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Summary
For any Galois field F = GF (pn) we construct some ring extension R(F ) of order p4n.

Such construction may be applied also for any infinite field F with charF 6= 0. Then, for
any element of R(F ) we give necessary and sufficient condition to be a zero divisor. With
additional assumptions, we make some variations on this condition. In special cases we are
able to calculate easily the number of all zero divisors and of idempotents and nilpotents
of degrre 2. The method used to construct R(F ) is the following. First we find t ∈ F , such
that the polynomial x2 + tx + 1 does not have roots in F (such t-s exist!). Then we take
the 4-dimensional F -vector space with basic elements 1, i, j, k, where i, j, k not belonging
to F are roots of x2 + tx+1 in the ring extension, and ji = −k− t. Thus multiplication of
i, j, k (and hence in all ring) is some generalization of multiplication in the real Hamilton
quaternions.

In consequence, we have got wide class of noncommutative rings. It is known very much
on noncommutative rings of smaller order, e.g. in 1994 J. B. Derr, G. F. Orr, and P. S. Peck
classified all noncommutative rings of order p4, using radical as a helpful tool. Thus, in the
particular case n = 1, each of the rings constructed here must be of one kind given by Derr
and the others. Our consideration is more general. It turns out that selected properties of
R(F ) depend on charF and on t2 − 22 is a square in F or not. To get these and other
results, we use some properties of multiplicative subgroup of nonzero squares in GF (pn)
and of the polynomial x2+tx+1. All contents is provided with examples illustrating general
situation or special cases.

Keywords and phrases: Galois field, polynomial, noncommutative ring, zero divisor, vector
space, skew field of quaternions
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1. Introduction

Let F be any field with charF = p, where p is prime (eg. [6, p. 83]). It is obvious
that there exists t ∈ F such that the polynomial x2 + tx+1 is irreducible in F . Our
construction of the ring (denoted by R(F )) is based on the following foundations:

i, j, k /∈ F ; i2 + ti+ 1 = 0, j2 + tj + 1 = 0, k2 + tk + 1 = 0; ji+ k + t = 0.

Therefore, for t = 0, the construction is almost a copy of Hamilton algebra of all
real quaternions [6, p. 380]; for t = 1 all general formulae become simpler and we
are able to determine quickly some combinatorial properties. To vary and apply
quaternions construction to a field F with charF 6= 0, some authors assume that
charF 6= 2 and put i2 = a, j2 = b, ij = −ji = k, where a, b are not squares in F
(cf. [1] and [7, p. 1314]). This way they usually obtain either infinite division ring
or a ring isomorphic with the ring of matrices M2×2(F ) [8, p. 16, 19]. Note that the
Hamilton algebra of all real quaternions is isomorphic to some subring of matrices
M4×4(R) [5, p. 16].

Our construction is much more general. We regard every nonzero characteristic
p and some properties of the ring depends on what this characteristic is.
On the other hand, J. B. Derr and the others in [2] have described all the isomorphism
classes of noncommutative rings of order p4. Their classification depends only on the
radical of a ring. The most of their classes consists of special type of matrices and
seemingly has no connection with our construction. However, in the case of order p4

the rings constructed here must belong to classes given in [2].
More examples of not-division rings based on quaternions construction, are given

in [5, §1].

1.1. Preliminaries useful for farther consideration

Remark 1.1. • For every field F , the multiplicative subgroup of all nonzero
squares will be denoted by S.

• In this paper a nilpotent (resp. idempotent) z of degree 2 (i.e. z2 = 0 or z2 = z,
respectively) will be shortly called a nilpotent (resp. idempotent).

From Fermat’s two squares theorem [3] the following is immediate.

Proposition 1.2. [4, p. 251–252] Let GF (pn) be the Galois field with odd p. Then
pn = 4m + 1 for some positive integer m, if and only if for every a ∈ GF (pn) we
have a ∈ S ⇔ −a ∈ S. In particular, the element −1 is a square iff pn = 4m+ 1 .
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We apply properties of polynomial x2 + tx+ 1, e.g. the following:

Remark 1.3. If a is a root of the polynomial x2 + tx + 1 over a field F , then
a−1 = −a− t is the second root. Moreover, if t = 1, then a−1 = a2. If a is a root of
x2 + tx+ 1 then x2 − tx+ 1 has the roots −a and a+ t.

The following property (proved in further part of the work) is very useful for
our consideration: the equation x2 + y2 − txy = 0 over F , where charF > 3, has a
nonzero solution if and only if t2 − 22 is a square in F . Using this condition we are
able to evaluate, more or less precisely, the numbers of all zero divisors, idempotents
and nilpotents.

2. Construction of the ring and its selected properties

Let us take any field F of nonzero characteristic and t ∈ F , such that the polynomial
x2+tx+1 has no roots in F . Then −2 6= t 6= 2 for charF 6= 2. Let i, j, k are elements
not belonging to F , and assume:

i2 + ti+ 1 = 0, j2 + tj + 1 = 0, k2 + tk + 1 = 0, ji+ k + t = 0.(2.1)

Then we take the standard vector space V = {a + bi + cj + dk; a, b, c, d ∈ F} over
F with the base 1, i, j, k and we have to define multiplication so that to get a ring.
In particular, we require multiplication to be associative and both-side distributive
with respect to addition. Therefore, by (2.1), we obtain subsequently:

−i = (j2 + tj)i = (j + t)(ji) = (j + t)(−k − t) = −jk − tj − tk − t2,
i.e. jk = i− t(j + k + t)];

−j = j(k2 + tk) = (jk)(k + t) = (jk)k + tjk =

= (i− tj − tk − t2)k + tjk = ik − tjk − tk2 − t2k + tjk =

= ik − t(k2 + tk) = ik + t i.e. ik = −j − t.

In the same way we subsequently obtain ij, kj and ki; thus multiplication on basic
elements is defined as follows.

Definition 2.1. Multiplication of basic elements is given in Table 1, where an ele-
ment from heading column is taken as the first, from heading row – as the second
one.

Tab. 1: Multiplication of basic elements
· 1 i j k

1 1 i j k

i i −1− ti k − t(i+ j + t) −j − t
j j −k − t −1− tj i− t(j + k + t)

k k j − t(k + i+ t) −i− t −1− tk
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Corollary 2.2. Multiplication on any two elements of our algebraic structure is
defined as

(a+ bi+ cj + dk)(p+ qi+ rj + sk) =

= [ap− (bq + cr + ds)− t(bs+ cq + dr)+

− t2(br + cs+ dq)]+

+ [aq + bp+ cs− dr − t(bq + br + dq)]i+(2.2)

+ [ar − bs+ cp+ dq − t(br + cr + cs)]j+

+ [as+ br − cq + dp− t(cs+ dq + ds)]k.

