B U L L E TIN

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ 2017

pp. 119-131

Adam Różycki

EFFECTIVE CALCULATION OF THE DEGREE OF *-COVERING

Summary

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m \geq n$ be a proper polynomial mapping such that $f^{-1}(0)=\{0\}$. Then the mapping $f: \mathbb{C}^{n} \rightarrow f\left(\mathbb{C}^{n}\right)$ is a $*$-covering (in the sense of $[7]$). In this paper we give an effective method of calculating the degree of this covering.

Keywords and phrases: multiplicity of mapping, intersection multiplicity, *-covering, local degree, effective formula

1. Introduction

R. Draper in [4] defined the multiplicity for proper intersection of analytic sets. Next, in the case of isolated intersection, R. Achilles, P. Tworzewski, T. Winiarski in [1] generalized this definition to improper intersection case. The above multiplicity leads to the definition of multiplicity $i_{0}(f)$ of a holomorphic mapping at a zero of this mapping (see [14]).

Let $\Omega \subset \mathbb{C}^{n}$ be a neighbourhood of the point $0 \in \mathbb{C}^{n}$ and let $f: \Omega \rightarrow \mathbb{C}^{m}$, where $m \geq n$, be a holomorphic mapping such that 0 is an isolated point of the fiber $f^{-1}(0)$.
S. Spodzieja in [12] (see also [3], [13]) proved the following result which shows the connections between the multiplicity $i_{0}(f)$ and the degree of a $*$-covering (in the sense of [7]), inducted by f in a neighbourhood of 0 .

Theorem 1. [12, Theorem 1.2] There exists a neighbourhood $U \subset \Omega$ of the point 0 such that $f^{-1}(0) \cap U=\{0\},\left.f\right|_{U}: U \rightarrow f(U)$ is $*$-covering and

$$
\begin{equation*}
i_{0}(f)=d\left(\left.f\right|_{U}\right) \cdot \operatorname{deg}_{0} f(U) \tag{1}
\end{equation*}
$$

where $d\left(\left.f\right|_{U}\right)$ is the degree of the *-covering $\left.f\right|_{U}$ and $\operatorname{deg}_{0} f(U)$ is the degree of an analytic set $f(U) \subset \mathbb{C}^{m}$ at $0 \in \mathbb{C}^{n}$.

In the paper we will give an effective method to calculate the degree of the $*$-covering $f: \mathbb{C}^{n} \rightarrow f\left(\mathbb{C}^{n}\right)$, provided f is a polynomial mapping. Theorem 1 will be the crucial tool in this calculations.

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m \geq n$ be a proper polynomial mapping such that $f^{-1}(0)=$ $\{0\}$. Denote by $\mathbb{L}(n, m)$ the set of all linear mappings $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.

We will effectively specify an open set $\hat{U} \subset \mathbb{L}(m, n)$ such that for any $p \in \hat{U}$ the mapping $\pi \circ\left(F^{*}, p\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$ is proper and $i_{0}\left(F^{*}, p\right)=m_{0}\left(\pi \circ\left(F^{*}, p\right)\right)$ for the generic $\pi \in \mathbb{L}(s+n, m)$, where $F^{*}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{s}$ is polynomial mapping such that $C_{0}\left(f\left(\mathbb{C}^{n}\right)\right)=\left(F^{*}\right)^{-1}(0)$, and $C_{0}\left(f\left(\mathbb{C}^{n}\right)\right)$ is the tangent cone to $f\left(\mathbb{C}^{n}\right)$ at 0 in the sense of [15]. Next, fixing $p \in \hat{U}$, we describe a set $\mathcal{U} \subset \mathbb{L}(n, 1)$ of linear functions such that for any $l \in \mathcal{U}$ the function l is injective on the generic fiber of the mapping $p \circ f$. The main result of this paper is the following theorem.

Theorem 2. Fix any $p \in \hat{U}$. There exist effectively computable: linear function $l \in \mathcal{U}$, non-zero irreducible polynomial of the form $P_{p, l}(y, t)=\sum_{j=0}^{k} P_{p, l, j}(y) t^{j}$ which vanishes on the image of the mapping $\left(H_{p}, l\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n+1}$, where $H_{p}(x)=$ $(p \circ f)(x)+\left(x_{1}^{d^{n}+1}, \ldots, x_{n}^{d^{n}+1}\right), d=\operatorname{deg} f$ and non-zero irreducible polynomial $P_{p}^{*}(\pi, N, w, t)=\sum_{i=0}^{l} P_{p, i}^{*}(\pi, N, w) t^{i}$ which vanishes on the image of the mapping $\Phi_{p}^{*}: \mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m} \rightarrow \mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m+1}$ of the form $\Phi_{p}^{*}(\pi, N, y)=\left(\pi, N, H_{p, \pi}^{*}(y), N(y)\right), H_{p, \pi}^{*}(y)=\left(\pi \circ\left(F^{*}, p\right)\right)(y)+\left(y_{1}^{d^{* m}+1}, \ldots, y_{m}^{d^{* m}+1}\right)$, $d^{*}=\operatorname{deg} F^{*}$ such that

$$
\begin{equation*}
d(f)=\frac{\min \left\{j \in\{1, \ldots, k\}: \operatorname{ord}_{y} P_{p, l, j}=0\right\}}{\min \left\{i \in\{1, \ldots, l\}: \operatorname{ord}_{w} P_{p, i}^{*}=0\right\}} \tag{2}
\end{equation*}
$$

In the paper [10], there was presented a similar result concerning the calculation of the polynomial $P_{p, l}(y, t)$, not for fixed mappings p and l but for the linear mapping with variable coefficients. From the computational point of view, increasing the number of variables made the algorithm slower. The characterizations of the sets U and \mathcal{U}^{*} are intended to make the algorithm faster.

