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DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE  LÓDŹ
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pp. 33–44

Agnieszka Palma

COMPLETE SUFFICIENT STATISTICS FOR MARKOV CHAINS

Summary
This paper presents a complete sufficient statistic for the class of Markov chains with

a finite state S for some natural subspaces PZ of the set of all transition probabilities P.
This statistic is the random transition count F for Markov chains with a fixed length and a
fixed initial state. A summary of the recent results gives a brief exposition of completeness
of F with some extra restrictions on the sets Z and S.
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1. Introduction

Complete sufficent statistics are one of the fundamental concepts in mathematical

statistics and play a well known role in estimation theory. In particular these play

the essential role in the theory of uniformly most powerful unbiased tests and in

minimum variance unbiased estimation. Moreover, we found their application in

source coding problems [9]. The concept of completeness of a sufficient statistic

comes from Lehmann and Scheffe [3], [4].

This work is an attempt to summarize some of the recent results.

Let (Y,B,M) be a statistical space, where M denotes a parametrized family

{µθ : θ ∈ Θ} of probability measures µθ on the measurable space (Y,B).

Definition 1.1. As usually, we say that a family of distributions M = {µθ : θ ∈ Θ}
on (Y,B) is complete if for any B measurable real valued function g the condition

Eθ(g) = 0 for all θ ∈ Θ implies g = 0 a.s. M.
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Let (X,A,P), P = {Pθ : θ ∈ Θ} be a statistical space and let F : (X,A) →
(Y,B) be a statistic. The statistics F is said to be complete if the family of its

distributions µFθ = Pθ(F
−1(·)) on Y, θ ∈ Θ is a complete family.

Fix integer N ≥ 2, and S = {1, . . . , n}, n ≥ 2. We shall use the notation

XN = {(x1, . . . , xN ) : xi ∈ S, i = 1, 2, . . . , N} for a Markov chain with a finite

state space S and with a fixed length N . The evolution law is described by an

unknown initial distribution q = (q1, . . . , qn), where qi = P (x1 = i), and an unknown

stochastic matrix p = (pi,j). The space of such distributions we denote by Q and

the space of all such matrices by P,

P = {p = (pi,j) : ∀i,j∈S pi,j ≥ 0,

n∑
j=1

pi,j = 1 for each i ∈ S}.

In other words our family of Markov chains is parametrized by Q×P.
Now, recall the definition of the random transition count F ,

F (x) = F (x1, . . . , xN ) = (fi,j)i,j=1,...,n,

fi,j = #{t = 1, . . . , N − 1 : xt = i, xt+1 = j} for i, j ∈ S.

Obviously, F is a basic tool in any statistical investigation. It is well known that

for fixed x1, F is a sufficient statistic. The problems of completeness of the random

transition counts still have not been investigated enough. Denny and Wright [1]

showed that if the initial state x1 is fixed then F is a complete sufficient statistic for

P, but the proof was delicate. We note that the situation changes when x1 is not

fixed. It turns out that F is not sufficient and the natural statistic (x1, F (x))

is sufficient but in general is not complete.

Proposition 1.2. Let S = {1, 2}, N = 2. The statistic G(x1, x2) = (x1, (fi,j)) is

sufficient, but not complete.

Proof. Indeed, for a fixed initial distribution (q1, q2); q1, q2 ∈ [0, 1], q1 + q2 = 1 and

for any transition probability matrix

p =

[
p1,1 p1,2

p2,1 p2,2

]
∈ P,

the statistic G takes the following values with the corresponding probabilities:

P (G = G1) = q1 · p1,1 for G1 =

(
1,

[
1 0

0 0

])
,

P (G = G2) = q1 · p1,2 for G2 =

(
1,

[
0 1

0 0

])
,

P (G = G3) = q2 · p2,1 for G3 =

(
2,

[
0 0

1 0

])
,
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P (G = G4) = q2 · p2,2 for G4 =

(
2,

[
0 0

0 1

])
.

Then the expectation Eq,p(g ◦ G) vanishes whenever the function g satisfies

g(G1) = g(G2) = q2, g(G3) = g(G4) = −q1. �

However, for a fixed N,S : there exists a complete sufficient statistic for the set of

all stationary chains if and only if S = {1, 2}. It is mentioned on p. 338 of Denny and

Wright [1]. By definition, the parameter space for the set of all stationary Markov

chains with state space S is PS = {(pi,j) : (pi,j) ∈ P, there exists at least one sta-

tionary initial distribution (pi) for (pi,j)}. The following function is a complete suf-

ficent statistic for PS :

G(x1, . . . , xN ) =

{
(x1, f1,1, f2,2, 0) if f1,2 = f2,1,

(0, f1,1, f2,2, f1,2 + f2,1) if f1,2 6= f2,1.

