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Summary
Let f : Cn → Cm, m ≥ n be a proper polynomial mapping such that f−1(0) = {0}.

Then the mapping f : Cn → f(Cn) is a ∗-covering (in the sense of [7]). In this paper we
give an effective method of calculating the degree of this covering.
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1. Introduction

R. Draper in [4] defined the multiplicity for proper intersection of analytic sets.
Next, in the case of isolated intersection, R. Achilles, P. Tworzewski, T. Winiarski
in [1] generalized this definition to improper intersection case. The above multiplicity
leads to the definition of multiplicity i0(f) of a holomorphic mapping at a zero of
this mapping (see [14]).

Let Ω ⊂ Cn be a neighbourhood of the point 0 ∈ Cn and let f : Ω → Cm,
where m ≥ n, be a holomorphic mapping such that 0 is an isolated point of the fiber
f−1(0).

S. Spodzieja in [12] (see also [3], [13]) proved the following result which shows
the connections between the multiplicity i0(f) and the degree of a ∗-covering (in the
sense of [7]), inducted by f in a neighbourhood of 0.

Theorem 1. [12, Theorem 1.2] There exists a neighbourhood U ⊂ Ω of the point 0

such that f−1(0) ∩ U = {0}, f |U : U → f(U) is ∗-covering and

(1) i0(f) = d(f |U ) · deg0 f(U),
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where d(f |U ) is the degree of the ∗-covering f |U and deg0 f(U) is the degree of an
analytic set f(U) ⊂ Cm at 0 ∈ Cn.

In the paper we will give an effective method to calculate the degree of the ∗-covering
f : Cn → f(Cn), provided f is a polynomial mapping. Theorem 1 will be the crucial
tool in this calculations.

Let f : Cn → Cm, m ≥ n be a proper polynomial mapping such that f−1(0) =

{0}. Denote by L(n,m) the set of all linear mappings Cn → Cm.
We will effectively specify an open set Û ⊂ L(m,n) such that for any p ∈ Û

the mapping π ◦ (F ∗, p) : Cm → Cm is proper and i0(F ∗, p) = m0(π ◦ (F ∗, p)) for
the generic π ∈ L(s+ n,m), where F ∗ : Cm → Cs is polynomial mapping such that
C0(f(Cn)) = (F ∗)−1(0), and C0(f(Cn)) is the tangent cone to f(Cn) at 0 in the
sense of [15]. Next, fixing p ∈ Û , we describe a set U ⊂ L(n, 1) of linear functions
such that for any l ∈ U the function l is injective on the generic fiber of the mapping
p ◦ f . The main result of this paper is the following theorem.

Theorem 2. Fix any p ∈ Û . There exist effectively computable: linear function
l ∈ U , non-zero irreducible polynomial of the form Pp,l(y, t) =

∑k
j=0 Pp,l,j(y)tj

which vanishes on the image of the mapping (Hp, l) : Cn → Cn+1, where Hp(x) =

(p ◦ f)(x) + (xd
n+1

1 , . . . , xd
n+1
n ), d = deg f and non-zero irreducible polynomial

P ∗p (π,N,w, t) =
∑l
i=0 P

∗
p,i(π,N,w)ti which vanishes on the image of the mapping

Φ∗p : L(s + n,m) × L(m, 1) × Cm → L(s + n,m) × L(m, 1) × Cm+1 of the form
Φ∗p(π,N, y) = (π,N,H∗p,π(y), N(y)), H∗p,π(y) = (π◦(F ∗, p))(y)+(yd

∗m+1
1 , ..., yd

∗m+1
m ),

d∗ = degF ∗ such that

(2) d(f) =
min{j ∈ {1, . . . , k} : ordy Pp,l,j = 0}
min{i ∈ {1, . . . , l} : ordw P ∗p,i = 0}

.

In the paper [10], there was presented a similar result concerning the calculation
of the polynomial Pp,l(y, t), not for fixed mappings p and l but for the linear map-
ping with variable coefficients. From the computational point of view, increasing the
number of variables made the algorithm slower. The characterizations of the sets U
and U∗ are intended to make the algorithm faster.

