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Summary

Let C0 denote the set of all non-decreasing continuous functions f : (0, 1]→ (0, 1] such

that limx→0+ f(x) = 0 and f(x) ≤ x for every x ∈ (0, 1] and let A be a measurable subset

of the plane. The notions of a density point of A with respect to f and the mapping Df ,

defined on the family of all measurable subsets of the plane, were introduced in [13]. This

mapping is a lower density, so it allowed us to introduce the topology Tf , analogously to

the density topology. In [14] the properties of the topology Tf and functions approximately

continuous with respect to f were considered. We proved that (R2, Tf ) is a completely

regular topological space and we studied conditions under which topologies generated by

two functions f and g are equal. In this note we prove that (R2, Tf ) is a maximally resolvable

and extraresolvable Baire space for which Blumberg’s theorem does not hold.
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The investigations of density-type topologies on the real line or on the plane

have a long tradition. The beginning of such studies is connected with the paper of

C. Goffman, C. J. Neugebauer and T. Nishiura ([4]), and the most general look, one

can find in a monograph of J. Lukeš, J. Malý and L. Zajiček [9]. In this paper we

are focused on the resolvability and the analogon of Blumberg’s theorem for a class

of topologies situated between the ordinary density topology and the strong density

topology. These investigations are a continuation of [13] and [14].

Let S denote the family of all Lebesgue measurable subsets of the plane and

m2 – the two-dimesional Lebesgue measure. Recall that if A ∈ S, then (x0, y0) is an

ordinary density point of A if

lim
h→0+

m2(A ∩ ([x0 − h, x0 + h]× [y0 − h, y0 + h])

4h2
= 1

[11]
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and it is a strong density point of A if

lim
h,k→0+

m2(A ∩ ([x0 − h, x0 + h]× [y0 − k, y0 + k])

4hk
= 1

(compare [11], p. 106 and 129). For A ∈ S let Φo(A) and Φs(A) denote the set of all

ordinary density points of A and the set of all strong density points of A, respectively.

The associated ordinary density topology and strong density topology in the plane

have different properties, for example the ordinary density topology is completely

regular while the strong density topology is not (see [5]). This paper is devoted to

study the topological properties of a class of topologies included between ordinary

and strong.

If A,B ∈ S then we shall write A ∼ B if and only if m2(A4B) = 0 (where

A4B = (A \B) ∪ (B \A)).

Let C0 denote the set of all non-decreasing continuous functions f : (0, 1]→ (0, 1]

such that limx→0+ f(x) = 0 and f(x) ≤ x for every x ∈ (0, 1].

Let f ∈ C0 and A ∈ S.

Definition 1. [13] We say that (x0, y0) is a density point of A with respect to a

function f if for each ε > 0 there exists δ > 0 such that for each h, k ∈ (0, δ) if

f(h) ≤ k ≤ h or f(k) ≤ h ≤ k, then

m2(A ∩ {[x0 − h, x0 + h]× [y0 − k, y0 + k]})
4hk

> 1− ε,

or, equivalently,

m2(A′ ∩ {[x0 − h, x0 + h]× [y0 − k, y0 + k]})
4hk

< ε,

where A′ = R2 \A.

The interval [x0−h, x0+h]×[y0−k, y0+k] such that f(h) ≤ k ≤ h or f(k) ≤ h ≤ k
will be called suitable for a function f.

Obviously, if f(x) = x for x ∈ (0, 1], then the notion of a density point with

respect to f coincides with the notion of the ordinary density point of a measurable

subset of the plane.

For A ∈ S and f ∈ C0 we denote by Df (A) the set of all points (x, y) ∈ R2 which

are the density points of A with respect to f . Clearly, Φs(A) ⊂ Df (A) ⊂ Φo(A) for

every A ⊂ S. The mapping Df : S → 2R
2

is a lower density (see [13], Theorem 5),

so the family

Tf = {A ∈ S : A ⊂ Df (A)}

is a topology on the plane, essentially stronger than the strong density topology Ts
on the plane, and weaker than the ordinary density topology To on the plane. The

properties of the topology Tf were studied in [13] and [14]. There was proved, among

others, that (R2, Tf ) is a completely regular (T3 1
2
) topological space. For this purpose

we proved that the theorem analogous to Lusin-Menchoff theorem holds.
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Now we will prove using the method from Foran’s book (see [4], page 283) that

the plane with the topology Tf is not normal, for all f ∈ C0. For this purpose it

will be convenient for us to use a formula of a derivative in the topology Tf for a

measurable subset of the plane. In [13], Theorem 7, it was observed that if A ∈ S
then

