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Summary

The conformal transformations play crucial role in the analysis of global structure of the
physical space-time. This paper shows some geometrical and physical objects which describe
the space-time. There are also given transformation laws for them under conformal rescaling
of the metric. The main goal of this article is to check which geometrical and physical objects
are invariants under the conformal rescaling of the metric and to present the consequences
of the conformal transformation of the metric like creation of the energy and momentum
for the gravitional field or creation of the matter.
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1. The information about the actual mathematical model
of the physical space-time

The theory of relativity stated by Albert Einstein concerns the structure of the space-
time. It consists of the special theory of relativity (SR) and the general theory of
relativity (GR). The former theory is valid for inertial reference frames and does not
take into account the gravitation. In the later one there are described events in the
non-inertial reference frames, so it means that the gravity is taken into consideration.
Both of them give some mathematical model of the physical space-time. This model
is called shortly the space-time. It is defined as a set of all possible physical events.
According to GR the space-time is a 4-dimentional connected manifold My of the
class C*°, with the Hausdorff topology, orientable, having Lorentzian structure, non-
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extendable and time-oriented. The metric tensor of that space-time satisfies the
Einstein equations.

Definition 1. The conformal rescaling or the conformal transformation of the met-
ric g on the Riemannian manifold (pseudoriemannian, Lorentzian) is the following
transformation (in the established coordinates)

./g\ab(m) = QQ (x)gab<x)a

where Q(x) is a smooth and positive-definite function called the conformal factor.

Fact 1. Denote by g°° components of the tensor (2, 0) which is inverse to the metric
tensor. Then we have

Proof. From the definition we have g*®g,q = 6%, where

" 1 ifa=d,
5d:
0 ifa##d.

The symbol ] is Kronecker’s delta or the unit tensor. Because

Goa = Vg
and
G6a9"" = Q*gpa2"g"" = 53,
so to preserve the equality x must be equal —2. O

Fact 2. The length of a vector changes under the conformal rescalling of the metric
but the ratio of vectors is preserved.

Proof. The length of the vector in the metric g, is given by the formula
HEH = \/(777 V) = \/gikvi’Uk-

In the new metric g, it has the following form

= \/Guvivk = /Q2gyivk = Q7).

Therefore the ratio of the vectors is not changed.

v

2l _ |z
o1 Tal .

Fact 3. The angle between two vectors is an invariant of conformal rescaling of the
metric.
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Proof. We calculate the angle between two vectors following the formula

-7
cos (i, V) = -
R i
Then in the new metric it has the form
oS (i 7) = zﬁ-qﬁz - Qg dd 0
S [ 1 e 1

The facts 2 and 3 justify the name “the conformal transformation” or “the con-
formal rescaling of the metric” from the definition 1.

Fact 4. The line element changes under conformal rescaling of the metric as follows

ds® = O?(x)ds>.

Proof. The line element is given by the formula
ds? = gik.dxidxk.

After conformal rescaling of the metric the line element has the form
ds? = Gg.(z)dxtdz® = Q2 (x) g (v)dz’dz® = Q2 (x)ds?. O

2. Selected geometrical aspects of conformal
transformations

Definition 2. Affine connection (in other words Christoffel symbols of the second
kind or Christoffel’s connection) is defined as [2,5] :

1 g 0 JGpe 1
be = “e < Jbe Jec Jbe = igae(gbe,c + Yece,b — gbc,e)-

bc_29

Oxc + Oxb  Oxe

Affine connection is an geometrical object, which permits us parallel transport
of vectors and tensors on a manifold and develop tensor analysis on it.

Fact 5. Christoffel symbols change under the conformal transformation of the metric
as follows

The = Th + Pit,
where P = Q71 (880 . 4+ 6205 — 9" gpcQe).

