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Summary

Let f: C* — C™, m > n be a proper polynomial mapping such that f~*(0) = {0}.
Then the mapping f: C* — f(C") is a *-covering (in the sense of [7]). In this paper we
give an effective method of calculating the degree of this covering.
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1. Introduction

R. Draper in [4] defined the multiplicity for proper intersection of analytic sets.
Next, in the case of isolated intersection, R. Achilles, P. Tworzewski, T. Winiarski
in [1] generalized this definition to improper intersection case. The above multiplicity
leads to the definition of multiplicity io(f) of a holomorphic mapping at a zero of
this mapping (see [14]).

Let Q C C™ be a neighbourhood of the point 0 € C" and let f : Q@ — C™,
where m > n, be a holomorphic mapping such that 0 is an isolated point of the fiber
F7(0).

S. Spodzieja in [12] (see also [3], [13]) proved the following result which shows
the connections between the multiplicity io(f) and the degree of a %-covering (in the
sense of [7]), inducted by f in a neighbourhood of 0.

Theorem 1. [12, Theorem 1.2] There exists a neighbourhood U C Q of the point 0
such that f~1(0)NU = {0}, flv : U — f(U) is *-covering and

(1) io(f) = d(flv) - degg f(U),
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where d(f|u) is the degree of the x-covering fly and deg, f(U) is the degree of an
analytic set f(U) C C™ at 0 € C™.

In the paper we will give an effective method to calculate the degree of the x-covering
f: C"* = f(C™), provided f is a polynomial mapping. Theorem 1 will be the crucial
tool in this calculations.

Let f: C" — C™, m > n be a proper polynomial mapping such that f~!(0) =
{0}. Denote by L(n,m) the set of all linear mappings C* — C™.

We will effectively specify an open set U C L(m,n) such that for any p € U
the mapping 7 o (F*,p): C™ — C™ is proper and io(F™*,p) = mo(mw o (F*,p)) for
the generic m € L(s + n, m), where F*: C™ — C*® is polynomial mapping such that
Co(f(C™) = (F*)71(0), and Co(f(C™)) is the tangent cone to f(C") at 0 in the
sense of [15]. Next, fixing p € U, we describe a set & C L(n, 1) of linear functions
such that for any [ € U the function [ is injective on the generic fiber of the mapping
po f. The main result of this paper is the following theorem.

Theorem 2. Fix any p € U. There exist effectively computable: linear function
I € U, non-zero irreducible polynomial of the form P, ;(y,t) = z;?:o Pyt
which vanishes on the image of the mapping (Hp,l): C* — C"*1, where H,(z) =
(po f)x) + (. 2d"tY), d = degf and non-zero irreducible polynomial
By(m,N,w,t) = Ei:o P;yi(ﬂ',N,w)ti which vanishes on the image of the mapping
®r: L(s + n,m) x L(m,1) x C™ — L(s 4+ n,m) x L(m,1) x C™*! of the form
©;(m, N.y) = (m, N, Hy o (y), N(y)), Hy o (y) = (mo(F*, p) () +(ui oy ),
d* = deg F* such that

min{j € {1,...,k} :ordy P,;; =0}

@) a(f) = 2nld ordy Py =0

min{i € {1,...,1} : ord,, Py, = 0}

In the paper [10], there was presented a similar result concerning the calculation
of the polynomial P, ,(y,t), not for fixed mappings p and [ but for the linear map-
ping with variable coefficients. From the computational point of view, increasing the
number of variables made the algorithm slower. The characterizations of the sets U
and U* are intended to make the algorithm faster.

2. The Jelonek set of polynomial mapping

Let X and Y be locally compact topological spaces. The mapping f : X — Y is said
to be proper if for any compact set K C Y the set f~1(K) is a compact subset of
X. We say that the mapping f : X — Y is proper at point y € Y if there exists an
open neighbourhood D of y such that

fly=1py 1 fTHD) =D

is a proper mapping.
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Proposition 3. [6, Remark 5.2] Let X and Y be locally compact spaces. Then the
mapping [ is proper if and only if it is proper at every point y € Y.