2. The Jelonek set of polynomial mapping

Let X and Y be locally compact topological spaces. The mapping $f: X \rightarrow Y$ is said to be proper if for any compact set $K \subset Y$ the set $f^{-1}(K)$ is a compact subset of X. We say that the mapping $f: X \rightarrow Y$ is proper at point $y \in Y$ if there exists an open neighbourhood D of y such that

$$
\left.f\right|_{f^{-1}(D)}: f^{-1}(D) \rightarrow D
$$

is a proper mapping.

Proposition 3. [6, Remark 5.2] Let X and Y be locally compact spaces. Then the mapping f is proper if and only if it is proper at every point $y \in Y$.

The set of all points at which the mapping f is not proper is called the set of non-properness of mapping f (or the Jelonek set of f) and is denoted by S_{f}.

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial mapping. The mapping f is said to be dominant if $\overline{f\left(\mathbb{C}^{n}\right)}=\mathbb{C}^{n}$.

The mapping f is said to be finite if it is proper and all its fibers are finite.
The following Proposition is well known.
Proposition 4. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a proper polynomial mapping. Then f is finite and surjective (hence dominant).

Let us recall, after [6], the effective construction of the Jelonek set.
Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a dominant mapping such that $f(0)=0$. Define mapping $\Phi_{j}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n+1}$ by

$$
\Phi_{j}(x)=\left(f(x), x_{j}\right),
$$

for any $j=1, \ldots, n$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. Since mapping f is dominant, hence $\overline{\Phi_{j}\left(\mathbb{C}^{n}\right)}$ is an algebraic set in \mathbb{C}^{n+1} of dimension n, i.e. it is a hypersurface. There exists a polynomial $P_{j} \in \mathbb{C}[y, t], y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}, t \in \mathbb{C}$, irreducible and of minimal degree of the form

$$
\begin{equation*}
P_{j}(y, t)=P_{j, 0}(y) t^{d_{j}}+\ldots+P_{j, d_{j}}(y), \quad P_{j, 0} \neq 0, \quad j=1, \ldots, n \tag{3}
\end{equation*}
$$

such that $\overline{\Phi_{j}\left(\mathbb{C}^{n}\right)}=P_{j}^{-1}(0)$. We have

Lemma 5. [6, Proposition 7]

$$
S_{f}=\left\{y \in \mathbb{C}^{n}: \prod_{j=1}^{n} P_{j, 0}(y)=0\right\}
$$

3. Effective Primitive Element Theorem

Now, we will give the effective method of finding the set of linear functions which separate points of fibers of polynomial mappings.

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, f(0)=0$, be a proper polynomial mapping (i.e. $S_{f}=\emptyset$).
Let $l \in \mathbb{L}(n, 1)$ be a linear function of the form $l(x)=a_{1} x_{1}+\ldots+a_{n} x_{n}$, where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$, and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$. Define mapping

$$
F: \mathbb{L}(n, 1) \times \mathbb{C}^{n} \rightarrow \mathbb{L}(n, 1) \times \mathbb{C}^{n} \times \mathbb{C}
$$

by

$$
F(l, x)=(l, f(x), l(x)) .
$$

Obviously the mapping F is proper. Then by the Chevalley Theorem $F\left(\mathbb{L}(n, 1) \times \mathbb{C}^{n}\right)$ is an algebraic irreducible set of dimension $2 n$.

Therefore there exists an irreducible polynomial $P \in \mathbb{C}[l, y, t], y \in \mathbb{C}^{n}, t \in \mathbb{C}$ of the form

$$
P(l, y, t)=\sum_{j=0}^{d} P_{j}(l, y) t^{j}
$$

such that $P_{d} \neq 0$ and $F\left(\mathbb{L}(n, 1) \times \mathbb{C}^{n}\right)=P^{-1}(0)$.
The polynomial P, which vanishes exactly on the image of the polynomial map F, could be effectively computed by means of Gröbner bases.

Denote by Δ the discriminant of P i.e.

$$
\Delta(l, y)=\operatorname{Res}_{t}\left(P, \frac{\partial P}{\partial t}\right)(l, y), \quad \text { for any } \quad(l, y) \in \mathbb{L}(n, 1) \times \mathbb{C}^{n}
$$

Put

$$
\mathcal{W}=\left\{(l, y) \in \mathbb{L}(n, 1) \times \mathbb{C}^{n}: \Delta(l, y)=0\right\}
$$

and

$$
\mathcal{V}=\left\{l \in \mathbb{L}(n, 1): \Delta(l, y)=0 \quad \text { for any } \quad y \in \mathbb{C}^{n}\right\}
$$

Put now

$$
\mathcal{U}=\mathbb{L}(n, 1) \backslash \mathcal{V} .
$$

For any fixed $l \in \mathcal{U}$ denote $\Delta_{l}(y)=\Delta(l, y)$, and $V_{l}=\left\{y \in \mathbb{C}^{n}: \Delta_{l}(y)=0\right\}$.
We have