AdTf = R2 \Df (R2 \A). (1)

Theorem 2. Let f ∈ C0 and G1, G2 ∈ Tf . If G1 and G2 are dense in the Euclidean

topology on the plane then G
dTf

1 ∩G
dTf

2 6= ∅.
Proof. Let p1 ∈ G1, p1 = (x1, y1). There exists a suitable for a function f interval

I1 = [x1 − h1, x1 + h1]× [y1 − k1, y1 + k1] such that

m2(G1 ∩ I1)

m2(I1)
>

4

5
.

Let p2 ∈ G2∩Int I1, (where IntA denotes the interior of A in the Euclidean topology),

p2 = (x2, y2). There exists a suitable for a function f interval I2 = [x2 − h2, x2 +

h2]× [y2 − k2, y2 + k2], such that I2 ⊂ I1 and

m2(G2 ∩ I2)

m2(I2)
>

4

5
.

Repeating preceding arguments we define a descending sequence of intervals {In}n∈N,

In = [xn − hn, xn + hn] × [yn − kn, yn + kn] suitable for a function f , such that for

odd n ∈ N
m2(G1 ∩ In)

m2(In)
>

4

5
(2)

and
m2(G2 ∩ In)

m2(In)
>

4

5
(3)

for even n ∈ N.
Let p0 ∈

⋂
n∈N In, p0 = (x0, y0). Put

Jn = [x0 − hn, x0 + hn]× [y0 − kn, y0 + kn]

for n ∈ N. Clearly, {Jn}n∈N is a sequence of suitable intervals for a function f . Using

(2) and (3) we obtain for odd n ∈ N
m2(G1 ∩ Jn)

m2(Jn)
≥
m2(G1 ∩ In)− 3

4m(In)

m(In)
>

1

20

and, analogously,
m2(G2 ∩ Jn)

m2(Jn)
>

1

20

for even n ∈ N.
Consequently, according to (1), p0 ∈ G

dTf

1 ∩G
dTf

2 . �
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Theorem 3. For arbitrary function f ∈ C0 the space (R2, Tf ) is not normal.

Proof. Suppose on the contrary, that (R2, Tf ) is normal for some f ∈ C0. Let A,B

be two countable disjoint sets, dense in the Euclidean topology. Then A and B are

closed in the topology Tf , so there exist U, V ∈ Tf such that A ⊂ U , B ⊂ V , and

U ∩V = ∅. Clearly, U ∩ V̄ Tf = ∅. From [8, Chapter 4, page 112] it follows that there

exists a set U1 ∈ Tf such that

A ⊂ U1 ⊂ Ū
Tf
1 ⊂ U.

Hence Ū
Tf
1 ∩ V̄ Tf = ∅, which is in contradiction with the previous theorem. �

In [13] and [14] we studied also the conditions under which topologies generated

by two functions f and g are equal. Clearly, if f, g ∈ C0 and f(x) ≤ g(x) for every

x ∈ (0, 1] then for arbitrary measurable subset A of the plane Df (A) ⊂ Dg(A) and,

consequently, Tf ⊂ Tg. Also if f ∈ C0 and c ∈ (0, 1] then Df (A) = Dcf (A) for A ∈ S,

so Tf = Tcf . More generally, if f, g ∈ C0, f(x) ≤ g(x) for every x ∈ (0, 1] and

lim inf
x→0+

f(x)

g(x)
> 0,

then Tf = Tg ([13], Theorem 17). Also another condition sufficient for the equality

Tf = Tg, described in porosity terms, is given in [13].

In [14] we gave some condition, which is necessary for the equality Tf = Tg for

arbitrary functions f, g ∈ C0 such that g(x) ≤ f(x) for every x ∈ (0, 1]. We proved

also that this condition is sufficient if g is a strictly increasing function.

