B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ 2017
 Vol. LXVII

Recherches sur les déformations
no. 2
pp. 69-83

Michat Klepczarek

BIFURCATION VALUES OF C^{∞} FUNCTIONS

Summary

We show how one can use a trivialization of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ on fibers of some function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to construct a trivialization of f in \mathbb{R}^{n}. Additionally we adapt a method for trivialising functions which satisfies the ρ_{0}-regularity condition to the case of functions defined on hypersurfaces of the form $M=g^{-1}(0)$.

Keywords and phrases: bifurcation value, trivialization, Magrange's condition, ρ_{0}-regularity

Introduction

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial. It is well known that there exists a finite set such that f is a C^{∞} fibration over the complement of this set. The smallest such a set is called the set of bifurcation values of f and denoted by $B(f)$. It contains the set of critical values $K_{0}(f)$ and the set of bifurcation values at infinity $B_{\infty}(f)$ of f. Finding an effective description of the set $B_{\infty}(f)$ is still an open question. However we can approximate $B_{\infty}(f)$ using different supersets. The most popular one uses the so-called Malgrange condition.

We say that f satisfies the Malgrange condition in $\lambda \in \mathbb{R}$ if there exists a neighbourhood U of λ and constans $\delta, R>0$ such that

$$
\begin{equation*}
\forall_{x \in f^{-1}(U)} \quad\|\nabla f(x)\|\|x\| \geqslant \delta \quad \text { for } \quad\|x\| \geqslant R . \tag{M}
\end{equation*}
$$

The set $K_{\infty}(f)$ of all values which do not satisfy Malgrane's condition is called the set of asymptotic critical values of f i.e.

$$
K_{\infty}(f):=\left\{\lambda \in \mathbb{R} \mid \exists_{\left(x_{k}\right) \subset \mathbb{R}^{n}}\left\|x_{k}\right\| \rightarrow \infty, f\left(x_{k}\right) \rightarrow \lambda,\left\|x_{k}\right\|\left\|\nabla f\left(x_{k}\right)\right\| \rightarrow 0\right\} .
$$

Jelonek and Kurdyka in [4] gave an effective characterization of this set. Moreover in [5] they showed how to proceed when the polynomial f is defined on an algebraic set (see also [3]).

In this paper we show how one can use a trivialization of a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ on fibers of some other smooth function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to construct a desired trivialization of f in \mathbb{R}^{n}. More precisely, we introduce a notion of (g, S) Malgrange condition; for a smooth function g and an open set $S \subset \mathbb{R}$ we say that f satisfies the (g, S)-Malgrange condition in λ if

1. $\nabla g(x) \neq 0$ near $f^{-1}(\lambda)$ outside some compact set
2. $g^{-1}(S)$ contains all fibers of f near λ
3. for any $s \in S$ the function $\left.f\right|_{g^{-1}(s)}: g^{-1}(s) \rightarrow \mathbb{R}$ satisfies the Malgrange condition in λ
(compare to the definition in Section 3). The set of all λ that don't satisfy the (g, S)-Malgrange condition we will denote by $K_{\infty}^{(g, S)}(f)$. Our aim is to prove $B(f) \subset$ $K_{\infty}^{(g, S)}(f) \cup K_{0}(f)$ and therefore

$$
B(f) \subset \bigcap_{(g, S)} K_{\infty}^{(g, S)} \cup K_{0}(f)
$$

(see Theorem 3.1 and Remark 3.5). It is worth noting that in (3) of the definition of (g, S)-Malgrange condition we allow different constans δ_{s} (in inequality (M)) for different $s \in S$. Therefore our method may be applied even if $\inf \left\{\delta_{s} \mid s \in S\right\}=0$ (i.e. when the standart Malgrange condition fails). This often leads us to more sharp aproximation of $B(f)$ than in the classical method (see Example 3.6 and Example 3.7).

The other popular approach to find the bifurcation values uses a critical set $\mathcal{M}_{a}(f)$ of the map $\left(f, \rho_{a}\right)$ where ρ_{a} is the Euclidean distance function from a fixed point $a \in \mathbb{R}^{n}$. We can define the set of asymptotic ρ_{a}-nonregular values as

$$
S_{a}(f):=\left\{\lambda \in \mathbb{R} \mid \exists_{\left(x_{k}\right) \subset \mathcal{M}_{a}(f)}\left\|x_{k}\right\| \rightarrow \infty, f\left(x_{k}\right) \rightarrow \lambda\right\}
$$

It has been proven in [10], [1], [2] that $B_{\infty}(f) \subset S_{a}(f)$ for any $a \in \mathbb{R}^{n}$, thus in particular

$$
B_{\infty}(f) \subset S_{\infty}(f):=\bigcap_{a \in \mathbb{R}^{n}} S_{a}(f)
$$

In the second part of this paper we will show how to get a simillar result when f is defined on the manifold of the form $g^{-1}(0)$. We will introduce an analog of the condition used in [6] and [7] that allows us to trivialize function f (see Theorem 4.1 and Remark 4.5).

1. Auxiliary results

In this section we collect some useful facts about differential equations, which we will use later in this article.

Let M be a smooth m-dimentional manifold. We denote by $T_{x} M$ the tangent space to the manifold M at a point $x \in M$ and $T M:=\bigcup_{x \in M} T_{x} M$. Let $W: M \rightarrow$ $T M$ be a smooth vector field on M.

Lemma 1.1. Let $\phi:\left(t_{0}, \xi\right] \rightarrow M$ be a solution of the system of differential equations $x^{\prime}=W(x)$. Assume that there exists a sequence $t_{k} \in\left(t_{0}, \xi\right), k \in \mathbb{N}$, such that $\lim _{k \rightarrow \infty} t_{k}=t_{0}$ and $\lim _{k \rightarrow \infty} \phi\left(t_{k}\right)=x_{0} \in M$. Then there exists $\lim _{t \rightarrow t_{0}} \phi(t)=x_{0}$ and ϕ is not the maximal solution to the left.