Corollary 2.3. a) If charF 6= 2, then

(a+ bi+ cj + dk)2 = {a2 − [(b+ c+ d)2 +

+ (t2 + t− 2)(bc+ cd+ db)]}+
+ [2a− t(b+ c+ d)](bi+ cj + dk);

b) if charF = 2, then

(a+ bi+ cj + dk)2 = [a2 + b2 + c2 + d2] +

+ (t2 + t)(bc+ cd+ db) +

+ t(b+ c+ d)(bi+ cj + dk);

c) If t2 + t = 2 or bc+ bd+ cd = 0, then

(a+ bi+ cj + dk)2 = 0⇔ a = 0 ∧ b+ c+ d = 0 .

If the former assumption is the case, then t = 1.

Proposition 2.4. The structure (V,+, ·) with multiplication defined by (2.2) is a
noncommutative ring.

Proof. (V,+) is a group since addition is the same as in the vector space V . We
have to verify associativity of multiplication and both-side distributivity. Easy but
lengthy calculations, omitted here, give the following final results confirming these
properties.
• Multiplication is associative:

[(a+ bi+ cj + dk)(p+ qi+ rj + sk)](u+ vi+ wj + zk) =

= {[ap− (bq + cr + ds)− t(bs+ cq + dr)− t2(br + cs+ dq)]u+

+ [−aq − bp− cs+ dr + t(−ar + bq + br + bs− cp)+
+ t2(−as+ cq + cr + cs− dp) + t3(cs+ dq + ds)]v+

+ [−ar + bs− cp− dq + t(−as+ cq + cr + cs− dp)+
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+ t2(−aq − bp+ dq + dr + ds) + t3(bq + br + dq)]w+

+ [−as− br + cq − dp+ t(−aq − bp+ dq + dr + ds)+

+ t2(−ar + bq + br + bs− cp) + t3(br + cr + cs)]z}+
+ {[aq + bp+ cs− dr − t(bq + br + dq)]u+

+ [ap− (bq + cr + ds)− t(aq + as+ bp+ br + bs+ cs+ dp)+

+ t2(bq + dq + ds)]v+

+ [−as− br + cq − dp+ t(−aq − bp+ dq + dr + ds) + t2(bq + br + dq)]w+

+ [ar − bs+ cp+ dq − t(br + cr + cs)]z}i+
+ {[ar − bs+ cp+ dq − t(br + cr + cs)]u+

+ [as+ br − cq + dp− t(cs+ dq + ds)]v+

+ [ap− (bq + cr + ds)− t(aq + ar + bp+ cp+ cq + cs+ dq)+

+ t2(bq + br + cr)]w+

+ [−aq − bp− cs+ dr + t(−ar + bq + br + bs− cp) + t2(br + cr + cs)]z}j+
+ {[as+ br − cq + dp− t(cs+ dq + ds)]u+

+ [−ar + bs− cp− dq + t(−as+ cq + cr + cs− dp) + t2(cs+ dq + ds)]v+

+ [aq + bp+ cs− dr − t(bq + br + dq)]w + [ap− (bq + cr + ds)−
− t(ar + as+ br + cp+ dp+ dq + dr) + t2(cr + cs+ ds)]z}k =

= (a+ bi+ cj + dk)[(p+ qi+ rj + sk)(u+ vi+ wj + zk)].

• Law of left distributivity:

(a+ bi+ cj + dk)[(p+ qi+ rj + sk) + (u+ vi+ wj + zk)] =

= {a(p+ u)− [b(q + v) + c(r + w) + d(s+ z)]− t[b(s+ z) + c(q + v)+

+ d(r + w)]− t2[b(r + w) + c(s+ z) + d(q + v)]}+ {a(q + v) + b(p+ u)+

+ c(s+ z)− d(r + w)− t[b(q + v) + b(r + w) + d(q + v)]}i+ {a(r + w)−
− b(s+ z) + c(p+ u) + d(q + v)− t[b(r + w) + c(r + w) + c(s+ z)]}j+
+ {a(s+ z) + b(r + w)− c(q + v) + d(p+ u)− t[c(s+ z) + d(q + v)+

+ d(s+ z)]}k = (a+ bi+ cj + dk)(p+ qi+ rj + sk)+

+ (a+ bi+ cj + dk)(u+ vi+ wj + zk).

• Law of right distributivity:

[(a+ bi+ cj + dk) + (p+ qi+ rj + sk)](u+ vi+ wj + zk) =

= {(a+ p)u− [(b+ q)v + (c+ r)w + (d+ s)z]− t[(b+ q)z + (c+ r)v+

+ (d+ s)w]− t2[(b+ q)w + (c+ r)z + (d+ s)v]}+ {(a+ p)v + (b+ q)u+

+ (c+ r)z − (d+ s)w − t[(b+ q)v + (b+ q)w + (d+ s)v]}i+ {(a+ p)w−
− (b+ q)z + (c+ r)u+ (d+ s)v − t[(b+ q)w + (c+ r)w + (c+ r)z]}j+
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+ {(a+ p)z + (b+ q)w − (c+ r)v + (d+ s)u− t[(c+ r)z + (d+ s)v+

+ (d+ s)z]}k = (a+ bi+ cj + dk)(u+ vi+ wj + zk)+

+ (p+ qi+ rj + sk)(u+ vi+ wj + zk). �

We shall denote the ring constructed above by R(F ). Since multiplication in
R(F ) is associative, it follows that the left inverse (if exists) of any element is equal
to the right one. It is obvious that char R(F ) = charF .

Example 2.5. Let us consider possible irreducible polynomials x2 + tx+1 in small
prime fields (cf. Remark 1.3). In GF (2) there is only x2+x+1; in GF (3) only x2+1;
in GF (5) x2 +x+1, and x2 +4x+1; in GF (7), x2 +1, x2 +3x+1 and x2 +4x+1;
in GF (11) x2 +1, x2 + x+1, x2 +5x+1, x2 +6x+1, and x2 +10x+1; in GF (13)
x2 + 3x+ 1, x2 + 5x+ 1, x2 + 6x+ 1, x2 + 7x+ 1, x2 + 8x+ 1, and x2 + 10x+ 1.

Tab. 2: Addition and multiplication in GF (23)

+ 0 1 A B C D E F

0 0 1 A B C D E F

1 1 0 B A D C F E

A A B 0 1 E F C D

B B A 1 0 F E D C

C C D E F 0 1 A B

D D C F E 1 0 B A

E E F C D A B 0 1

F F E D C B A 1 0

· 0 1 A B C D E F

0 0 0 0 0 0 0 0 0

1 0 1 A B C D E F

A 0 A C E B 1 F D

B 0 B E D F C 1 A

C 0 C B F E A D 1

D 0 D 1 C A F B E

E 0 E F 1 D B A C

F 0 F D A 1 E C B

Now, take the fields GF (22) with elements 0, 1, A, B where A + 1 = A2 = B,
AB = A + B = 1, and GF (23). In the former case x2 + Ax + 1, and x2 + Bx + 1

are the irreducible polynomials. In the latter case polynomials over GF (2) of degree
less than 3, i.e.

