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1. Introduction

To find for each λ ∈ [0, 1] the maximum value of the coefficient functional

Φλ(f) :=
∣∣a3 − λa22∣∣

over the class S of univalent functions f in the unit disk D := {z ∈ C : |z| < 1}
of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n, z ∈ D,

is a well known problem having the source in the paper [5] by Fekete and Szegö.
They considered the case λ := (k−1)/(2k), k = 2, 3, . . . , however the case λ ∈ (0, 1)

was first discussed and solved by Goluzin [6]. Particularly, recall that

max
f∈S

Φλ(f) =

{
1 + 2 exp (−2λ/(1− λ)) , λ ∈ [0, 1),

1, λ := 1.
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The problem to find maxf∈F Φλ(f) over compact subclasses F of the class A of
all analytic functions f in D of the form (1.1), as well as for λ being an arbitrary
real or complex number, was studied by many authors (see e.g., [8], [12], [9], [10],
[15], [32], [28], [17], [13], [11], [16], [2]).

Let S∗ denote the class of functions f ∈ A such that

Re
zf ′(z)

f(z)
> 0, z ∈ D,

called starlike, and let Sc denote the class of functions f ∈ A such that

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ D,

called convex. Clearly, Sc  S∗.
Given δ ∈ (−π/2, π/2) and g ∈ S∗, let Cδ(g) denote the class of functions f ∈ A

such that

Re

{
eiδ
zf ′(z)

g(z)

}
> 0, z ∈ D,

called close-to-convex with argument δ with respect to g. For g ∈ S∗ let

C(g) :=
⋃

δ∈(−π/2,π/2)

Cδ(g)

be the class of functions called close-to-convex with respect to g. For δ ∈ (−π/2, π/2)

let
Cδ :=

⋃
g∈S∗

Cδ(g), Ccδ :=
⋃
h∈Sc

Cδ(h).

Let
C :=

⋃
δ∈(−π/2,π/2)

⋃
g∈S∗

Cδ(g)

denote the class of close-to-convex functions (see [27, pp. 184-185], [14]), and let

Cc :=
⋃

δ∈(−π/2,π/2)

⋃
h∈Sc

Cδ(h).

In [15] Keogh and Merkes proved that

max
f∈C0

Φλ(f) =


|3− 4λ|, λ ∈ R \ (1/3, 1),

1/3 + 4/(9λ), λ ∈ [1/3, 2/3],

1, λ ∈ [2/3, 1].

For λ ∈ [0, 1] Koepf [17] extended the above result for the whole class C showing
that

max
f∈C

Φλ(f) = max
f∈C0

Φλ(f).

In fact, the last result holds for all real λ.
For the class Cc0 the Fekete-Szegö problem was considered by Abdel-Gawad and

Thomas [1]. For the whole class Cc the computing was done by Srivastava, Mishra



On some coefficient inequality 81

and Das [31]. Their results together with some remark of [22] can be written as
follow:

max
f∈Cc

Φλ(f) = max
f∈Cc0

Φλ(f) =

{
5/3− 9λ/4, λ ∈ [0, 2/9],

2/3 + 1/(9λ), λ ∈ [2/9, 2/3],

and

max
f∈Cc0

Φλ(f) ≤ max
f∈Cc

Φλ(f) ≤ 5

6
, λ ∈ (2/3, 1].

Given α ∈ [0, 1] let, for z ∈ D,

gα(z) :=
z

(1− αz)2
, hα(z) :=

z

1− αz
.

Clearly, gα ∈ S∗ and hα ∈ Sc for α ∈ [0, 1]. The corresponding classes C(gα) and
C(hα) are defined, respectively, as: for δ ∈ (−π/2, π/2),

(1.2) Re
{

eiδ(1− αz)2f ′(z)
}
> 0, z ∈ D,

and

(1.3) Re
{

eiδ(1− αz)f ′(z)
}
> 0, z ∈ D.

