}(\tilde{\Omega}_n) = \operatorname{cl}(B(x_n, r_{x_n}) \cap \Omega) \subset \operatorname{cl}(B(x_n, r_n)) \cap \operatorname{cl}(\Omega) \subset \operatorname{cl}(B(x_n, r_n)).$$

Hence, by the compactness of $\operatorname{cl}(B(x_n, r_n))$, the closed set $\operatorname{cl}(\tilde{\Omega}_n)$ is compact in (X_1, ρ_1) . Since $\tilde{\Omega}_n \subset \Omega$ we see that $\tilde{\Omega}_n^d \subset \Omega^d$ and $f|_{\tilde{\Omega}_n} \in \mathcal{L}(\tilde{\Omega}_n)$. Therefore, by Theorem 3.1 and Remark 3.2, there exists a countable set $A_n \subset \tilde{\Omega}_n^d \subset \Omega^d$ such that $\tilde{\Omega}_n \setminus A_n \neq \emptyset$ and the function $f|_{\tilde{\Omega}_n \setminus A_n}$ is uniformly continuous. Define

$$A := \bigcup_{n \in N} A_n.$$

The set A is countable as a union of countably many countable sets. Evidently $A \subset \Omega^d$. It remains to show that $f|_D$ is continuous where $D := \Omega \setminus A$. Let $x \in D$. Since $D \subset \bigcup_{n \in N} \left(\tilde{\Omega}_n \setminus A_n \right)$, there exists $n_0 \in N$ such that $x \in \tilde{\Omega}_{n_0} \setminus A_{n_0}$. By (3.2) we see that $x \in (B(x_{n_0}, r_{n_0}) \cap \Omega) \setminus A_{n_0}$. Setting $\delta_x := r_{n_0} - \rho_1(x, x_{n_0})$ we get $B(x, \delta_x) \subset B(x_{n_0}, r_{n_0})$, and so

$$B(x,\delta_x)\cap D\subset B(x_{n_0},r_{n_0})\cap (\Omega\setminus A_{n_0})=\Omega_{n_0}\setminus A_{n_0}.$$

Hence, by the continuity of $f|_{\tilde{\Omega}_{n_0}\setminus A_{n_0}}$, the function $f|_{B(x,\delta_x)\cap D}$ is continuous. Now we have to prove that $f|_D$ is continuous at x. Fix $\varepsilon > 0$. By the continuity of $f|_{B(x,\delta_x)\cap D}$ at x there exists $\eta_{x,\varepsilon} > 0$ such that

$$\rho_2(f|_D(t), f|_D(x)) < \varepsilon \quad \text{for } t \in B(x, \delta_x) \cap D, \ \rho_1(t, x) < \eta_{x, \varepsilon}.$$
(3.3)

Set $\tilde{\delta}_{x,\varepsilon} := \min(\{\delta_x, \eta_{x,\varepsilon}\})$. By (3.3), we have

$$\rho_2(f|_D(t), f|_D(x)) < \varepsilon \quad \text{for } t \in D, \ \rho_1(t, x) < \delta_{x,\varepsilon},$$

which means the continuity of $f|_D$ at x. Therefore the function $f|_D$ is continuous, and we are done.

In the following variant of Lusin's type theorem we drop any condition on the set $cl(\Omega)$. Instead we add the separability of the metric space (X_1, ρ_1) .

Theorem 3.5. If Ω is not countable, (X_1, ρ_1) is a separable and locally compact metric space and $f \in \mathcal{L}(\Omega)$, then there exists a countable subset A of the set Ω^d such that $f|_{\Omega \setminus A}$ is continuous.

Proof. Let Ω and (X_1, ρ_1) satisfy the assertion of the theorem. We will prove that $cl(\Omega)$ has a Lindelöf property in the space (X_1, ρ_1) , as a closed subset of a separable

space. This is a rather known fact (see, e.g., [4, p. 192]). However, to make the proof self-contained we give an explicit proof of this fact.