Now we prove that for an arbitrary function f ∈ C0 the topological space (R2, Tf )

is a maximally resolvable and extraresolvable Baire space for which Blumberg’s the-

orem does not hold.

The problems connected with resolvability of some topological spaces were con-

sidered by many mathematicians. It was proved that the real line with the Euclidean

topology is maximally resolvable ([3]), but not extraresolvable. The real line with

the density topology has both these properties. The first property was proved by J.

Luukkainen ([10]), and the second by A. Bella ([1]). Also the real line with the I-

density topology or with the ψ-density topology is maximally resolvable and extrare-

solvable, which was proved in [12] for I-density topology and by G. Horbaczewska

in [6] for ψ-density topology. Here we shall prove that the plane with the topology

Tf is also simultaneously maximally resolvable and extraresolvable.

Recall the basic notions.

Let (X, T ) be a topological space. The dispersion character of X is the cardinal

number

∆(X, T ) = min{card(U) : U ∈ T , U 6= ∅}.
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Let α be an arbitrary cardinal number. A topological space is said to be α-

resolvable if there exists a family of α-many pairwise disjoint subsets of X, each of

which intersects each nonempty open subset of X in at least α points.

The space (X, T ) is maximally resolvable if it is ∆(X, T )-resolvable.

The space (X, T ) is extraresolvable if there exists a family D of dense subsets of

X such that card(D) > ∆(X, T ) and the set C∩D is nowhere dense for all C,D ∈ D,

C 6= D.

As it was mentioned earlier (compare Theorem 5 and Theorem 6 in [13]), Tf is

a topology generated by a lower density operator on (R2,S, I), where I is a σ-ideal

of sets of two-dimensional Lebesgue measure zero. Observe that every set A ∈ S \ I
contains a nonempty perfect set, as m2(A) > 0 and each Borel uncountable set

contains a nonempty perfect subset. So from Theorem 7 in [7] we obtain

Theorem 4 (ZFC). The space (R2, Tf ) is maximally resolvable.

and from Theorem 8 in [7] it follows

Theorem 5 (ZFC+MA). The space (R2, Tf ) is extraresolvable.

H. Blumberg proved that if f is a real-valued function defined on the real line,

then there exists a dense subset D of R, such that f|D is continuous. J. C. Bradford

and C. Goffman in [2] proved that a metric space X is a Baire space if and only if

Blumberg’s theorem holds. As it was observed earlier, the topological space (R2, Tf )

is a Baire space ([13]). Here we shall prove that in our space Blumberg’s theorem

does not hold.

For this purpose we shall use so called Gδ-insertion property which was considered

in [9].

Let τ be a topology on R2 and let Gδ be, as usual, the family of all countable

intersections of open sets (with respect to the Euclidean topology on the plane).

Definition 6. [9] We say that τ has Gδ-insertion property if for each set A ⊂ R2

there exists a set B ∈ Gδ such that

Intτ A ⊂ B ⊂ Āτ ,

where Intτ A and Āτ denote the interior and the closure of A in the topology τ ,

respectively.

Theorem 7. The topology Tf has Gδ-insertion property.

Proof. Let G ∈ Tf . We shall prove that there exists a set B of type Gδ (with respect

to the Euclidean topology) such that

G ⊂ B ⊂ ḠTf .
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Put

Bnm = {(x, y) ∈ R2 : (f(
1

n
) ≤ 1

m
≤ 1

n
or f(

1

m
) ≤ 1

n
≤ 1

m
)

and m2(G ∩ {[x− 1

n
, x+

1

n
]× [y − 1

m
, y +

1

m
]}) > 1

nm
}

for every n,m ∈ N and

B =
⋂
k∈N

⋃
n,m≥k

Bnm.

We shall prove that Bnm is open in the Euclidean topology for arbitrary n,m ∈ N.

Let (x0, y0) ∈ Bnm. We may assume (x0, y0) = (0, 0). Then f(1/n) ≤ 1/m ≤ 1/n or

f(1/m) ≤ 1/n ≤ 1/m and there exists a positive number α such that

m2(G ∩ {[− 1

n
,

1

n
]× [− 1

m
,

1

m
]}) =

1

nm
+ α >

1

nm
.

