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Summary

In this paper we introduce limitable functions (the ones which have a limit at each

accumulation point of their domains) and prove Lusin’s type theorems for such functions.

We also give a characterization of limitable functions.
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1. Introduction

Let (X, ρ) be a metric space and let A be a subset of X. We denote by cl(A) and

fr(A) the closure and boundary of A, respectively. The set of all accumulation points

of A will be denoted by Ad. If x0 ∈ X then the open ball at the center x0 and radius

r > 0 we denote by B(x0, r), i.e., B(x0, r) = {x ∈ X : ρ(x0, x) < r}.
Throughout the paper we assume that (X1, ρ1) and (X2, ρ2) are metric spaces

and Ω is a non-empty subset of X1. Moreover, unless otherwise stated the sets cl(A),

fr(A) and Ad of a set A ⊂ X1 are understood in the space (X1, ρ1).

Definition 1.1. A function f : Ω → X2 is said to be limitable if Ωd = ∅ or Ωd 6= ∅
and for each x ∈ Ωd there exists the limit limt→x f(t).

The class of all limitable functions f : Ω → X2 will be denoted by L(Ω). It is

easy to see that if the metric space (X2, ρ2) is complete and f : Ω→ X2 is uniformly

continuous, then f ∈ L(Ω). In particular, f ∈ L(Ω) provided f is Hölder continuous

in Ω, i.e., there exist C ≥ 0 and α ∈ (0; 1] such that

ρ2(f(t1), f(t2)) ≤ Cρ1(t1, t2)α for t1, t2 ∈ Ω. (1.1)

[51]
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With each f ∈ L(Ω) we assign the function f̂ : cl(Ω)→ X2 defined by the formula

f̂(x) :=

{
f(x) if x ∈ Ω \ Ωd,

limt→x f(t) if x ∈ Ωd.
(1.2)

Note that f̂ coincides with f on the set of isolated points of Ω, provided Ω \Ωd 6= ∅.

Remark 1.2. (cf. Problem 8 in [12], Ch. III, §2). If f ∈ L(Ω), then the function

f̂ : cl(Ω)→ X2 defined by (1.2) is continuous. In order to prove this fact fix x ∈ cl(Ω).

If x ∈ Ω \ Ωd, then the continuity of f̂ at x is obvious. Suppose now that x ∈ Ωd.

Then f̂(x) = limt→x f(t). Fix ε > 0. Then there exists δε > 0 such that

ρ2

(
f(t), f̂(x)

)
< ε/2 for t ∈ Ω, 0 < ρ1(t, x) < 2δε. (1.3)

Now fix t ∈ B(x, δε) \ {x}. If t ∈ Ω \ Ωd then by (1.3) we have

ρ2

(
f̂(t), f̂(x)

)
= ρ2

(
f(t), f̂(x)

)
< ε.

If t ∈ Ωd, then f̂(t) = limt′→x f(t′), and so there exists δ′ε ∈ (0; δε) and t′ ∈ Ω ∩
B(t, δ′ε) \ {t} such that

ρ2

(
f(t′), f̂(t)

)
< ε/2. (1.4)

Since

ρ1(t′, x) ≤ ρ1(t′, t) + ρ1(t, x) < δ′ε + δε < 2δε,

we deduce from (1.3) and (1.4) that

ρ2

(
f̂(t), f̂(x)

)
≤ ρ2

(
f̂(t), f(t′)

)
+ ρ2

(
f(t′), f̂(x)

)
< ε.

Consequently,

ρ2

(
f̂(t), f̂(x)

)
< ε for t ∈ B(x, δε) ∩ cl(Ω),

which is the desired conclusion.

Limitable functions appear naturally in various aspects of complex analysis. In

what follows we present few examples dealing with mappings in the complex plane

E(C) := (C, ρe) where ρe is the standard Euclidean metric.