The set of all points at which the mapping f is not proper is called the set of
non-properness of mapping f (or the Jelonek set of f) and is denoted by S;.

Let f : C* — C" be a polynomial mapping. The mapping f is said to be dominant
it f(Cr)=C".

The mapping f is said to be finite if it is proper and all its fibers are finite.

The following Proposition is well known.

Proposition 4. Let f : C* — C™ be a proper polynomial mapping. Then f is finite
and surjective (hence dominant).

Let us recall, after [6], the effective construction of the Jelonek set.

Let f: C® — C™ be a dominant mapping such that f(0) = 0. Define mapping
(I)j :C" — Cn+1 by

D;(x) = (f(x), z;),

for any j = 1,...,n, where z = (x1,...,2,). Since mapping f is dominant, hence
®,(C") is an algebraic set in C"*! of dimension n, i.e. it is a hypersurface. There
exists a polynomial P; € Cly,t], y = (y1,...,yn) € C", t € C, irreducible and of
minimal degree of the form
(3) Pi(y,t) = Pjot% + ...+ Pia,(y), Pjo#0, j=1,...n

such that ®;(C") = P;~*(0). We have
Lemma 5. [6, Proposition 7]

Sp={yecC: [ Poly) =0}

Jj=1

3. Effective Primitive Element Theorem

Now, we will give the effective method of finding the set of linear functions which
separate points of fibers of polynomial mappings.

Let f:C"™ — C", f(0) = 0, be a proper polynomial mapping (i.e. Sy = 0).

Let | € IL(n,1) be a linear function of the form I(z) = ayx1 + ... + anxn, where
z=(x1,...,2,) € C", and a = (aq, ..., a,) € C". Define mapping

F:L(n,1) xC" = L(n,1) xC"xC
by
F(l,z) =, f(z),l(x)).

Obviously the mapping F is proper. Then by the Chevalley Theorem F'(IL(n, 1) x C™)
is an algebraic irreducible set of dimension 2n.
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Therefore there exists an irreducible polynomial P € C[l,y,t], y € C", ¢t € C of the
form

d
P(lvyat) - ZPj(l»y)tj
=0

such that Py # 0 and F(L(n,1) x C*) = P~1(0).

The polynomial P, which vanishes exactly on the image of the polynomial map
F, could be effectively computed by means of Grobner bases.

Denote by A the discriminant of P i.e.

A(l,y) = Res; (P, 8P> (l,y), forany (l,y) € L(n,1)xC".

ot
Put
W=A{(,y) € L(n,1) x C": A(l,y) = 0}.
and
V={leln,1):A(l,y) =0 forany yeC"}.
Put now

U=Ln, 1)\ V.

For any fixed [ € U denote A;(y) = A(l,y), and V; = {y € C™ : Ay(y) = 0}.

We have
Proposition 6. For any l € U there exists y € C™ \ V| such that the restriction

l|f71(y) : f_l(y) —C
18 1njective.
Proof. Let us fix arbitrary [ € . Then there exists y € C" such that A;, :=
A;(y) # 0. Thus, for this y, the polynomial
P () = P(,y,t) € C[t]

has no double roots. Let 1, ...,t; be all roots of P, ,. Then

d
Pry(t) = Pryo- [Jt 1)),
j=1

where P, 0 € C\ {0} and
(4) 0# Ay =Res(Py, P'1y) = PRS2 Tt —t)2

l,y,0
i<j

Since f is proper and polynomial mapping, then by Proposition 4 there exist a finite
set {xl,....2*} Cc C*\ f~1(V}), o' # 27, such that f~1(y) = {z*,...,2*}.
Hence, for any z¢ € f~1(y) we have

0= P(f(a"),l(z")) = Pi(y,l(z")) = Py(Uz")).
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Therefore t; = I(z?), for i = 1,...,k (after an eventual permutation). Since all ¢; are
different, therefore k = d , and by (4), we have

Pt - L") —i))? #o.
i<j
This ends the proof. O
As an immediate consequence of Proposition 6, we get

Corrolary 7. For any l € U, putting t = (21, ...,z,), we have that t is the primi-
tive element of the extension C(f1,..., fn) C C(z1,...,2,) i.e.