Proof. Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right): U \rightarrow A \subset \mathbb{R}^{m}$ be a map in a neighbourhood $U \subset M$ of the point x_{0}. Choosing a subsequence if necessary, we may assume that $x_{k}:=$ $\phi\left(t_{k}\right) \in U$ for $k \in \mathbb{N}$. Than we can write

$$
W(x)=\sum_{i=1}^{m} W_{i}(x) \frac{\partial}{\partial \varphi_{i}} \quad \text { for } x \in U
$$

where $W_{i}: U \rightarrow \mathbb{R}$ for $i=1, . ., m$.
Let $y_{0}:=\varphi\left(x_{0}\right)$ and $y_{k}:=\varphi\left(x_{k}\right)$ for $k \in \mathbb{N}$.
Let $\alpha \in \mathbb{R} \cup\{-\infty\}$ be a minimal number for which $\phi\left(\left(\alpha, t_{1}\right]\right) \subset U$. Put $I=\left(\alpha, t_{1}\right]$. Denote $\phi_{\varphi}:=\varphi \circ \phi: I \rightarrow A$ and $\phi_{\varphi_{i}}:=\varphi_{i} \circ \phi$ for $i=1, . ., m$. Then we have $\phi^{\prime}(t)=\sum_{i=1}^{m} \phi_{\varphi_{i}}^{\prime}(t) \frac{\partial}{\partial \varphi_{i}}$ for $t \in I$ and

$$
\sum_{i=1}^{m} \phi_{\varphi_{i}}^{\prime}(t) \frac{\partial}{\partial \varphi_{i}}=\sum_{i=1}^{m} W_{i}(\phi(t)) \frac{\partial}{\partial \varphi_{i}}
$$

Therefore

$$
\begin{equation*}
\phi_{\varphi_{i}}^{\prime}(t)=W_{\varphi^{-1}}^{i}\left(\phi_{\varphi_{i}}(t)\right) \quad \text { for } t \in I \quad i=1, . ., m \tag{1}
\end{equation*}
$$

where $W_{\varphi^{-1}}^{i}(y):=W_{i} \circ \varphi^{-1}(y)$ for $y \in A$.
To complete the proof we need the following well known fact.
Property 1.2. There exists an interval J such that $t_{0} \in J$ and a neighbourhood $\Gamma \subset \mathbb{R} \times A$ of $\left(t_{0}, y_{0}\right)$ such that for any $\left(t^{\prime}, y^{\prime}\right) \in \Gamma$ every maximal solution γ of sytem (1) that passes through $\left(t^{\prime}, y^{\prime}\right) \in \Gamma$ is defined at least on J and the graph of $\left.\gamma\right|_{J}$ is contained in some rectangle $T \subset \mathbb{R} \times A$.

By choosing a subsequence of the sequence $\left(t_{k}, y_{k}\right)$, we may assume that $\left(t_{k}, y_{k}\right) \in$ Γ for $k \in \mathbb{N}$ and $\xi>t_{k}>t_{l}>t_{0}$ for $k<l$.

From Property 1.2 we have that $\alpha \leq t_{0}$. Indeed, otherwise there exists $t^{\prime} \in\left(t_{0}, t_{1}\right)$ such that $\phi\left(t^{\prime}\right) \notin U$, hence there exists a maximal solution to the left $\widehat{\phi_{\varphi}}: \widehat{I} \rightarrow A$ of the system (1) such that $\widehat{\phi_{\varphi}}$ goes through Γ and $t_{0} \notin \widehat{I}$ which contradicts Property 1.2.

Therefore $\left(t_{0}, t_{1}\right] \subset I$ and $\phi_{\varphi}=\left.\phi_{\varphi}^{*}\right|_{I}$ where $\phi_{\varphi}^{*}: I^{*} \rightarrow A$ is a maximal solution to the left of the system (1) and $t_{0} \in I^{*}$.

Consequently

$$
\lim _{t \rightarrow t_{0}} \phi(t)=\lim _{t \rightarrow t_{0}} \varphi^{-1}\left(\phi_{\varphi}^{*}(t)\right)=\lim _{t \rightarrow t_{0}} \varphi^{-1}\left(y_{0}\right)=x_{0}
$$

which completes the proof of Lemma 1.1.
Lemma 1.3. Let $\phi:(\alpha, \beta) \rightarrow M$ be a maximal solution of the system $x^{\prime}=W(x)$. For every compact set $K \subset \mathbb{R} \times M$ there exist $\alpha^{*}, \beta^{*} \in \mathbb{R}$ such that the graphs of $\left.\phi\right|_{\left(\alpha, \alpha^{*}\right)}$ and $\left.\phi\right|_{\left(\beta^{*}, \beta\right)}$ are disjoint with K.
Proof. Let $A:=\{t \in(\alpha, \beta) \mid(t, \phi(t)) \in K\}$. If $A=\emptyset$ then as α^{*}, β^{*} we may choose arbitrary numbers from (α, β). Now assume that $A \neq \emptyset$ and let $\alpha^{*}=\inf A, \beta^{*}=$ $\sup A$. Observe that $\alpha<\alpha^{*}$ and $\beta^{*}<\beta$. Indeed, if $\alpha=\alpha^{*}$ than there exists a sequence $\left(t_{k}\right)_{k=1}^{\infty}$ such that $\left(t_{k}, \phi\left(t_{k}\right)\right)$ converges to a point in $K \subset \mathbb{R} \times M$. This contradicts Lemma 1.1. Analogously we prove that $\beta^{*}<\beta$.

2. The Malgrange condition on Manifolds

Let $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$. We will assume that $\nabla g(x) \neq 0$ for $x \in g^{-1}(0)$. Denote $M:=$ $V(g)=g^{-1}(0)$ and $f_{M}:=\left.f\right|_{M}$. Consider the following vector field $\nabla f_{M}: M \rightarrow \mathbb{R}^{n}$

$$
\begin{equation*}
\nabla f_{M}(x):=\nabla f(x)-\frac{\langle\nabla f(x), \nabla g(x)\rangle}{\|\nabla g(x)\|^{2}} \nabla g(x), \quad x \in M \tag{2}
\end{equation*}
$$

Geometrically $\nabla f_{M}(x)$ is the projection of $\nabla f(x)$ onto the tangent space $T_{x} M$.
A value $\lambda \in \mathbb{R}$ is called a regular value of f_{M} if $\nabla f_{M}(x) \neq 0$ for $x \in f_{M}^{-1}(\lambda)$. The set of all values λ that are not regular we will denote by $K_{0}\left(f_{M}\right)$.

We say that f_{M} satisfies the Malgrange condition over $U \subset \mathbb{R}$ if there exist constans $\delta, R>0$ such that

$$
\forall_{x \in f_{M}^{-1}(U)} \quad\left\|\nabla f_{M}(x)\right\|\|x\| \geqslant \delta \quad \text { for } \quad\|x\| \geqslant R
$$

We say that f_{M} satisfies the Malgrange condition in $\lambda \in \mathbb{R}$ if there exists a neighbourhood U of λ such that f_{M} satisfies the Malgrange condition over U. We will denote by $K_{\infty}\left(f_{M}\right)$ the set of all λ that do not satisfy the Malgrange condition.