Next, it is shown in [10] that a complete sufficient statistic for the class of all

stationary n-state Markov chains, n ≥ 3, does not exist.

Theorem 1.3. If n ≥ 3 e.g. S 6= {1, 2}, then (x1, (fi,j)) is minimal sufficient statis-

tic for PS which is not complete. Consequently there does not exist a complete suf-

ficient statistic for PS.

2. The statistical assumptions

This paper is devoted to study completeness of the random transition count for

largest possible class of Markov chains. The crucial concept is that we use stochastic

matrices PZ ⊂ P:

Let Z ⊂ S × S denote a fixed subset satisfying

(1) ∀i∈S ∃j∈S (i, j) /∈ Z.

We denote by PZ the set of stochastic matrices p ∈ P, such that

(2) ∀(i,j)∈Z pi,j = 0.

Now we assume that the initial state x1 is fixed (e.g. qi = δx1
(i), i ∈ S). Thus

probability distribution on the space Xx1,N = {x1} × SN−1 is given by the formula

P(pi,j)({x}) = px1,x2
· . . . · pxN−1,xN

for x = (x1, . . . , xN ) ∈ Xx1,N .

Throughout the paper we are dealing with a statistical space of the form

(Xx1,N , {P(pi,j) : (pi,j) ∈ PZ}).

Obviously, the assumption p ∈ PZ means that the transitions in one step from i to

j are forbidden for (i, j) ∈ Z. The space PZ remains non empty because of (1).

This condition fits well to the characterization of some classical types of Markov

chains.
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Example 2.1. Assume that S = Z. Then (x1, . . . , xN ) is a random walk with sta-

tionary transition probability, possibly depending on position and direction, if and

only if the matrix p is taken from PZ with

(S × S) \ Z = {(i, i+ ε); i ∈ S, ε = ±1}.

Example 2.2. Assume now that S = {1, . . . , d}k, xt = (y1
t , . . . , y

k
t ) ∈ S for t =

1, . . . , N , and let the evolution of xt be given by a matrix (pij), i = (i1, . . . , ik),

j = (j1, . . . , jk) ∈ S. Then (xt) is a Markov chain of order k, with a state space

S1 = {1, . . . , d}, if and only if (pij) ∈ PZ with

(S × S) \ Z = {(i, j) : (i2, . . . , ik) = (j1, . . . , jk−1)}.

The random transition count F could be non-complete for some space PZ , what

we may see in an

Example 2.3. Let S = {1, 2, 3, 4}, N = 5 and let x1 = 3 be fixed. For the space

PZ with

(S × S) \ Z = {(1, 3), (2, 3), (3, 2)(3, 4), (4, 1)}

the statistic F is not complete.

Proof. For the set Z any matrix p ∈ PZ can be written as

p =


0 0 1 0

0 0 1 0

0 q 0 1− q
1 0 0 0

 , q ∈ [0, 1].

The statistic F (x) = (fi,j) takes on the following values with corresponding proba-

bilities

M1 =


0 0 0 0

0 0 1 0

0 1 0 1

1 0 0 0

 , M2 =


0 0 1 0

0 0 0 0

0 1 0 1

1 0 0 0

 ,
P (F (x) = M1) = (1− q)q, P (F (x) = M2) = (1− q)q,

Then the expectation Ep(g ◦ F ) vanishes for any non-zero function g satisfying

g(M1) = −g(M2). �

Thus it is necessary to put some extra assumptions about the set Z and S (cf.

condition in Section 4).
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3. Auxiliary results and the graph theory

For the convenience of the reader we repeat the relevant material from [5], [6], [7]

without proofs, thus making our exposition self-contained.

In what follows, we introduce a specific notation concerning “tables” of numbers.

The proofs of lemmas are based on some combinatorical tools.

For any matrix f of dimension n × n, let f ′ = (f ′i,j) denote a “table” being the

matrix f with deleted elements fi,i+1, i = 1, . . . , n ( fn,n+1 ≡ fn,1).