(C(.Z’l,...,.%‘n) = (C(flavfn)(t)

4. Index of overdetermined mapping

Let us recall (see [7]) the definition of the multiplicity of a holomorphic mapping.
Let M and N be complex manifolds of the same dimension n > 0, and let

f: M — N be a holomorphic mapping. Let a € M be an isolated point of its fiber

f~Y(f(a)). We define the multiplicity of the mapping f at the point a by

ma(f) = sup{#(flv)~"(y) : y € D},

where U and D are sufficiently small neighbourhoods of the points a and f(a),
respectively.

Let us recall [2] (see also [4]) the definition of the multiplicity of the proper,
isolated intersection of the analytic sets.
Let X1,..., Xy be analytic sets in a domain D € C™ of pure dimensions p, ..., pk,
respectively. Assume that

k

k
0=dim () X;=> p;j— (k—1)n,
j=1

j=1
i.e. the intersection ﬂle X is proper and isolated. Denote by
A={(z',...;a")eCr" 2! = ... =2}

the diagonal set in CF™.
If a € C" is an isolated point of ﬂ?zl X, then (a)® := (a,...,a) € C*" is the
isolated point of (X7 x ... x Xi) N A. Hence the projection
7TA|X1><...><Xk. Xy X o x X — AJ' C (Ckn

along A is an analytic cover in some neighbourhood of (a)*.
The multiplicity

u(a)k(TrA|X1><...><Xk)
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of the projection ma|x,x..xx, at the point (a)¥ € C*" is called the intersection
multiplicity or intersection index of the sets Xi,..., X at a point a € ﬂ?zl X; and
we denoted it by (X7 - ... X;a). For a € D\ﬂ?zl X; we put i(Xy - ...- Xp;a) = 0.

Recall after [1] some fact concerning the improper intersection of the analytic
sets.

Let X be a pure k-dimensional analytic subset of a complex manifold M of
dimension m. Let N be a submanifold of M of dimension n such that N intersects
X at an isolated point a € M. We denote by F, (X, N) the set of all locally analytic
subsets V of M satisfying the following conditions:

(i) V has pure dimension m — k,

(ii) N, C V4, where N,, V, denote the germs at a of N and V, respectively,

(iii) @ is an isolated point of V' N X.

We define the multiplicity of improper isolated intersection the analytic set X
with submanifold N at the point a by

(X -N;a) =min{i(X - V;a) : V € F,(X,N)}.

By index of a holomorphic mapping f: D — C™ at 0, where D C C" is a
neighbourhood of 0 such that 0 is an isolated zero of f, we mean the multiplicity

Ty - (C" x{0}),(0,0))
of improper intersection of the graph I'y (i.e I'y = {(z, f(z)) : € D}) of f and the
set C™ x {0} € C™ x C™ at the point (0,0) € C™ x C™ and denote it by io(f).
Let D C C™ be an open neighbourhood of the point 0 € C™ and let f : D — C™
be a holomorphic mapping such that f(0) = 0 and 0 is an isolated point of the set

f70).

Theorem 8. [12, Theorem 1.1|For any p € L(m,n) such that the point 0 is an
isolated zero of po f we have

io(f) < mo(po f).

Moreover, for the generic p € L(m,n), the point 0 is an isolated zero of po [ and

(5) io(f) =mo(po f).

