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Summary

In the present paper we are concerned with some estimates for coefficients of analytic

functions ω(z) =
∑∞

n=0 cnz
n defined on the unit disc satisfying |ω(z)| ≤ 1. Our results are

based on commonly known Schur’s theorem [J. Reine Angew. Math. 147 (1917), 205-232].
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1. Introduction

Let ∆ stand for the open unit disc in the complex plane C and denote by B the class

of all analytic functions ω : ∆ → ∆. It is well-known that each function ω ∈ B is

uniquely determined by coefficients of its power series expansion, i.e.

ω(z) =

∞∑
n=0

cnz
n, z ∈ ∆, (1.1)

for some cn ∈ C, n ∈ Z0. Here as well as in the whole paper Zp := {n ∈ Z : p ≤ n}
and Zp,q := {n ∈ Z : p ≤ n ≤ q} for any fixed p, q ∈ Z, where Z stands for the set of

all integer numbers.

Properties of the class B are widely used in complex analysis, therefore it is thor-

oughly investigated. There are whole books devoted to bounded analytic functions

(e.g. [2]). In particular, such functions play an important role in the theory of planar

harmonic mappings (see e.g. [1]). In fact, our researches of this topic (see [4],[5],[3])

gave us motivation to study properties of bounded analytic functions and led us to

several remarks, which are the main results of this paper.

[93]
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Since we focus on the coefficients of a function ω ∈ B, we start with recalling one

of the most interesting results in this area, commonly known as Schur’s theorem [7]

(see also [6]).

Theorem 1.1. For a function ω analytic in ∆ with the power series expansion (1.1),

the following conditions are equivalent:

1) ω ∈ B;

2) for all N ∈ Z0 and for all λ0, . . . , λN ∈ C we have

N∑
k=0

∣∣∣∣∣
N∑
n=k

cn−kλn

∣∣∣∣∣
2

≤
N∑
k=0

|λk|2.

Note, that if we fix N ∈ Z0 and apply Theorem 1.1 with λi = 0 for i ∈ Z0,N−1
and λN = 1 we immediately obtain the following classical result (usually derived

from the Parseval-Gutzmer formula) known as Gutzmer’s inequality:

N∑
k=0

|cn|2 ≤ 1. (1.2)

2. First remark

Our first aim is to improve the inequality (1.2) by more careful and tricky use of

Theorem 1.1.

Theorem 2.1. If ω ∈ B then

N∑
k=0

|ck|2 ≤ 1− |c0|2
(

1−
N−1∑
k=0

|ck|2
)

(2.1)

for any fixed N ∈ Z1.

Proof. For a function ω ∈ B and any fixed N ∈ Z1 the inequality (2.1) trivially holds

in the case when |c0| = 1. Otherwise, by applying Theorem 1.1 with λ0 = x, λi = 0

for i = Z1,N−1 and λN = eiθ, where x > 0 and θ ∈ R, we have

|xc0 + cNe
iθ|2 +

N−1∑
k=0

|ckeiθ|2 ≤ x2 + 1.

Choosing θ so that |xc0 + cNe
iθ| = |xc0| + |cNeiθ|, the above inequality takes the

form

(x|c0|+ |cNeiθ|)2 +

N−1∑
k=0

|ckeiθ|2 ≤ x2 + 1,
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which can be rewritten as

−(1− |c0|2)

(
x− |c0||cN |

1− |c0|2

)2

+
|c0|2|cN |2

1− |c0|2
+

N∑
k=0

|ck|2 − 1 ≤ 0

for all x > 0, since |c0| < 1. This implies

|c0|2|cN |2

1− |c0|2
+

N∑
k=0

|ck|2 − 1 ≤ 0, (2.2)

which after suitable rearrangement completes the proof. �

Remark 2.2. Observe that one can rewrite (2.1) as

|cN |2 ≤ (1− |c0|2)

(
1−

N−1∑
k=0

|ck|2
)
.

It immediately follows the known inequality

|cN | ≤ 1− |c0|2. (2.3)

for all N ∈ Z1.

By repeated use of Theorem 2.1 we can deduce another interesting improvement

of Gutzmer’s inequality (1.2).

Corollary 2.3. If ω ∈ B then

N∑
k=1

|ck|2 ≤ (1− |c0|2)(1− |c0|2N ).

for any fixed N ∈ Z0.

Proof. The proof follows by induction from Theorem 2.1. �

Remark 2.4. The inequality given in Corollary 2.3 immediately implies the follow-

ing estimate

|cN |2 ≤ (1− |c0|2)(1− |c0|2N )

for all N ∈ Z1, which is an improvement of inequality (2.3).

3. Second remark

Using Theorem 1.1 in another way leads to the following result.

Theorem 3.1. If ω ∈ B then∣∣∣∣∣
N−1∑
k=0

γN−kck

∣∣∣∣∣ ≤ |c0||γ1|+
√√√√(N − 1)

(
N−1∑
k=0

|γN−k − γN−k−1|2 − |c0|2|γ1|2
)

for a fixed N ∈ N, γ0 := 0 and any numbers γk ∈ C, k ∈ Z1,N .
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Proof. Setting λk := γN−k − γN−k−1 for k ∈ Z0,N−1 we have

N−1∑
k=0

γN−kck =

N−1∑
k=0

ck N−1∑
j=k

λj

 =

N−1∑
k=0

N−1∑
j=k

cj−kλj


= c0λN−1 +

N−2∑
k=0

N−1∑
j=k

cj−kλj

 .