More precisely

(3) f ′i,j = fi,j for j 6= i+ 1 (mod n)

and

(4) f ′ = (f ′i,j)i=1,...,n; j=1,...,i,i+2,...,n.

Lemma 3.1. Fix i′, i′′ ∈ S and N ≥ 2. Let Mi′,i′′

N−1 denote a set of matrices f of

dimension n× n satisfying

(i)
∑
i,j fi,j = N − 1,

(ii)
∑
j fi,j + δi′′(i) =

∑
j fj,i + δi′(i) for i ∈ S,

with δ being the Kronecker delta. The function f → f ′ defined by (3), (4) is

one-one on the class Mi′,i′′

N−1. There exist functions φi
′,i′′

i on tables f ′ satisfying (4),

such that

φi
′,i′′

i (f ′) = fi,i+1 for i ∈ S.

Lemma 3.2. Fix i′ ∈ S and N ≥ 2. Let Mi′

N−1 denote a set of matrices f of

dimension n× n with integer elements satisfying

(I)
∑
i,j fi,j = N − 1,

(II) there exists i′′ ∈ S such that∑
j

fi,j + δi′′(i) =
∑
j

fj,i + δi′(i) for i ∈ S.

The function f → f ′ defined by (3), (4) is one-one on the class Mi′

N−1. There exist

functions φi
′

i with integer values, such that

φi
′

i (f ′) = fi,i+1 for i ∈ S,

for f ′ satisfying (3) and (4).

Corollary 3.3. The function f → f ′ defined by (3), (4) is one-one on the class F [x]

of the random transition counts F for the trajectories x ∈ X with a fixed initial state

x1 = i′ and a fixed length N ≥ 2.
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Fix i′, i′′ ∈ S = {1, . . . , n}. For any matrix f of dimension n × n, let f̄ = (f̄i,j)

denote a ”table” being the matrix f with deleted elements fi,i+1, i = 1, . . . , n, i 6= i′′,

(fn,n+1 is another notation for fn,1). More precisely we use a set of indices

Si
′,i′′

2 = {(i, j) ∈ S × S : j ∈ S \ {i+ 1} for i ∈ S \ {i′′, n},

j ∈ S for i = i′′, j ∈ S \ {1} for i = n in the case n 6= i′′}

and define

(5) f̄i,j = fi,j for (i, j) ∈ Si
′,i′′

2 ,

(6) f̄ = (f̄i,j)(i,j)∈Si′,i′′
2

.

Lemma 3.4. Fix i′, i′′ ∈ S. Let Mi′,i′′ denote a set of matrices f = (fi,j) of dimen-

sion n× n satisfying∑
j

fi,j + δi′′(i) =
∑
j

fj,i + δi′(i) for i ∈ S.

The function f → f̄ defined by (5), (6) is one-one on the class Mi′,i′′ . There exist

functions ψi
′,i′′

i for i 6= i′′, defined on tables (fi,j)(i,j)∈Si′,i′′
2

, with non-negative

integer values satisfying

ψi
′,i′′

i (f̄) = fi,i+1 for i ∈ S \ {i′′} and any f ∈Mi′,i′′ .

Corollary 3.5. The function f → f̄ defined by (5), (6) is one-one on the class

{F (x̄) : x̄ = (x1, . . . , xt), x1 = i′, xt = i′′, 1 ≤ t < N} of all values of random

transition counts for the trajectories x̄ with a fixed initial state i′ and a fixed final

state i′′ (and any length).

We will need the following lemma which was used by Denny and Wright. Assume

that integers n ≥ 1, j(1) ≥ 1, . . . , j(n) ≥ 1, q ≥ 0 and real c > 0 are fixed. Denote

by U the set of all systems of positive numbers u = (ui,j), 1 ≤ i ≤ n, 1 ≤ j ≤ j(i)
such that

j(i)∑
j=1

ui,j ≤ c for any 1 ≤ i ≤ n.

Denote by M the set of systems of non-negative integers m = (mi,j), 1 ≤ i ≤ n,

1 ≤ j ≤ j(i) satisfying
n∑
i=1

j(i)∑
j=1

mi,j ≤ q.
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Let ϕi : M → {0, 1, 2, . . .}, i = 1, . . . , n be any given functions. For each m ∈M
let us define a function Wm : U → R, as follows

Wm(u) =

n∏
i=1

[j(i)∏
j=1

u
mi,j

i,j ·
(
c− ui,1 − . . .− ui,j(i)

)ϕi((mi,j))
]
.