Example 1.3. Suppose that (X1, ρ1) and (X2, ρ2) coincide with E(C) and set Ω :=

B(0, 1). Let f : Ω → C be a K-quasiconformal mapping for some K ≥ 1. By the

Riemann mapping theorem there exists a conformal mapping f0 of Ω onto f(Ω)

such that f0(0) = f(0); cf. [10, p. 283]. Then f1 := f−1
0 ◦ f is a K-quasiconformal

self-mapping of the unit disk Ω keeping the origin fixed. From Mori’s theorem it

follows that f1 satisfies the Hölder condition (1.1) with C := 16 and α := 1/K; cf. [1,

p. 47] and [6, pp. 66–67]. Therefore f1 ∈ L(Ω). If additionally each point of fr(f(Ω))

is a simple boundary point of the domain f(Ω), then f0 ∈ L(Ω), and so f ∈ L(Ω);

cf. [10, p. 290].
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Example 1.4. Let (X1, ρ1), (X2, ρ2) and Ω be like in Example 1.3. Suppose that f

is a conformal mapping of Ω onto f(Ω) bounded by a Dini-smooth Jordan curve. As

shown by Warschawski, f ′ ∈ L(Ω); cf. [9, p. 298].

Example 1.5. Let (X1, ρ1), (X2, ρ2) and Ω be like in Example 1.3. Suppose that

f is a harmonic injective mapping of Ω onto itself. Then Choquet theorem implies

that f ∈ L(Ω); cf. [2], see also [3, Sect. 3.3].

Example 1.6. Let (X1, ρ1), (X2, ρ2) and Ω be like in Example 1.3. Suppose that

ϕ : fr(Ω) → C is a continuous function. Then f := P[ϕ] ∈ L(Ω), where P[ϕ] is the

Poisson integral of ϕ, i.e.,

P[f ](z) :=
1

2π

∫ 2π

0

f(eit)
1− |z|2

|eit − z|2
dt for z ∈ Ω;

cf. e.g. [10, p. 233–234] and [5, Chap. I, Sect. 3].

In the next section we prove a crucial lemma which has its own interest. In

Section 3 our main results relevant to Lusin’s theorem are stated and proved. In the

last section we give sufficient and necessary conditions for a function to be limitable.

2. An auxiliary lemma

We start with an auxiliary lemma, which plays an important role later on.

Lemma 2.1. If cl(Ω) is compact in (X1, ρ1) and f ∈ L(Ω), then for each ε > 0

there exist δε > 0 and a finite set Aε ⊂ Ωd such that Ω \Aε 6= ∅ and

ρ2 (f(t1), f(t2)) < ε for t1, t2 ∈ Ω \Aε , ρ1(t1, t2) < δε. (2.1)

Proof. Given f ∈ L(Ω) fix ε > 0. Suppose first that Ωd = ∅. Then each point

of Ω is isolated, and so cl(Ω) = Ω. Since cl(Ω) is a compact set in (X1, ρ1), it

follows that Ω is finite. Therefore the property (2.1) holds with Aε := ∅ and δε :=
1
2 min ({ρ1(t1, t2) : t1, t2 ∈ Ω , t1 6= t2}) > 0.

Suppose now that Ωd 6= ∅. By Definition 1.1, for each x ∈ Ωd there exists ηε,x > 0

such that

ρ2(f(t), f̂(x)) <
ε

2
for t ∈ Ω ∩B(x, ηε,x) \ {x}. (2.2)

Obviously,

cl(Ω) = Ωd ∪
(
Ω \ Ωd

)
.

Let x ∈ cl(Ω). If x ∈ Ω \ Ωd then there exists ηx > 0 such that

B(x, ηx) ∩ Ω = {x}. (2.3)

Otherwise x ∈ Ωd and we take ηx := ηε,x. The collection {B(x, ηx/2) : x ∈ cl(Ω)}
is an open cover of cl(Ω). Hence, by the compactness of cl(Ω), there exists a finite
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subset Jε of cl(Ω) such that

cl(Ω) ⊂
⋃
x∈Jε

B(x, ηx/2). (2.4)

Define

Aε := Jε ∩ Ωd and δε :=
1

2
min ({ηx : x ∈ Jε}) .