2. The Jelonek set of polynomial mapping

Let X and Y be locally compact topological spaces. The mapping f : X → Y is said
to be proper if for any compact set K ⊂ Y the set f−1(K) is a compact subset of
X. We say that the mapping f : X → Y is proper at point y ∈ Y if there exists an
open neighbourhood D of y such that

f |f−1(D) : f−1(D)→ D

is a proper mapping.
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Proposition 3. [6, Remark 5.2] Let X and Y be locally compact spaces. Then the
mapping f is proper if and only if it is proper at every point y ∈ Y .

The set of all points at which the mapping f is not proper is called the set of
non-properness of mapping f (or the Jelonek set of f) and is denoted by Sf .

Let f : Cn → Cn be a polynomial mapping. The mapping f is said to be dominant
if f(Cn) = Cn.

The mapping f is said to be finite if it is proper and all its fibers are finite.
The following Proposition is well known.

Proposition 4. Let f : Cn → Cn be a proper polynomial mapping. Then f is finite
and surjective (hence dominant).

Let us recall, after [6], the effective construction of the Jelonek set.
Let f : Cn → Cn be a dominant mapping such that f(0) = 0. Define mapping

Φj : Cn → Cn+1 by
Φj(x) = (f(x), xj),

for any j = 1, ..., n, where x = (x1, ..., xn). Since mapping f is dominant, hence
Φj(Cn) is an algebraic set in Cn+1 of dimension n, i.e. it is a hypersurface. There
exists a polynomial Pj ∈ C[y, t], y = (y1, ..., yn) ∈ Cn, t ∈ C, irreducible and of
minimal degree of the form

(3) Pj(y, t) = Pj,0(y)tdj + ...+ Pj,dj (y), Pj,0 6= 0, j = 1, ..., n

such that Φj(Cn) = Pj
−1(0). We have

Lemma 5. [6, Proposition 7]

Sf = {y ∈ Cn :

n∏
j=1

Pj,0(y) = 0}.

3. Effective Primitive Element Theorem

Now, we will give the effective method of finding the set of linear functions which
separate points of fibers of polynomial mappings.

Let f : Cn → Cn, f(0) = 0, be a proper polynomial mapping (i.e. Sf = ∅).
Let l ∈ L(n, 1) be a linear function of the form l(x) = a1x1 + ... + anxn, where

x = (x1, ..., xn) ∈ Cn, and a = (a1, ..., an) ∈ Cn. Define mapping

F : L(n, 1)× Cn → L(n, 1)× Cn × C

by
F (l, x) = (l, f(x), l(x)).

Obviously the mapping F is proper. Then by the Chevalley Theorem F (L(n, 1)×Cn)

is an algebraic irreducible set of dimension 2n.
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Therefore there exists an irreducible polynomial P ∈ C[l, y, t], y ∈ Cn, t ∈ C of the
form

P (l, y, t) =

d∑
j=0

Pj(l, y)tj

such that Pd 6= 0 and F (L(n, 1)× Cn) = P−1(0).
The polynomial P , which vanishes exactly on the image of the polynomial map

F , could be effectively computed by means of Gröbner bases.
Denote by ∆ the discriminant of P i.e.

∆(l, y) = Rest

(
P,
∂P

∂t

)
(l, y), for any (l, y) ∈ L(n, 1)× Cn.

Put
W = {(l, y) ∈ L(n, 1)× Cn : ∆(l, y) = 0}.

and
V = {l ∈ L(n, 1) : ∆(l, y) = 0 for any y ∈ Cn}.

Put now
U = L(n, 1) \ V.

For any fixed l ∈ U denote ∆l(y) = ∆(l, y), and Vl = {y ∈ Cn : ∆l(y) = 0}.
We have

Proposition 6. For any l ∈ U there exists y ∈ Cn \ Vl such that the restriction

l|f−1(y) : f−1(y)→ C

is injective.