0, 1, A = x, B = x+ 1, C = x2, D = x2 + 1, E = x2 + x, F = x2 + x+ 1,
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may be used as elements of GF (23). Results of multiplication are residuals of division
by irreducible polynomial x3 + x+ 1. Thus Table 2 presents addition and multipli-
cation. One can easily check that polynomials x2 + x+1, x2 +Ax+1, x2 +Cx+1,
and x2 + Ex + 1 are irreducible. The polynomial x2 + 1 has a double root 1, and
each of the polynomials x2 + Bx + 1, x2 + Dx + 1, x2 + Fx + 1 has two distinct
roots, C and F , B and E, A and D, respectively.

Tab. 3: Addition and multiplication in GF (32)

+ 0 1 2 A B C D E F

0 0 1 2 A B C D E F

1 1 2 0 B C A E F D

2 2 0 1 C A B F D E

A A B C D E F 0 1 2

B B C A E F D 1 2 0

C C A B F D E 2 0 1

D D E F 0 1 2 A B C

E E F D 1 2 0 B C A

F F D E 2 0 1 C A B

· 0 1 2 A B C D E F

0 0 0 0 0 0 0 0 0 0

1 0 1 2 A B C D E F

2 0 2 1 D F E A C B

A 0 A D 2 C F 1 B E

B 0 B F C D 1 E 2 A

C 0 C E F 1 A B D 2

D 0 D A 1 E B 2 F C

E 0 E C B 2 D F A 1

F 0 F B E A 2 C 1 D

Similarly, consider GF (32) with elements 0, 1, 2, A = α, B = α+ 1, C = α+ 2,
D = 2α, E = 2α + 1, F = 2α + 2, where α /∈ GF (3), α2 = 2 (see Table 3) Now,
polynomials x2 + Bx + 1, x2 + Cx + 1, x2 + Ex + 1, x2 + Fx + 1 are irreducible.
The polynomials x2 + x+1 and x2 +2x+1 have double roots 1 and 2, respectively.
Each of the polynomials x2 + 1, x2 +Ax+ 1, x2 +Dx+ 1 has two distinct roots A
and D, B and C, E and F , respectively.

Proposition 2.6. In R(F ) every left zero divisor is also a right zero divisor and
vice versa.
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Proof. An element a + bi + cj + dk is a left zero divisor if there exists nonzero
p+ qi+ rj + sk ∈ R(F ) such that (a+ bi+ cj + dk)(p+ qi+ rj + sk) = 0. Then, by
(2.2), the equations

(2.3)


ap− (b+ tc+ t2d)q − (c+ td+ t2b)r − (d+ tb+ t2c)s = 0,

bp+ (a− tb− td)q − (d+ tb)r + cs = 0,

cp+ dq + (a− tb− tc)r − (b+ tc)s = 0,

dp− (c+ td)q + br + (a− tc− td)s = 0

must have a nonzero solution (p, q, r, s). Therefore the determinant of the main
matrix must be equal to 0. Analogously, a+bi+cj+dk is a right zero divisor if there
exists nonzero p+qi+rj+sk ∈ R(F ) such that (p+qi+rj+sk)(a+bi+cj+dk) = 0.
Now, the equations

(2.4)


pa− q(b+ td+ t2c)− r(c+ tb+ t2d)− s(d+ tc+ t2b) = 0,

pb+ q(a− tb− tc) + rd− s(c+ tb) = 0,

pc− q(d+ tc) + r(a− tc− td) + sb = 0,

pd+ qc− r(b+ td) + s(a− tb− td) = 0

must have a nonzero solution (p, q, r, s), i.e. the determinant of their main matrix
must be equal to 0.

But the both determinants (of (2.3) and of (2.4)) have the same value:∣∣∣∣∣∣∣∣
a −[b+ t(c+ td)] −[c+ t(d+ tb)] −[d+ t(b+ tc)]

b a− t(b+ d) −(d+ tb) c

c d a− t(b+ c) −(b+ tc)

d −(c+ td) b a− t(c+ d)

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣
a −[b+ t(d+ tc)] −[c+ t(b+ td)] −[d+ t(c+ tb)]

b a− t(b+ c) d −(c+ tb)

c −(d+ tc) a− t(c+ d) b

d c −(b+ td) a− t(b+ d)

∣∣∣∣∣∣∣∣ .
. �

Theorem 2.7. An element a+ bi+ cj + dk is a zero divisor if and only if

a2 − ta(b+ c+ d) + (b+ c+ d)2 + (t2 + t− 2)(bc+ bd+ cd) = 0.

The set of solutions p + qi + rj + sk of the equations (2.3) constitute the right
annihilator of an element a+ bi+ cj + dk.

Proof. We simply have to calculate the determinant of (2.3) as follows:

∣∣∣∣∣∣∣∣
a −[b+ t(c+ td)] −[c+ t(d+ tb)] −[d+ t(b+ tc)]

b a− t(b+ d) −(d+ tb) c

c d a− t(b+ c) −(b+ tc)

d −(c+ td) b a− t(c+ d)

∣∣∣∣∣∣∣∣ =
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= a ·

∣∣∣∣∣∣
a− t(b+ d) −(d+ tb) c

d a− t(b+ c) −(b+ tc)

−(c+ td) b a− t(c+ d)

∣∣∣∣∣∣+

+[b+ t(c+ td)] ·

∣∣∣∣∣∣
b −(d+ tb) c

c a− t(b+ c) −(b+ tc)

d b a− t(c+ d)

∣∣∣∣∣∣+

−[c+ t(d+ tb)] ·

∣∣∣∣∣∣
b a− t(b+ d) c

c d −(b+ tc)

d −(c+ td) a− t(c+ d)

∣∣∣∣∣∣+

+[d+ t(b+ tc)] ·

∣∣∣∣∣∣
b a− t(b+ d) −(d+ tb)

c d a− t(b+ c)

d −(c+ td) b

∣∣∣∣∣∣ =

= a · {[a− t(b+ d)][a− t(b+ c)][a− t(c+ d)] + bcd+

−(c+ td)(d+ tb)(b+ tc) + (c+ td)[a− t(b+ c)]c+

+b(b+ tc)[a− t(b+ d)] + [a− t(c+ d)](d+ tb)d}+
+[b+ t(c+ td)] · {b[a− t(b+ c)][a− t(c+ d)] + c2b+

+d(d+ tb)(b+ tc)− c[a− t(b+ c)]d+ b2(b+ tc)+

+[a− t(c+ d)]c(d+ tb)} − [c+ t(d+ tb)] · {bd[a− t(c+ d)]+

−c2(c+ td)− d[a− t(b+ d)](b+ tc)− cd2 − (b+ tc)(c+ td)b+

−[a− t(c+ d)]c[a− t(b+ d)]}+ [d+ t(b+ tc)] · {b2d+
+c(c+ td)(d+ tb) + d[a− t(b+ d)][a− t(b+ c)]+

+d2(d+ tb) + [a− t(b+ c)](c+ td)b− bc[a− t(b+ d)]} =
= a · {a3 + ac2 + ab2 + ad2 − t[2a2(b+ c+ d)− a(bc+ bd+ cd)+