Since Jε is a finite set, δε > 0.

Now fix arbitrary t1, t2 ∈ Ω \ Aε such that ρ1(t1, t2) < δε. By (2.4) there exists

x ∈ Jε such that t1 ∈ B(x, ηx/2). By the definition of δε,

ρ1(t2, x) ≤ ρ1(t2, t1) + ρ1(t1, x) < δε + ηx/2 ≤ ηx,

which means that t1, t2 ∈ B(x, ηx). If x ∈ Jε \Aε then by (2.3) we have t1 = t2 = x,

and consequently

ρ2(f(t1), f(t2)) = 0 < ε.

If x ∈ Jε ∩Aε then by (2.2) we get

ρ2(f(t1), f(t2)) ≤ ρ2(f(t1), f̂(x)) + ρ2(f(t2), f̂(x)) < ε,

because t1 6= x and t2 6= x. This completes the proof. �

3. Lusin’s type theorems

Recall that a set S is countable if S = ∅ or there exists an injective function h : S → N
(in particular a countable set can be finite). For every function f : D → Y and every

set D̃ ⊂ D the restriction of f to D̃ will be denoted by f |D̃. One of the consequences of

Lemma 2.1 is the following counterpart of Lusin’s theorem for measurable functions,

cf. [7], [8, p. 106], [10, p. 55].

Theorem 3.1. If Ω is not countable, cl(Ω) is compact in (X1, ρ1) and f ∈ L(Ω),

then there exists a countable subset A of the set Ωd such that the following two

conditions hold:

(i) f |Ω\A is uniformly continuous;

(ii) f is continuous at each point x ∈ Ω \A.

Proof. Fix f ∈ L(Ω) and consider the sequence N 3 n 7→ εn := 1/n. By Lemma 2.1

for each n ∈ N there exist δ̃εn > 0 and a finite set Aεn ⊂ Ωd such that

ρ2 (f(t1), f(t2)) < εn for t1, t2 ∈ Ω \Aεn , ρ1(t1, t2) < δ̃εn . (3.1)

Define

A :=

∞⋃
n=1

Aεn .
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The set A is countable as a sum of a countable family of finite sets. Now fix ε > 0.

Then there exists n0 ∈ N such that εn0 < ε. Hence, by (3.1) we have

ρ2 (f(t1), f(t2)) < εn0
< ε for t1, t2 ∈ Ω \Aεn0

, ρ1(t1, t2) < δ̃εn0
.

Therefore

ρ2 (f(t1), f(t2)) < ε for t1, t2 ∈ Ω \A, ρ1(t1, t2) < δ̃εn0
,

which proves (i). In order to prove (ii) suppose that x ∈ Ω \ A is arbitrarily given.

Define

δx := min
(
{δ̃εn0

,min
(
{ρ1(x, a) : a ∈ Aεn0

}
)
}
)
.

For every t ∈ Ω such that ρ1(t, x) < δx we see that

t ∈ Ω \Aεn0
and ρ1(t, x) < δ̃εn0

,

which gives, by the inclusion Ω \A ⊂ Ω \Aεn0
and (3.1), that

ρ2 (f(t), f(x)) < εn0
< ε.

This completes the proof. �

Remark 3.2. Theorem 3.1 is trivially valid if Ω is countable. In such a case it is

enough to put A := Ω \ {x} for an arbitrarily chosen point x ∈ Ω.

Example 3.3. Consider the Riemann function ϕ : R→ R given by

ϕ(x) :=

{
1/n, ifx = m/n, n ∈ N, m ∈ Z, gcd(n,m) = 1,

0, ifx ∈ R \Q.

Suppose that (X1, ρ1) and (X2, ρ2) coincide with E(R) := (R, ρe), where ρe is the

usual Euclidean metric, and set Ω := [0; 1]. Since Rd = R and limt→x ϕ(t) = 0 for

each x ∈ R we see that f := ϕ|Ω ∈ L(Ω) and f̂(x) = 0 for each x ∈ cl(Ω) = Ω. The

function f is ”very discontinuous”. Nevertheless, it is uniformly continuous on the

set Ω\Q. Moreover, this example shows that we cannot replace the word ”countable”

by ”finite” in the conclusion of Theorem 3.1.