It is well known that the Malgrange condition allows us to integrate $\nabla f_{M}(x) /\left\|\nabla f_{M}(x)\right\|^{2}$ field and get the trivialization of f_{M} (see [9] and [3]). More precisely, we have

Theorem 2.1. Let $\lambda \in \mathbb{R}$ be a regular value of f_{M}. If f_{M} satisfies the Malgrange condition in $\lambda \in \mathbb{R}$ than there exists a neighbourhood U of λ such that $f_{M \mid f_{M}^{-1}(U)}$ is a C^{∞} trivial fibration on M.

Immediately from Theorem 2.1 we get
Remark 2.2. $B\left(f_{M}\right) \subset K_{\infty}\left(f_{M}\right) \cup K_{0}\left(f_{M}\right)$.

Note that if f_{M} satisfies the Malgrange condition, it does not follow that $\left.f\right|_{M^{\varepsilon}}$ satisfies it also, where $M^{\varepsilon}=g^{-1}((-\varepsilon, \varepsilon))$. In other words, one can not trivialise f_{M} using field ∇f_{M} in a neighbourhood M^{ε} of M as it is shown by the following example.
Example 2.3. Let $f, g \in \mathbb{R}[x, y]$ be polynomials defined as $g(x, y):=y, f(x, y):=$ $x-x^{3} y^{2}$. Put $M=g^{-1}(0)$. Obviously $\nabla f_{M}=[1,0]$ and f satisfies Malgrange condition on M. Consequently f_{M} is a trivial fibration on M. On the other hand, for any $\varepsilon>0$, denoting $M_{t}:=g^{-1}(t)$ for $t \in(-\varepsilon, \varepsilon)$ we have $\nabla f_{M_{g(x, y)}}(x, y)=$ $\left(1-3 x^{2} y^{2}, 0\right)$ for $(x, y) \in M^{\varepsilon}$. Moreover, for

$$
\left(x_{n}, y_{n}\right)=\left(\frac{n \varepsilon}{2}, \frac{2}{\sqrt{3} n \varepsilon}\right), \quad n \in \mathbb{N}
$$

we have $\left\|\nabla f_{M_{g(x, y)}}\left(x_{n}, y_{n}\right)\right\|=0$, for $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}\left\|\left(x_{n}, y_{n}\right)\right\|=\infty$, and $\left(x_{n}, y_{n}\right) \in M^{\varepsilon}$ as $n \rightarrow \infty$. So we can not use the trivialization method without restricting the field ∇f_{M} to the manifold $g^{-1}(0)$.

3. The Malgrange condition on fibers

In this section we will present a method of using fibers of some function g to construct a trivialisation of a function f.

Let $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Let $D \subset \mathbb{R}^{n}$ be an open set and $\nabla g(x) \neq 0$ for $x \in D$. As in (2) we can define $\nabla f_{g^{-1}(g(x))}(x)$ for $x \in D$. Put

$$
\nabla_{g} f(x):=\nabla f_{g^{-1}(g(x))}(x) \quad \text { for } x \in D
$$

Geometrically $\nabla_{g} f(x)$ is the projection of $\nabla f(x)$ onto the tangent space at x of the fibre $g^{-1}(g(x))$.

Denote $\Xi=\left\{(g, S) \mid g \in C^{\infty}\left(\mathbb{R}^{n}\right), S\right.$ open in $\left.\mathbb{R}\right\}$ and let $(g, S) \in \Xi$. We say that f satisfies the (g, S)-Malgrange condition over U if there exists a constant $R>0$ such that

1. $\nabla g(x) \neq 0$ on $D_{(U, R)}:=f^{-1}(U) \backslash\left\{x \in \mathbb{R}^{n} \mid R \geqslant\|x\|\right\}$
2. $D_{(U, R)} \subset g^{-1}(S)$
3. $\forall_{s \in S} \exists_{\delta_{s}>0}\left\|\nabla_{g} f(x)\right\|\|x\| \geqslant \delta_{s} \quad$ for $\quad x \in D_{(U, R)} \cap g^{-1}(s)$.

We say that f satisfies the (g, S)-Malgrange condition in $\lambda \in \mathbb{R}$ if there exists neighbourhood U of λ such that f satisfies the (g, S)-Malgrange condition over U. We will denote by $K_{\infty}^{(g, S)}(f)$ the set of all λ that don't satisfy the (g, S)-Malgrange condition.

The main result of this section is the following
Theorem 3.1. Let λ be a regular value of f. If f satisfies the (g, S)-Malgrange condition in $\lambda \in \mathbb{R}$ than there exists a neighbourhood U of λ such that $\left.f\right|_{f^{-1}(U)}$ is a trivial fibration.

The proof of the above theorem will be preceded by two properties and a lemma.
From now we will assume that $\lambda \in \mathbb{R}$ is a regular value of f and that f satisfies the (g, S)-Malgrange condition in λ.

The following property holds
Property 3.2. There exists a neighbourhood U of λ such that $\nabla f(x) \neq 0$ for $x \in$ $f^{-1}(U)$.

Let U, R be as in the (g, S)-Malgrange condition. Shrinking the set U if necessary, we can assume that $\nabla f(x) \neq 0$ for $x \in f^{-1}(U)$. Let α, β be C^{∞} functions in \mathbb{R}^{n} such that

$$
\begin{aligned}
& \alpha(x)=\left\{\begin{array}{ll}
0 & \text { for }\|x\| \geqslant R+1 \\
1 & \text { for }\|x\| \leqslant R
\end{array},\right. \\
& \beta(x)= \begin{cases}1 & \text { for }\|x\| \geqslant R+1 \\
0 & \text { for }\|x\| \leqslant R\end{cases}
\end{aligned}
$$

and $0<\alpha(x), \beta(x)<1$ for $\|x\| \in(R, R+1)$.
We define a smooth vector field $w: f^{-1}(U) \rightarrow \mathbb{R}^{n}$ as

$$
w(x):=\alpha(x) \nabla f(x)+\beta(x) \nabla_{g} f(x) .
$$

Here we are using convention that $\beta(x) \nabla_{g} f(x)=0$ for $\|x\| \leqslant R$ (note that $\nabla_{g} f(x)$ might not be defined for some points x such that $\|x\| \leq R$).