Proposition 6. For any $l \in \mathcal{U}$ there exists $y \in \mathbb{C}^{n} \backslash V_{l}$ such that the restriction

$$
\left.l\right|_{f^{-1}(y)}: f^{-1}(y) \rightarrow \mathbb{C}
$$

is injective.
Proof. Let us fix arbitrary $l \in \mathcal{U}$. Then there exists $y \in \mathbb{C}^{n}$ such that $\Delta_{l, y}:=$ $\Delta_{l}(y) \neq 0$. Thus, for this y, the polynomial

$$
P_{l, y}(t)=P(l, y, t) \in \mathbb{C}[t]
$$

has no double roots. Let t_{1}, \ldots, t_{d} be all roots of $P_{l, y}$. Then

$$
P_{l, y}(t)=P_{l, y, 0} \cdot \prod_{j=1}^{d}\left(t-t_{j}\right)
$$

where $P_{l, y, 0} \in \mathbb{C} \backslash\{0\}$ and

$$
\begin{equation*}
0 \neq \Delta_{l, y}=\operatorname{Res}\left(P_{l, y}, P_{l, y}^{\prime}\right)=P_{l, y, 0}^{2 d-2} \cdot \prod_{i<j}\left(t_{i}-t_{j}\right)^{2} \tag{4}
\end{equation*}
$$

Since f is proper and polynomial mapping, then by Proposition 4 there exist a finite set $\left\{x^{1}, \ldots, x^{k}\right\} \subset \mathbb{C}^{n} \backslash f^{-1}\left(V_{l}\right), x^{i} \neq x^{j}$, such that $f^{-1}(y)=\left\{x^{1}, \ldots, x^{k}\right\}$.

Hence, for any $x^{i} \in f^{-1}(y)$ we have

$$
0=P_{l}\left(f\left(x^{i}\right), l\left(x^{i}\right)\right)=P_{l}\left(y, l\left(x^{i}\right)\right)=P_{l, y}\left(l\left(x^{i}\right)\right) .
$$

Therefore $t_{i}=l\left(x^{i}\right)$, for $i=1, \ldots, k$ (after an eventual permutation). Since all t_{j} are different, therefore $k=d$, and by (4), we have

$$
P_{l, y, 0}^{2 d-2} \cdot \prod_{i<j}\left(l\left(x^{i}\right)-l\left(x^{j}\right)\right)^{2} \neq 0 .
$$

This ends the proof.
As an immediate consequence of Proposition 6, we get
Corrolary 7. For any $l \in \mathcal{U}$, putting $t=l\left(x_{1}, \ldots, x_{n}\right)$, we have that t is the primitive element of the extension $\mathbb{C}\left(f_{1}, \ldots, f_{n}\right) \subset \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ i.e.

$$
\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{C}\left(f_{1}, \ldots, f_{n}\right)(t)
$$

4. Index of overdetermined mapping

Let us recall (see [7]) the definition of the multiplicity of a holomorphic mapping.
Let M and N be complex manifolds of the same dimension $n>0$, and let $f: M \rightarrow N$ be a holomorphic mapping. Let $a \in M$ be an isolated point of its fiber $f^{-1}(f(a))$. We define the multiplicity of the mapping f at the point a by

$$
m_{a}(f)=\sup \left\{\#\left(\left.f\right|_{U}\right)^{-1}(y): y \in D\right\}
$$

where U and D are sufficiently small neighbourhoods of the points a and $f(a)$, respectively.

Let us recall [2] (see also [4]) the definition of the multiplicity of the proper, isolated intersection of the analytic sets.
Let X_{1}, \ldots, X_{k} be analytic sets in a domain $D \in \mathbb{C}^{n}$ of pure dimensions p_{1}, \ldots, p_{k}, respectively. Assume that

$$
0=\operatorname{dim} \bigcap_{j=1}^{k} X_{j}=\sum_{j=1}^{k} p_{j}-(k-1) n
$$

i.e. the intersection $\bigcap_{j=1}^{k} X_{j}$ is proper and isolated. Denote by

$$
\Delta=\left\{\left(x^{1}, \ldots, x^{k n}\right) \in \mathbb{C}^{k n}: x^{1}=\ldots=x^{k n}\right\}
$$

the diagonal set in $\mathbb{C}^{k n}$.
If $a \in \mathbb{C}^{n}$ is an isolated point of $\bigcap_{j=1}^{k} X_{j}$, then $(a)^{k}:=(a, \ldots, a) \in \mathbb{C}^{k n}$ is the isolated point of $\left(X_{1} \times \ldots \times X_{k}\right) \cap \Delta$. Hence the projection

$$
\left.\pi_{\Delta}\right|_{X_{1} \times \ldots \times X_{k}}: X_{1} \times \ldots \times X_{k} \rightarrow \Delta^{\perp} \subset \mathbb{C}^{k n}
$$

along Δ is an analytic cover in some neighbourhood of $(a)^{k}$.
The multiplicity

$$
\mu_{(a)^{k}}\left(\left.\pi_{\Delta}\right|_{X_{1} \times \ldots \times X_{k}}\right)
$$

of the projection $\left.\pi_{\Delta}\right|_{X_{1} \times \ldots \times X_{k}}$ at the point $(a)^{k} \in \mathbb{C}^{k n}$ is called the intersection multiplicity or intersection index of the sets X_{1}, \ldots, X_{k} at a point $a \in \bigcap_{j=1}^{k} X_{j}$ and we denoted it by $i\left(X_{1} \cdot \ldots \cdot X_{k} ; a\right)$. For $a \in D \backslash \bigcap_{j=1}^{k} X_{j}$ we put $i\left(X_{1} \cdot \ldots \cdot X_{k} ; a\right)=0$.