Proof. Let us fix arbitrary l ∈ U . Then there exists y ∈ Cn such that ∆l,y :=

∆l(y) 6= 0. Thus, for this y, the polynomial

Pl,y(t) = P (l, y, t) ∈ C[t]

has no double roots. Let t1, ..., td be all roots of Pl,y. Then

Pl,y(t) = Pl,y,0 ·
d∏
j=1

(t− tj),

where Pl,y,0 ∈ C \ {0} and

(4) 0 6= ∆l,y = Res(Pl,y, P
′
l,y) = P 2d−2

l,y,0 ·
∏
i<j

(ti − tj)2.

Since f is proper and polynomial mapping, then by Proposition 4 there exist a finite
set {x1, ..., xk} ⊂ Cn \ f−1(Vl), xi 6= xj , such that f−1(y) = {x1, ..., xk}.

Hence, for any xi ∈ f−1(y) we have

0 = Pl(f(xi), l(xi)) = Pl(y, l(x
i)) = Pl,y(l(xi)).
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Therefore ti = l(xi), for i = 1, ..., k (after an eventual permutation). Since all tj are
different, therefore k = d , and by (4), we have

P 2d−2
l,y,0 ·

∏
i<j

(l(xi)− l(xj))2 6= 0.

This ends the proof. �
As an immediate consequence of Proposition 6, we get

Corrolary 7. For any l ∈ U , putting t = l(x1, . . . , xn), we have that t is the primi-
tive element of the extension C(f1, . . . , fn) ⊂ C(x1, . . . , xn) i.e.

C(x1, . . . , xn) = C(f1, . . . , fn)(t).

4. Index of overdetermined mapping

Let us recall (see [7]) the definition of the multiplicity of a holomorphic mapping.
Let M and N be complex manifolds of the same dimension n > 0, and let

f : M → N be a holomorphic mapping. Let a ∈ M be an isolated point of its fiber
f−1(f(a)). We define the multiplicity of the mapping f at the point a by

ma(f) = sup{#(f |U )−1(y) : y ∈ D},

where U and D are sufficiently small neighbourhoods of the points a and f(a),
respectively.

Let us recall [2] (see also [4]) the definition of the multiplicity of the proper,
isolated intersection of the analytic sets.
Let X1, . . . , Xk be analytic sets in a domain D ∈ Cn of pure dimensions p1, . . . , pk,
respectively. Assume that

0 = dim

k⋂
j=1

Xj =

k∑
j=1

pj − (k − 1)n,

i.e. the intersection
⋂k
j=1Xj is proper and isolated. Denote by

∆ = {(x1, . . . , xkn) ∈ Ckn : x1 = ... = xkn}

the diagonal set in Ckn.
If a ∈ Cn is an isolated point of

⋂k
j=1Xj , then (a)k := (a, . . . , a) ∈ Ckn is the

isolated point of (X1 × ...×Xk) ∩∆. Hence the projection

π∆|X1×...×Xk
: X1 × ...×Xk → ∆⊥ ⊂ Ckn

along ∆ is an analytic cover in some neighbourhood of (a)k.
The multiplicity

µ(a)k(π∆|X1×...×Xk
)
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of the projection π∆|X1×...×Xk
at the point (a)k ∈ Ckn is called the intersection

multiplicity or intersection index of the sets X1, . . . , Xk at a point a ∈
⋂k
j=1Xj and

we denoted it by i(X1 · ... ·Xk; a). For a ∈ D \
⋂k
j=1Xj we put i(X1 · ... ·Xk; a) = 0.

Recall after [1] some fact concerning the improper intersection of the analytic
sets.