Put δ = αnm/4(n+m). Let p = (x, y) ∈ (−δ, δ)× (−δ, δ). Then

m2((G− (x, y)) ∩ {[− 1

n
,

1

n
]× [− 1

m
,

1

m
]}) >

> m2(G ∩ {[− 1

n
,

1

n
]× [− 1

m
,

1

m
]})− 2δ

m
− 2δ

n
=

=
1

nm
+ α− 2

αnm

4(n+m)
· n+m

nm
=

1

nm
+
α

2
>

1

nm
,

so p ∈ Bnm. Hence (−δ, δ) × (−δ, δ) ⊂ Bnm and Bnm is open. Consequently B is a

set of type Gδ in the Euclidean topology.

Now we shall prove that G ⊂ B. Let p = (x, y) ∈ G. Since G ∈ Tf , so p ∈ Df (G).

From the definition of Df it follows that there exists n0 ∈ N such that for each

n,m ≥ n0 if f(1/n) ≤ 1/m ≤ 1/n or f(1/m) ≤ 1/n ≤ 1/m then

m2((G− (x, y)) ∩ {[− 1
n ,

1
n ]× [− 1

m ,
1
m ]})

4
nm

>
1

4
,

i.e.

m2((G− (x, y)) ∩ {[− 1

n
,

1

n
]× [− 1

m
,

1

m
]}) > 1

nm
.

Consequently, for each k ∈ N there exist two positive integers n,m ≥ k (for example

n = m = max(k, n0)) such that f(1/n) ≤ 1/m ≤ 1/n or f(1/m) ≤ 1/n ≤ 1/m and

m2(G ∩ {[x− 1

n
, x+

1

n
]× [y − 1

m
, y +

1

m
]}) > 1

nm
,

so p = (x, y) ∈ B.
We show that B ⊂ ḠTf . From Theorem 7 in [13]

ḠTf = G ∪ (R2 \Df (R2 \G)).
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Observe that B ⊂ R2 \Df (R2 \ G). Let p = (x, y) ∈ B. Then for each k ∈ N there

exist two positive integers n,m ≥ k such that

f(
1

n
) ≤ 1

m
≤ 1

n
or f(

1

m
) ≤ 1

n
≤ 1

m

and

m2(G ∩ {[x− 1

n
, x+

1

n
]× [y − 1

m
, y +

1

m
]}) > 1

nm
.

Hence
m2((R2 \G) ∩ {[x− 1

n , x+ 1
n ]× [y − 1

m , y + 1
m ]})

4
n·m

<
3

4
,

so p = (x, y) /∈ Df (R2 \G). Consequently p ∈ R2 \Df (R2 \G). �

Theorem 8 (CH). The space (R2, Tf ) is not a Blumberg space.

Proof. From (CH) it follows that each subset of the plane dense in the topology Tf is

of cardinality { = 2ℵ0 . The topology Tf has Gδ-insertion property and card(Gδ) = {.
Using Theorem 4.7 in [9] we obtain that (R2, Tf ) is not a Blumberg space. �

Finally, the space (R2, Tf ) is a completely regular Baire space, which is both

maximally resolvable, extraresolvable and for which Blumberg’s theorem does not

hold.

In the next theorem we shall prove that the derivative in the topology Tf of each

subset of the plane is a Borel set (exactly of type Gδσ) with respect to the Euclidean

topology.

Now we shall prove that the result analogous to (1) holds for an arbitrary subset

of the plane.

Let Ã ⊂ A be an arbitrary measurable set with the inner measure of A \ Ã equal

to zero. Such a set is usually called a measurable kernel of A.

Lemma 9. For an arbitrary set A ⊂ R2

AdTf = R2 \Df (R̃2 \A).

Proof. Let p ∈ Df (R̃2 \A). Put

U = (R̃2 \A) ∩Df (R̃2 \A) ∪ {p}.

We have U ∼ (R̃2 \A) ∩ Df (R̃2 \A) ∼ (R̃2 \A), so Df (U) = Df (R̃2 \A). Conse-

quently p ∈ Df (U) and U ∈ Tf . Simultaneously (U ∩A) \ {p} = ∅, so p /∈ AdTf .