For the class C(gα) it was shown in [18] that

(1.4) max
f∈C(gα)

Φλ(f)

≤


∣∣∣∣23 +

4

3
α+ α2 − (1 + α)2λ

∣∣∣∣ , λ ∈ R \ (τ1(α), τ2(α)),

α2

(
(2− 3λ)2

3(2− |2− 3λ|)
+ |1− λ|

)
+

2

3
, λ ∈ [τ1(α), τ2(α)],

where

(1.5) τ1(α) :=
2α

3(1 + α)
, τ2(α) :=

2(2 + α)

3(1 + α)
.

The sharpness holds for each α ∈ (0, 1] and each λ ∈ R \ (2/3, τ2(α)) as well as for
α := 0 and each λ ∈ R.

As it is known, the Koebe function k := g1 (α := 1) is extremal for various
computational problems in the class S∗ of starlike functions. Moreover the class C0(k)

of functions called convex in the positive direction of the real axis plays an important
role as the subclass of functions convex in one direction defined by Robertson [30]
and it was intensively recently studied (see e.g., [3], [24], [4]). For the class C(k) the
Fekete-Szegö problem was separately considered in [19] where it was shown that

max
f∈C(k)∪{k0}

Φλ(f) = max
f∈C

Φλ(f), λ ∈ R,

where
k0(z) :=

z

1− z2
, z ∈ D,

is the odd close-to-convex function.
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For the class C(hα) it was shown in [21] that

(1.6) max
f∈C(hα)

Φλ(f)

≤


α2

∣∣∣∣13 − λ

4

∣∣∣∣+ (1 + α)

∣∣∣∣23 − λ
∣∣∣∣ , λ ∈ R \ [τ ′1(α), τ ′2(α)] ,

α2

(
(2− 3λ)2

12(2− |2− 3λ|)
+

∣∣∣∣13 − λ

4

∣∣∣∣)+
2

3
, λ ∈ [τ ′1(α), τ ′2(α)] ,

where

τ ′1(α) :=
2α

3(2 + α)
, τ ′2(α) :=

2(4 + α)

3(2 + α)
.

The sharpness holds for each α ∈ (0, 1] and each λ ∈ R \ (2/3, 4/3), as well as for
α := 0 and each λ ∈ R.

As it is known, the function h := h1 (α := 1) is extremal for computational
problems in the class Sc of convex functions. For the first time the inequality (1.3)
with α = 1, treated as the univalence criterium, was distinguished explicitly in [27,
p. 185]. For the class C(h) the Fekete-Szegö problem was separately considered in [20]
where it was shown (1.6) for α = 1; particularly, it was proved that for λ ∈ [0, 2/3],

max
f∈C(h)

Φλ(f) = max
f∈Cc0

Φλ(f) = max
f∈Cc

Φλ(f).

For α := 0 the conditions (1.2) and (1.3) reduce to

(1.7) Re
{

eiδf ′(z)
}
> 0, z ∈ D.

Functions f having such a property are called of bounded turning with argument δ
and form the class denoted usually as P ′(δ), and further the class P ′ := C(g0) of
functions called of bounded turning (cf. [7, Vol. I, p. 101]). On the other hand, the
condition (1.7) is known as a famous criterium of univalence due to Noshiro [26] and
Warschawski [33]. By setting α := 0 into (1.4) or (1.6) we get the following result
published, among other results, in [13, Theorem 2.3]: for λ ∈ [0, 4/3],

max
f∈P′

Φλ(f) =
2

3
.

In this paper we unify results recalled above for the classes C(gα) and C(hα) with
α ∈ [0, 1]. Given α, β ∈ [0, 1], let

gα,β(z) :=
z

(1− αz)(1− βz)
, z ∈ D.

Thus the class C(gα,β) is defined as

Re
{

eiδ(1− αz)(1− βz)f ′(z)
}
> 0, z ∈ D.

Clearly, C(gα,α) = C(gα) and C(gα,0) = C(g0,α) = C(hα) for α ∈ [0, 1]. The class
C(gα,β) appeared in [23] and [25] as a generalization of convexity in one direction
(see [30]). In the main result we show the upper bound for the Fekete-Szegö functional
for the class C(gα,β) generalizing (1.4) and (1.6).
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2. Main result

Let P denote the class of analytic functions in D of the form

(2.1) p(z) := 1 +

∞∑
n=1

cnz
n, z ∈ D,

having a positive real part in D. Let

L(z) :=
1 + z

1− z
, z ∈ D.