+c2d+ b2c+ bd2 + bc2 + c3 + b3 + b2d+ cd2 + d3]+

+t2[3a(bc+ bd+ cd) + a(b2 + c2 + d2)− (c2b+ cd2 + b2d+ c2d+

+b2c+ bd2 + 3bcd)]− t3[b2c+ bc2 + c2d+ b2d+ bd2 + cd2 + 3bcd]}+
+[b+ t(c+ td)] · {a2b+ c2b+ d2b+ b3 + t[−ab(b+ c+ d)+

+b2d+ bcd+ b2c] + t2[b2c+ b2d+ bcd]} − [c+ t(d+ tb)]{−c3 − cd2+
−b2c− a2c+ t[ac(b+ c+ d)− (bcd+ c2d+ bc2)]− t2[bc2 + c2d+ bcd]}+

+[d+ t(b+ tc)]{b2d+ c2d+ a2d+ d3 + t[−ad(b+ c+ d)+

+cd2 + bd2 + bcd] + t2[bcd+ bd2 + cd2]} =
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= a4 + a2(b2 + c2 + d2)− t[2a3(b+ c+ d)− a2(bc+ bd+ cd)+

+a(b+ c+ d)(b2 + c2 + d2)] + t2[3a2(bc+ bd+ cd) + a2(b2 + c2 + d2)−
−a(bc+ bd+ cd)(b+ c+ d)]− t3a(bc+ bd+ cd)(b+ c+ d)+

+[b+ t(c+ td)]b · {a2 + b2 + c2 + d2 + t[−a(b+ c+ d) + bc+ bd+ cd]+

+t2(bc+ bd+ cd)} − [c+ t(d+ tb)]c · {−c2 − d2−
−b2 − a2 + t[a(b+ c+ d)− (bd+ cd+ bc)]− t2[bc+ cd+ bd]}+

+[d+ t(b+ tc)]d · {b2 + c2 + a2 + d2 + t[−a(b+ c+ d)+

+cd+ bd+ bc] + t2[bc+ bd+ cd]} =
= a4 − 2ta3(b+ c+ d) + (t+ 3t2)a2(bc+ bd+ cd)−

−(t2 + t3)a(bc+ bd+ cd)(b+ c+ d)+

+[a2 − ta(b+ c+ d) + t2a2](b2 + c2 + d2)+

+[b2 + c2 + d2 + (t+ t2)(bc+ bd+ cd)][a2 + b2 + c2 + d2 − ta(b+ c+ d)+

+(t+ t2)(bc+ bd+ cd)] =

= a4 − 2ta3(b+ c+ d) + (t+ 3t2)a2(bc+ bd+ cd)−
−(t2 + t3)a(bc+ bd+ cd)(b+ c+ d)+

+[a2 − ta(b+ c+ d) + t2a2][(b+ c+ d)2 − 2(bc+ bd+ cd)]+

+[(b+ c+ d)2 + (t+ t2 − 2)(bc+ bd+ cd)][a2 + (b+ c+ d)2−
−ta(b+ c+ d) + (t2 + t− 2)(bc+ bd+ cd)] =

= a4 − 2ta3(b+ c+ d) + (t+ 3t2)a2(bc+ bd+ cd)−
−(t2 + t3)a(bc+ bd+ cd)(b+ c+ d)+

+a2(b+ c+ d)2 − ta(b+ c+ d)3 + t2a2(b+ c+ d)2−
−2a2(bc+ bd+ cd) + 2ta(b+ c+ d)(bc+ bd+ cd)−

−2t2a2(bc+ bd+ cd) + (b+ c+ d)2a2 + (b+ c+ d)4−
−ta(b+ c+ d)3 + (t2 + t− 2)(bc+ bd+ cd)(b+ c+ d)2+

+(t+ t2 − 2)(bc+ bd+ cd)a2 + (t+ t2 − 2)(bc+ bd+ cd)(b+ c+ d)2−
−(t+ t2 − 2)(bc+ bd+ cd)ta(b+ c+ d+ [(t2 + t− 2)(bc+ bd+ cd)]2 =

= a4 + t2a2(b+ c+ d)2 + (b+ c+ d)4 + [(t2 + t− 2)(bc+ bd+ cd)]2−
−2ta3(b+ c+ d) + 2a2(b+ c+ d)2 + 2a2(t2 + t− 2)(bc+ bd+ cd)−

−2ta(b+ c+ d)3 − 2ta(b+ c+ d)(t2 + t− 2)(bc+ bd+ cd)+

+2(t2 + t− 2)(bc+ bd+ cd)(b+ c+ d)2 =

= [a2 − ta(b+ c+ d) + (b+ c+ d)2 + (t2 + t− 2)(bc+ bd+ cd)]2.

The last part of the Theorem follows from the definition of annihilator. �

Corollary 2.8. a) Let t = 1 or bc+bd+cd = 0. Then a+bi+cj+dk is a zero divisor
iff a2− ta(b+ c+d)+(b+ c+d)2 = 0. If it is the case then a = 0⇔ b+ c+d = 0.
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b) Let t 6= 1 and b+ c+ d = 0. Then a+ bi+ cj + dk is a zero divisor iff
a2 + (t2 + t− 2)(bc+ bd+ cd) = 0.
If it is the case then: a = 0⇔ bc+ bd+ cd = 0; for a 6= 0 the element
(t2 + t− 2)(b2 + c2 + bc) must be a square.

c) If b + c + d = 0 and bc + bd + cd = 0, then bc = d2, bd = c2, cd = b2. Hence
b3 = c3 = d3 and either b, c, d ∈ S or b, c, d /∈ S. Every element z = bi+ cj + dk

satisfying the both assumptions is a nilpotent, i.e. z2 = 0 (see Corollary 2.3).

d) Let t = −1 and charF 6= 2. Then a+ bi+ cj + dk is a zero divisor iff
a2 + b2 + c2 + d2 + a(b+ c+ d) = 0.
If it is the case and a = 0 then b + c + d = 0 ⇔ bc + bd + cd = 0. Hence every
element z = bi+ cj + dk satisfying the condition b+ c+ d = 0 is a nilpotent.

Remark 2.9. Note that the possibility b = c = d 6= 0 is excluded if charF 6= 3 and
b+c+d = 0∨bc+bd+cd = 0. Otherwise b+c+d = 3b = 0 or bc+bd+cd = 3b2 = 0,
and zero divisors would exist in the field.

Remark 2.10. If bc + bd + cd = 0, then either one of elements b, c, d is arbitrary
and the remaining two are equal to 0, or b+ c 6= 0, b+ d 6= 0, and c+ d 6= 0.

Although R(F ) may be infinite (e.g. if F is the field of rational functions over
GF (2)), the following condition holds.

Proposition 2.11. An element in R(F ) is invertible if and only if it is not a zero
divisor.