Lemma 3.6. The system of functions Wm : U → R, indexed by m ∈ M , is linearly

independent.

Proof. Cf. Lemma 2 in [1]. �

The following lemmas from graph theory go back to the work by A. Paszkiewicz.

Definition 3.7. Let Z ⊂ S×S be a fixed set, fix i′, i′′ ∈ S. We say that an oriented

graph (Y, U), Y ⊂ S, with Y being the set of vertices and U ⊂ Y × Y being the set

of edges, is defined by Z, i′, i′′ if

Y =
⋃
{x1, . . . , xN}, U =

⋃
{(x1, x2), . . . , (xN−1, xN )}

with the unions taken for all sequences (xt) satisfying (xt, xt+1) /∈ Z, t = 1, . . . , N−1,

and x1 = i′, xN = i′′.

As usual, we say that (Y0, V0) is a cycle if

Y0 = {y1, . . . , ys},

V0 = {(y1, y2), . . . , (ys−1, ys), (ys, y1)}.

A graph (Y1, V1) is a tree with root y if for any z ∈ Y1 there exists exactly one path

(Yz, Vz) of the form

Yz = {z1 = z, z2, . . . , zs = y} ⊂ Y1,

Vz = {(z1, z2), . . . , (zs−1, zs)} ⊂ V1,

(z1, . . . , zs are mutually different and s ≥ 1, with Vz = ∅ for s = 1).

Lemma 3.8. For any graph (Y,U) defined by Z, i′, i′′ there exists a tree (Y,W ),

W ⊂ U , with root i′′.

Let F be the random transition count and let the evolution be given by transition

probabilities p from PZ with a fixed set Z. In the following lemma we use the notion

of a tree to describe some general properties of F .

Let Y = {1, . . . , n} and let a graph (Y,U) be defined by Z, i′, i′′. The value

F (x) = (fi,j) for any trajectory x and satisfies fi,j = 0 for (i, j) /∈ U . Thus F (x)

can be identified with some function m : U → {0, 1, . . .}, m = f |U , and obviously∑
j∈Y,(i,j)∈U

mi,j + δi′′(i) =
∑

j∈Y,(j,i)∈U

mj,i + δi′(i) for i ∈ Y.
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Denote by M the space of all such function m : U → {0, 1, 2, . . .}.

Lemma 3.9. Let (Y,U) be defined by Z, i′, i′′. For any tree (Y, V ) with root i′′ and

with V ⊂ U , denote by j(·) the uniquely defined function on Y \ {i′′} satisfying

(i, j(i)) ∈ V . Then there exist functions Φi on {m|U\V ;m ∈ M} with non-negative

integer values satisfying

mi,j(i) = Φi(m|U\V )

for any i ∈ Y , i 6= i′′, m ∈M.

4. Completeness of the random transition count

In Section 1 we reviewed some of the standard facts of the complete statistic. Now

we present some recent results of the completeness of the random transition count

for some special classes of transition probabilities.

We know that the random transition count F is complete for Markov chains with

a fixed length and a fixed initial state. Moreover, the statistic F is always complete

for Markov bridge.

The random walk x = (x1, . . . , xN ) is a Markov bridge, if x1 = i′, xN = i′′ are fixed.

Thus in canonical representation

(7) P(pi,j)({(x1, . . . , xN )}) = cδi′(x1)δi′′(xN )

N−1∏
t=1

pxtxt+1

with some positive constant c. Theorem 4.1.

Theorem 4.1. For a Markov bridge and for the evolution laws given by p ∈ PZ , cf.

(1), (2), (7), the random transition count F is complete.

Proof. Cf. Theorem 3.1. in [7]. The basic idea of this proof is to apply Lemma 3.6

and graph theory. �

We first present a reduced form of the main result which will be useful in its

proving. Let Z ∈ S×S be a fixed set. We always assume that Z satisfies (1), that is

∀i∈S ∃j∈S (i, j) /∈ Z.
Recall that using Z one can naturally define the class S0 of inessential states and

classes of equivalence S1, . . . , Sβ0
, β0 ∈ N, in essential states.

To prove the completeness of the statistic F , we need some more special properties

of the set Z. Let us remark that, by Example 2.3, such additional assumptions about

the set Z are necessary.