Let X be a pure k-dimensional analytic subset of a complex manifold M of
dimension m. Let N be a submanifold of M of dimension n such that N intersects
X at an isolated point a ∈M . We denote by Fa(X,N) the set of all locally analytic
subsets V of M satisfying the following conditions:

(i) V has pure dimension m− k,
(ii) Na ⊂ Va, where Na, Va denote the germs at a of N and V , respectively,
(iii) a is an isolated point of V ∩X.
We define the multiplicity of improper isolated intersection the analytic set X

with submanifold N at the point a by

ĩ(X ·N ; a) = min{i(X · V ; a) : V ∈ Fa(X,N)}.

By index of a holomorphic mapping f : D → Cm at 0, where D ⊂ Cn is a
neighbourhood of 0 such that 0 is an isolated zero of f , we mean the multiplicity

ĩ(Γf · (Cn × {0}), (0, 0))

of improper intersection of the graph Γf (i.e Γf = {(x, f(x)) : x ∈ D}) of f and the
set Cn × {0} ⊂ Cn × Cm at the point (0, 0) ∈ Cn × Cm and denote it by i0(f).

Let D ⊂ Cn be an open neighbourhood of the point 0 ∈ Cn and let f : D → Cm
be a holomorphic mapping such that f(0) = 0 and 0 is an isolated point of the set
f−1(0).

Theorem 8. [12, Theorem 1.1]For any p ∈ L(m,n) such that the point 0 is an
isolated zero of p ◦ f we have

i0(f) ≤ m0(p ◦ f).

Moreover, for the generic p ∈ L(m,n), the point 0 is an isolated zero of p ◦ f and

(5) i0(f) = m0(p ◦ f).

Let f : Cn → Cm, m ≥ n be a polynomial mapping such that 0 is an isolated
point of the set f−1(0) and f(0) = 0. Then there exists a neighbourhood U of the
point 0 such that f(U) 3 0 is an algebraic set in Cm of the pure dimension n. Let
f |U : U → f(U). Put

(6) Ũ = {p ∈ L(m,n) : i0(f) = m0(p ◦ f)}

and

(7) U
′

= {p ∈ L(m,n) : C0(f(U)) ∩ ker p = {0}},

where C0(f(U)) is a tangent cone of f(U) at the point 0 (in the sense of [15]).
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We have the following

Proposition 9. [11, Theorem 2.2]

(8) U
′
⊂ Ũ .

The set U ′ can be effectively calculated (see [11] or Proposition 11).

5. Local degree of algebraic set

Let X be a pure s-dimensional analytic set in Cn and a ∈ X. Denote by G(n− s, n)

the set of all (n−s)-dimensional linear subspaces of Cn. Let L ∈ G(n−s, n) be such
that a is an isolated point of the set X ∩ (a+L). It is well known, that there exists
a neighbourhood U ⊂ Cn of the point a such that X ∩ U ∩ (a+ L) = {a}, and such
that the projection

πL : X ∩ U → U ′ ⊂ L⊥

along L is a k-sheeted analytic cover, for some k ∈ N, where L⊥ is subspace of Cn
orthogonal to L ⊂ Cn. This number k is called the multiplicity of the projection
πL|X at the point a, and is denoted by µa(πL|X).

We put µa(πL|X) = +∞ if there exists b ∈ U ′ such that a ∈ (πL)−1(b) and
dim(πL)−1(b) > 0.

We put µa(πL|X) = 0 if a 6∈ X.
Denote by G(n− s, n) the set of all linear subspaces L ∈ G(n− s, n), L 3 0 such

that a is an isolated point of the set X ∩ (a+L). Then for every L ∈ G(n− s, n) the
multiplicity of the projection, µa(πL|X), is finite. The number

min{µa(πL|X) : L ∈ G(n− s, n)}

is said to be the local degree of X at the point a and is denoted by dega(X).

Proposition 10. [2, Proposition 11.2] Let X be a pure s-dimensional analytic set
in a neighbourhood of 0 in Cn, 0 ∈ X, and let L ∈ G(n− s, n). Then

µ0(πL|X) = deg0(X) ⇐⇒ L ∩ C0(X) = {0},

where C0(X) is a tangent cone of X at the point 0 (in the sense of [15]).

