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ON THE CLOSEST DISTANCE BETWEEN A POINT
AND A CONVEX BODY

Summary

On a strictly convex curve we find explicitly a point realizing the shortest distance to

a given point lying in the exterior of our curve. The result uses a support function of a

strictly convex plane curve and can have practical applications. Moreover, we determine

one of tangent lines to a strictly convex curve C passing through a given point lying in the

exterior of C.
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1. Introductory facts

In this paper we fix a strictly convex body in the plane and a point in its exterior. We

investigate the following problem: find the point on the boundary of the fixed body

realizing the minimal distance to the given point. Properties of proposed method

are stated as a theorem, but we also concentrate on practical aspects of computa-

tions, giving algorithm that can be applied for exact or approximate solution of the

problem.

Let C be a plane closed strictly convex curve which the origin lies in the region

bounded by C. We denote by p the support function of C with respect to the origin.

The support function p is differentiable and the parametrization of C in terms of

this function is given by

z(t) = p(t)eit + ṗ(t)ieit = p(t) cos t− ṗ(t) sin t+ i [p(t) sin t+ ṗ(t) cos t] . (1)

The fundamental properties of support functions are presented in [2] and [5].

[21]
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Fig. 1. Illustration of the support function p(t) of the curve C with respect to the origin
O, its derivative ṗ(t) and the point z(t).

We assume that z(0) lies in the first quadrant. We find equation of support line

to C passing through a given point (b, 0), where b > p(0). We introduce the notations

as on Figure 2.

Fig. 2. Quantities a, h(s), s∗a, sa.

We will consider h as a function of the variable s ∈ (s∗,+∞) with values in the

interval
(
0, π2

)
. For a fixed s we have

z(h(s)) + rieih(s) = sa
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for some r. Hence we get

p(h(s)) = as cosh(s). (2)

Let

f(u) =
p(u)

a cosu
for u ∈

(
0,
π

2

)
. (3)

It is easy to see that {
ḟ(u) = Im z(u)

a cos2 u ,

f(0) = p(0)
a , ḟ(0) = ṗ(0)

a .
(4)

Our assumptions imply that z(u) for u ∈
(
0, π2

)
lies in the upper half-plane. Thus,

we have Im z(u) > 0 for u ∈
(
0, π2

)
, and f is a strictly increasing function.

We note that the condition (2) can be rewritten in the form f ◦ h = id. The

function f is invertible, so we have

h = f−1. (5)

If b = sa then our support line has the following equation

x+ y tan f−1
(
b

a

)
− b = 0. (6)

Example 1.1. Let r > 8 and p(t) = r − cos 3t. We have p(t) > 0, p(t + 2π) = p(t)

and p(t)+ p̈(t) = r+8 cos 3t > 0. Thus p is a support function of some strictly convex

curve C. We note that z(0) = r − 1, so a = r − 1 and z(u) for u ∈ (0, π2 ) lies in the

upper half-plane. The function f in our case has the form

f(u) =
r − cos 3u

(r − 1) cosu
.

We find the inverse function f−1 to f . If we set

s =
r − cos 3u

(r − 1) cosu

and

v = cosu

then we have the following equation of the third degree

4v3 + (−3 + (r − 1)s)v − r = 0.

This equation has exactly one solution v(s) in the interval (0, 1), namely

v(s) =
−32/3rs+ 32/3(s+ 3) + 3

√
3
(

9r +
√

3
√

((r − 1)s− 3)3 + 27r2
)2/3

6 3

√
9r +

√
3
√

((r − 1)s− 3)3 + 27r2
.

Thus the inverse function to f is given by

tan2 f−1(s) =
1

v(s)2
− 1
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so our support line of C passing through a point (b, 0) has the following equation

x+ y

√√√√ 1

v
(

b
r−1

)2 − 1− b = 0.

2. Main result

In this section we begin by an auxiliary lemma.

Lemma 2.1. Let C be a strictly convex curve given by (1) and a = z(t∗) > 0. If C

satisfies the condition

Im z(0) < 0, (7)

then the function Q : (0, t∗)→ R given by the formula

Q(u) = − ṗ(u)

a sinu
(8)

is positive-valued and strictly decreasing. If C satisfies the condition

Im z(0) > 0, (9)

then the function Q0 : (t∗, 2π)→ R given by the formula

Q0(v) = − ṗ(v)

a sin v
(10)

is positive-valued and strictly increasing.