Let \mathcal{R} be an open cover of $\operatorname{cl}(\Omega)$. Since $\operatorname{cl}(\Omega)$ is a closed set in (X_1, ρ_1) , its complement to X_1 , i.e., the set $X_1 \setminus \operatorname{cl}(\Omega)$ is open in (X_1, ρ_1) . Denote by $\hat{\mathcal{R}} :=$ $\mathcal{R} \cup \{X_1 \setminus \operatorname{cl}(\Omega)\}$. Obviously, $\hat{\mathcal{R}}$ is an open cover of X_1 . Since (X_1, ρ_1) is separable, there exists a non-empty countable set A such that $\operatorname{cl}(A) = X_1$. Define

 $A^* := \left\{ (a,m) \in A \times \mathbb{N} \colon \text{there exists } U \in \hat{\mathcal{R}} \text{ such that } B(a,1/m) \subset U \right\}.$

The family

$$\mathcal{B} := \{ B(a, 1/m) \colon (a, m) \in A \times \mathbb{N} \}$$

is a base of (X_1, ρ_1) , i.e., for each $x \in X_1$ and an open set V in (X_1, ρ_1) , if $x \in V$ then there exists $(a, m) \in A \times \mathbb{N}$ such that $x \in B(a, 1/m) \subset V$. As $\hat{\mathcal{R}}$ is an open cover of X_1 and \mathcal{B} is a base of (X_1, ρ_1) we see that

for each
$$x \in X_1$$
 there exist $U \in \hat{\mathcal{R}}$ and $(a, m) \in A \times \mathbb{N}$
such that $x \in B(a, 1/m) \subset U$. (3.4)

In particularly, $A^* \neq \emptyset$. By the axiom of choice and the definition of A^* , there exists a function $\varphi \colon A^* \to \hat{\mathcal{R}}$ such that for each $(a,m) \in A^*$ the inclusion $B(a,1/m) \subset \varphi(a,m)$ holds. Since $A^* \subset A \times \mathbb{N}$, the set A^* is countable. Therefore $\varphi(A^*)$, which is a subfamily of $\hat{\mathcal{R}}$, is countable. We will show that the family $\varphi(A^*)$ covers X_1 . In order to do this fix $x \in X_1$. By the property (3.4) there exist $U \in \hat{\mathcal{R}}$ and $(a,m) \in A \times \mathbb{N}$ such that $x \in B(a, 1/m) \subset U$. Hence, by the definition of A^* we claim that $(a,m) \in A^*$. Using the property of the function φ we get $x \in B(a, 1/m) \subset \varphi(a,m)$. Thus

$$X_1 = \bigcup_{(a,m)\in A^*} \varphi(a,m),$$

and so $\varphi(A^*)$ is a countable cover of X_1 . Consequently, the family $\varphi(A^*) \setminus \{X_1 \setminus cl(\Omega)\}$, which is a subfamily of \mathcal{R} , is a countable cover of $cl(\Omega)$. This means that $cl(\Omega)$ has a Lindelöf property in (X_1, ρ_1) .

Now fix $f \in \mathcal{L}(\Omega)$. By Theorem 3.4, there exists a countable subset A of the set Ω^d such that $f|_{\Omega \setminus A}$ is continuous, which is a desired conclusion. \Box

Remark 3.6. Contrary to Theorem 3.1 we cannot replace continuity by uniform continuity in Theorems 3.4 and 3.5. Namely, set $(X_1, \rho_1) = (X_2, \rho_2) := \mathbb{E}(\mathbb{R}), \Omega := \mathbb{R}$ and $\mathbb{R} \ni x \mapsto f(x) := x^3$. Then $f \in \mathcal{L}(\Omega)$ as a continuous function. On the other hand $f|_{\Omega \setminus A}$ is not uniformly continuous on $\mathbb{R} \setminus A$ for each countable set $A \subset \Omega^d = \mathbb{R}$.

4. Applications

By Remark 1.2 there is a close relationship between continuous and limitable functions. A natural question arises how much are limitable and continuous functions different from each other? For any two functions $f_1: D \to Y$ and $f_2: D \to Y$ we define

$$A_{f_1, f_2} := \{ x \in D \colon f_1(x) \neq f_2(x) \}.$$

In the proofs of Theorems 4.1 and 4.3 we use the following known fact on convergence of a sequence in an arbitrary metric space (X, ρ) :

for each $c \in X$ and for each sequence $\mathbb{N} \ni n \mapsto y_n \in X$ the equality $\lim_{n \to \infty} y_n = c$ holds if and only if for each increasing sequence $\mathbb{N} \ni k \mapsto n_k \in \mathbb{N}$ there exists an increasing sequence $\mathbb{N} \ni l \mapsto k_l \in \mathbb{N}$ such that $\lim_{l \to \infty} y_{n_{k_l}} = c.$ (4.1)