Proof. A nonzero element a+bi+cj+dk is invertible if there exists p+qi+rj+sk ∈
R(F ) such that (a + bi + cj + dk)(p + qi + rj + sk) = 1. Equivalently, we have
obtained the equations like (2.3) with a unique difference: in the 1-st equation on
the right side there is 1 instead of 0. But this time we have Cramer equations, so
the determinant is different from zero. Summarizing, a + bi + cj + dk is invertible
(resp. a zero divisor) if the determinant of the main matrix of (2.3) is different from
(resp. equal to) zero. �

The following Remark 2.12 and Lemma 2.13 will be used in further study.

Remark 2.12. In every field F x2 − txy + y2 = 0⇒ (x = 0⇔ y = 0).

Lemma 2.13. Let charF > 2. Then:

a) There exists a nonzero solution (x, y) of the equation x2− txy+ y2 = 0 over F if
and only if t2 − 22 is a square in F .
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b) If t2 − 22 = α2 for some 0 6= α ∈ F , then for every x 6= 0 there exist exactly two
y-s such that x2 − txy + y2 = 0: y1 = 2−1(α+ t)x and y2 = 2−1(−α+ t)x. Then
y2 = −y1 + tx, y1 6= y2, and y1 6= x 6= y2.

Proof. Ad. a) Because of Remark 2.12, the values x and y are different from 0 since
we seek nonzero solutions (x, y). Dividing the equation by y2, we have(

x

y

)2

− t · x
y
+ 1 = 0 or equivalently

[
2

(
x

y
− 2−1t

)]2
= t2 − 22.

The left side of the last equation is a square and so must be the right one, if the
equation has a solution x

y .
Ad. b) The equation x2 − txy + y2 = 0 may be written as(

y − tx

2

)2

= (t2 − 22)
(x
2

)2
. Hence y1 =

(α+ t)x

2
, y2 =

(−α+ t)x

2
.

The conditions y2 = −y1 + tx and y1 6= y2 are obvious. If e.g. y1 = x then 2x =

(α+ t)x, whence α2 = t2 − 22 = (2− t)2, t = 2 and α = 0, a contradiction. �

Corollary 2.14. Assume that charF > 2, t2− 22 = α2 for some α ∈ F , b, c, d ∈ F ,
x = b+ c+ d 6= 0, and let a = (α+t)x

2 or a = (−α+t)x
2 . If t = 1 or bc+ bd+ cd = 0,

then a+ bi+ cj + dk is a zero divisor which is not a nilpotent.

Proof. It suffices to put x = b+ c+ d in Lemma 2.13 b) and then use Corollary 2.8
a), where y = a. �

The following proposition generalizes Corollary 2.14.

Proposition 2.15. Let charF > 2 and b, c, d ∈ F are chosen so as

(t2 − 22)(b+ c+ d)2 − 22(t2 + t− 2)(bc+ bd+ cd) = α2 ∈ S ∪ {0}

for some α ∈ F . Then a + bi + cj + dk is a zero divisor in R(F ) iff a = 2−1[t(b +

c+ d)± α].

Proof. We use the same method as in Lemma 2.13. Because of Theorem 2.7, a+ bi+
cj + dk is a zero divisor iff

a2 − ta(b+ c+ d) + (b+ c+ d)2 + (t2 + t− 2)(bc+ bd+ cd) = 0.

Hence

22[a− 2−1t(b+ c+ d)]2 = (t2 − 22)(b+ c+ d)2 − 22(t2 + t− 2)(bc+ bd+ cd),

i.e.
22[a− 2−1t(b+ c+ d)]2 = α2

and we get
a = 2−1[t(b+ c+ d)± α].

�
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Corollary 2.16. If charF > 2, b, c, d ∈ F and

(t2 − 22)(b+ c+ d)2 − 22(t2 + t− 2)(bc+ bd+ cd)

is not a square in F , then, for every a ∈ F , a+ bi+ cj + dk is not a zero divisor in
R(F ).

Example 2.17. Let us consider R(GF (7)) and take t = 3 (see Example 2.5). Then
S = {1, 4, 2} and

β = (t2 − 22)(b+ c+ d)2 − 22(t2 + t− 2)(bc+ bd+ cd) =

= 5 · [(b+ c+ d)2 − (bc+ (b+ c)d)].

Let us fix b = 2, c ∈ {3, 4, 5}, and in accordance with Proposition 2.15 and Corol-
lary 2.16, select all d, a ∈ F , such that a+ bi+ cj+dk is a zero divisor. If β ∈ S then
β = α2 and we can determine the two values of a. We have got the results in Table 4.

We see in Table 4 that the set of zero divisors satisfying all conditions listed
in Corollary 2.8 c) is not empty (b = 2, c = 4, d = 1). Yet, Corollary 2.8 c) also
implies that z = bi + cj + dk is a nilpotent either for {b, c, d} = {1, 2, 4} or for
{b, c, d} = {6, 5, 3}. One can easily find the annihilator of such an element. Taking
e.g. b = 1, c = 2, d = 4, we get (i+2j +4k) · [(5r+ s) + (5r+3s)i+ rj + sk] = 0 for
every r, s ∈ GF (7). Note that there exist other nilpotents. It suffices to take a = 1,
{b, c, d} = {0, 1, 2}, and using Corollary 2.3 a), we obtain

(a+ bi+ cj + dk)2 =

= {12 − [(0 + 1 + 2)2 + (32 + 3− 2)(0 · 1 + 0 · 2 + 1 · 2)]}+
+[2 · 1− 3(0 + 1 + 2)](bi+ cj + dk) =

= {1− [2 + 3 · 2]}+ [2− 3 · 3](bi+ cj + dk) = 0.

Example 2.18. Consider R(GF (32)) (cf. Example 2.5 and Remark 2.9). Then the
polynomial x2 + tx + 1 is irreducible exactly for 0 6= t /∈ S. Since B2 − 22 /∈ S,
C2−22 /∈ S, E2−22 /∈ S, and F 2−22 /∈ S, every element a+ bi+ cj+dk, such that
bc+ bd+ cd = 0 and b+ c+d 6= 0 is invertible (see Corollary 2.16). Since charF = 3,
for every b ∈ GF (32) we have b+ b+ b = 0 and bb+ bb+ bb = 0. Hence every element
bi + bj + bk is a zero divisor. There exist many zero divisors a + bi + cj + dk for
which bc+ bd+ cd 6= 0. Like in Example 2.17, put e.g. b = A, c = B = t. Then