Hence, by applying the triangle inequality we get∣∣∣∣∣
N−1∑
k=0

γN−kck

∣∣∣∣∣ ≤ |c0λN−1|+
N−2∑
k=0

∣∣∣∣∣∣
N−1∑
j=k

cj−kλj

∣∣∣∣∣∣
= |c0λN−1|+

√√√√√N−2∑
k=0

∣∣∣∣∣∣
N−1∑
j=k

cj−kλj

∣∣∣∣∣∣
2

.

Using the Cauchy-Schwarz inequality we have√√√√√N−2∑
k=0

∣∣∣∣∣∣
N−1∑
j=k

cj−kλj

∣∣∣∣∣∣
2

≤

√√√√√(N − 1)

N−2∑
k=0

∣∣∣∣∣∣
N−1∑
j=k

cj−kλj

∣∣∣∣∣∣
2

=

√√√√√√(N − 1)

N−1∑
k=0

∣∣∣∣∣∣
N−1∑
j=k

cj−kλj

∣∣∣∣∣∣
2

− |c0λN−1|2

.
This followed by application of Theorem 1.1 (Schur’s theorem) yields

∣∣∣∣∣
N−1∑
k=0

γN−kck

∣∣∣∣∣ ≤ |c0λN−1|+
√√√√(N − 1)

(
N−1∑
k=0

|λk|2 − |c0λN−1|2
)
,

which, in view of the definition of λk, k ∈ Z0,N−1, completes the proof. �

Corollary 3.2. If ω ∈ B and ω(0) = 0 then∣∣∣∣∣
N−1∑
k=1

(N − k)ck

∣∣∣∣∣ ≤ N − 1

for a fixed N ∈ N.
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Proof. By applying the inequality given in Theorem 3.1 with γ0 := 0, γk := k for

k ∈ Z1,N−1 and γN := γN−1 together with the identity c0 = 0 we obtain∣∣∣∣∣
N−1∑
k=1

(N − k)ck

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
k=0

(N − k)ck

∣∣∣∣∣ ≤
√√√√(N − 1)

N−1∑
k=0

|γN−k − γN−k−1|2

=

√√√√(N − 1)

N−1∑
k=1

|γN−k − γN−k−1|2 = N − 1,

which is the desired result. �

Theorem 3.3. If ω ∈ B and ω(0) = 0 then∣∣∣∣∣∣
n−1∑
j=1

(n− j)an−jcj

∣∣∣∣∣∣ ≤ (n− 1)an−1

for a fixed n ∈ N and any numbers aj ∈ R, j ∈ Z1,n−1, such that a2 ≥ a1 ≥ 0 and

jaj + (j − 2)aj−2 ≥ 2(j − 1)aj−1, j ∈ Z3,n−1.

Proof.

Set λ1 := a1 and

λj := jaj −
j∑

k=2

kλj+1−k (3.1)

for j ∈ Z2,n−1. We firstly remark that standard calculations show the following

equations which are used in the later part of the proof:

(n− j)an−j =

n−j∑
k=1

kλn−j+1−k, (n− j) ∈ Z2, (3.2)

λn = nan − 2(n− 1)an−1 + (n− 2)an−2, n ∈ Z3, (3.3)

and
n∑
j=1

λj = nan − (n− 1)an−1, n ∈ Z2. (3.4)

Now, by (3.2) we have

n−1∑
j=1

(n− j)an−jcj =

n−1∑
j=1

(
λj

n−j∑
k=1

(n− j + 1− k)ck

)
.

Observe, that by the assumptions and (3.3), λj ≥ 0 for each j ∈ Z1,n−1. Hence using

the triangle inequality we obtain∣∣∣∣∣∣
n−1∑
j=1

(n− j)an−jcj

∣∣∣∣∣∣ ≤
n−1∑
j=1

(
λj

∣∣∣∣∣
n−j∑
k=1

(n− j + 1− k)ck

∣∣∣∣∣
)
.
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By applying the inequality given in Corollary 3.2 with N := n − j + 1, j ∈ Z1,n−1
we get ∣∣∣∣∣

n−j∑
k=1

(n− j + 1− k)ck

∣∣∣∣∣ ≤ n− j,
which yields ∣∣∣∣∣∣

n−1∑
j=1

(n− j)an−jcj

∣∣∣∣∣∣ ≤
n−1∑
j=1

(n− j)λj .

Together with the equality

n−1∑
j=1

(n− j)λj = (n− 1)an−1

which is proven by using (3.4), we complete the proof. �

Remark 3.4. Observe, that the inequalities given in Corollary 3.2 and Theorem 3.3

are sharp and the equality is attained e.g. for the identity mapping.
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PEWNE UWAGI ZWIA̧ZANE Z TWIERDZENIEM SCHURA

DLA OGRANICZONYCH FUNKCJI ANALITYCZNYCH

S t r e s z c z e n i e
W niniejszej pracy zajmujemy siȩ oszacowaniami wspó lczynników funkcji analitycznych

ω(z) =
∑∞

n=0 cnz
n określonych w kole jednostkowym, które spe lniaja̧ warunek |ω(z)| ≤ 1.

Prezentowane wyniki uzyskalísmy w oparciu o powszechnie znane twierdzenie Schura
[J. Reine Angew. Math. 147 (1917), 205-232].

S lowa kluczowe: ograniczone funkcje analityczne, oszacowania wspó lczynników, twierdzenie

Schura