6. Effective calculations of local degree

Now, we will present the effective procedure of calculation of the local degree of an
algebraic set.

Let F = (f1, ..., fn) : Cm → Cn, be a polynomial mapping such that F (0) = 0.
Assume that dimF−1(0) = k, 0 < k < m.
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Let I ⊂ C[x1, . . . , xm] be the ideal generated by F i.e. I = 〈f1, . . . , fn〉 and let
B =

{
f̃1, . . . , f̃s

}
be the standard base of I. Then, by [5, Lemma 5.5.11]

in I =
〈

in f̃1, . . . , in f̃s

〉
,

where in f̃j denotes the initial form of f̃j , for j = 1, . . . , s. Put

F ∗ = (in f̃1, . . . , in f̃s) : Cm → Cs.

Then, by [15, Theorem 10.6] we have

C0(F−1(0)) = (F ∗)−1(0),

and by [15, Lemma 8.11] we get that

dim(F ∗)−1(0) = dimF−1(0) = k.

Define mapping
F̃ ∗ : Cm × L(m, k)→ Cs+k × L(m, k)

by
F̃ ∗(x, p) = (F ∗(x), p(x), p).

Observe that for the generic p ∈ L(m, k), denoting F̃ ∗p (x) = F̃ ∗(x, p), we have

dim(F̃ ∗p )−1(0) = 0.

Hence s+ k ≥ m. Next, define

F ′ : Cm × L(m, k)× L(s+ k,m)→ Cm × L(m, k)× L(s+ k,m)

by
F ′(x, p, π) = (π ◦ F̃ ∗(x, p), π)

and mapping

Φ̃j : Cm × L(m, k)× L(s+ k,m)→ Cm × L(m, k)× L(s+ k,m)× C

by
Φ̃j(x, p, π) = (F ′(x, p, π), xj),

for j = 1, . . . ,m. Since the mapping F ′ is dominant for the generic (p, π), there
exists a polynomial P ∗j ∈ C[y, p, π, t] of the form

P ∗j (y, p, π, t) = P ∗j,0(p, π)tdj + P ∗j,1(y, p, π)tdj−1 + · · ·+ P ∗j,dj (y, p, π),

such that
Φ̃j(Cm × L(m, k)× L(s+ k,m)) = (P ∗j )−1(0).

Similarly as in Section 3, each of the polynomial P ∗j , j = 1, . . . ,m can be effectively
calculated.

Let

V∗ =

(p, π) ∈ L(m, k)× L(s+ k,m) :

m∏
j=1

P ∗j,0(p, π) = 0

.
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Put U∗ = (L(m, k)× L(s+ k,m)) \ V∗. Denote

Û = {p ∈ L(m, k) :

m∏
j=1

P ∗j,0(p, π) 6= 0 for some π ∈ L(s+ k,m)}.

We have the following

Proposition 11. For any p ∈ Û putting L = ker p we have

µ0(πL|F−1(0)) = deg0(F−1(0)).

Proof. Let us fix arbitrary p ∈ Û . Then there exists π ∈ L(s + k,m) such that
(p, π) ∈ U∗. Hence

P ∗j,0(p, π) 6= 0,

for each j = 1, . . . ,m. Therefore the mapping π ◦ (F ∗, p) is proper. This means that
the fiber (π ◦ (F ∗, p))−1(0) is finite. Since

(π ◦ (F ∗, p))−1(0) ⊃ (F ∗, p)−1(0),

hence the fiber (F ∗, p)−1(0) is also finite. But the mapping F ∗ is homogeneous.
Therefore (F ∗, p)−1(0) = {0}. On the other hand we have

(F ∗, p)−1(0) = (F ∗)−1(0) ∩ p−1(0) = C0(F−1(0)) ∩ p−1(0).

Putting L = ker p we obtain

(9) C0(F−1(0)) ∩ L = {0}.