Theorem 4.1. If $cl(\Omega)$ is compact in (X_1, ρ_1) and $f \in \mathcal{L}(\Omega)$, then there exists a uniformly continuous function $f_0: \Omega \to X_2$ such that one of the following two conditions holds:

- (i) the set A_{f,f_0} is finite;
- (ii) the set A_{f,f_0} is infinite and there exists a sequence $\mathbb{N} \ni n \mapsto a_n \in \Omega$ such that $\{a_n : n \in \mathbb{N}\} = A_{f,f_0}$ and

$$\rho_2(f(a_n), f_0(a_n)) \to 0 \quad as \ n \to \infty.$$

$$(4.2)$$

Proof. Given $f \in \mathcal{L}(\Omega)$ set $f_0 := \hat{f}|_{\Omega}$, where \hat{f} is defined by (1.2). First we prove that A_{f,f_0} , which is a subset of Ω , is countable. This is obvious if Ω is countable. Suppose now that Ω is not countable. By Remark 1.2, the function \hat{f} is uniformly continuous, and so f_0 is uniformly continuous. The functions f and f_0 coincide at each continuity point of f. Indeed, if f is continuous at $x \in \Omega^d \cap \Omega$ (the case $x \in \Omega \setminus \Omega^d$ is evident) then

$$f(x) = \lim_{\Omega \ni t \to x} f(t) = \hat{f}(x) = f_0(x).$$

By Theorem 3.1(ii), there exists a countable set A such that f is continuous at each point x of $\Omega \setminus A$. Hence $A_{f,f_0} \subset A$, which means that A_{f,f_0} is countable.

Assume now that A_{f,f_0} is infinite and let $\mathbb{N} \ni n \mapsto a_n \in \Omega$ be a bijection of \mathbb{N} onto A_{f,f_0} . We have to prove (4.2). To this end we apply (4.1) to the sequence $\mathbb{N} \ni n \mapsto b_n := \rho_2(f(a_n), f_0(a_n))$. Fix an increasing sequence $\mathbb{N} \ni k \mapsto n_k \in \mathbb{N}$. By the compactness of $\mathrm{cl}(\Omega)$, there exists an increasing sequence $\mathbb{N} \ni l \mapsto k_l \in \mathbb{N}$ and an element $x \in \Omega^d$ such that $a_{n_{k_l}} \to x$ as $l \to \infty$. Since $f_0 = \hat{f}$ on Ω we have $f_0(a_n) = \hat{f}(a_n)$ for $n \in \mathbb{N}$. By (1.2) and Remark 1.2 we see that

$$b_{n_{k_l}} = \rho_2\left(f(a_{n_{k_l}}), f_0(a_{n_{k_l}})\right) \to \rho_2(\hat{f}(x), \hat{f}(x)) = 0 \text{ as } l \to \infty.$$

Therefore, by (4.1), we have $b_n \to 0$ as $n \to \infty$, which proves (4.2).

Remark 4.2. The compactness of $cl(\Omega)$ cannot be omitted in Theorem 4.1. Indeed, set $(X_1, \rho_1) = (X_2, \rho_2) := E(\mathbb{R}), \ \Omega := \mathbb{R}$ and consider the function $f \colon \Omega \to \mathbb{R}$ given by

$$f(x) := \begin{cases} 1, & \text{if } x \in \mathbb{Z}, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Z}. \end{cases}$$

Obviously $f \in \mathcal{L}(\Omega)$. However, there is no a uniformly continuous function $f_0: \Omega \to \mathbb{R}$ such that one of the conditions (i) or (ii) of Theorem 4.1 holds.

Theorem 4.3. Let (X_2, ρ_2) be a complete metric space. If $f: \Omega \to X_2$ and there exists a uniformly continuous function $f_0: \Omega \to X_2$ such that one of the conditions (i) or (ii) of Theorem 4.1 holds, then $f \in \mathcal{L}(\Omega)$.