From the definition of w and Property 3.2 we get
Property 3.3. Under the above assumptions we have
(i) $w(x)=\nabla f(x)$ for $\|x\| \leqslant R$ and $w(x)=\nabla_{g} f(x)$ for $\|x\| \geqslant R+1$
(ii) $\langle w(x), \nabla f(x)\rangle \neq 0$ for $x \in f^{-1}(U)$.

Let us define $u: f^{-1}(U) \rightarrow \mathbb{R}^{n}$ as

$$
u(x):=\frac{w(x)}{\langle w(x), \nabla f(x)\rangle} .
$$

From the assumptions and Property 3.3 we see that u is well defined, it is smooth and $u(x) \neq 0$ for $x \in f^{-1}(U)$.

Lemma 3.4. Under the above assumptions we have
(i) $\langle\nabla f(x), u(x)\rangle=1$ for $x \in f^{-1}(U)$
(ii) For any $s \in S$ there exists a constant $\alpha_{s}>0$ such that

$$
|\langle x, u(x)\rangle| \leqslant \varepsilon_{s}\|x\|^{2} \quad \text { for } x \in f^{-1}(U) \cap g^{-1}(s),\|x\|>R+1 .
$$

Proof. (i) is obvious. We will prove (ii). From the (g, S)-Malgrange condition we have $\frac{1}{\left\|\nabla_{g} f\right\|} \leqslant \frac{1}{\delta_{s}}\|x\| \quad$ for $x \in f^{-1}(U) \cap g^{-1}(s),\|x\|>R$. Since $\left\langle\nabla_{g} f(x), \nabla f(x)\right\rangle=$
$\left\|\nabla_{g} f(x)\right\|^{2}$, using Schwartz inequality we get

$$
|\langle x, u(x)\rangle| \leqslant\|x\|\|u(x)\|=\|x\| \frac{1}{\left\|\nabla_{g} f(x)\right\|} \leqslant \frac{1}{\delta_{s}}\|x\|^{2} \text { for }\|x\|>R+1
$$

which completes the proof.
We are ready to prove Theorem 3.1.
Proof. Let U, R, u be defined as above. For each $\mu \in U$, consider a system of differential equations

$$
\begin{equation*}
x^{\prime}=(\lambda-\mu) u(x) \tag{3}
\end{equation*}
$$

with the right side defined in $G:=\left\{(t, x) \in \mathbb{R} \times D \mid x \in f^{-1}(U)\right\}$. Denote by $\Phi_{\mu}: V_{\mu} \rightarrow D$ the general solution of system (3) and put $V_{\mu}:=\{(\tau, \eta, t) \in \mathbb{R} \times$ $\left.D \times R \mid(\tau, \eta) \in G, t \in I_{\mu}(\tau, \eta)\right\}$, where $I_{\mu}(\tau, \eta)$ is a domain of integral solution of $t \rightarrow \Phi_{\mu}(\tau, \eta, t)$. From the definition of the general solution we get

$$
\begin{equation*}
\Phi_{\mu}(\tau, \eta, \tau)=\eta \tag{4}
\end{equation*}
$$

Consider the mapping

$$
\Psi_{1}: f^{-1}(U) \ni x \mapsto \Phi_{f(x)}(0, x, 1) \in f^{-1}(\lambda)
$$

We show that the mapping Ψ_{1} is well defined i.e. $1 \in I_{f(x)}(0, x)$ for each $x \in$ $f^{-1}(U)$. Suppose the contrary that there exists $x \in f^{-1}(U)$ such that $1 \notin I_{f(x)}(0, x)$. Then the right end-point β of the interval $I_{f(x)}(0, x)$ satisfies $0<\beta \leqslant 1$. Let φ_{x} be an integral solution of the system (3) with $\mu=f(x)$ satisfying the initial condition $\varphi_{x}(0)=x$, that is

$$
\begin{equation*}
\varphi(t)=\Phi_{f(x)}(0, x, t) \quad \text { for } t \in I_{f(x)}(0, x) . \tag{5}
\end{equation*}
$$

We have

$$
\left(f \circ \varphi_{x}\right)^{\prime}(t)=\left\langle\nabla f\left(\varphi_{x}(t)\right), \varphi_{x}^{\prime}(t)\right\rangle=\lambda-f(x) \quad \text { for } \quad t \in I_{f(x)}(0, x) .
$$

Therefore

$$
\begin{equation*}
f \circ \varphi_{x}(t)=(\lambda-f(x)) t+f(x), \quad t \in I_{f(x)}(0, x) \tag{6}
\end{equation*}
$$

and $f \circ \varphi_{x}(t) \in J$ for $t \in[0, \beta)$, where J is a closed interval with endpoints λ and $f(x)$.

Denote

$$
K:=\left\{\left(t, x^{\prime}\right) \in \mathbb{R} \times f^{-1}(U) \mid t \in[0,1], f\left(x^{\prime}\right) \in J,\left\|x^{\prime}\right\| \leqslant R+1\right\}
$$

Obviously K is a compact set. Lemma 1.3 implies that there exists $\tau \in(0, \beta)$ such that $\left(t, \varphi_{x}(t)\right) \notin K$ for $t \in[\tau, \beta)$. Since $J \subset U$, we have $\left\|\varphi_{x}(t)\right\|>R+1$ for $t \in[\tau, \beta)$.

Consider a function $\varrho:[\tau, \beta) \rightarrow \mathbb{R}$ defined by

$$
\varrho(t):=\frac{1}{2} \ln \left\|\varphi_{x}(t)\right\|^{2}
$$

Let $s_{0} \in S$ be such that $\varphi_{x}(\tau) \in D_{s_{0}}$. Using Lemma 3.4 (ii) we get

$$
\left|\varrho^{\prime}(t)\right|=\frac{\left|\left\langle\varphi_{x}(t), \varphi_{x}^{\prime}(t)\right\rangle\right|}{\left\|\varphi_{x}(t)\right\|^{2}}=\frac{|\lambda-f(x)|}{\left\|\varphi_{x}(t)\right\|^{2}}\left|\left\langle\varphi_{x}(t), u\left(\varphi_{x}(t)\right)\right\rangle\right| \leqslant \varepsilon_{s_{0}}|\lambda-f(x)|
$$

for $t \in(\tau, \beta)$. From the mean value theorem there exists $\theta_{t} \in(\tau, t)$ such that $\varrho(t)-$ $\varrho(\tau)=\varrho^{\prime}\left(\theta_{t}\right)(t-\tau)$ and therefore, by the above,

$$
\varrho(t) \leqslant \varrho(\tau)+\varepsilon_{s_{0}}|\lambda-f(x)|(t-\tau) \leqslant \varrho(\tau)+\varepsilon_{s_{0}}|\lambda-f(x)|(\beta-\tau) .
$$