β = (B2 − 22)(A+B + d)2 − 22(B2 +B − 2)(AB +Ad+Bd) =

= F · (E + d)2 − (1− 2) · [C + (A+B)d] = F · (E + d)2 + C + Ed

and β is a square for d ∈ {0, 2, B, C, D, E} as it has been shown in Table 5.
Because of Corollary 2.16, elements a+Ai+Bj+k, a+Ai+Bj+Ak, a+Ai+Bj+Fk
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Tab. 4: Zero divisors for c ∈ {3, 4, 5} in Example 2.17
c = 3

d (b+ c+ d)2 bc+ (b+ c)d β α a1 a2
0 4 6 4 2 5 3

1 1 4 6 /∈ S ∪ {0}
2 0 2 4 2 1 6

3 1 0 5 /∈ S ∪ {0}
4 4 5 2 4 5 1

5 2 3 2 4 3 6

6 2 1 5 /∈ S ∪ {0}
c = 4

d (b+ c+ d)2 bc+ (b+ c)d β α a1 a2
0 1 1 0 0 2 2

1 0 0 0 0 0 0

2 1 6 3 /∈ S ∪ {0}
3 4 5 2 4 5 1

4 2 4 4 2 2 0

5 2 3 2 4 1 4

6 4 2 3 /∈ S ∪ {0}
c = 5

d (b+ c+ d)2 bc+ (b+ c)d β α a1 a2
0 0 3 6 /∈ S ∪ {0}
1 1 3 4 2 6 4

2 4 3 5 /∈ S ∪ {0}
3 2 3 2 4 3 6

4 2 3 2 4 1 4

5 4 3 5 /∈ S ∪ {0}
6 1 3 4 2 3 1

are invertible for every a ∈ GF (32).

Tab. 5: β for b = A, c = B = t in Example 2.18
d 0 1 2 A B C D E F

β 0 C /∈ S D C /∈ S A 2 A A E /∈ S
α 0 B C A C C

−α 0 F E A E E

It is obvious that all our consideration becomes simpler if the last component of
a2− ta(b+ c+ d) + (b+ c+ d)2 + (t2 + t− 2)(bc+ bd+ cd) disappears. In particular,
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the number of all zero divisors, idempotents and nilpotents may be evaluated more
or less precisely. The case t2 + t − 2 = 0 (i.e. t = 1) is very simple. We have no
additional restriction in the fields where x2 + x+ 1 is irreducible, and we take it to
construct the ring. Similarly, cases t = 0, charF = 2 are easy to investigate. Yet the
condition bc+ bd+ cd = 0 implies additional restrictions.

3. Special case bc+ bd+ cd = 0

Theorem 3.1. Let charF > 2, |F | = q (|F | denotes cardinality of F ), and consider
zero divisors a+ bi+ cj + dk ∈ R(F ) satisfying the condition bc+ bd+ cd = 0 in F .
Then:

1. If charF = 3 then there exist at least q − 1 proper nilpotents;

2. If charF > 3 then there exist exactly 2(q − 1) proper nilpotents if −3 ∈ S and
there is no proper nilpotent if −3 /∈ S;

3. If t2 − 22 /∈ S then all zero divisors in R(F ) are nilpotents;

4. If t2 − 22 ∈ S and charF > 3, then there exist at least 4(q − 1) zero divisors
which are not nilpotents.

Proof. The expression a2 − ta(b+ c+ d) + (b+ c+ d)2 used in Proposition 2.7 may
be written as x2 − txy + y2, where x = a, y = b+ c+ d.

Assume that x = a = 0, y = b+ c+d = 0 (see Remark 2.12). By the assumption
bc+ bd+ cd = 0 and Remark 2.10, we obtain c 6= −b 6= d for b 6= 0, and

d = −(b+ c) = − bc

b+ c
, i.e. b2 + bc+ c2 = 0.

If charF = 3 then every pair (b, c) with b = c 6= 0 satisfies the latter equation,
whence every element bi+ bj − 2bk is a nilpotent (see Corollary 2.8 c)), which ends
the proof of item 1.

If charF > 3, then by Lemma 2.13 a) with x = c, y = b, t = −1, this equation has
nonzero solutions if −3 is a square in F . Let u ∈ F be an element such that u2 = −3.
Because of Lemma 2.13 b), for every c 6= 0 there exist exactly two distinct values of b
and then the values of d = −(b+ c) are uniquely determined: b1 = 2−1c(u− 1) = d2,
b2 = −2−1c(u + 1) = d1. If c = 0 then d = −b, a contradiction. Therefore we have
got exactly 2(q − 1) + 1 quadruples (a, b, c, d) (together with (0, 0, 0, 0)), satisfying
the conditions a = 0, b+ c+d = 0. By Corollary 2.3 c), such elements and only such
elements are nilpotents. Thus item 2 is proved.

If t2 − 22 is not a square in F then the equation x2 − txy + y2 = 0 has only zero
solution (see Lemma 2.13 a)): x = a = 0 and y = b + c + d = 0. The assumption
bc+ bd+ cd = 0 and Corollary 2.8 c) imply that all such elements are nilpotents. So
item 3 is proved.
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Now let t2 − 22 be a square in F . Then the equation x2 − txy + y2 = 0 has also
nonzero solutions. Using Lemma 2.13 b), we know that for every nonzero a = x ∈ F ,
there exist exactly two nonzero y-s such that x2 − txy+ y2 = 0: for t2 − 22 = β2 we
obtain y1 = 2−1a(t + β), y2 = 2−1a(t − β). If one of two y-s is fixed, then we put
y = b+ c+ d. But we have to recall the assumption bc+ bd+ cd = 0. Hence

d = y − b− c = − bc

b+ c
, i.e. c2 + (b− y)(b+ c) = 0,

or, equivalently,
[
2 ·
(
c+ 2−1(b− y)

)]2
= −3b2 + 2by + y2.

Like before, the latter equation has solutions (b, c) if and only if the right side is a
square in F . It depends on the kind of the field for which relations between b and
y is −3b2 + 2by + y2 ∈ S ∪ {0}. Yet for every field F , if y = b ∨ y = −3b; then
−3b2 + 2by + y2 = 0. For b = y Remark 2.10 yields c = d = 0. If b = (−3−1)y

then 0 = c + 2−1(b − y), whence c = −2−1(b − y) = −2−1(−3−1y − y) = 2 · 3−1y,
and d = y− b− c = y+3−1y− 2 · 3−1y = 2 · 3−1y. Summarizing, for every a 6= 0 the
following elements are zero divisors and they are not nilpotents:

a[1 + 2−1(t+ β)i], a[1 + 2−1(t− β)i],
a{1 + 2−13−1(t+ β)(−i+ 2j + 2k)},
a{1 + 2−13−1(t− β)](−i+ 2j + 2k)}.

This ends the proof of item 4. �

Corollary 3.2. If there exist y, b, c, d ∈ F such that y = b+c+d and bc+bd+cd = 0,
then −3b2 + 2by + y2 = (c− d)2.

Proposition 3.3. Let bc+ bd+ cd = 0, where 0 /∈ {b, c, d}. Then a+ bi+ cj + dk is
an idempotent if and only if

t2 − 22 ∈ S, and t(b+ c)2 − (2a− 1)(b+ c)− tbc = 0.

Proof. Let (a+ bi+ cj + dk)2 = a+ bi+ cj + dk. By Corollary 2.3 we have{
a2 − (b+ c+ d)2 = a,

2a− t(b+ c+ d) = 1.
(3.1)

Hence [
2(a− 2−1)

]2
= t2(t2 − 22)−1.