Proof. Fix f, f_0 and a sequence $\mathbb{N} \ni n \mapsto a_n \in \Omega$ as in the hypothesis of the theorem. If the condition (i) holds, then evidently $f \in \mathcal{L}(\Omega)$.

Assume now that the condition (ii) holds. Of course $f_0 \in \mathcal{L}(\Omega)$. By Remark 1.2, the function $\hat{f}_0: \operatorname{cl}(\Omega) \to X_2$ is continuous. Fix $x \in \Omega^d$ and a sequence $\mathbb{N} \ni n \mapsto x_n \in \Omega$ such that

$$x_n \neq x \quad \text{for } n \in \mathbb{N} \quad \text{and} \quad \rho_1(x_n, x) \to 0 \quad \text{as } n \to \infty.$$
 (4.3)

We claim that $f(x_n) \to \hat{f}_0(x)$ as $n \to \infty$. In order to prove this we will apply (4.1) to the sequence $\mathbb{N} \ni n \mapsto f(x_n)$. Fix an increasing sequence $\mathbb{N} \ni k \mapsto n_k \in \mathbb{N}$. We consider two cases.

Case I: there exists $k_0 \in \mathbb{N}$ such that

$$x_{n_k} \in A_{f,f_0} \quad \text{for } k \ge k_0. \tag{4.4}$$

We define sequences $\mathbb{N} \ni l \to k_l \in \mathbb{N}$ and $\mathbb{N} \ni l \to m_l \in \mathbb{N}$ recursively as follows:

$$k_{1} := \min\left(\{k \in \mathbb{N} : a_{k} = x_{n_{k_{0}}}\}\right),$$

$$m_{1} := 1 + \max\left(\{j \in \mathbb{N} : j \ge k_{0} \text{ and } x_{n_{j}} \in A_{k_{1}}\}\right),$$
(4.5)

where $A_p := \{a_k \colon k \in \mathbb{N} \text{ and } 1 \le k \le p\}$ for $p \in \mathbb{N}$, and for each $l \in \mathbb{N}$,

$$k_{l+1} := \min(\{k \in \mathbb{N} : a_k = x_{n_{m_l}}\}),$$

$$m_{l+1} := 1 + \max\left(\{j \in \mathbb{N} : j \ge k_0 \text{ and } x_{n_j} \in A_{k_{l+1}}\}\right).$$
(4.6)

It follows from (4.3) that the sequence $\mathbb{N} \ni n \mapsto x_n$ does not contain any constant subsequence. This fact and the assumption $\{a_n : n \in \mathbb{N}\} = A_{f,f_0}$ (see hypothesis (ii) of the theorem) ensure that the sequences $\mathbb{N} \ni l \mapsto k_l \in \mathbb{N}$ and $\mathbb{N} \ni l \mapsto m_l \in \mathbb{N}$ are well defined. Moreover, by formulas (4.5) and (4.6), we have

$$x_{n_{m_l}} = a_{k_{l+1}} \quad \text{for } l \in \mathbb{N},\tag{4.7}$$

and so $x_{n_{m_l}} \in A_{k_{l+1}} \setminus A_{k_l}$, which yields

$$k_l < k_{l+1} \quad \text{and} \quad m_l < m_{l+1} \quad \text{for } l \in \mathbb{N}.$$

$$(4.8)$$

A. Grigoryan and D. Partyka

Hence, by (4.8), the hypothesis (ii) and (4.3) we get

$$\begin{aligned} \rho_2(f(x_{n_{m_l}}), \widehat{f}_0(x)) &\leq \rho_2(f(x_{n_{m_l}}), f_0(x_{n_{m_l}})) + \rho_2(f_0(x_{n_{m_l}}), \widehat{f}_0(x)) \\ &= \rho_2(f(a_{k_{l+1}}), f_0(a_{k_{l+1}})) + \rho_2(f_0(x_{n_{m_l}}), \widehat{f}_0(x)) \to 0 \quad \text{as } l \to \infty. \end{aligned}$$

Consequently,

$$f\left(x_{n_{k_l}}\right) \to \widehat{f_0}(x) \quad \text{as } l \to \infty.$$

Case II: there does not exist $k_0 \in \mathbb{N}$ such that (4.4) holds. In this case there exists an increasing sequence $\mathbb{N} \ni l \mapsto k_l \in \mathbb{N}$ such that $x_{n_{k_l}} \in \Omega \setminus A_{f,f_0}$ for $l \in \mathbb{N}$. By (4.3), we get

$$f\left(x_{n_{k_l}}\right) = f_0\left(x_{n_{k_l}}\right) \to \widehat{f_0}(x) \text{ as } l \to \infty.$$

Combining the both cases and applying (4.1) we deduce that $f(x_n) \to \hat{f}_0(x)$ as $n \to \infty$, and so $\lim_{t\to x} f(t) = \hat{f}_0(x)$. This means $f \in \mathcal{L}(\Omega)$, which is the desired conclusion.