Now we construct the set Z such that the state space S will be the whole class

of essential states and we assume that there exists a permutation (π1, π2, . . . , πn) of

the set S, satisfying

(8)
{

(π1, π2), . . . , (πn−1, πn), (πn, π1)
}
∩ Z = ∅.
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Theorem 4.2. Let Z satisfy (1) and (8). Let (Xx1,N , {P(pi,j) : (pi,j) ∈ PZ}), with

PZ given by (2), be the statistical space of all trajectories of Markov chains

with the state space S = {1, . . . , n}, a fixed initial state x1 = i′, and the trajectory

size N ≥ 2. Then the random transition count F is complete.

Proof. To show that the statistic F is complete, it is enough to prove that condition

(9)
∑
f

d(f) · ξ(x1, f) ·
n∏
i=1

n∏
j=1

p
fi,j
i,j = 0 for each (pi,j) ∈ PZ

implies that

d(f) = 0 for each f,

where ξ(x1, f) = #{x : F (x) = f} denote the number of corresponding trajectories.

Applying assumptions of theorem, notations from Section 3, the equality (9) can be

written as ∑
f ′

d(f ′) ·Wf ′(p) = 0,

for any p = (pi,j)1≤i≤n, 1≤j≤m(i), j 6=i+1 (mod n)
,

where

Wf ′(p) =
n∏
i=1

( m(i)∏
j=1
j 6=i+1

p
f ′i,j
i,j ·

(
1−

m(i)∑
j=1
j 6=i+1

pi,j

)φi(f
′)
)
.

Thus Lemma 3.6 completes the proof. �

In order to obtain completeness of F in a more general case it is necessary to

make some extra assumptions about the set Z and S . Let Z ⊂ S×S be a fixed set

satisfying (1), that is

∀i∈S ∃j∈S (i, j) /∈ Z.

Let S0 denote the class of inessential states and let S1, . . . , Sβ0
, β0 ∈ N denote

classes of equivalence in essential states.

Now we formulate assumptions about S:

(I) for each β, 1 ≤ β ≤ β0 there exists a permutation (iβ1 , . . . , i
β
n(β)) of set Sβ such

that {
(iβ1 , i

β
2 ), . . . , (iβn(β)−1, i

β
n(β)), (i

β
n(β), i

β
1 )
}
∩ Z = ∅;

(II) for each β, 1 ≤ β ≤ β0 there exists exactly one pair (iβ , jβ) ∈ S0 × Sβ such

that

(iβ , jβ) /∈ Z.

Fix β, 1 ≤ β ≤ β0. Our statistical space (Xβ,N , {P β,N (pi,j) : (pi,j) ∈ PZ}) is

defined as follows:

(i) the space Xβ,N of trajectories (x1, . . . , xN ) is determined by a fixed length N, a

fixed initial state x1 = i′ and a fixed essential state class Sβ such that the final state

xN belongs to Sβ ;
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(ii) the probability distribution

P β,N (pi,j)({x}) = px1,x2
· . . . · pxN−1,xN

for x = (x1, . . . , xN ) ∈ Xβ,N .

Without loss of generality we adopt β = 1.

Before we present our main result, let us observe that the random transition count

F is a complete statistic if aditionally

(III) there exists a permutation (i01, . . . , i
0
n(0)) of the class S0 of inessential states

such that {
(i01, i

0
2), . . . , (i0n(0)−1, i

0
n(0)), (i

0
n(0), i

0
1)
}
∩ Z = ∅.

Theorem 4.3. Let Z satisfy (1) and conditions (I)-(III), and let the statistical space

(X1,N , {P 1,N
(pi,j) : (pi,j) ∈ PZ}) as above be given. Then the random transition count

F is complete.

Proof. We only give the main ideas of the proof. Assume first that x1 = i′ ∈ S1 is

an essential state. Then one can assume that the space S is one class of essential

states. Theorem 4.2 completes the proof in this case.

Now, let x1 = i′ ∈ S0 be an inessential state. Let us consider a trajectory x ∈ X1,N .

Denote t(x) < N the number of steps on inessential states, so we perform N−1−t(x)

steps on S1.

According to (9) we have

(10) ∀p∈PZ
( ∑

f=(fi,j)

(
d(f) · ξ(x1, f) ·

∏
i,j∈S0

p
fi,j
i,j · pi′′,i′′′ ·

∏
i,j∈S1

p
fi,j
i,j

)
= 0

)
.