This together with the Proposition 10 gives the assertion. �
Let us fix p ∈ Û . We will calculate i0(F ∗, p). Define mapping H∗p,π : Cm → Cm

by
H∗p,π(y) = (π ◦ (F ∗, p))(y) + (yd

∗m+1
1 , . . . , yd

∗m+1
m ),

where d∗ = max{degF ∗1 , . . . ,degF ∗s }, π ∈ L(s+n,m) and N ∈ L(m, 1). Next define
mapping Φ∗p : L(s+ n,m)× L(m, 1)× Cm → L(s+ n,m)× L(m, 1)× Cm+1 by

Φ∗p(π,N, y) = (π,N,H∗p,π(y), N(y)).

Since the mapping Φ∗p is proper we can find an irreducible polynomial

P ∗p ∈ C[π,N,w, t]

of the form P ∗p (π,N,w, t) =
∑l
i=0 P

∗
p,i(π,N,w)ti such that P ∗p,l 6= 0 and

Φ∗p(L(s+ n,m)× L(m, 1)× Cm) = P ∗p
−1(0).

Then by [9, Theorem 7] there exists r∗ ∈ N, 0 ≤ r∗ < l such that

ordw P
∗
p,i > 0 for i = 0, . . . , r∗ and ordw P

∗
p,r∗+1 = 0.

Hence and by [10, Theorem 4] we have
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Corrolary 12.

deg0(F−1(0)) = i0(F ∗, p) = min{i ∈ {1, . . . , l} : ordw P
∗
p,i = 0}.

7. Proof of the main theorem

LetM and N be arbitrary complex manifolds and X ⊂M and Y ⊂ N be non-empty
analytic subsets. Let f : X → Y be a proper holomorphic mapping such that its
fibres are finite.

We say that the mapping f is ∗-covering if there exist nowhere dense analytic
sets Z ⊂ X and Σ ⊂ Y such that X \Z and Y \Σ are manifolds, Y \Z is connected,
f(X \ Z) ⊂ Y \ Σ and restriction

(10) fX\f−1(Z) : X \ f−1(Z)→ Y \ Z

is a finite covering. The degree of the covering (10) is called the degree of the ∗-
covering and denoted by d(f).

Let f = (f1, . . . , fm) : Cn → Cm, m ≥ n, be a proper polynomial mapping such
that f−1(0) = {0}. By Theorem 1 we have that

(11) i0(f) = d(f) · deg0 f(Cn).

In this Section we give effective method to calculate the number d(f) in (11).
Let If be the ideal of the graph of the mapping f , i.e.

If = 〈y1 − f1, . . . , ym − fm〉,

where y1, . . . , ym are new variables. Equip C[x1, . . . , xn, y1, . . . , ym] with an eliminat-
ing local ordering < for x1, . . . , xn. Let G be the Gröbner basis of the ideal If with
respect to this ordering. Such base can always be effectively computed. Let Jf =

If∩C[y1, . . . , ym]. Then the ideal Jf is generated by a set G′ = G∩C[y1, . . . , ym]. Let
G′ = {g1, . . . , gu}, u ≥ m− n. Then Jf = 〈g1, . . . , gu〉. Let G = (g1, . . . , gu) : Cm →
Cu. Then

f(Cn) = G−1(0).

Let {h1, . . . , hs} be the standard basis of ideal Jf with respect to the degree ordering
given by <. Then by [5, Lemma 5.5.11]

in(Jf ) = 〈in(h1), . . . , in(hs)〉, s ≥ m− n,

where in(hj) denotes the initial form of hj , j = 1, . . . , s. Set

F ∗ = (F ∗1 , . . . , F
∗
s ) : Cm → Cs,

where F ∗j = in(hj), for j = 1, . . . , s. By [15, Theorem 10.6] we have

(F ∗)−1(0) = C0(f(Cn)).
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Repeating argument used in Section 5 we can find open sets Û ⊂ L(m,n) such that
for any p ∈ Û ⊂ L(m,n) we have

(F ∗)−1(0) ∩ ker p = {0}.
Let us fix p ∈ Û . Define mapping H∗p,π : Cm → Cm by

H∗p,π(y) = (π ◦ (F ∗, p))(y) + (yd
∗m+1

1 , . . . , yd
∗m+1
m ),

where d∗ = max{degF ∗1 , . . . ,degF ∗s }, π ∈ L(s+n,m) and N ∈ L(m, 1). Next define
mapping Φ∗p : L(s+ n,m)× L(m, 1)× Cm → L(s+ n,m)× L(m, 1)× Cm+1 by

Φ∗p(π,N, y) = (π,N,H∗p,π(y), N(y)).