The following corollary is an immediate consequence of Theorem 4.3.

Corollary 4.4. Let (X_2, ρ_2) be a complete metric space. If $f: \Omega \to X_2$ and there exists a uniformly continuous function $f_0: \Omega \to X_2$ such that A_{f,f_0} is a non-empty countable set and

$$\sum_{x \in A_{f,f_0}} \rho_2 \left(f(x), f(x_0) \right) < +\infty,$$

then $f \in \mathcal{L}(\Omega)$.

Combining Theorems 4.1 and 4.3 we obtain the following result.

Theorem 4.5. Let (X_2, ρ_2) be a complete metric space, the set $cl(\Omega)$ be compact in (X_1, ρ_1) and let $f: \Omega \to X_2$. Then $f \in \mathcal{L}(\Omega)$ if and only if there exists a uniformly continuous function $f_0: \Omega \to X_2$ such that either the set A_{f,f_0} is finite or A_{f,f_0} is infinite and there exists a sequence $\mathbb{N} \ni n \mapsto a_n \in \Omega$ such that $\{a_n: n \in \mathbb{N}\} = A_{f,f_0}$ and $\rho_2(f(a_n), f_0(a_n)) \to 0$ as $n \to \infty$.

References

- L. V. Ahlfors, *Lectures on Quasiconformal Mappings*, D. Van Nostrand, Princeton, New Jersey-Toronto-New York-London, 1966.
- [2] G. Choquet, Sur les homéomorphies harmoniques d'un disque D sur D, Complex Variables 24 (1993), 47–48.
- [3] P. Duren, *Harmonic Mappings in the Plane*, Cambridge Tracts in Mathematics 156, Cambridge University Press, Cambridge, 2004.
- [4] R. Engelking, *General topology*, Sigma series in pure mathematics, Heldermann Verlag, Berlin, 1989.
- [5] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

- [6] O. Lehto, K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren 126, Springer, Berlin, 1973.
- [7] N. Lusin, Sur les propriétés des fonctions mesurables, Comptes Rendus Acad. Sci. Paris 154 (1912), 1688–1690.
- [8] I. P. Natanson, Theory of a Functions of a Real Variable, Dover Publications Inc., Mineola, New York, 2016.
- [9] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [10] W. Rudin, Real and Complex Analysis, third ed., McGraw-Hill International Editions, Mathematics Series, McGraw-Hill Book Company, Singapore, 1987.
- [11] W. Sierpiński, General topology, Dover Publications, Inc., Mineola, New York, 1956.
- [12] R. Sikorski, Funkcje rzeczywiste, [Real Functions in Polish], t. I, PWN (Polish Scientific Publishers), Warszawa 1958.

Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Al. Racławickie 14, P.O. Box 129 PL-20-950 Lublin Poland E-mail: armen@kul.lublin.pl

Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Al. Racławickie 14, P.O. Box 129 PL-20-950 Lublin Poland and Institute of Mathematics and Information Technology The State School of Higher Education in Chełm Pocztowa 54 PL-22-100 Chełm Poland E-mail: partyka@kul.lublin.pl

Presented by Andrzej Luczak at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on March 23, 2017.

TWIERDZENIA TYPU ŁUZINA DLA FUNKCJI LIMESOWALNYCH

Streszczenie

W pracy wprowadzamy pojęcie funkcji limesowalnej (czyli takiej, która ma granicę w każdym punkcie skupienia jej dziedziny) i dowodzimy twierdzeń typu Luzina dla takich funkcji. Podajemy również charakteryzację funkcji limesowalnych.

Słowa kluczowe: funkcja wartości granicznych, własność Lindelöfa, twierdzenie Łuzina