Recall after [1] some fact concerning the improper intersection of the analytic sets.

Let X be a pure k-dimensional analytic subset of a complex manifold M of dimension m. Let N be a submanifold of M of dimension n such that N intersects X at an isolated point $a \in M$. We denote by $\mathcal{F}_{a}(X, N)$ the set of all locally analytic subsets V of M satisfying the following conditions:
(i) V has pure dimension $m-k$,
(ii) $N_{a} \subset V_{a}$, where N_{a}, V_{a} denote the germs at a of N and V, respectively,
(iii) a is an isolated point of $V \cap X$.

We define the multiplicity of improper isolated intersection the analytic set X with submanifold N at the point a by

$$
\tilde{i}(X \cdot N ; a)=\min \left\{i(X \cdot V ; a): V \in \mathcal{F}_{a}(X, N)\right\}
$$

By index of a holomorphic mapping $f: D \rightarrow \mathbb{C}^{m}$ at 0 , where $D \subset \mathbb{C}^{n}$ is a neighbourhood of 0 such that 0 is an isolated zero of f, we mean the multiplicity

$$
\tilde{i}\left(\Gamma_{f} \cdot\left(\mathbb{C}^{n} \times\{0\}\right),(0,0)\right)
$$

of improper intersection of the graph Γ_{f} (i.e $\Gamma_{f}=\{(x, f(x)): x \in D\}$) of f and the set $\mathbb{C}^{n} \times\{0\} \subset \mathbb{C}^{n} \times \mathbb{C}^{m}$ at the point $(0,0) \in \mathbb{C}^{n} \times \mathbb{C}^{m}$ and denote it by $i_{0}(f)$.

Let $D \subset \mathbb{C}^{n}$ be an open neighbourhood of the point $0 \in \mathbb{C}^{n}$ and let $f: D \rightarrow \mathbb{C}^{m}$ be a holomorphic mapping such that $f(0)=0$ and 0 is an isolated point of the set $f^{-1}(0)$.

Theorem 8. [12, Theorem 1.1]For any $p \in \mathbb{L}(m, n)$ such that the point 0 is an isolated zero of $p \circ f$ we have

$$
i_{0}(f) \leq m_{0}(p \circ f)
$$

Moreover, for the generic $p \in \mathbb{L}(m, n)$, the point 0 is an isolated zero of $p \circ f$ and

$$
\begin{equation*}
i_{0}(f)=m_{0}(p \circ f) \tag{5}
\end{equation*}
$$

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m \geq n$ be a polynomial mapping such that 0 is an isolated point of the set $f^{-1}(0)$ and $f(0)=0$. Then there exists a neighbourhood U of the point 0 such that $f(U) \ni 0$ is an algebraic set in \mathbb{C}^{m} of the pure dimension n. Let $\left.f\right|_{U}: U \rightarrow f(U)$. Put

$$
\begin{equation*}
\tilde{\mathcal{U}}=\left\{p \in \mathbb{L}(m, n): i_{0}(f)=m_{0}(p \circ f)\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{U}^{\prime}=\left\{p \in \mathbb{L}(m, n): C_{0}(f(U)) \cap \operatorname{ker} p=\{0\}\right\} \tag{7}
\end{equation*}
$$

where $C_{0}(f(U))$ is a tangent cone of $f(U)$ at the point 0 (in the sense of [15]).

We have the following
Proposition 9. [11, Theorem 2.2]

$$
\begin{equation*}
\mathcal{U}^{\prime} \subset \tilde{\mathcal{U}} \tag{8}
\end{equation*}
$$

The set \mathcal{U}^{\prime} can be effectively calculated (see [11] or Proposition 11).

5. Local degree of algebraic set

Let X be a pure s-dimensional analytic set in \mathbb{C}^{n} and $a \in X$. Denote by $G(n-s, n)$ the set of all $(n-s)$-dimensional linear subspaces of \mathbb{C}^{n}. Let $L \in G(n-s, n)$ be such that a is an isolated point of the set $X \cap(a+L)$. It is well known, that there exists a neighbourhood $U \subset \mathbb{C}^{n}$ of the point a such that $X \cap U \cap(a+L)=\{a\}$, and such that the projection

$$
\pi_{L}: X \cap U \rightarrow U^{\prime} \subset L^{\perp}
$$

along L is a k-sheeted analytic cover, for some $k \in \mathbb{N}$, where L^{\perp} is subspace of \mathbb{C}^{n} orthogonal to $L \subset \mathbb{C}^{n}$. This number k is called the multiplicity of the projection $\pi_{L} \mid X$ at the point a, and is denoted by $\mu_{a}\left(\pi_{L} \mid X\right)$.

We put $\mu_{a}\left(\pi_{L} \mid X\right)=+\infty$ if there exists $b \in U^{\prime}$ such that $a \in\left(\pi_{L}\right)^{-1}(b)$ and $\operatorname{dim}\left(\pi_{L}\right)^{-1}(b)>0$.