Lemma 2.1. ([25, pp. 41,46]) If p ∈ P is of the form (2.1), then

(2.2) |cn| ≤ 2, n ∈ N,

and

(2.3)
∣∣c2 − c21/2∣∣ ≤ 2− |c1|2/2.

Both inequalities are sharp. The equality in (2.2) holds for L and in (2.3) for
every function

(2.4) pt,θ(z) := tL
(
eiθz

)
+ (1− t)L

(
e2iθz2

)
= 1 + 2teiθz + 2e2iθz2 + . . . , z ∈ D,

where t ∈ [0, 1] and θ ∈ R.

The details of the proof of the main theorem are almost exactly the same as of
Theorem 2.4 of [18]. Therefore here we present only a sketch of the proof. Similar
method of proof with all details of computing appeared in [21]. The main theorem
of the paper is

Theorem 2.2. Let α, β ∈ [0, 1]. Then

(2.5) max
f∈C(gα,β)

Φλ(f)

≤


1

6

∣∣∣∣α2 + β2 + (α+ β)2
(

1− 3

2
λ

)∣∣∣∣
1

6

∣∣∣∣α2 + β2 + (α+ β)2
(

1− 3

2
λ

)∣∣∣∣
+(1 + α+ β)

∣∣∣∣23 − λ
∣∣∣∣ , λ ∈ R \ (τ1(α, β), τ2(α, β))

+
(α+ β)2(2− 3λ)2

12(2− |2− 3λ|)
+

2

3
, λ ∈ [τ1(α, β), τ2(α, β)],

where

τ1(α, β) :=
2(α+ β)

3(2 + α+ β)
, τ2(α, β) :=

2(4 + α+ β)

3(2 + α+ β)
.

For each α, β ∈ [0, 1], (α, β) 6= (0, 0), and each λ ∈ R \ (2/3, λ(α, β)), where

λ(α, β) :=
2

3
+

2

3
max

{
α2 + β2

(α+ β)2
,

2

2 + α+ β

}
,
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as well as for α = β := 0 and each λ ∈ R, the inequality is sharp and the equality is
attained by a function in C0(gα,β). In particular,

(i) when α, β ∈ [0, 1], (α, β) 6= (0, 0), then for each λ ∈ [τ1(α, β), 2/3] the second
equality in (2.5) is attained by a function fα,β,tα,β,λ such that

(2.6) f ′α,β,tα,β,λ(z) =
ptα,β,λ,0(z)

(1− αz)(1− βz)
, z ∈ D,

with fα,β,tα,β,λ(0) := 0 and

tα,β,λ := (α+ β) (1/(3λ)− 1/2) ;

(ii) when α, β ∈ [0, 1], (α, β) 6= (0, 0), then for each λ ∈ R\ (τ1(α, β), λ(α, β)) the
first equality in (2.5) is attained by the function fα,β,1, given by (2.6) with tα,β,λ := 1,

i.e., when α, β ∈ (0, 1), α 6= β, by the function:

(2.7) fα,β,1(z) :=
1

α− β

(
1 + α

α(1− α)
log(1− αz)− 1 + β

β(1− β)
log(1− βz)

)
− 2

(1− α)(1− β)
log(1− z), z ∈ D, log 1 := 0;

when β := 1, α ∈ [0, 1), by the function

(2.8) fα,1,1(z) :=
1

1− α

(
1 + α

1− α
log

1− z
1− αz

+
2z

1− z

)
, z ∈ D, log 1 := 0;

when α := 1, β ∈ [0, 1), by the function f1,β,1 := fβ,1,1; when β := 0 and α ∈ (0, 1)

by the function

(2.9) fα,0,1(z) :=
1

1− α

(
1 + α

α
log(1− αz)− 2 log(1− z)

)
, z ∈ D, log 1 := 0;

when α := 0 and β ∈ (0, 1) by the function f0,β,1 := fβ,0,1; when β := α ∈ (0, 1) by
the function

(2.10) fα,α,1(z) :=
1

(1− α)2
log

1− αz
1− z

− 1 + α

1− α
· z

1− αz
, z ∈ D, log 1 := 0;

when β = α := 1 by the Koebe function f1,1,1 := k.