Since the mapping Φ∗p is proper we can find an irreducible polynomial

P ∗p ∈ C[π,N,w, t]

of the form P ∗p (π,N,w, t) =
∑l
i=0 P

∗
p,i(π,N,w)ti such that P ∗p,l 6= 0 and

Φ∗p(L(s+ n,m)× L(m, 1)× Cm) = P ∗p
−1(0).

Again by [9, Theorem 7] there exists r∗ ∈ N, 0 ≤ r∗ < l such that

ordw P
∗
p,i > 0 for i = 0, . . . , r∗ and ordw P

∗
p,r∗+1 = 0.

and by [10, Theorem 4]

deg0 f(Cn) = deg0(F−1(0)) = min{i ∈ {1, . . . , l} : ordw P
∗
p,i = 0}.

This gives the effective calculation of the number deg0 f(Cn).
On the other hand, by the choice of p ∈ Û , and by Proposition 9, i0(f) =

m0(p ◦ f). Then the mapping Hp : Cn → Cn by

Hp(x) = (p ◦ f)(x) + (xd
n+1

1 , . . . , xd
n+1
n ),

where d = max{deg f1, . . . ,deg fm}, is proper (i.e. SHp
= ∅) and i0(f) = m0(Hp).

Therefore, repeating argument used in Section 3 for mapping Hp, we can find the
open set U ⊂ L(n, 1) of linear functions which separate the fibers of the mapping
Hp. Let us fix such l ∈ U and define

Φp,l : Cn → Cn × C

by
Φp,l(x) = (Hp(x), l(x)).

The mapping Φp,l is proper and consequently Φp,l(Cn) is an algebraic set of pure
dimension n. So, there exists an irreducible polynomial Pp,l ∈ C[y, t], where y =

(y1, . . . , yn) and y1, . . . , yn, t are independent variables, of the form

(12) Pp,l(y, t) =

k∑
j=0

Pp,l,j(y)tj

such that Pp,l,k 6= 0 and Φp,l(Cn) = P−1
p,l (0). Hence, by [9, Theorem 7] we have that

there exist r ∈ N with 0 ≤ r < k such that

(13) ordy Pp,l,j > 0 for j = 0, . . . , r and ordy Pp,l,r+1 = 0.
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Hence and by [10, Theorem 4] we have

i0(f) = m0(Hp) = min{j ∈ {1, . . . , k} : ordy Pp,l,j = 0}.

The above proposition gives an effective calculation method of the number i0(f).
In summary, we can find effectively i0(f) and deg0 f(Cn) in (11). Hence the

third number in (11) can be effectively determined. The above considerations and
Theorem 1 ends the proof of Theorem 2.
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EFEKTYWNE WYLICZANIE STOPNIA ∗-NAKRYCIA

S t r e s z c z e n i e

Niech f : Cn → Cm, m ≥ n bȩdzie odwzorowaniem wielomianowym takim, że f(0) = 0
oraz 0 jest punktem izolowanym zbioru f−1(0). Wówczas odwzorowanie f |D : D → f(D)
jest ∗-nakryciem (w rozumieniu definicji [7]) w pewnym otoczeniu D punktu 0 ∈ Cn.
W pracy podajemy efektywna̧ metodȩ wyliczania stopnia tego nakrycia.

Słowa kluczowe: krotność odwzorowania, krotność przeciȩcia, ∗-nakrycie, efektywny wzór