Let f: C* — C™, m > n be a polynomial mapping such that 0 is an isolated
point of the set f~(0) and f(0) = 0. Then there exists a neighbourhood U of the
point 0 such that f(U) > 0 is an algebraic set in C™ of the pure dimension n. Let
flu: U — f(U). Put

(6) U ={peL(m,n):io(f) =molpo f)}
and
(7) U ={peL(m,n):Co(f(U)) Nkerp={0}},

where Co(f(U)) is a tangent cone of f(U) at the point 0 (in the sense of [15]).
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We have the following

Proposition 9. [11, Theorem 2.2]
(8) U cu.

The set U  can be effectively calculated (see [11] or Proposition 11).

5. Local degree of algebraic set

Let X be a pure s-dimensional analytic set in C" and a € X. Denote by G(n — s,n)
the set of all (n — s)-dimensional linear subspaces of C™. Let L € G(n — s,n) be such
that a is an isolated point of the set X N (a+ L). It is well known, that there exists
a neighbourhood U C C™ of the point a such that X N"U N (a+ L) = {a}, and such
that the projection

7L XNU—=U c L+t

along L is a k-sheeted analytic cover, for some k € N, where L' is subspace of C"
orthogonal to L C C™. This number k is called the multiplicity of the projection
7| X at the point a, and is denoted by 4 (7| X).

We put i, (m|X) = +oo if there exists b € U’ such that a € (7z)~!(b) and
dim(m)~(b) > 0.

We put po(mr|X)=0if a & X.

Denote by G(n — s,n) the set of all linear subspaces L € G(n — s,n), L 5 0 such
that a is an isolated point of the set X N (a+ L). Then for every L € G(n —s,n) the
multiplicity of the projection, p, (7| X), is finite. The number

min{p, (7| X): L € G(n —s,n)}
is said to be the local degree of X at the point a and is denoted by deg, (X).

Proposition 10. [2, Proposition 11.2] Let X be a pure s-dimensional analytic set
in a neighbourhood of 0 in C™, 0 € X, and let L € G(n — s,n). Then

ol X) = degy(X) <= LNCoy(X)={0},

where Cy(X) is a tangent cone of X at the point 0 (in the sense of [15]).

6. Effective calculations of local degree

Now, we will present the effective procedure of calculation of the local degree of an
algebraic set.

Let F = (f1,..., fn) : C™ — C", be a polynomial mapping such that F(0) = 0.
Assume that dim F~1(0) =k, 0 < k < m.
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Let I C Clxy,...,Zmn] be the ideal generated by F ie. I = (f1,..., fn) and let
B= {fl, e fs} be the standard base of I. Then, by [5, Lemma 5.5.11]

inl = <inf1, . 7infs>,
where in fj denotes the initial form of fj, forj=1,...,s. Put
F* = (infl,...,infs): c™ — C°.
Then, by [15, Theorem 10.6] we have
Co(F~H0)) = (F)7H(0),
and by [15, Lemma 8.11] we get that
dim(F*)7*(0) = dim F~*(0) = k.
Define mapping
F* :C™ x L(m, k) — C*TF x L(m, k)
by
F*(x,p) = (F*(x),p(x),p)-
Observe that for the generic p € L(m, k), denoting F; (z) = F*(x,p), we have
dim(F;)~'(0) = 0.
Hence s + k > m. Next, define
F':C™ x L(m, k) x L(s + k,m) — C™ x L(m, k) x L(s + k,m)
by
F'(x,p,m) = (w0 F*(x,p),7)
and mapping
®;: C™ x L(m, k) x L(s + k,m) — C™ x L(m, k) x L(s + k,m) x C
by
(2, p,m) = (F'(x,p,7), 2;),

for j = 1,...,m. Since the mapping F’ is dominant for the generic (p, ), there
exists a polynomial P} € Cly, p, 7, 1] of the form

P;(yap7ﬂ-at) = P_;:O(pvﬂ')tdj + P;jl(yvpa W)tdj71 +ee P;jdj (yap7 ﬂ-)a
such that

®;(Cm x L(m, k) x L(s + k,m)) = (P;)~"(0).