Denoting $L:=\varrho(\tau)+\varepsilon_{s_{0}}|\lambda-f(x)|(\beta-\tau)$ we see that the solution $\varphi_{x \mid(\tau, \beta)}$ is contained in the compact set

$$
\left\{\left(t, x^{\prime}\right) \in \mathbb{R} \times f^{-1}(U) \mid f\left(x^{\prime}\right) \in J,\left\|x^{\prime}\right\| \leqslant \mathrm{e}^{L}\right\} \subset \mathbb{R} \times f^{-1}(U)
$$

which contradicts Lemma 1.3.
Summing up we have shown that $1 \in I_{f(x)}(0, x)$ for every $x \in f^{-1}(U)$. Then from (6) we get $f\left(\Psi_{1}(x)\right)=f\left(\varphi_{x}(1)\right)=\lambda$ and the mapping Ψ_{1} is defined correctly. Similarly as above we show that the mapping

$$
\left.\Theta: f^{-1}(\lambda)\right) \times U \ni(\xi, \mu) \mapsto \Phi_{\mu}(1, \xi, 0) \in f^{-1}(U)
$$

is also well defined. It is easy to check that the mapping

$$
\Psi: f^{-1}(U) \ni x \mapsto\left(\Psi_{1}(x), f(x)\right) \in f^{-1}(\lambda) \times U
$$

is a C^{∞} diffeomorphism and $\Psi^{-1}=\Theta$. Therefore $\left.f\right|_{f^{-1}(U)}$ is a trivial fibration.
Immediately from Theorem 3.1 we get
Remark 3.5. For every $(g, S) \in \Xi$ we have $B(f) \subset K_{\infty}^{(g, S)}(f) \cup K_{0}(f)$. Therefore $B(f) \subset \bigcap_{(g, S) \in \Xi} K_{\infty}^{(g, S)} \cup K_{0}(f)$.

In Theorem 3.1 we showed how to trivialize a function f using fibers of some function g. Now we give some examples where the assumptions of Theorem 1 are not met but using Theorem 3.1 we can deduce the triviality of f.

Example 3.6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
f(x, y):=\frac{y}{1+x^{2}}
$$

It is easy to check that f does not satisfy the Malgrange condition in 0 . Denote $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
g(x, y):=x, \quad S=\mathbb{R}
$$

Put $U=\mathbb{R}$ and $R=1$. Then

1. $\nabla g(x)=[1,0] \neq 0$ for $D_{(U, R)}=\mathbb{R}^{2} \backslash\left\{x \in \mathbb{R}^{2} \mid R \geqslant\|x\|\right\}$
2. $D_{(U, R)} \subset g^{-1}(\mathbb{R})$
3. for $s \in \mathbb{R}$ we have

$$
\left\|\nabla_{g} f(x, y)\right\|=\left\|\left[0, \frac{1}{1+x^{2}}\right]\right\|=\frac{1}{1+s^{2}} \quad \text { for }(x, y) \in D_{(U, R)} \cap g^{-1}(s)
$$

Therefore f satisfies the (g, S)-Malgrange condition and using Theorem 3.1 we deduce that f is a trivial fibration.

An example of polynomials, which is a trivial fibration but does not satisfy the Malgrange condition, comes from L. Păunescu and A. Zaharia (see [8]).

Example 3.7. Let $p, g \in \mathbb{N}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}$

$$
f(x, y, z):=x-3 x^{2 p+1} y^{2 q}+2 x^{3 p+1} y^{3 q}+y z
$$

L. Păunescu and A. Zaharia showed that after a suitable polynomial change of coordinates, we can write $f(X, y, Z)=X$. Therefore f is a trivial fibration. Following their reasoning, we can deduce that if $p>q$ then f does not satisfy the Malgrange condition in 0 . Let

$$
g(x, y, z):=y \quad \text { for }(x, y, z) \in \mathbb{R}^{3}, S=\mathbb{R}
$$

Put $U=\mathbb{R}, R=1$. Then

1. $\nabla g(x, y, z)=[0,1,0] \neq 0$ for $D_{(U, R)}=\mathbb{R}^{3} \backslash\left\{x \in \mathbb{R}^{3} \mid R \geqslant\|x\|\right\}$
2. $D_{(U, R)} \subset g^{-1}(\mathbb{R})$
3. for $s \in \mathbb{R}$ we have

$$
\begin{aligned}
\nabla_{g} f(x, y, z) & =\left[1-3(2 p+1) x^{2 p} y^{2 q}+2(3 p+1) x^{3 p} y^{3 q}, 0, y\right]= \\
& =\left[1-3(2 p+1) x^{2 p} s^{2 q}+2(3 p+1) x^{3 p} s^{3 q}, 0, s\right]
\end{aligned}
$$

for $(x, y) \in D_{(U, R)} \cap g^{-1}(s)$. If $s \neq 0$ then $\left\|\nabla_{g} f(x, y, z)\right\| \geq\|s\|>0$ and if $s=0$ we have $\left\|\nabla_{g} f(x, y, z)\right\|=1$.

Therefore f satisfies the (g, S)-Malgrange condition and using Theorem 3.1 we deduce that f is a trivial fibration.

In general, finding a suitable function g can be very difficult. In the case when f is a coordinate of a mapping with non-vanishing jacobian, the natural candidates for g are other coordinates of this mapping.

Example 3.8. Let $F=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $\operatorname{Jac}(F)=1$, where $\operatorname{Jac}(F)$ is the jacobian of F. Than we have

$$
\left\|\nabla_{f_{2}} f_{1}(x, y)\right\|^{2}=\frac{\operatorname{Jac}(F)^{2}}{\left\|\nabla f_{2}(x, y)\right\|^{2}}=\frac{1}{\left\|\nabla f_{2}(x, y)\right\|^{2}}, \quad(x, y) \in \mathbb{R}^{2}
$$

Therefore f_{1} satisfies the $\left(f_{2}, \mathbb{R}\right)$-Malgrange condition over \mathbb{R} if and only if there exists $R>0$ such that

$$
\|(x, y)\|>\delta_{s}\left\|\nabla f_{2}(x, y)\right\| \text { for }(x, y) \in f_{2}^{-1}(s),\|(x, y)\|>R, s \in \mathbb{R}
$$

From Example 3.8 we get
Remark 3.9. Let $F=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a smooth mapping with $\operatorname{Jac}(F)=1$ and f_{2} be a polynomial, such that $\operatorname{deg} f_{2} \leq 2$. Then the mapping F is injective.