Recall that a set A ⊂ X has a Lindelöf property in (X, ρ) if each open cover of

A contains a countable subcover of A, cf. [11, p. 116], [4, p. 192]. From Theorem 3.1

we can drive a variant of Lusin’s type theorem for limitable functions (see Theorem

3.4), where we replace the compactness of cl(Ω) by the Lindelöf property of cl(Ω)

and add the locally compactness of (X1, ρ1).

Theorem 3.4. If Ω is not countable, cl(Ω) has a Lindelöf property in a locally

compact metric space (X1, ρ1) and f ∈ L(Ω), then there exists a countable subset A

of the set Ωd such that f |Ω\A is continuous.

Proof. Fix f ∈ L(Ω). Since the space (X1, ρ1) is locally compact, for each x ∈ cl(Ω)

there exists rx > 0 such that cl(B(x, rx)) is compact in (X1, ρ1). The family F :=

{B(x, rx) : x ∈ cl(Ω)} is an open cover of cl(Ω). Since cl(Ω) has a Lindelöf property,
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there exists a non-empty countable set N such that the subfamily {B(xn, rxn
) : n ∈

N} of F covers cl(Ω). Set

rn := rxn and Ω̃n := B(xn, rn) ∩ Ω for n ∈ N. (3.2)

Obviously, ⋃
n∈N

Ω̃n = Ω.

Fix n ∈ N . By (3.2) we have

cl(Ω̃n) = cl(B(xn, rxn) ∩ Ω) ⊂ cl(B(xn, rn)) ∩ cl(Ω) ⊂ cl(B(xn, rn)).

Hence, by the compactness of cl(B(xn, rn)), the closed set cl(Ω̃n) is compact in

(X1, ρ1). Since Ω̃n ⊂ Ω we see that Ω̃dn ⊂ Ωd and f |Ω̃n
∈ L(Ω̃n). Therefore, by

Theorem 3.1 and Remark 3.2, there exists a countable set An ⊂ Ω̃dn ⊂ Ωd such that

Ω̃n \An 6= ∅ and the function f |Ω̃n\An
is uniformly continuous. Define

A :=
⋃
n∈N

An.

The set A is countable as a union of countably many countable sets. Evidently

A ⊂ Ωd. It remains to show that f |D is continuous where D := Ω \ A. Let x ∈ D.

Since D ⊂
⋃
n∈N

(
Ω̃n \An

)
, there exists n0 ∈ N such that x ∈ Ω̃n0

\ An0
. By

(3.2) we see that x ∈ (B(xn0
, rn0

) ∩ Ω) \ An0
. Setting δx := rn0

− ρ1(x, xn0
) we get

B(x, δx) ⊂ B(xn0
, rn0

), and so

B(x, δx) ∩D ⊂ B(xn0 , rn0) ∩ (Ω \An0) = Ω̃n0 \An0 .

Hence, by the continuity of f |Ω̃n0
\An0

, the function f |B(x,δx)∩D is continuous. Now we

have to prove that f |D is continuous at x. Fix ε > 0. By the continuity of f |B(x,δx)∩D
at x there exists ηx,ε > 0 such that

ρ2(f |D(t), f |D(x)) < ε for t ∈ B(x, δx) ∩D, ρ1(t, x) < ηx,ε. (3.3)

Set δ̃x,ε := min ({δx, ηx,ε}). By (3.3), we have

ρ2(f |D(t), f |D(x)) < ε for t ∈ D, ρ1(t, x) < δ̃x,ε,

which means the continuity of f |D at x. Therefore the function f |D is continuous,

and we are done. �

In the following variant of Lusin’s type theorem we drop any condition on the set

cl(Ω). Instead we add the separability of the metric space (X1, ρ1).