We put $\mu_{a}\left(\pi_{L} \mid X\right)=0$ if $a \notin X$.
Denote by $\mathcal{G}(n-s, n)$ the set of all linear subspaces $L \in G(n-s, n), L \ni 0$ such that a is an isolated point of the set $X \cap(a+L)$. Then for every $L \in \mathcal{G}(n-s, n)$ the multiplicity of the projection, $\mu_{a}\left(\pi_{L} \mid X\right)$, is finite. The number

$$
\min \left\{\mu_{a}\left(\pi_{L} \mid X\right): L \in \mathcal{G}(n-s, n)\right\}
$$

is said to be the local degree of X at the point a and is denoted by $\operatorname{deg}_{a}(X)$.
Proposition 10. [2, Proposition 11.2] Let X be a pure s-dimensional analytic set in a neighbourhood of 0 in $\mathbb{C}^{n}, 0 \in X$, and let $L \in G(n-s, n)$. Then

$$
\mu_{0}\left(\pi_{L} \mid X\right)=\operatorname{deg}_{0}(X) \quad \Longleftrightarrow \quad L \cap C_{0}(X)=\{0\}
$$

where $C_{0}(X)$ is a tangent cone of X at the point 0 (in the sense of [15]).

6. Effective calculations of local degree

Now, we will present the effective procedure of calculation of the local degree of an algebraic set.

Let $F=\left(f_{1}, \ldots, f_{n}\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$, be a polynomial mapping such that $F(0)=0$. Assume that $\operatorname{dim} F^{-1}(0)=k, 0<k<m$.

Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$ be the ideal generated by F i.e. $I=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ and let $B=\left\{\tilde{f}_{1}, \ldots, \tilde{f}_{s}\right\}$ be the standard base of I. Then, by [5, Lemma 5.5.11]

$$
\text { in } I=\left\langle\text { in } \tilde{f}_{1}, \ldots, \text { in } \tilde{f}_{s}\right\rangle
$$

where in \tilde{f}_{j} denotes the initial form of \tilde{f}_{j}, for $j=1, \ldots, s$. Put

$$
F^{*}=\left(\text { in } \tilde{f}_{1}, \ldots, \text { in } \tilde{f}_{s}\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{s}
$$

Then, by [15, Theorem 10.6] we have

$$
C_{0}\left(F^{-1}(0)\right)=\left(F^{*}\right)^{-1}(0),
$$

and by [15, Lemma 8.11] we get that

$$
\operatorname{dim}\left(F^{*}\right)^{-1}(0)=\operatorname{dim} F^{-1}(0)=k
$$

Define mapping

$$
\tilde{F}^{*}: \mathbb{C}^{m} \times \mathbb{L}(m, k) \rightarrow \mathbb{C}^{s+k} \times \mathbb{L}(m, k)
$$

by

$$
\tilde{F}^{*}(x, p)=\left(F^{*}(x), p(x), p\right) .
$$

Observe that for the generic $p \in \mathbb{L}(m, k)$, denoting $\tilde{F}_{p}^{*}(x)=\tilde{F}^{*}(x, p)$, we have

$$
\operatorname{dim}\left(\tilde{F}_{p}^{*}\right)^{-1}(0)=0
$$

Hence $s+k \geq m$. Next, define

$$
F^{\prime}: \mathbb{C}^{m} \times \mathbb{L}(m, k) \times \mathbb{L}(s+k, m) \rightarrow \mathbb{C}^{m} \times \mathbb{L}(m, k) \times \mathbb{L}(s+k, m)
$$

by

$$
F^{\prime}(x, p, \pi)=\left(\pi \circ \tilde{F}^{*}(x, p), \pi\right)
$$

and mapping

$$
\tilde{\Phi}_{j}: \mathbb{C}^{m} \times \mathbb{L}(m, k) \times \mathbb{L}(s+k, m) \rightarrow \mathbb{C}^{m} \times \mathbb{L}(m, k) \times \mathbb{L}(s+k, m) \times \mathbb{C}
$$

by

$$
\tilde{\Phi}_{j}(x, p, \pi)=\left(F^{\prime}(x, p, \pi), x_{j}\right)
$$

for $j=1, \ldots, m$. Since the mapping F^{\prime} is dominant for the generic (p, π), there exists a polynomial $P_{j}^{*} \in \mathbb{C}[y, p, \pi, t]$ of the form

$$
P_{j}^{*}(y, p, \pi, t)=P_{j, 0}^{*}(p, \pi) t^{d_{j}}+P_{j, 1}^{*}(y, p, \pi) t^{d_{j}-1}+\cdots+P_{j, d_{j}}^{*}(y, p, \pi),
$$

such that

$$
\tilde{\Phi}_{j}\left(\mathbb{C}{ }^{m} \times \mathbb{L}(m, k) \times \mathbb{L}(s+k, m)\right)=\left(P_{j}^{*}\right)^{-1}(0)
$$

Similarly as in Section 3, each of the polynomial $P_{j}^{*}, j=1, \ldots, m$ can be effectively calculated.