4. ρ_{0}-regularity on manifolds

In this section we will consider a different condition that allows us to trivialize functions defined on the manifold of the form $g^{-1}(0)$ at infinity.

Let $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Assume that $\nabla g(x) \neq 0$ for $x \in g^{-1}(0)$ and denote $M:=$ $g^{-1}(0), \rho_{0}:=\left.\|\cdot\|^{2}\right|_{M}$.

The critical set $\mathcal{M}_{0}\left(f_{M}\right)$ of the map $\left(f_{M}, \rho_{0}\right): M \rightarrow \mathbb{R}$ we will call the Milnor set of f_{M} (with respect to ρ_{0} function).

A value $\lambda \in \mathbb{R}$ is called a ρ_{0}-regular value of f_{M} at infinity if there exist a neighbourhood U of λ and a constant $R>0$ such that

$$
\forall_{x \in f_{M}^{-1}(U)} \quad x \notin \mathcal{M}_{0}\left(f_{M}\right) \quad \text { for } \quad\|x\| \geqslant R
$$

The set $S_{0}\left(f_{M}\right)$ of all values that are not a ρ_{0} regular value of f_{M} at infinity will be called the set of asymptotic ρ_{0}-nonregular values of f_{M} i.e.

$$
S_{0}\left(f_{M}\right):=\left\{\lambda \in \mathbb{R} \mid \exists_{\left(x_{k}\right) \subset \mathcal{M}_{0}\left(f_{M}\right)}\left\|x_{k}\right\| \rightarrow \infty, f_{M}\left(x_{k}\right) \rightarrow \lambda\right\}
$$

Our aim is to prove the following theorem
Theorem 4.1. If λ is a ρ_{0}-regular value of f_{M} at infinity than there exists neighbourhood U of the λ and $R>0$ such that $\left.f_{M}\right|_{f_{M}^{-1}(U)}$ is a C^{∞} trivial fibration on M at infinity.

The proof of the theorem will be preceded by some technical properties.
Let $M^{*}:=M \backslash \mathcal{M}_{0}\left(f_{M}\right)$ and consider the vector field $v: M^{*} \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
v(x) & :=\nabla f(x)+\frac{\langle\nabla g(x), x\rangle\langle\nabla g(x), \nabla f(x)\rangle-\|\nabla g(x)\|^{2}\langle x, \nabla f(x)\rangle}{\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}} x+ \\
& +\frac{\langle\nabla g(x), x\rangle\langle x, \nabla f(x)\rangle-\|x\|^{2}\langle\nabla g(x), \nabla f(x)\rangle}{\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}} \nabla g(x) \text { for } x \in M^{*} .
\end{aligned}
$$

The field v is well defined. Indeed if $\|x\|\|\nabla g(x)\|=|\langle\nabla g(x), x\rangle|$ then using the Cauchy-Schwarz inequality we deduce that x and $\nabla g(x)$ are linearly dependent. We get $\nabla \rho_{0}(x)=0$ and therofore $x \in \mathcal{M}_{0}\left(f_{M}\right)$ which contradicts the assumptions.

From the definition of v we see that $v(x)$ is tangent to the manifold M^{*} and to the sphere $\partial B(x):=\left\{y \in \mathbb{R}^{n} \mid \quad\|y\|=\|x\|\right\}$. Namely, we have
Property 4.2. For any $x \in M^{*}$ we have $\langle v(x), x\rangle=\langle v(x), \nabla g(x)\rangle=0$.
Proof. Take $x \in M^{*}$. Then

$$
\begin{aligned}
\langle v(x), x\rangle= & \langle\nabla f(x), x\rangle+ \\
& +\frac{-\|\nabla g(x)\|^{2}\langle x, \nabla f(x)\rangle\|x\|^{2}+\langle\nabla g(x), x\rangle^{2}\langle x, \nabla f(x)\rangle}{\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}}
\end{aligned}
$$

therefore

$$
\begin{aligned}
\langle v(x), x\rangle= & \langle\nabla f(x), x\rangle+ \\
& +\langle\nabla f(x), x\rangle \frac{-\|\nabla g(x)\|^{2}\|x\|^{2}+\langle\nabla g(x), x\rangle^{2}}{\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}}=0,
\end{aligned}
$$

which gives that $\langle v(x), x\rangle=0$. Analogously as above we obtain that

$$
\langle v(x), \nabla g(x)\rangle=0
$$

Lemma 4.3. For $x \in M^{*}$ we have $\left\langle v(x), \nabla f_{M}(x)\right\rangle \neq 0$.
Proof. Denote

$$
\begin{aligned}
\Omega & :=\left\{w: M^{*} \rightarrow \mathbb{R}^{n} \mid w-\text { smooth }\right\}, \\
\Omega\left(T M^{*}\right) & :=\left\{w \in \Omega \mid \forall_{x \in M^{*}}\langle w(x), \nabla g(x)\rangle=0\right\}
\end{aligned}
$$

and let $\pi_{M^{*}}: \Omega \rightarrow \Omega\left(T M^{*}\right)$ be a mapping defined by

$$
\pi_{M^{*}}(w(x)):=w(x)-\frac{\langle w(x), \nabla g(x)\rangle}{\|\nabla g(x)\|^{2}} \nabla g(x) \quad \text { for } x \in M^{*} .
$$

At first we will prove that

$$
\begin{equation*}
v(x)=\pi_{\left(\pi_{M^{*}}(x)\right)^{\perp}}\left(\nabla f_{M}(x)\right) \text { for } x \in M^{*}, \tag{7}
\end{equation*}
$$

where

$$
\pi_{\left(\pi_{M^{*}}(x)\right)^{\perp}}(w(x)):=w(x)-\frac{\left\langle w(x), \pi_{M^{*}}(x)\right\rangle}{\left\|\pi_{M^{*}}(x)\right\|^{2}} \pi_{M^{*}}(x) \text { for } x \in M^{*}, w \in \Omega .
$$