Theorem 3.5. If Ω is not countable, (X1, ρ1) is a separable and locally compact

metric space and f ∈ L(Ω), then there exists a countable subset A of the set Ωd such

that f |Ω\A is continuous.

Proof. Let Ω and (X1, ρ1) satisfy the assertion of the theorem. We will prove that

cl(Ω) has a Lindelöf property in the space (X1, ρ1), as a closed subset of a separable



Lusin’s type theorems for limitable functions 57

space. This is a rather known fact (see, e.g., [4, p. 192]). However, to make the proof

self-contained we give an explicit proof of this fact.

Let R be an open cover of cl(Ω). Since cl(Ω) is a closed set in (X1, ρ1), its

complement to X1, i.e., the set X1 \ cl(Ω) is open in (X1, ρ1). Denote by R̂ :=

R ∪ {X1 \ cl(Ω)}. Obviously, R̂ is an open cover of X1. Since (X1, ρ1) is separable,

there exists a non-empty countable set A such that cl(A) = X1. Define

A∗ :=
{

(a,m) ∈ A× N : there exists U ∈ R̂ such that B(a, 1/m) ⊂ U
}
.

The family

B := {B(a, 1/m) : (a,m) ∈ A× N}

is a base of (X1, ρ1), i.e., for each x ∈ X1 and an open set V in (X1, ρ1), if x ∈ V
then there exists (a,m) ∈ A × N such that x ∈ B(a, 1/m) ⊂ V . As R̂ is an open

cover of X1 and B is a base of (X1, ρ1) we see that

for each x ∈ X1 there exist U ∈ R̂ and (a,m) ∈ A× N
such that x ∈ B(a, 1/m) ⊂ U.

(3.4)

In particularly, A∗ 6= ∅. By the axiom of choice and the definition of A∗, there exists

a function ϕ : A∗ → R̂ such that for each (a,m) ∈ A∗ the inclusion B(a, 1/m) ⊂
ϕ(a,m) holds. Since A∗ ⊂ A×N, the set A∗ is countable. Therefore ϕ(A∗), which is a

subfamily of R̂, is countable. We will show that the family ϕ(A∗) covers X1. In order

to do this fix x ∈ X1. By the property (3.4) there exist U ∈ R̂ and (a,m) ∈ A×N such

that x ∈ B(a, 1/m) ⊂ U . Hence, by the definition of A∗ we claim that (a,m) ∈ A∗.
Using the property of the function ϕ we get x ∈ B(a, 1/m) ⊂ ϕ(a,m). Thus

X1 =
⋃

(a,m)∈A∗
ϕ(a,m),

and so ϕ(A∗) is a countable cover of X1. Consequently, the family ϕ(A∗)\{X1\cl(Ω)},
which is a subfamily of R, is a countable cover of cl(Ω). This means that cl(Ω) has

a Lindelöf property in (X1, ρ1).

Now fix f ∈ L(Ω). By Theorem 3.4, there exists a countable subset A of the set

Ωd such that f |Ω\A is continuous, which is a desired conclusion. �

Remark 3.6. Contrary to Theorem 3.1 we cannot replace continuity by uniform

continuity in Theorems 3.4 and 3.5. Namely, set (X1, ρ1) = (X2, ρ2) := E(R), Ω := R
and R 3 x 7→ f(x) := x3. Then f ∈ L(Ω) as a continuous function. On the other

hand f |Ω\A is not uniformly continuous on R\A for each countable set A ⊂ Ωd = R.

4. Applications

By Remark 1.2 there is a close relationship between continuous and limitable func-

tions. A natural question arises how much are limitable and continuous functions
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different from each other? For any two functions f1 : D → Y and f2 : D → Y we

define

Af1,f2 := {x ∈ D : f1(x) 6= f2(x)}.