Let

$$
\mathcal{V}^{*}=\left\{(p, \pi) \in \mathbb{L}(m, k) \times \mathbb{L}(s+k, m): \prod_{j=1}^{m} P_{j, 0}^{*}(p, \pi)=0\right\}
$$

Put $\mathcal{U}^{*}=(\mathbb{L}(m, k) \times \mathbb{L}(s+k, m)) \backslash \mathcal{V}^{*}$. Denote

$$
\hat{\mathcal{U}}=\left\{p \in \mathbb{L}(m, k): \prod_{j=1}^{m} P_{j, 0}^{*}(p, \pi) \neq 0 \text { for some } \pi \in \mathbb{L}(s+k, m)\right\}
$$

We have the following
Proposition 11. For any $p \in \hat{\mathcal{U}}$ putting $L=\operatorname{ker} p$ we have

$$
\mu_{0}\left(\pi_{L} \mid F^{-1}(0)\right)=\operatorname{deg}_{0}\left(F^{-1}(0)\right) .
$$

Proof. Let us fix arbitrary $p \in \hat{\mathcal{U}}$. Then there exists $\pi \in \mathbb{L}(s+k, m)$ such that $(p, \pi) \in \mathcal{U}^{*}$. Hence

$$
P_{j, 0}^{*}(p, \pi) \neq 0
$$

for each $j=1, \ldots, m$. Therefore the mapping $\pi \circ\left(F^{*}, p\right)$ is proper. This means that the fiber $\left(\pi \circ\left(F^{*}, p\right)\right)^{-1}(0)$ is finite. Since

$$
\left(\pi \circ\left(F^{*}, p\right)\right)^{-1}(0) \supset\left(F^{*}, p\right)^{-1}(0)
$$

hence the fiber $\left(F^{*}, p\right)^{-1}(0)$ is also finite. But the mapping F^{*} is homogeneous. Therefore $\left(F^{*}, p\right)^{-1}(0)=\{0\}$. On the other hand we have

$$
\left(F^{*}, p\right)^{-1}(0)=\left(F^{*}\right)^{-1}(0) \cap p^{-1}(0)=C_{0}\left(F^{-1}(0)\right) \cap p^{-1}(0)
$$

Putting $L=\operatorname{ker} p$ we obtain

$$
\begin{equation*}
C_{0}\left(F^{-1}(0)\right) \cap L=\{0\} . \tag{9}
\end{equation*}
$$

This together with the Proposition 10 gives the assertion.
Let us fix $p \in \hat{\mathcal{U}}$. We will calculate $i_{0}\left(F^{*}, p\right)$. Define mapping $H_{p, \pi}^{*}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$ by

$$
H_{p, \pi}^{*}(y)=\left(\pi \circ\left(F^{*}, p\right)\right)(y)+\left(y_{1}^{d^{* m}+1}, \ldots, y_{m}^{d^{* m}+1}\right),
$$

where $d^{*}=\max \left\{\operatorname{deg} F_{1}^{*}, \ldots, \operatorname{deg} F_{s}^{*}\right\}, \pi \in \mathbb{L}(s+n, m)$ and $N \in \mathbb{L}(m, 1)$. Next define mapping $\Phi_{p}^{*}: \mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m} \rightarrow \mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m+1}$ by

$$
\Phi_{p}^{*}(\pi, N, y)=\left(\pi, N, H_{p, \pi}^{*}(y), N(y)\right)
$$

Since the mapping Φ_{p}^{*} is proper we can find an irreducible polynomial

$$
P_{p}^{*} \in \mathbb{C}[\pi, N, w, t]
$$

of the form $P_{p}^{*}(\pi, N, w, t)=\sum_{i=0}^{l} P_{p, i}^{*}(\pi, N, w) t^{i}$ such that $P_{p, l}^{*} \neq 0$ and

$$
\Phi_{p}^{*}\left(\mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m}\right)=P_{p}^{*-1}(0)
$$

Then by [9, Theorem 7] there exists $r^{*} \in \mathbb{N}, 0 \leq r^{*}<l$ such that

$$
\operatorname{ord}_{w} P_{p, i}^{*}>0 \text { for } i=0, \ldots, r^{*} \text { and } \operatorname{ord}_{w} P_{p, r^{*}+1}^{*}=0
$$

Hence and by [10, Theorem 4] we have

Corrolary 12.

$$
\operatorname{deg}_{0}\left(F^{-1}(0)\right)=i_{0}\left(F^{*}, p\right)=\min \left\{i \in\{1, \ldots, l\}: \operatorname{ord}_{w} P_{p, i}^{*}=0\right\}
$$

7. Proof of the main theorem

Let M and N be arbitrary complex manifolds and $X \subset M$ and $Y \subset N$ be non-empty analytic subsets. Let $f: X \rightarrow Y$ be a proper holomorphic mapping such that its fibres are finite.

We say that the mapping f is $*$-covering if there exist nowhere dense analytic sets $Z \subset X$ and $\Sigma \subset Y$ such that $X \backslash Z$ and $Y \backslash \Sigma$ are manifolds, $Y \backslash Z$ is connected, $f(X \backslash Z) \subset Y \backslash \Sigma$ and restriction

$$
\begin{equation*}
f_{X \backslash f^{-1}(Z)}: X \backslash f^{-1}(Z) \rightarrow Y \backslash Z \tag{10}
\end{equation*}
$$

is a finite covering. The degree of the covering (10) is called the degree of the *covering and denoted by $d(f)$.