Now let p /∈ AdTf . Then there exists the set U ∈ Tf such that p ∈ U and

(U ∩ A) \ {p} = ∅. Then p ∈ Df (U) and U ⊂ (R2 \ A) ∪ {p}. We shall prove that

p ∈ Df (R̃2 \A). We have

U ⊂ (R̃2 \A) ∪ (U \ (R̃2 \A)) ∪ {p}.
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Obviously U \ (R̃2 \A) ⊂ [(R2 \ A) \ (R̃2 \A)] ∪ {p}, so from the definition of a

measurable kernel m2(U \ (R̃2 \A)) = 0. Consequently Df (U) ⊂ Df (R̃2 \A) and

p ∈ Df (R̃2 \A). �

Theorem 10. If A ⊂ R2 then AdTf is a set of type Gδσ.

Proof. Let A ∈ S. From Theorem 2 in [13] it follows that the point p = (x, y) belongs

to Df (R2 \ A) if and only if for each k ∈ N there exists n0 ∈ N, such that for each

n,m ≥ n0 if f(1/n) ≤ 1/m ≤ 1/n or f(1/m) ≤ 1/n ≤ 1/m, then

m2((A− (x, y)) ∩ {[− 1
n ,

1
n ]× [− 1

m ,
1
m ]})

4
nm

≤ 1

k
.

Observe that p = (x, y) /∈ Df (R2 \ A) if and only if there exists k ∈ N, such

that for each r ∈ N there exist n,m ≥ r, such that f(1/n) ≤ 1/m ≤ 1/n or

f(1/m) ≤ 1/n ≤ 1/m and

m2((A− (x, y)) ∩ {[− 1

n
,

1

n
]× [− 1

m
,

1

m
]}) > 4

knm
.

Put

Bknm = {(x, y) ∈ R2 : (f(
1

n
) ≤ 1

m
≤ 1

n
or f(

1

m
) ≤ 1

n
≤ 1

m
)

and m2((A− (x, y)) ∩ {[− 1

n
,

1

n
]× [− 1

m
,

1

m
]}) > 4

knm
}

for k, n,m ∈ N. Analogously as in the proof of Theorem 5 one can prove that Bknm is

open in the Euclidean topology. Simultaneously, from (1) and the above observation

we obtain

AdTf =

∞⋃
k=1

∞⋂
r=1

⋃
n≥r

⋃
m≥r

Bknm,

so AdTf is a set of type Gδσ for arbitrary measurable subset A of the plane.

Now let A /∈ S. From Lemma 9 and (1) we obtain

AdTf = R2 \Df (R̃2 \A) = (R2 \ (R̃2 \A))dTf .

Obviously, R2 \ (R̃2 \A) ∈ S. From the first part of the proof AdTf is a set of type

Gδσ. �

Using the last theorem and Exercise 4.B.1 in [9], p. 141, we can again deduce

that (R2, Tf ) is not a Blumberg space.
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Presented by W ladys law Wilczyński at the Session of the Mathematical-Physical
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TOPOLOGIE GȨSTOŚCI NA P LASZCZYŹNIE USYTUOWANE

MIȨDZY ZWYCZAJNA̧ I SILNA̧ TOPOLOGIA̧ GȨSTOŚCI. III

S t r e s z c z e n i e

Praca dotyczy rodziny topologii gȩstości na p laszczyźnie, które zawieraja̧ w sobie silne
topologie gȩstości i zawarte sa̧ w zwyczajnej topologii gȩstości oraz generowane sa̧ przez
pewna̧ podrodzinȩ rodziny funkcji cia̧g lych. Przedstawione tu wyniki stanowia̧ kontynu-
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acjȩ wcześniejszych badań. W pracy dowodzi siȩ, że p laszczyzna z topologia̧ z rozważanej
rodziny jest przestrzenia̧ Baire’a maksymalnie rozk ladalna̧ i ekstrarozk ladalna̧, dla której
twierdzenie Blumberga nie zachodzi.

S lowa kluczowe: punkt gȩstości, topologia gȩstości, twierdzenie Blumberga