In the proofs of Theorems 4.1 and 4.3 we use the following known fact on convergence

of a sequence in an arbitrary metric space (X, ρ):

for each c ∈ X and for each sequence N 3 n 7→ yn ∈ X
the equality lim

n→∞
yn = c holds if and only if for each increasing sequence

N 3 k 7→ nk ∈ N there exists an increasing sequence N 3 l 7→ kl ∈ N
such that lim

l→∞
ynkl

= c.

(4.1)

Theorem 4.1. If cl(Ω) is compact in (X1, ρ1) and f ∈ L(Ω), then there exists

a uniformly continuous function f0 : Ω → X2 such that one of the following two

conditions holds:

(i) the set Af,f0 is finite;

(ii) the set Af,f0 is infinite and there exists a sequence N 3 n 7→ an ∈ Ω such that

{an : n ∈ N} = Af,f0 and

ρ2(f(an), f0(an))→ 0 as n→∞. (4.2)

Proof. Given f ∈ L(Ω) set f0 := f̂ |Ω, where f̂ is defined by (1.2). First we prove that

Af,f0 , which is a subset of Ω, is countable. This is obvious if Ω is countable. Suppose

now that Ω is not countable. By Remark 1.2, the function f̂ is uniformly continuous,

and so f0 is uniformly continuous. The functions f and f0 coincide at each continuity

point of f . Indeed, if f is continuous at x ∈ Ωd ∩ Ω (the case x ∈ Ω \ Ωd is evident)

then

f(x) = lim
Ω3t→x

f(t) = f̂(x) = f0(x).

By Theorem 3.1(ii), there exists a countable set A such that f is continuous at each

point x of Ω \A. Hence Af,f0 ⊂ A, which means that Af,f0 is countable.

Assume now that Af,f0 is infinite and let N 3 n 7→ an ∈ Ω be a bijection of

N onto Af,f0 . We have to prove (4.2). To this end we apply (4.1) to the sequence

N 3 n 7→ bn := ρ2(f(an), f0(an)). Fix an increasing sequence N 3 k 7→ nk ∈ N.

By the compactness of cl(Ω), there exists an increasing sequence N 3 l 7→ kl ∈ N
and an element x ∈ Ωd such that ankl

→ x as l → ∞. Since f0 = f̂ on Ω we have

f0(an) = f̂(an) for n ∈ N. By (1.2) and Remark 1.2 we see that

bnkl
= ρ2

(
f(ankl

), f0(ankl
)
)
→ ρ2(f̂(x), f̂(x)) = 0 as l→∞.

Therefore, by (4.1), we have bn → 0 as n→∞, which proves (4.2). �

Remark 4.2. The compactness of cl(Ω) cannot be omitted in Theorem 4.1. Indeed,

set (X1, ρ1) = (X2, ρ2) := E(R), Ω := R and consider the function f : Ω → R given
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by

f(x) :=

{
1, if x ∈ Z,
0, if x ∈ R \ Z.

Obviously f ∈ L(Ω). However, there is no a uniformly continuous function f0 : Ω→ R
such that one of the conditions (i) or (ii) of Theorem 4.1 holds.

Theorem 4.3. Let (X2, ρ2) be a complete metric space. If f : Ω → X2 and there

exists a uniformly continuous function f0 : Ω → X2 such that one of the conditions

(i) or (ii) of Theorem 4.1 holds, then f ∈ L(Ω).

Proof. Fix f , f0 and a sequence N 3 n 7→ an ∈ Ω as in the hypothesis of the theorem.

If the condition (i) holds, then evidently f ∈ L(Ω).

Assume now that the condition (ii) holds. Of course f0 ∈ L(Ω). By Remark 1.2,

the function f̂0 : cl(Ω) → X2 is continuous. Fix x ∈ Ωd and a sequence N 3 n 7→
xn ∈ Ω such that

xn 6= x for n ∈ N and ρ1(xn, x)→ 0 as n→∞. (4.3)

We claim that f(xn) → f̂0(x) as n → ∞. In order to prove this we will apply (4.1)

to the sequence N 3 n 7→ f(xn). Fix an increasing sequence N 3 k 7→ nk ∈ N. We

consider two cases.