Let $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m \geq n$, be a proper polynomial mapping such that $f^{-1}(0)=\{0\}$. By Theorem 1 we have that

$$
\begin{equation*}
i_{0}(f)=d(f) \cdot \operatorname{deg}_{0} f\left(\mathbb{C}^{n}\right) \tag{11}
\end{equation*}
$$

In this Section we give effective method to calculate the number $d(f)$ in (11).
Let I_{f} be the ideal of the graph of the mapping f, i.e.

$$
I_{f}=\left\langle y_{1}-f_{1}, \ldots, y_{m}-f_{m}\right\rangle,
$$

where y_{1}, \ldots, y_{m} are new variables. Equip $\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ with an eliminating local ordering $<$ for x_{1}, \ldots, x_{n}. Let G be the Gröbner basis of the ideal I_{f} with respect to this ordering. Such base can always be effectively computed. Let $J_{f}=$ $I_{f} \cap \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]$. Then the ideal J_{f} is generated by a set $G^{\prime}=G \cap \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]$. Let $G^{\prime}=\left\{g_{1}, \ldots, g_{u}\right\}, u \geq m-n$. Then $J_{f}=\left\langle g_{1}, \ldots, g_{u}\right\rangle$. Let $G=\left(g_{1}, \ldots, g_{u}\right): \mathbb{C}^{m} \rightarrow$ \mathbb{C}^{u}. Then

$$
f\left(\mathbb{C}^{n}\right)=G^{-1}(0)
$$

Let $\left\{h_{1}, \ldots, h_{s}\right\}$ be the standard basis of ideal J_{f} with respect to the degree ordering given by $<$. Then by [5, Lemma 5.5.11]

$$
\operatorname{in}\left(J_{f}\right)=\left\langle\operatorname{in}\left(h_{1}\right), \ldots, \operatorname{in}\left(h_{s}\right)\right\rangle, \quad s \geq m-n,
$$

where $\operatorname{in}\left(h_{j}\right)$ denotes the initial form of $h_{j}, j=1, \ldots, s$. Set

$$
F^{*}=\left(F_{1}^{*}, \ldots, F_{s}^{*}\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{s}
$$

where $F_{j}^{*}=\operatorname{in}\left(h_{j}\right)$, for $j=1, \ldots, s$. By $[15$, Theorem 10.6] we have

$$
\left(F^{*}\right)^{-1}(0)=C_{0}\left(f\left(\mathbb{C}^{n}\right)\right)
$$

Repeating argument used in Section 5 we can find open sets $\hat{U} \subset \mathbb{L}(m, n)$ such that for any $p \in \hat{U} \subset \mathbb{L}(m, n)$ we have

$$
\left(F^{*}\right)^{-1}(0) \cap \operatorname{ker} p=\{0\}
$$

Let us fix $p \in \hat{U}$. Define mapping $H_{p, \pi}^{*}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$ by

$$
H_{p, \pi}^{*}(y)=\left(\pi \circ\left(F^{*}, p\right)\right)(y)+\left(y_{1}^{d^{* m}+1}, \ldots, y_{m}^{d^{* m}+1}\right)
$$

where $d^{*}=\max \left\{\operatorname{deg} F_{1}^{*}, \ldots, \operatorname{deg} F_{s}^{*}\right\}, \pi \in \mathbb{L}(s+n, m)$ and $N \in \mathbb{L}(m, 1)$. Next define mapping $\Phi_{p}^{*}: \mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m} \rightarrow \mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m+1}$ by

$$
\Phi_{p}^{*}(\pi, N, y)=\left(\pi, N, H_{p, \pi}^{*}(y), N(y)\right)
$$

Since the mapping Φ_{p}^{*} is proper we can find an irreducible polynomial

$$
P_{p}^{*} \in \mathbb{C}[\pi, N, w, t]
$$

of the form $P_{p}^{*}(\pi, N, w, t)=\sum_{i=0}^{l} P_{p, i}^{*}(\pi, N, w) t^{i}$ such that $P_{p, l}^{*} \neq 0$ and

$$
\Phi_{p}^{*}\left(\mathbb{L}(s+n, m) \times \mathbb{L}(m, 1) \times \mathbb{C}^{m}\right)=P_{p}^{*-1}(0)
$$

Again by [9, Theorem 7] there exists $r^{*} \in \mathbb{N}, 0 \leq r^{*}<l$ such that

$$
\operatorname{ord}_{w} P_{p, i}^{*}>0 \text { for } i=0, \ldots, r^{*} \text { and } \operatorname{ord}_{w} P_{p, r^{*}+1}^{*}=0
$$

and by [10, Theorem 4]

$$
\operatorname{deg}_{0} f\left(\mathbb{C}^{n}\right)=\operatorname{deg}_{0}\left(F^{-1}(0)\right)=\min \left\{i \in\{1, \ldots, l\}: \operatorname{ord}_{w} P_{p, i}^{*}=0\right\}
$$