Proof. We may assume that a = 1 and we prove the first part of the lemma since

the second one can be proved similarly. Note that

Q(u) cosu = p(u)− Im z(u)

sinu
. (11)

If u ∈ (0, t∗), then Im z(u) < 0 and Q is a positive-valued function. Now, we prove

that Q is strictly decreasing. Let r, s ∈ (0, t∗) and r < s. Obviously, we have{
p(r) cos r − ṗ(r) sin r > p(s) cos s− ṗ(s) sin s

−p(r) sin r − ṗ(r) cos r > −p(s) sin s− ṗ(s) cos s.
(12)

It follows immediately from (12) that

p(r) sin(s− r)− ṗ(r) cos(s− r) > −ṗ(s) (13)

for arbitrary r, s ∈ (0, t∗) such that r < s. Now, let’s assume that there exist ŝ, r̂ ∈
(0, t∗) such that r̂ < ŝ and Q(r̂) ≤ Q(ŝ), i.e.

ṗ(r̂) sin r̂ cos û+ ṗ(r̂) cos r̂ sin û ≥ ṗ(ŝ) sin r̂, (14)

where û = ŝ− r̂ > 0. On the other hand from (13) we have

p(r̂) sin û− ṗ(r̂) cos û > −ṗ(ŝ). (15)
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Multiplying both sides of the inequality (15) by sin r̂ and then adding to (14) we get

[p(r̂) sin r̂ + ṗ(r̂) cos r̂] sin û > 0,

what means that Im z(r̂) > 0 and we get a contradiction.

�

Now, we use this lemma to show our main result.

Theorem 2.2. Let C be a strictly convex curve given by (1) and a = z(t∗) > 0. If

b > a and Im z(0) < 0 then the point z
(
Q−1

(
b
a

))
, where Q is given by (8), realizes

the shortest distance between (b, 0) and C.

Proof.

Let C satisfy the condition (7) and b > a. We find a point on C realizing the

shortest distance between the point (b, 0) and C. We use notations as on Figure 3.

Fig. 3. Quantities a, g(s), z(g(s)), sa.

We will treat g as a function of the variable s ∈ (1,+∞) with values in (0, t∗). It

is clear that the vectors eig(s) and z(g(s))− sa have to be collinear, i.e.

z(g(s))− sa = reig(s)

for some r ∈ R. Hence we get

−ṗ(g(s)) = sa sin g(s). (16)

The formula (16) can be rewritten in the following form

Q ◦ g = id .

In view of Lemma 2.1 we have g = Q−1. Thus we proved our main theorem. �
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Example 2.3. In this example we illustrate our above method and show its sim-

plicity. We will determine the distance from the point P
(
3
√

3, 92
)

to the ellipse
x2

4 + y2 = 1. Such ellipse has the support function in Oxy coordinates given by

the formula

p(t) =
√

4 cos2 t+ sin2 t

and in fact the situation is illustrated on Figure 1. Then the formula (1) becomes

z(t) =
12 + 4 cos 2t+ sin 2t

4
√

4 cos t+ sin t
+

3− cos 2t+ 4 sin 2t

4
√

4 cos t+ sin t
i.

Note that in the notations of Figure 4 we have that the point C has in the system

Oxy the coordinates
(

1,
√
3
2

)
. We rotate the coordinate system counter clockwise

about the angle ω between the radius vector of the point P and the axis Ox. Using

the coordinates of P we get immediately that

tanω =

√
3

2
,

thus the equation of our ellipse in new coordinates Ox′y′ becomes

16 (x′)
2

+ 12
√

3x′y′ + 19 (y′)
2

= 28.

Evidently, the points C and P lie now on the Ox′ axis and have the new coordinates(√
7
2 , 0

)
and

(
3
√
21
2 , 0

)
, respectively. Hence a = |OC| =

√
7
2 and b = |OP | = 3

√
21
2 .

The support function q(t) of our ellipse in new coordinate system has the form

q(t) = p(t+ ω) =

√
4 cos2(t+ ω) + sin2(t+ ω).

Next from Figure 4 we read that

tan (t∗ + ω) = 2
√

3,

hence

tan t∗ =
8
√

3

3
≈ 4.6188 . . .

and t∗ ≈ 1.35758. Thus from Lemma 2.1 we get that the function Q(u) = − q̇(u)
a sinu is

positive-valued and strictly decreasing on interval (0, t∗). So we need to determine

u = Q−1
(
b
a

)
. We solve the equation Q(u) = b

a i.e.

− q̇(u)

a sinu
=
b

a
or

ṗ(u+ ω) = −b sinu.

Inserting all necessary data, cosω = 2√
7

and sinω =
√
3√
7

and substituting x = tanu

we arrive to the quartic equation

2304x4 − 1748
√

3x3 + 2885x2 − 16
√

3x− 48 = 0.
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Fig. 4. Realization of the shortest distance from P to our ellipse.