The left side is a square and so must be the right one if the equation has a solution
a. From the latter equation of (3.1) we have the value b + c + d = 2a−1

t , i.e. d =

−b− c+ 2a−1
t .
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By the assumptions bc + bd + cd = 0, 0 /∈ {b, c, d} and Remark 2.10, we obtain
d = − bc

b+c . Hence we have got the equality

t(b+ c)2 − (2a− 1)(b+ c)− tbc = 0.

Now, assume that t(b + c)2 − (2a − 1)(b + c) − tbc = 0. By the assumption
bc+ bd+ cd = 0, for d 6= 0 we obtain b+ c = −bcd−1. Then bc 6= 0 and

t(bc)2d−2 + (2a− 1)bcd−1 − tbc = 0;

tbc+ (2a− 1)d− td2 = 0;

(2a− 1)d = t(d2 − bc) = t(d2 + bd+ cd);

2a− 1 = t(d+ b+ c).

The last equality coincides with the latter one of (3.1). It remains to verify that
a2 − (b+ c+ d)2 = a. We already have b+ c+ d = (2a− 1)t−1. Thus

a2 − (b+ c+ d)2 = a⇔ a2 − [(2a− 1)t−1]2 = a⇔
(a2 − a)(t2 − 22) = 1⇔ (2a− 1)2 = t2(t2 − 22)−1.

�

Corollary 3.4. If t2 − 22 ∈ S ⊂ F and β2 = t2 − 22, then the following elements
are idempotents in R(F ):

t+ β

2β
+ β−1i ;

−t+ β

2β
− β−1i ;

t+ β

2β
+ β−1j ;

−t+ β

2β
− β−1j ;

t+ β

2β
+ β−1k ;

−t+ β

2β
− β−1k .

4. Special cases: charF = 2, t = 0, and t = 1

Example 4.1. R(GF (2)) is the smallest ring among R(F ). Its all invertible ele-
ments are presented in Table 6.

One can easily prove that the group of invertible elements contains the following
proper subgroups:
3 groups of order 2: ({1, 1 + i+ j}, {1, 1 + i+ k}, {1, 1 + j + k});
4 groups of order 3: ({1, i, 1+ i}, {1, j, 1+j}, {1, k, 1+k}, {1, i+j+k, 1+ i+j+k}).

Tab. 6: Invertible elements in R(GF (2))

x 1 i j k 1 + i+ j 1 + i+ k 1 + j + k i+ j + k

x−1 1 1 + i 1 + j 1 + k 1 + i+ j 1 + i+ k 1 + j + k 1 + i+ j + k
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There are exactly three proper both-side zero divisors i+ j, i+ k, j + k, multi-
plication of which is presented in Table 7.

Tab. 7: Multiplication of zero divisors in R(GF (2))

· i+ j i+ k j + k

i+ j 0 0 0

i+ k 0 0 0

j + k 0 0 0

This means that there exists a unique annihilator.

From Proposition 2.7 the following is immediate:

Proposition 4.2. a) If t = 0 then a + bi + cj + dk is a zero divisor if and only if
a2 + b2 + c2 + d2 = 0;

b) If t = 1 then a+ bi+ cj + dk is a zero divisor if and only if a2 − a(b+ c+ d) +

(b+ c+ d)2 = 0.

Proposition 4.3. Let t = 1.

1. An element z = a + bi + cj + dk is a nilpotent (i.e. z2 = 0) in R(F ) if and
only if a = 0 and b+ c+ d = 0;

2. An element z = a + bi + cj + dk is a nontrivial idempotent (i.e. z2 = z and
1 6= z 6= 0) in R(F ) if and only if the following conditions hold:

3 6= charF 6= 2, 3a2 − 3a+ 1 = 0, b+ c+ d = 2a− 1.

Proof. From Corollary 2.3 c) item 1. is immediate. To prove item 2. we have to
consider a + bi + cj + dk such that (a + bi + cj + dk)2 = a + bi + cj + dk. Using
Corollary 2.3 a) and b), we obtain the following equations:

[a2 − (b+ c+ d)2] + [2a− (b+ c+ d)](bi+ cj + dk) = a+ bi+ cj + dk

if charF 6= 2;

[a2 + (b+ c+ d)2] + (b+ c+ d)(bi+ cj + dk) = a+ bi+ cj + dk

if charF = 2.

If b = c = d = 0, then a2 = a, whence z = 0 or z = 1. Assume that (a, b, c) 6= (0, 0, 0).
If charF = 2 then b+ c+ d = 1 and we have a2 + 1 = a, i.e. a2 + a+ 1 = 0, which
contradicts the assumption that the polynomial x2+x+1 = 0 does not have a root.
If charF 6= 2 then 2a − (b + c + d) = 1, whence a2 − (2a − 1)2 = a, i.e. 1 = 0 (a
contradiction) for charF = 3 and 3a2 − 3a+ 1 = 0 for charF 6= 3.
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Assume that 3 6= charF 6= 2, 3a2 − 3a+ 1 = 0 and b+ c+ d = 2a− 1. Then the
last condition implies:

a2 − (b+ c+ d)2 = a⇔ a2 − (2a− 1)2 = a⇔ 3a2 − 3a+ 1 = 0;

2a− (b+ c+ d) = 2a− (2a− 1) = 1.

�

Remark 4.4. The condition 3a2 − 3a + 1 = 0 yields −3 ∈ S since the equation
3x2 − 3x+ 1 = 0, or equivalently [2 · (a− 2−1)]2 = (−3)−1, has a solution.

Example 4.5. It follows from Proposition 4.3 that proper idempotents exist neither
in R(GF (2)) nor in R(GF (23)) where we take t = 1 (see Example 2.5). We already
know from Example 4.1 that in R(GF (2)) all three zero divisors are nilpotents. One
can also easily find the number of nilpotents in R(GF (23)). By Corollary 2.3 c), we
have to put a = 0 and find all b, c, d, such that b+c+d = 0, where (b, c, d) 6= (0, 0, 0).
We have 73 ordered triples (b, c, d) without 0, 3 ·72 triples with one 0, and 3 ·7 triples
with two 0-s. Together there is 511 such triples. Let us try to find in R(GF (23)) zero
divisors a+ bi+cj+dk which are not nilpotents (by Proposition 4.3 2., idempotents
either). Then, by Theorem 2.7 and the assumptions t = 1, charF = 2, the following
condition holds

a2 + a(b+ c+ d) + (b+ c+ d)2 = 0, a 6= 0 6= b+ c+ d.

Denote b + c + d = y and obtain a2 + ay + y2 = 0, i.e. (a + y)2 = ay. Yet, this
equation has no solutions (a, y) in F (23). Therefore all zero divisors inR(GF (23)) are
nilpotents. If we change the assumption t = 1 by bc+ bd+ cd = 0 and t ∈ {A,C,E},
then we have to solve the equation (a + y)2 = tay. Yet, for t ∈ {A,C,E} such
equation has no solution (a, y) again.