By condition (III), Lemma 3.4 and Corollary 3.5, the factor∏
i,j∈S0

p
fi,j
i,j · pi′′,i′′′

can be written as

∏
i∈S0

i 6=i′′

∏
j∈S0

j 6=i+1( mod n(0))

p
f̄i,j
i,j ·

(
1−

∑
j∈S0

j 6=i+1( mod n(0))

pi,j

)ψi(f̄)

·

(11)

·
∏
j∈S0

p
f̄i′′,j
i′′,j ·

(
1−

∑
j∈S0

pi′′,j

)ψi′′ (f̄)

,

obviously, pi′′,i′′′ = 1−
∑
j∈S0

pi′′,j and we have put ψi′′(f̄) = 1.

Observe that by a suitable change of notation the product (11) can be written as

some polynomials Wm(u) described in Section 3. Thus Lemma 3.6 and Theorem 4.2

completes the proof, because in the class S1, the number of steps on essential states

is known and a fixed essential state i′′′ = j1 (cf. (II)) is the initial state. �
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We can now formulate our main result.

Theorem 4.4. Let Z ⊂ S × S satisfy (1) and conditions (I), (II). Let

(X1,N , {P 1,N
(pi,j) : (pi,j) ∈ PZ})

be the statistical space. Then the random transition count F is complete.

Proof. For x1 ∈ S1 Theorem 4.2 completes proof.

Now, assume that x1 = i′ ∈ S0. We want to show that the statistic F is complete,

that is that the condition (9) implies that d(f) = 0 for each f .

Let us consider a trajectory x ∈ X1,N . Let t(x) denote the number of steps on

inessential states in the class S0. For the first part (x1, . . . , xt(x)) of trajectory x we

will consider an oriented graph (S̄0, U), U ⊂ S̄0 × S̄0 defined by Z, i′, i′′, that

is S̄0 =
⋃
{x1, . . . , xt(x)}; U =

⋃
{(x1, x2), . . . , (xt(x)−1, xt(x))}, with the unions

taken for all x satisfying x1 = i′, xt(x) = i′′ and (xt, xt+1) /∈ Z, t = 1, . . . , t(x)− 1.

By Lemma 3.8 there exists a tree (S̄0,W ), W ⊂ U with a root i′′. Next applying

Lemma 3.9 and putting pi′′,i′′′ = 1−
∑
j∈S̄0

pi′′,j , fi′′,i′′′ = Φi′′(m |U\W ) = 1, where

m = f |U ,we can write the factor ∏
i,j∈S0

p
fi,j
i,j · pi′′,i′′′

in (10) in the form

∏
i∈S̄0

i 6=i′′

∏
j∈S̄0

(i,j)∈U\W

p
mi,j

i,j ·
(

1−
∑
j∈S̄0

(i,j)∈U\W

pi,j

)Φi(m|U\W )

·

(12)

·
∏
j∈S̄0

p
mi′′,j
i′′,j ·

(
1−

∑
j∈S̄0

(i,j)∈U\W

pi′′,j

)Φi′′ (m|U\W )

,

for a system of functions Φi, i 6= i′′, on the space {m |U\W }.
The set U \W can be written as

U \W = {(i, j) : i ∈ S̄0, j ∈ S̄i0},

where

S̄i0 = {j 6= i+ 1( mod n̄(0))} for i ∈ S0 and i 6= i′′,

S̄i
′′

0 = S̄0.

The rest of the proof is analogical to that of Theorem 4.3. �

Because the sufficency of F is obvious, so from Bahadur’s Theorem [8] we have a

Conclusion. F is the minimal sufficient statistic.
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ZUPE LNE STATYSTYKI DOSTATECZNE DLA  LAŃCUCHÓW

MARKOWA

S t r e s z c z e n i e

Praca ta prezentuje zupe lność statystyk dostatecznych dla  lańcuchów Markowa o skoń-
czonej przestrzeni stanów S dla pewnej naturalnej podprzestrzeni przestrzeni wszystkich
macierzy prawdopodobieństw przej́sć. Statystyka bȩda̧ca macierza̧ ilości przej́sć może być
zupe lna̧ statystyka̧ dostateczna̧, ale przy pewnych dodatkowch za lożeniach. Odpowiednie
przyk lady pokazuja̧, że za lożenia te sa̧ konieczne. Praca jest próba̧ podsumowania naj-
ważniejszych wyników.

S lowa kluczowe:  lańcuch Markowa, macierz ilości przej́sć, statystyka zupe lna, statystyka
dostateczna