Similarly as in Section 3, each of the polynomial P}, j =1,...,m can be effectively
calculated.
Let

V* =< (p,7) € L(m, k) x L(s + k,m): H So(p,m) =0
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Put U* = (L(m, k) x L(s+ k,m)) \ V*. Denote

U={pelL(m,k): H “o(p,m) # 0 for some 7 € L(s + k,m)}.

We have the following

Proposition 11. For any p € u putting L = ker p we have
po(mz|F7H(0)) = degy(F71(0)).

Proof. Let us fix arbitrary p € U. Then there exists 7 € L(s 4+ k,m) such that
(p,m) € U*. Hence

P;,O(p» m) # 0,

for each j = 1,...,m. Therefore the mapping 7 o (F*, p) is proper. This means that
the fiber (7o (F*,p))~1(0) is finite. Since

(mo (F*,p))71(0) > (F*,p)~(0),

hence the fiber (F*,p)~1(0) is also finite. But the mapping F* is homogeneous.
Therefore (F*,p)~1(0) = {0}. On the other hand we have

(F*,p)7H(0) = (F*)~H(0) np™*(0) = Co(F~1(0)) Np~*(0).
Putting L = ker p we obtain
(9) Co(F~H(0)) N L = {0}.
This together WithAthe Proposition 10 gives the assertion. 0
Let us fix p € U. We will calculate io(F™, p). Define mapping H,, .: C™ — C™
by
Hy o(y) = (mo (F*,p) () + (i "oy ),

where d* = max{deg F},...,deg F}}, m € L(s+n,m) and N € L(m, 1). Next define
mapping ®5: L(s 4+ n,m) x L(m, 1) x C™ = L(s + n,m) x L(m,1) x C™*! by

@, (m, N,y) = (m, N, Hy (), N(y))-
Since the mapping @, is proper we can find an irreducible polynomial
Py € Clm,N,w, ]
of the form Py (m, N,w,t) = Zl _o Py i(m, N,w)t" such that Py, # 0 and
@*(L(s +n,m) x L(m,1) x C™) = Py ~(0).
Then by [9, Theorem 7] there exists 7* € N, 0 < 7* < [ such that
ordy Py; >0fori=0,...,r" and ordy P, .1 = 0.
Hence and by [10, Theorem 4| we have
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Corrolary 12.
degy(F~(0)) = io(F*,p) = min{i € {1,...,1} : ord,, P, = 0}.

7. Proof of the main theorem

Let M and N be arbitrary complex manifolds and X C M and Y C N be non-empty
analytic subsets. Let f : X — Y be a proper holomorphic mapping such that its
fibres are finite.

We say that the mapping f is *-covering if there exist nowhere dense analytic
sets Z C X and ¥ C Y such that X\ Z and Y \ ¥ are manifolds, Y\ Z is connected,
f(X\Z) CcY\ X and restriction

(10) Ix\s-1(2) X\ fUZ)»Y\Z
is a finite covering. The degree of the covering (10) is called the degree of the *-
covering and denoted by d(f).

Let f = (f1,..., fm): C* = C™, m > n, be a proper polynomial mapping such
that f=1(0) = {0}. By Theorem 1 we have that
(11) io(f) = d(f) - deg, f(C").

In this Section we give effective method to calculate the number d(f) in (11).

Let I+ be the ideal of the graph of the mapping f, i.e.

If = <y1 _flﬂ"'7ym _fm>7

where y1, . .., Ym are new variables. Equip C[x1,...,Zn, Y1, ..., Ym] With an eliminat-
ing local ordering < for x1,...,%,. Let G’ be the Grobner basis of the ideal Iy with
respect to this ordering. Such base can always be effectively computed. Let J; =
I;NClyi, ..., Ym]. Then the ideal Jy is generated by a set G' = GNCly, . .., Ym]. Let
G ={g91,...,9u}, u>m—n. Then J; = (¢g1,...,94). Let G = (g1,...,0,): C" —
C*. Then

F(€) =G (0).