Theorem 4.6. Let t = 1, charF > 3 and |F | = q. Then:

1. The number of all proper zero divisors in R(F ) is equal to:

a) q2 − 1 if −3 is not a square in F . Then all zero divisors are nilpotents;

b) 2q3 − q2 − 1 (and q2 − 1 nilpotents among them) if −3 is a square in F .

2. a) 0 and 1 are the only idempotents in R(F ) if −3 is not a square in F ;

b) The number of all idempotents in R(F ) is equal to 2 · q2 + 2 if −3 is a
square in F .

Proof. Ad. 1. We have to determine how many quadruples (a, b, c, d) are solutions of
the equation a2− a(b+ c+ d) + (b+ c+ d)2 = 0. As before, we use Lemma 2.13 and
Remark 2.12, where x = a, y = b+ c+ d.
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Assume that a = 0, b+ c+ d = 0. The value d is uniquely determined for every
fixed pair b, c. Therefore we have got exactly q2 quadruples (a, b, c, d) (together with
(0, 0, 0, 0)) satisfying the conditions a = 0, b + c + d = 0. By Corollary 2.3 c), such
elements and only such elements are nilpotents.

If −3 is not a square in F then the equation x2−xy+y2 = 0 has only the solution
(0, 0) and there is no other zero divisor.

Now let −3 ∈ S. By Lemma 2.13 b), for every nonzero a = x ∈ F there exist
exactly two nonzero y-s such that x2 − xy + y2 = 0. If one of two y-s is fixed, then
for every pair (b, c) ∈ F 2, the value of d is uniquely determined from the equality
y = b + c + d. Hence we obtain (q − 1) · 2 · q2 quadruples (a, b, c, d) with a 6= 0,
b + c + d 6= 0. The total number of proper zero divisors in this case is equal to
q2 − 1 + (q − 1) · 2 · q2 = 2q3 − q2 − 1.

Ad. 2. Using Corollary 2.3, the condition (a + bi + cj + dk)2 = a + bi + cj + dk

may be written as the following equations in F :

(4.1)


a2 −(b+ c+ d)2 = a,

b (2a− b− d− c− 1) = 0,

c (2a− c− b− d− 1) = 0,

d (2a− d− b− c− 1) = 0.

If b + c + d 6= 2a − 1 then b = c = d = 0, whence a2 = a, i.e. a = 0 or a = 1.
Now we use Proposition 4.3. If b + c + d = 2a − 1 and −3 ∈ S then the equation
3a2−3a+1 = 0 (or equivalently [2 ·(a−2−1)]2 = (−3)−1) has two distinct solutions.
Let (a−2−1)2 = v2 = (−3)−1 ·2−2 for some v ∈ F . Thus a = 2−1+v or a = 2−1−v.
For each such a and every pair (b, c) ∈ F ×F , the value of d is uniquely determined.
Therefore we have got exactly 2q2 idempotents different from 0 and 1. �

From Proposition 2.11 and Theorem 4.6 1. the following is immediate.

Corollary 4.7. Let t = 1 and |F | = q. Then the group of all invertible elements in
R(F ) consists of q2(q2 − 1) elements if −3 is not a square in F , and of q2(q − 1)2

elements if −3 is a square.

Example 4.8. Assume that t = 1. We know from Example 2.5 that x2 + x + 1

is irreducible in GF (2), GF (5) and GF (11). This polynomial is also irreducible in
GF (17), GF (19), GF (23), GF (29), ... In GF (5), GF (11), GF (17), GF (23) and
GF (29), −3 is not a square (Proposition 1.2 is helpful here). So, in R(GF (5)),
R(GF (11), R(GF (17)), R(GF (23)), R(GF (29)) only 1 and 0 are idempotents and
total number of zero divisors is equal to 52, 112, 172, 232, 292, respectively. Now,
consider GF (19). This time the subgroup of nonzero squares consists of: 1, 4, 9, 16,
6, 17, 11, 7, 5. Note that −3 = 16 is a square. Since [2(a − 2−1)]2 = (4−1)2, we
obtain 2(a − 10) = 5 or 2(a − 10) = −5 = 14, i.e. a = 3 or a = 17. There exist
exactly 2 · 192+2 = 724 idempotents, e.g. 3+2i+4j+18k and 17+5i+7j+2k are
idempotents. Total number of zero divisors is equal to 2 · 193 − 192 = 13357. There
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exist exactly 361 nilpotents among them. In the same way, one can study GF (37),
where −3 = 34 = 162 is a square.
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PEWNE PIERŚCIENIE NIEPRZEMIENNE KONSTRUOWANE NA
PODSTAWIE WIELOMIANÓW x2 + tx+ 1 ORAZ ICH DZIELNIKI
ZERA

S t r e s z c z e n i e

W pracy konstruujemy pewne rozszerzenie pierścieniowe dla dowolnego ciała Galois
F = GF (pn). Najpierw znajdujemy t ∈ F , takie że wielomian x2+tx+1 nie ma pierwiastków
w F (takie t zawsze istnieja̧!). Nastȩpnie bierzemy 4-wymiarowa̧ przestrzeń wektorowa̧ nad
F z elementami bazowymi 1, i, j, k, gdzie i, j, k nie należa̧ do F i zakładamy, że sa̧ one
pierwiastkami wielomianu x2+tx+1 w konstruowanym rozszerzeniu. Ponadto przyjmujemy
ji = −k − t. Te warunki wystarczaja̧ do zdefiniowania mnożenia na elementach bazowych
i w konsekwencji w całej algebraicznej strukturze tak, by otrzymać pierścień. Taka kon-
strukcja jest podobna do konstrukcji Hamiltona kwaternionów rzeczywistych, ale jest ona
dużo bardziej ogólna i zastosowana do ciał skończonych. Najpierw w celu samej konstrukcji,
a potem do badania własności pierścieni R(F ), używamy wybranych własności ciał oraz
wielomianów x2 + tx+ 1.
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Wśród otrzymanych wyników, w szczególności podajemy warunek konieczny i dostate-
czny dla dowolnego elementu z R(F ), aby był on dzielnikiem zera, w tym nilpotentem
lub idempotentem rzȩdu 2. Rozważono wiele wersji tego warunku w szczególnych przy-
padkach i opisano przykłady. Zbadano także własności kombinatoryczne. Pewne ważne
własności badanych w pracy pierścieni zależa̧ od charakterystyki ciała i od tego, czy pewne
elementy sa̧ kwadratami w danym ciele. Podsumowuja̧c, w pracy skonstruowano szeroka̧
klasȩ pierścieni nieprzemiennych i zbadano ich wybrane własności. Ta konstrukcja może
być zastosowana dla dowolnych ciał (także nieskończonych) o charakterystyce różnej od
zera.

Słowa kluczowe: ciało Galois, wielomian, pierścień nieprzemienny, dzielnik zera, przestrzeń
wektorowa, skośne ciało kwaternionów