From definitions and simple calculations for $x \in M^{*}$ we have

$$
\begin{aligned}
& \pi_{\left(\pi_{M^{*}}(x)\right)^{\perp}}\left(\nabla f_{M}(x)\right)=\nabla f_{M}(x)-\frac{\left\langle\nabla f_{M}(x), \pi_{M^{*}}(x)\right\rangle}{\left\|\pi_{M^{*}}(x)\right\|^{2}} \pi_{M^{*}}(x)= \\
&= \nabla f(x)-\frac{\langle\nabla f(x), \nabla g(x)\rangle}{\|\nabla g(x)\|^{2}} \nabla g(x)-\frac{\left\langle\nabla f(x), \pi_{M^{*}}(x)\right\rangle}{\left\|\pi_{M^{*}}(x)\right\|^{2}} \pi_{M^{*}}(x)= \\
&=\nabla f(x)+\frac{\langle\nabla g(x), x\rangle\langle\nabla g(x), \nabla f(x)\rangle-\|\nabla g(x)\|^{2}\langle x, \nabla f(x)\rangle}{\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}} x+ \\
&+\frac{\left\langle\nabla f(x),\|\nabla g(x)\|^{2} x-\langle\nabla g(x), x\rangle \nabla g(x)\right\rangle\langle\nabla g(x), x\rangle}{\|\nabla g(x)\|^{2}\left(\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}\right)} \nabla g(x)+ \\
&- \frac{\langle\nabla f(x), \nabla g(x)\rangle\left(\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}\right)}{\|\nabla g(x)\|^{2}\left(\|x\|^{2}\|\nabla g(x)\|^{2}-\langle\nabla g(x), x\rangle^{2}\right)} \nabla g(x)=v(x) .
\end{aligned}
$$

which proves (7).

For $x \in M^{*}$ we have

$$
\begin{aligned}
& \left\langle v(x), \nabla f_{M}(x)\right\rangle=0 \\
& \Leftrightarrow\left\langle\pi_{\left(\pi_{M^{*}}(x)\right)^{\perp}}\left(\nabla f_{M}(x)\right), \nabla f_{M}(x)\right\rangle=0 \\
& \Leftrightarrow\left\|\nabla f_{M}(x)\right\|^{2}\left\|\pi_{M^{*}}(x)\right\|^{2}=\left\langle\nabla f_{M}(x), \pi_{M^{*}}(x)\right\rangle^{2} \\
& \Rightarrow x \in \mathcal{M}_{0}\left(f_{M}\right)
\end{aligned}
$$

which completes the proof.
Remark 4.4. Analogously as in the proof of Lemma 4.3 we can prove that $v(x)=$ $\pi_{\left(\pi_{\partial B}(\nabla g(x))\right)^{\perp}}\left(\pi_{\partial B}(\nabla f(x))\right.$, where

$$
\begin{aligned}
\pi_{\partial B}(w(x)) & :=w(x)-\frac{\langle w(x), x\rangle}{\|x\|^{2}} x, \\
\pi_{\left(\pi_{\partial B}(\nabla g(x))\right)^{\perp}}(w(x)) & :=w(x)-\frac{\left\langle w(x), \pi_{\partial B}(\nabla g(x))\right\rangle}{\left\|\pi_{\partial B}(\nabla g(x))\right\|^{2}} \pi_{\partial B}(\nabla g(x))
\end{aligned}
$$

for $x \in M^{*}, w \in \Omega$.
We are ready to prove Theorem 4.1.
Proof. By the assumption that λ is a ρ_{0}-regular value of f_{M} at infinity, there exist a neighbourhood U of the λ and $R>0$ such that

$$
\left(\mathcal{M}_{0}\left(f_{M}\right) \cap f_{M}^{-1}(U)\right) \backslash \overline{B(R)}=\emptyset
$$

where $\overline{B(R)}:=\{x \in M \mid R \geqslant\|x\|\}$. Let $w(x):=\frac{v(x)}{\left\langle v(x), f_{M}(x)\right\rangle}$ for $x \in f_{M}^{-1}(U) \backslash \overline{B(R)}$. From the assumption and Lemma 4.3, w is well defined. For each $\mu \in U$ consider the following system of differential equations

$$
\begin{equation*}
x^{\prime}=(\lambda-\mu) w(x), \tag{8}
\end{equation*}
$$

with the right hand side defined in the set $G:=\left\{(t, x) \in \mathbb{R} \times M \mid x \in f_{M}^{-1}(U) \backslash \overline{B(R)}\right\}$. Denote by $\Phi_{\mu}: V_{\mu} \rightarrow M$ the general solution of system (8) and $V_{\mu}:=\{(\tau, \eta, t) \in$ $\left.\mathbb{R} \times M \times R \mid(\tau, \eta) \in G, t \in I_{\mu}(\tau, \eta)\right\}$, where $I_{\mu}(\tau, \eta)$ is a domain of integral solution of $t \rightarrow \Phi_{\mu}(\tau, \eta, t)$. From a definition of the general solution we get

$$
\begin{equation*}
\Phi_{\mu}(\tau, \eta, \tau)=\eta \tag{9}
\end{equation*}
$$

Note that Property 4.2 implies

$$
\begin{equation*}
\mid \Phi_{\mu}(\tau, \eta, t)\|=\| \eta \| \text { for } t \in I_{\mu}(\tau, \eta),(\tau, \eta) \in G, \mu \in U \tag{10}
\end{equation*}
$$

Consider the mapping

$$
\Psi_{1}: f_{M}^{-1}(U) \backslash \overline{B(R)} \ni x \mapsto \Phi_{f(x)}(0, x, 1) \in f_{M}^{-1}(\lambda) \backslash \overline{B(R)}
$$

We show the mapping Ψ_{1} is well defined that is $1 \in I_{f(x)}(0, x)$ for each $x \in$ $f_{M}^{-1}(U) \backslash \overline{B(R)}$.