(iii) when β = α := 0, then for each λ ∈ [0, 4/3] the second equality in (2.5) is
attained by the function

(2.11) f0,0,0(z) := −z + log
1 + z

1− z
, z ∈ D, log 1 := 0;

for each λ ∈ R \ (0, 4/3) the first equality in (2.5) is attained by the function

(2.12) f0,0,1(z) := −z − 2 log(1− z), z ∈ D, log 1 := 0.

Proof. Fix α, β ∈ [0, 1]. Observe that f ∈ C(gα,β) if and only if for z ∈ D,

(2.13) zf ′(z) = e−iδgα,β(z) (p(z) cos δ + i sin δ)
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for δ ∈ (−π/2, π/2) and p ∈ P. For z ∈ D we have

gα,β(z) = z + (α+ β)z2 + (α2 + αβ + β2)z3 + . . .

Setting the above series with the series (1.1) and (2.1) into (2.13) by comparing
coefficients we get

a2 =
1

2

(
c1e−iδ cos δ + α+ β

)
,

a3 =
1

3

(
c2e−iδ cos δ + (α+ β)c1e−iδ cos δ + α2 + αβ + β2

)
.

(2.14)

Let λ ∈ R. By (2.14) and (2.3) we have

Φλ(f) =

∣∣∣∣13(α2 + αβ + β2)− 1

4
(α+ β)2λ+

1

3

(
c2 −

c21
2

)
e−iδ cos δ

+
c21
6

(
1− 3

2
λe−iδ cos δ

)
e−iδ cos δ +

1

2
(α+ β)

(
2

3
− λ
)
c1e−iδ cos δ

∣∣∣∣
(2.15) ≤

∣∣∣∣13(α2 + αβ + β2)− 1

4
(α+ β)2λ

∣∣∣∣+
1

3

(
2− |c1|

2

2

)
cos δ

+
|c1|2

6

∣∣∣∣1− 3

2
λe−iδ cos δ

∣∣∣∣ cos δ +
1

2
(α+ β)

∣∣∣∣23 − λ
∣∣∣∣ |c1| cos δ

=
1

6

∣∣∣∣α2 + β2 +
1

2
(α+ β)2γ

∣∣∣∣+
1

6

(
4 + x2(sγ(y)− 1) + (α+ β)|γ|x

)
y,

where x := |c1|, y := cos δ, γ := 2− 3λ and

sγ(y) :=
√

1− (1− γ2/4) y2.

In view of (2.2), x ∈ [0, 2] and clearly, y ∈ (0, 1]. Set µ := (α + β)/2 and R :=

[0, 2]× [0, 1]. Thus µ ∈ [0, 1] and with γ ∈ R define

Fµ,γ(x, y) :=
(
4 + x2(sγ(y)− 1) + 2µ|γ|x

)
y, (x, y) ∈ R.

Hence and by (2.15) we have

(2.16) max
f∈C(gα,β)

Φλ(f) ≤ 1

6

∣∣∣∣α2 + β2 +
1

2
(α+ β)2γ

∣∣∣∣+
1

6
max

(x,y)∈R
Fµ,γ(x, y).

Now for each µ ∈ [0, 1] and γ ∈ R we find the maximum value of Fµ,γ on the rectangle
R. Since from now the computing is exactly identical as in [21] we demonstrate the
short sketch of the proof only.