This gives the effective calculation of the number $\operatorname{deg}_{0} f\left(\mathbb{C}^{n}\right)$.
On the other hand, by the choice of $p \in \hat{U}$, and by Proposition $9, i_{0}(f)=$ $m_{0}(p \circ f)$. Then the mapping $H_{p}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
H_{p}(x)=(p \circ f)(x)+\left(x_{1}^{d^{n}+1}, \ldots, x_{n}^{d^{n}+1}\right)
$$

where $d=\max \left\{\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{m}\right\}$, is proper (i.e. $S_{H_{p}}=\emptyset$) and $i_{0}(f)=m_{0}\left(H_{p}\right)$. Therefore, repeating argument used in Section 3 for mapping H_{p}, we can find the open set $\mathcal{U} \subset \mathbb{L}(n, 1)$ of linear functions which separate the fibers of the mapping H_{p}. Let us fix such $l \in \mathcal{U}$ and define

$$
\Phi_{p, l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \times \mathbb{C}
$$

by

$$
\Phi_{p, l}(x)=\left(H_{p}(x), l(x)\right)
$$

The mapping $\Phi_{p, l}$ is proper and consequently $\Phi_{p, l}\left(\mathbb{C}^{n}\right)$ is an algebraic set of pure dimension n. So, there exists an irreducible polynomial $P_{p, l} \in \mathbb{C}[y, t]$, where $y=$ $\left(y_{1}, \ldots, y_{n}\right)$ and y_{1}, \ldots, y_{n}, t are independent variables, of the form

$$
\begin{equation*}
P_{p, l}(y, t)=\sum_{j=0}^{k} P_{p, l, j}(y) t^{j} \tag{12}
\end{equation*}
$$

such that $P_{p, l, k} \neq 0$ and $\Phi_{p, l}\left(\mathbb{C}^{n}\right)=P_{p, l}^{-1}(0)$. Hence, by [9, Theorem 7] we have that there exist $r \in \mathbb{N}$ with $0 \leq r<k$ such that

$$
\begin{equation*}
\operatorname{ord}_{y} P_{p, l, j}>0 \quad \text { for } \quad j=0, \ldots, r \quad \text { and } \quad \operatorname{ord}_{y} P_{p, l, r+1}=0 . \tag{13}
\end{equation*}
$$

Hence and by [10, Theorem 4] we have

$$
i_{0}(f)=m_{0}\left(H_{p}\right)=\min \left\{j \in\{1, \ldots, k\}: \operatorname{ord}_{y} P_{p, l, j}=0\right\} .
$$

The above proposition gives an effective calculation method of the number $i_{0}(f)$.
In summary, we can find effectively $i_{0}(f)$ and $\operatorname{deg}_{0} f\left(\mathbb{C}^{n}\right)$ in (11). Hence the third number in (11) can be effectively determined. The above considerations and Theorem 1 ends the proof of Theorem 2.

Acknowledgements

I am very grateful to Professor Tadeusz Krasiński and Professor Stanisław Spodzieja for their valuable comments and advices.
This research was partially supported by the Polish National Science Centre, grant 2012/07/B/ST1/03293.

References

[1] R. Achilles, P. Tworzewski, T. Winiarski, On improper isolated intersection in complex analytic geometry, Ann. Polon. Math. 51 (1990), 21-36.
[2] E. M. Chirka, Complex Analytic Sets, Kluwer Academic Publishers, 1989.
[3] M. Denkowski, Multiplicity and the pull-back problem, Manuscripta Math. 149, no. 1-2, (2016), 83-91.
[4] R. Draper, Intersection Theory in Analytic Geometry, Math. Ann. 180 (1990), 175204.
[5] G.-M. Gruel, G. Pfister, A SINGULAR Introduction to Comutative Algebra, Springer, Berlin, 2008.
[6] Z. Jelonek, The set of points at which a polynomial map is not proper. Ann. Polon. Math. 58, no. 3 (1993), 259-266.
[7] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser Verlag, 1991.
[8] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer-Verlag, 1976.
[9] T. Rodak, S. Spodzieja. Effective formulas for the local Łojasiewicz exponent, Math. Z., 268 (1-2) (2011), 37-44.
[10] T. Rodak, A. Różycki, S. Spodzieja. Multiplicity and semicontinuity of the Eojasiewicz exponent, Bulletin Polish Acad. Sci. Math, 64, no. 12016.
[11] A. Różycki, Effective calculations of the multiplicity of polynomial mappings, Bull. Sci. Math. 138, no. 3 (2014), 343-355.
[12] S. Spodzieja, Multiplicity and the Lojasiewicz exponent, Ann. Polon. Math. 73, 3 (2000).
[13] S. Spodzieja, Errata to "Multiplicity and the Łojasiewicz exponent" (Ann. Polon. Math. 73 (2000), 257-267) [MR1785690]. Ann. Polon. Math. 115, no. 1 (2015), 99100.
[14] P. Tworzewski, T. Winiarski, Cycles of zeroes of holomorphic mappings, Bull. Polish Acad. Sci. Math. 37, No. 1-6, (1989), (1990) 95-101.
[15] H. Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496-549.

Faculty of Mathematics and Computer Science
University of Lodz
Banacha 22, PL-90-238 Łódź, Poland
e-mail: rozycki@math.uni.lodz.pl

Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on November 3, 2016.

EFEKTYWNE WYLICZANIE STOPNIA *-NAKRYCIA

Streszczenie
Niech $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m \geq n$ bȩdzie odwzorowaniem wielomianowym takim, że $f(0)=0$ oraz 0 jest punktem izolowanym zbioru $f^{-1}(0)$. Wówczas odwzorowanie $\left.f\right|_{D}: D \rightarrow f(D)$ jest $*$-nakryciem (w rozumieniu definicji [7]) w pewnym otoczeniu D punktu $0 \in \mathbb{C}^{n}$. W pracy podajemy efektywną metodȩ wyliczania stopnia tego nakrycia.

Słowa kluczowe: krotność odwzorowania, krotność przecięcia, *-nakrycie, efektywny wzór