Case I: there exists k0 ∈ N such that

xnk
∈ Af,f0 for k ≥ k0. (4.4)

We define sequences N 3 l→ kl ∈ N and N 3 l→ ml ∈ N recursively as follows:

k1 := min
(
{k ∈ N : ak = xnk0

}
)
,

m1 := 1 + max
(
{j ∈ N : j ≥ k0 andxnj ∈ Ak1}

)
,

(4.5)

where Ap := {ak : k ∈ N and 1 ≤ k ≤ p} for p ∈ N, and for each l ∈ N,

kl+1 := min({k ∈ N : ak = xnml
}),

ml+1 := 1 + max
(
{j ∈ N : j ≥ k0 andxnj ∈ Akl+1

}
)
.

(4.6)

It follows from (4.3) that the sequence N 3 n 7→ xn does not contain any constant

subsequence. This fact and the assumption {an : n ∈ N} = Af,f0 (see hypothesis (ii)

of the theorem) ensure that the sequences N 3 l 7→ kl ∈ N and N 3 l 7→ ml ∈ N are

well defined. Moreover, by formulas (4.5) and (4.6), we have

xnml
= akl+1

for l ∈ N, (4.7)

and so xnml
∈ Akl+1

\Akl , which yields

kl < kl+1 and ml < ml+1 for l ∈ N. (4.8)



60 A. Grigoryan and D. Partyka

Hence, by (4.8), the hypothesis (ii) and (4.3) we get

ρ2(f(xnml
), f̂0(x)) ≤ ρ2(f(xnml

), f0(xnml
)) + ρ2(f0(xnml

), f̂0(x))

= ρ2(f(akl+1
), f0(akl+1

)) + ρ2(f0(xnml
), f̂0(x))→ 0 as l→∞.

Consequently,

f
(
xnkl

)
→ f̂0(x) as l→∞.

Case II: there does not exist k0 ∈ N such that (4.4) holds. In this case there exists

an increasing sequence N 3 l 7→ kl ∈ N such that xnkl
∈ Ω\Af,f0 for l ∈ N. By (4.3),

we get

f
(
xnkl

)
= f0

(
xnkl

)
→ f̂0(x) as l→∞.

Combining the both cases and applying (4.1) we deduce that f(xn) → f̂0(x) as

n → ∞, and so limt→x f(t) = f̂0(x). This means f ∈ L(Ω), which is the desired

conclusion. �

The following corollary is an immediate consequence of Theorem 4.3.

Corollary 4.4. Let (X2, ρ2) be a complete metric space. If f : Ω → X2 and there

exists a uniformly continuous function f0 : Ω → X2 such that Af,f0 is a non-empty

countable set and ∑
x∈Af,f0

ρ2 (f(x), f(x0)) < +∞,

then f ∈ L(Ω).

Combining Theorems 4.1 and 4.3 we obtain the following result.

Theorem 4.5. Let (X2, ρ2) be a complete metric space, the set cl(Ω) be compact in

(X1, ρ1) and let f : Ω → X2. Then f ∈ L(Ω) if and only if there exists a uniformly

continuous function f0 : Ω → X2 such that either the set Af,f0 is finite or Af,f0 is

infinite and there exists a sequence N 3 n 7→ an ∈ Ω such that {an : n ∈ N} = Af,f0
and ρ2(f(an), f0(an))→ 0 as n→∞.

References

[1] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton,

New Jersey-Toronto-New York-London, 1966.
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TWIERDZENIA TYPU  LUZINA DLA FUNKCJI LIMESOWALNYCH

S t r e s z c z e n i e
W pracy wprowadzamy pojȩcie funkcji limesowalnej (czyli takiej, która ma granicȩ w

każdym punkcie skupienia jej dziedziny) i dowodzimy twierdzeń typu  Luzina dla takich
funkcji. Podajemy również charakteryzacjȩ funkcji limesowalnych.

S lowa kluczowe: funkcja wartości granicznych, w lasność Lindelöfa, twierdzenie  Luzina