Let {hq,...,hs} be the standard basis of ideal J; with respect to the degree ordering
given by <. Then by [5, Lemma 5.5.11]

in(Jy) = (in(h1),...,in(hs)), s>m—n,
where in(h;) denotes the initial form of h;, j =1,...,s. Set
F*=(F},...,F}): C" = C°,
where F} =in(h;), for j =1,...,s. By [15, Theorem 10.6] we have
(F*)7(0) = Co(f(C™)).
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Repeating argument used in Section 5 we can find open sets Uc L(m,n) such that
for any p € U C L(m,n) we have

(F*)~10) Nkerp = {0}.
Let us fix p € U. Define mapping H, .: C™ — C™ by
H; () = (o (F%, ) () + ("1, ™),
where d* = max{deg F},...,deg F'}, m € L(s+n,m) and N € L(m,1). Next define
mapping @7 : L(s +n,m) x L(m,1) x C™ — L(s +n,m) x L(m,1) x C™ ! by
Oy (m, N,y) = (7, N, Hy (), N(y))-
Since the mapping ®; is proper we can find an irreducible polynomial
Py e C[r,N,w,t]
of the form Py (m, N,w,t) = Zlizo P;‘J(W,N,w)ti such that Py, # 0 and
* my _ px—1
@, (L(s +n,m) x L(m,1) x C™) = P;~(0).
Again by [9, Theorem 7] there exists 7* € N, 0 < 7* < [ such that
ord, Py; >0fori=0,...,7" and ord, Py, = 0.
and by [10, Theorem 4]
deg, f(C™) = degy(F~'(0)) = min{i € {1,...,1} : ord,, P}, = 0}.

This gives the effective calculation of the number deg, f(C™).

On the other hand, by the choice of p € U, and by Proposition 9, io(f) =
mo(po f). Then the mapping H,: C* — C" by

Hy(z) = (po f)(@) + (af .. 7Y,

where d = max{deg fi,...,deg f,}, is proper (i.e. Sy, = 0) and io(f) = mo(H)).
Therefore, repeating argument used in Section 3 for mapping H,, we can find the
open set U C L(n,1) of linear functions which separate the fibers of the mapping
H,. Let us fix such [ € I/ and define

®,;:C" = C"xC
by
Dp1(x) = (Hp(x), ().
The mapping ®,,; is proper and consequently ®,,;(C") is an algebraic set of pure
dimension n. So, there exists an irreducible polynomial P,; € Cly,t], where y =

(y1,---,yn) and y1, ..., yn,t are independent variables, of the form
k
(12) Pya(y:t) =Y Bpii ()t
3=0

such that P, # 0 and ®,,;(C") = prll (0). Hence, by [9, Theorem 7| we have that
there exist » € N with 0 < r < k such that

(13) ordy P,;; >0 for 7=0,...,r and ordyP,;,4+1 =0.
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Hence and by [10, Theorem 4] we have

io(f) =mo(Hp) =min{j € {1,...,k} : ord, P, ; = 0}.

The above proposition gives an effective calculation method of the number io(f).

In summary, we can find effectively io(f) and deg, f(C™) in (11). Hence the
third number in (11) can be effectively determined. The above considerations and
Theorem 1 ends the proof of Theorem 2.
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EFEKTYWNE WYLICZANIE STOPNIA ~NAKRYCIA

Streszczenie

Niech f: C" — C™, m > n bedzie odwzorowaniem wielomianowym takim, ze f(0) =0
oraz 0 jest punktem izolowanym zbioru f~*(0). Wowczas odwzorowanie f|p: D — f(D)
jest *-nakryciem (w rozumieniu definicji [7]) w pewnym otoczeniu D punktu 0 € C™.

W pracy podajemy efektywna metode wyliczania stopnia tego nakrycia.

Stowa kluczowe: krotno§é odwzorowania, krotnosé przeciecia, *-nakrycie, efektywny wzor