In the corners of R we have

Fµ,γ(0, 0) = Fµ,γ(2, 0) = 0,

Fµ,γ(0, 1) = 4, Fµ,γ(2, 1) = 2(1 + 2µ)|γ|.
(2.17)

For x := 0 and y ∈ (0, 1) we have a linear function and for x ∈ (0, 2) and y := 0

we have a constant function.
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For x ∈ (0, 2) and y := 1 we have a function

Gµ,γ(x) := Fµ,γ(x, 1) =

(
|γ|
2
− 1

)
x2 + 2µ|γ|x+ 4

which for |γ| = 2 reduces to the linear function and for |γ| 6= 2 has the unique critical
point at

x =
2µ|γ

2− |γ|
=: xµ,γ ∈ (0, 2)

if and only if

(2.18) µ 6= 0 ∧ 0 < |γ| < 2

1 + µ
.

Moreover

(2.19) Fµ,γ(xµ,γ , 1) = Gµ,γ(xµ,γ) =
2µ2γ2

2− |γ|
+ 4.

For x := 2 and y ∈ (0, 1) we have a function

Hµ,γ(y) := Fµ,γ(2, y) = 4ysγ(y) + 4µ|γ|y

which for |γ| = 2 reduces to the linear function and for |γ| 6= 2 has the unique critical
point at

y =

√
4− µ2γ2 + µ|γ|

√
µ2γ2 + 8

2(4− γ2)
=: yµ,γ ∈ (0, 1)

if and only if

(2.20) |γ| <
√

2

1 + µ
.

Moreover

(2.21) Fµ,γ(2, yµ,γ) = Hµ,γ(yµ,γ)

=

√
4− µ2γ2 + µ|γ|

√
µ2γ2 + 8

2(4− γ2)

(√
µ2γ2 + 8 + 3µ|γ|

)
.

Repeating exactly argumentation of [18, pp. 8-10] we show that for each µ ∈ [0, 1]

and each γ ∈ R the function Fµ,γ has no critical point in (0, 2)× (0, 1).

Summarizing, we conclude that the maximum value of Fµ,γ is attained on the
boundary of R. Taking into account (2.18) and (2.20), as in [18, p. 10] the following
cases hold. For |γ| ≥ 2/(1 +µ) the maximum value of Fµ,γ is attained in a corner of
R, namely,

max
(x,y)∈R

Fµ,γ(x, y) = Fµ,γ(2, 1) = 2(1 + 2µ)|γ|.

For
√

2/(1 + µ) ≤ |γ| < 2/(1+µ) the maximum value of Fµ,γ is attained in (xµ,γ , 1),

i.e.,
max

(x,y)∈R
Fµ,γ(x, y) = Fµ,γ(xµ,γ , 1).
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For 0 < |γ| <
√

2/(1 + µ) we compare all values (2.17), and by (2.19) and (2.21),
the values Fµ,γ(xµ,γ , 1) and Fµ,γ(2, yµ,γ) and we show that the maximum value of
Fµ,γ is attained in (xµ,γ , 1). The key of the computation is to show that

Fµ,γ(xµ,γ , 1) ≥ Fµ,γ(2, yµ,γ).

Putting (2.19) and (2.21) into above, we get the inequality which is identical as the
inequality (2.42) of [18] and further the proof follows exactly as in [18, pp. 10–13]
(similar method of proof with all details can be found in [21]). Going back to (2.16)
with µ = (α+ β)/2 we conclude that the following inequality holds:

max
f∈C(gα,β)

Φλ(f)

≤


1

6

∣∣∣∣α2 + β2 +
1

2
(α+ β)2γ

∣∣∣∣+
1

3
(1 + α+ β)|γ|, |γ| ≥ 4

2 + α+ β
,

1

6

∣∣α2 + β2 + (α+ β)2γ
∣∣+

(α+ β)2γ2

12(2− |γ|)
+

2

3
, |γ| ≤ 4

2 + α+ β
.

Setting γ = 2− 3λ the above result yields the inequality (2.5).
Now we discuss the sharpness of the result. Let α, β ∈ [0, 1], (α, β) 6= (0, 0).

Let λ ∈ [τ1(α, β), 2/3]. Then we consider the second inequality in (2.5) which after
simple computing is

max
f∈C(gα,β)

Φλ(f) ≤ (α+ β)2

9λ
+

2− αβ
3

.(2.22)

Let tα,β,λ := (α + β)(1/(3λ) − 1/2). Since τ1(α, β) ≤ λ ≤ 2/3, so 0 ≤ tα,β,λ ≤ 1.