Let Ω(x) = 2304x4−1748
√

3x3+2885x2−16
√

3x−48. It is easy to see that Ω(0) < 0

and Ω(1) > 0, moreover 1 = tan π
4 < tan t∗ and Q is strictly decreasing thus there

exists exactly one solution x0 ∈ (0, t∗) which gives the closest point on the ellipse

to P . One can check directly that x0 = 1
4
√
3
. Thus in Oxy coordinates we have that

X = z(ω + arctanx0) =
√

3 + 1
2 i. The point

(√
3, 12
)

is the searched point realizing

the claimed minimum, as we see on Figure 4.

3. Computer approximation

In general it is not easy to obtain the inverse of the function Q in Theorem 2.2, but

we can approximate its inverse, what gives us the possibility of finding approximation

that realizes the shortest distance between a given point and a strictly convex curve.

An algorithm deploying ideas previously introduced in this paper could be divided

into two parts, the first one (part A) is to be done once for a given convex set, the

second (part B) – once for a given point.

A-1. Let p(t) be the support function of our convex set bounded by C.

If p(t) cannot be obtained as an analytical expression for some reasons it can

be approximated in various ways. For example one can set large integer M , set
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h = 2π/M and for all t ∈ {0, h, 2h, . . . , (M − 1)h} calculate

p(t) = max
(x,y)∈C

(x cos t+ y sin t). (17)

How easily the value in (17) can be obtained depends on the nature of C, in

most practical cases, like C being a set of Bézier curves, it is straightforward.

For example if a Bézier curve is cubic, then the first derivative (with respect

to s) of

x(s) cos t+ y(s) sin t, s ∈ (0, 1)

is a polynomial in s of the second order.

But in general finding the support function (or its approximation) is beyond

the scope of this paper, and we just assume it is calculated. Once for a given

C.

A-2. Let ṗ(t) be a derivative of p(t). If we do not have an analytical expression for

p(t), we can, for t ∈ {0, h, 2h, . . . , (M − 1)h} approximate ṗ(t) as

(p(t+ h)− p(t− h))/(2h).

Again, obtaining ṗ(t) is done once for given C.

A-3. Having p and ṗ we may find all t∗ for all t ∈ {0, h, 2h, . . . , (M −1)h}, such that

arg(z(t∗)) ≈ t, t, t∗ ∈ {0, h, 2h, . . . , (M − 1)h}.

Having these functions (or their approximations) prepared, we may proceed with

main algorithm.

Suppose we have a point beiα, outside of our C, we want to find the closest point

on C.

B-1. Obtain t∗ for t ≈ α (prepared in A-3).

B-2. If ṗ(α) = 0 (or, in other words, t∗ = α) then our optimal point is p(α)eiα, the

algorithm stops.

B-3. If ṗ(α) < 0 then let L = α, let R = t∗ (and if R happened to be smaller than

L then advance R by 2π.

B-4. If ṗ(α) > 0 then let L = t∗, let R = α (and if L happened to be greater than

R then reduce L by 2π.

B-5. Now solve equation

−ṗ(u)

sin(u− α)
= b, u ∈ (L,R). (18)

Lemma 2.1 guarantees uniqueness of the solution, and that the left side of (18)

is strictly monotonic, so it can be solved by simple numerical methods, for

example by bisection.

B-6. Due to theorem 2.2 the optimal point is

z(u) = p(u)eiu + ṗ(u)ieit.
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Example 3.1. Let us consider a set described by two cubic Bézier curves illustrated

on Figure 5. The first curve is defined by points (−5, 0), (−5, 8), (4, 2), (6, 0). The

second one is defined by (−5, 0), (−4,−3), (5− 1), (6, 0). Curves are illustrated with

solid lines. Then we have 36 points of the form 7 · ei2π/36 and for each we draw its

closest point on C, connected with dashed segment. All calculations for drawing the

picture were done exactly with the described algorithm.

Fig. 5. Finding the closest points on Bézier curves.

Example 3.2. Another example is a convex set bounded by a curve

|x|3 + |y|3 = 1.

Again, applying the above algorithms gives us the closest points to particular 36

points of the form 2 · ei2π/36, illustrated on Figure 6.

Fig. 6. Finding the closest points on |x|3 + |y|3 = 1.
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O NAJMNIEJSZEJ ODLEG LOŚCI MIȨDZY PUNKTEM A CIA LEM

WYPUK LYM

S t r e s z c z e n i e
Na ścísle wypuk lej krzywej znajdujemy punkt realizuja̧cy najmniejsza̧ odleg lość do

danego punktu leża̧cego w zewnȩtrzu krzywej. Otrzymane rezultaty wykorzystuja̧ funkcjȩ
podparcia ścísle wypuk lej krzywej i moga̧ mieć praktyczne zastosowania. Ponadto, wyz-
naczamy jedna̧ ze stycznych do ścísle wypuk lej krzywej C przechodza̧ca̧ przez dany punkt
leża̧cy w zewnȩtrzu C.

S lowa kluczowe: krzywa ścísle wypuk la, funkcja podparcia, geometria obliczeniowa