Suppose the contrary that there exists $x \in f_{M}^{-1}(U) \backslash \overline{B(R)}$ such that $1 \notin I_{f(x)}(0, x)$ and denote $\varphi_{x}(t):=\Phi_{f(x)}(0, x, t)$ for $t \in I_{f(x)}(0, x)$. From (8) and the initial condition (9) we get

$$
\begin{equation*}
f_{M} \circ \varphi_{x}(t)=(\lambda-f(x)) t+f(x), \quad t \in I_{f(x)}(0, x) \tag{11}
\end{equation*}
$$

Denoting J as closed interval with endpoints λ and $f(x)$ we see that the set

$$
F:=\left\{\left(t, x^{\prime}\right) \in \mathbb{R} \times f_{M}^{-1}(U) \backslash \overline{B(R)} \mid t \in[0,1], f_{M}\left(x^{\prime}\right) \in J,\left\|x^{\prime}\right\|=\|x\|\right\}
$$

is a compact subset of G such that the graph of $\left.\varphi_{x}\right|_{[0, \beta)}$ is contained in F. This contradicts Lemma 1.3 and proves $[0,1] \subset I_{f(x)}(0, x)$.

Using (11) we get $f\left(\Psi_{1}(x)\right)=f\left(\varphi_{x}(1)\right)=\lambda$ and from (10) we have $\Psi_{1}(x) \in$ $f_{M}^{-1}(\lambda) \backslash \overline{B(R)}$. Summing up we show that the mapping Ψ_{1} is defined correctly. Similarly we can show that the mapping

$$
\Theta: f_{M}^{-1}(\lambda) \backslash \overline{B(R)} \times U \ni(\xi, \mu) \mapsto \Phi_{\mu}(1, \xi, 0) \in f_{M}^{-1}(U) \backslash \overline{B(R)}
$$

is well defined. It is easy to check that the mapping

$$
\Psi: f_{M}^{-1}(U) \backslash \overline{B(R)} \ni x \mapsto\left(\Psi_{1}(x), f_{M}(x)\right) \in f_{M}^{-1}(\lambda) \backslash \overline{B(R)} \times U
$$

is a C^{∞} diffeomorphism and $\Psi^{-1}=\Theta$. Therefore $f_{M \mid f_{M}^{-1}(U) \backslash \overline{B(R)}}$ is a C^{∞} trivial fibration on M.

Remark 4.5. From Theorem 4.1 we have $B_{\infty}(f) \subset S_{0}(f)$.
It is worth noting that unlike in a flat case we need to take into account the set $V:=\left\{x \in M \mid \exists_{t \in \mathbb{R}} \nabla g(x)=t x\right\} \subset \mathcal{M}_{0}\left(f_{M}\right)$. In general the field $v: M \backslash V \rightarrow \mathbb{R}^{n}$ can not be continuously extended on the set V. The following example illustrates the fact

Example 4.6. Let

$$
g(x, y, z):=\frac{1}{2} x^{2}+y^{2}-\frac{1}{2}, \quad f(x, y, z)=y \quad \text { for }(x, y, z) \in \mathbb{R}^{3} .
$$

We have

$$
\begin{aligned}
& v(x, y, z)=\left[v^{1}(x, y, z), v^{2}(x, y, z), v^{3}(x, y, z)\right]= \\
& =\left[\frac{-2 x y z^{2}}{x^{2} y^{2}+x^{2} z^{2}+4 y^{2} z^{2}}, \frac{x^{2} z^{2}}{x^{2} y^{2}+x^{2} z^{2}+4 y^{2} z^{2}}, \frac{x^{2} y z}{x^{2} y^{2}+x^{2} z^{2}+4 y^{2} z^{2}}\right]
\end{aligned}
$$

for $(x, y, z) \in M \backslash V$. Note that $(1,0,0) \in V$ and

$$
v^{2}(1,0, z)=1 \text { for } z \neq 0 \text { and } v^{2}(x, y, 0)=0 \text { for } x \neq 0, y \neq 0
$$

therefore the limit $\lim _{(x, y, z) \rightarrow(1,0,0)} v^{2}(x, y, z)$ does not exist.

Acknowledgements

I would like to thank Stanisław Spodzieja for many conversations and valuable advice. This research was partially supported by OPUS Grant No 2012/07/B/ST1/03293.

References

[1] L. R. G. Dias, M. A. S. Ruas, M. Tibăr, M. Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol. 5 (2012) no. 2, 323-340. 3, 269-274.
[2] L. R. G. Dias, M. Tibăr, Detecting bifurcation values at infinity of real polynomials, Math. Z. 279 (2015), 311-319.
[3] Z. Jelonek, On Asymptotic Critical Values and the Rabier Theorem, Banach Center Publication 65, Polish Academy of Science, Warsaw (2004), 125-133.
[4] Z. Jelonek, K. Kurdyka, Reaching generalized critical values of polynomial, Math. Z. 276 no. 1-2 (2014), 557-570.
[5] Z. Jelonek, K. Kurdyka, Quantitative generalized Bertini-Sard theorem for smooth affine varieties, Discret. Comput. Geom. 34 (2005), 659-678.
[6] A. Némethi, A. Zaharia, Milnor fibration at infinity, Indag. Mathem. 3 (1992), 323335.
[7] A. Némethi, A. Zaharia, On the bifurcation set of polynomial function and Newton boundary, Publ. of RIMS, Kyoto Univ. 26 (1990), 681-689.
[8] L. Păunescu, A. Zaharia, On the Łojasiewicz exponent at infinity for polynomial functions, Kodai Math. J. 20 no. 3 (1997), 269-274.
[9] P. J. Rabier, Ehresmann's fibrations and Palais-Smale conditions for morphisms of Finsler maniolds, Ann. of Math. 146 (1997), 647-691.
[10] M. Tibăr, Regularity at infinity of real and complex polynomial maps, Singularity Theory, The C. T. C. Wall Anniversary Volume, LMS Lecture Notes Series 263 (1999), 249-264, Cambridge University Press.

Faculty of Mathematics and Computer Science
University of Łódź
Banacha 22, PL-90-238 Łódź
Poland
E-mail: mikimiki88@tlen.pl

Presented by Julian Ławrynowicz at the Session of the Mathematical-Physical Commission of the Lódź Society of Sciences and Arts on December 1, 2016.

WARTOŚCI BIFURKACYJNE FUNKCJI KLASY C^{∞}

Streszczenie
W pracy pokazujemy jak można używać trywializacji funkcji $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ na poziomicach pewnej funkcji $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ do skonstruowania trywializacji funkcji f na całej przestrzeni \mathbb{R}^{n}.

Dodatkowo przenosimy metodẹ trywializacji funkcji spełniajạcych warunek ρ_{0}-regularności na przypadek funkcji zdefiniowanych na hiperpowierzchniach postaci $M=g^{-1}(0)$.

Stowa kluczowe: wartości bifurkacyjne, trywializacja, warunek Malgrange'a, ρ_{0}-regularność