Thus in view of (2.4), ptα,β,λ,0 ∈ P with c1 = 2tα,β,λ and c2 = 2. Setting δ := 0 and
p := ptα,β,λ,0 into (2.13) we get the function fα,β,tα,β,λ given by (2.6) for which, by
(2.14),

a2 = tα,β,λ + (α+ β)/2 = (α+ β)/(3λ),

a3 = (2 + 2(α+ β)tα,β,λ + α2 + αβ + β2)/3

= 2(α+ β)2/(9λ) + (2− αβ)/3,

(2.23)

and which makes the equality in (2.22).
Let now λ ∈ R \ (τ1(α, β), λ(α, β)). Since λ(α, β) ≥ τ2(α, β), we consider the

first inequality in (2.5) which, taking also into account that τ1(α, β) ≤ 2/3, after
computing, is

(2.24) max
f∈C(gα,β)

Φλ(f) ≤
∣∣∣∣23 +

2

3
(α+ β) +

1

3
(α2 + αβ + β2)− 1

4
(2 + α+ β)2λ

∣∣∣∣ .
Setting δ := 0 and p := L into (2.13) we get the function fα,β,1 given by (2.6) with
tα,β,λ := 1 and with the coefficients a2 and a3 given by (2.23), which makes the
equality in (2.24). In particular, the function fα,β,1 is one of the form (2.7)–(2.10).

Let α = β := 0. For λ ∈ [τ1(0, 0), τ2(0, 0)] = [0, 4/3] the inequality (2.5) reduces
to

max
f∈C(g0,0)

Φλ(f) = max
f∈P′

Φλ(f) ≤ 2

3
.



88 B. Kowalczyk, A. Lecko, and B. Śmiarowska

Setting δ := 0 and by (2.4), p := p0,0 into (2.13) we get the function (2.11) with
a2 = 0 and a3 = 2/3, which makes the equality above. For λ ∈ R \ (0, 4/3) the
inequality (2.5) reduces to

max
f∈C(g0,0)

Φλ(f) = max
f∈P′

Φλ(f) ≤
∣∣∣∣23 − λ

∣∣∣∣ .
Setting δ := 0 and by (2.4), p := L into (2.13) we get the function (2.12) with a2 = 1

and a3 = 2/3, which makes the equality above. �

Remark 2.3. Let β := α ∈ (0, 1]. Then by (1.5) we have

λ(α, α) =
2

3
+

2

3
max

{
1

2
,

1

1 + α

}
= τ2(α),

so (2.5) with sharpness reduces to (1.4) (Theorem 2.4 of [18]). Let β := 0 and
α ∈ (0, 1]. Then

λ(α, 0) =
2

3
+

2

3
max

{
1,

2

2 + α

}
=

4

3
,

so (2.5) with sharpness reduces to (1.6) (Theorem 2.4 of [21]).
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O PEWNEJ NIERÓWNOŚCI DLA WSPÓŁCZYNNIKÓW
W PODKLASIE FUNKCJI PRAWIE WYPUKŁYCH

S t r e s z c z e n i e

Dla α, β ∈ [0, 1] niech gα,β(z) := z//((1 − αz)(1 − βz)), z ∈ D := {z ∈ C : |z| < 1}.
Funkcja analityczna unormowana f : D→ C nazywna jest prawie wypukła̧ wzglȩdem funkcji
gα,β , jeśli dla pewnego δ ∈ (−π//2, π//2) zachodzi nierówność

Re

{
eiδ

zf ′(z)

gα,β(z)

}
> 0, z ∈ D.

Dla klasy C(gα,β) funkcji prawie wypukłych wzglȩdem funkcji gα,β badany jest problem
Fekete-Szegö-Guluzina.

Słowa kluczowe: nierówności współczynnikowe, funkcje prawie wypukłe, problem Fekete-
Szegö-Goluzina