Proof. In the proof below we will write the Christoffel symbols in the new gauge and
use the transformation law for the metric tensor.
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a 1 e (~ ~ ~
be — §§a (gbe,c + Gee,b — gbc,e)
L= ae
= 59 29 [(ngbe),c + (Q2gce),b - (Q2gbc),e]
1
= 59_29{15 (299,591)6 + Q2gbe,c + 2QQ,bgce + Q2gce¢b - ZQQ,egbc - Q2gbc,e)
1 —1 _ae
= igae(gbe,c + YGece,b — gbc,e) + Q lg (Q,cgbe + Q,bgce - Q,egbc)
1 _
= igae(gbe,c + Gee,b — gbc,e) + Q 1(61?9,0 + 639,17 - gaegch,e)
—T9 + Pg.
If Q(z) = const, then fgc =TIg.. O

Definition 3. Covariant derivative is defined as [4,1] :
Vol = 9pF + Th e,

for the contravariant vector field i.e. for the tensor of type (1,0) and
Vivg == Oivg, — I'§ve

for the covariant vector field (covector or the 1-form or the tensor of type (0,1)).

Fact 6. Covariant derivative changes under the conformal transformation of the
metric in the following way:

Viok = Vok + PFoc,
and

Vﬂ)k = Vivk — Pick”l)c,
where

PS = Q7 08k + 059 — ging® Q).

K2

Proof. Writing down the covariant derivative in the new gauge in accordance with
the definition 3 and developing it we get

Viok = 9 + ffcvc = Oiv* + T v¢ + PR = Vol + PEo¢
ﬁivk =Vt — Q(x) = const,

< Te k c c c
Vivk = Ovr — I'5pv. = 0,0 — v — Phve = Vivg — PLo.

ﬁivk = Vv, < Q(x) = const. O
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Fact 7. Conformal transformation preserves the metricity of the connection.

Proof.
VeGab = Oclab — TeeGab — TfeGad
= (Vgar) , — (Tae + Pac) Pgar — (T + Pie.) 2*aa
=2 gab + Qgapc — T Q% — T4.%gad — PLO?gay — PO gaa
Because gap,c — I'.ga0 — I'.gaa = 0 so we obtain

VeGab = Q2 gap — PL%gap — Pt gaq
=200 cgap — X (899 . + 699 4 — Gacg®Q.e) P gar
— Q7 (60 + 02 — gbeg™Qe) Q% Gaa
= 209 cgap — 2 (9ar Qe + 9eba — GacS2p)
— Q(9gap Qe + Gacp — gpeq) = 0.

Hence the metricity of the connection is preserved. (]

Definition 4. A geodesic is a curve on a Riemannian manifold (pseudoremannian
or Lorentzian) which gives the extremum of the distance between any two neighbour-
ing points [1]. Such a curve is a generalization of a straight line and satisfies the
equations in so-called affine parameter u

&2t ; dzF dx!

du? " du du

Fact 8. Under the conformal rescaling of the metric, the equations of the geodesic
develop as follows

Pzt o, dabdal ) da dat

A T My A T M e du

Proof. In the proof below we start with the equation of the geodesic
d?a? LT dz® da B
du? odu du

Then we use the Christoffel symbol after the conformal rescaling of the metric

Ty =Ty + Py
Replacing le by the expression f}cl — P,il in the initial equation we obtain
2, 1 . . k l
%+(F21—Pil>%%:0' =
As we can see it is not the equation of the geodesic f?m except the case of
Q(x) = const.
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Generally one gets

A2zt~ dak daxt . . . dz* dat
—_— [ o LR CIXY) 0y — Q) — —
du? ok du du (03820 + 010 = grag™* ) du du
_o-'lg da® da* + O da¥ dx’ da* da! ey
- *d du du du M du du
If the geodesic was isotropic, then
dot do!
9kl du du
and hence
d?zt . dak dat dz*\ dzt dx?
—_— L = (2070 —— ) = = .
du? hk du du ( - du) du () du

This is an equation of the geodesic line with non-affine parameter u. Then we have

Fact 9. Under the conformal transformation of the metric only the null geodesics

are preserved, but the affine parameter loses its affine character.

However we can introduce a new parameter A = A(u) on these lines, which will

be affine. Namely we have

Fact 10. The new parameter A defined by the equation
dA

= 02,
du -
where ¢ = const, is an affine parameter.
Proof.
d?z? - dx da! da’
=h
dur Py g =M
where
dz*
h(u) = 20710, S
du
Lets write z° = x% [A(u)] .
Then
dat _ dat dn
du ~ d\ du’
dot_ d (datdX) _ dat(dA)® | dat diA
du?  du \ d\du) dX\? \du d\ du?’

Replacing ZTI; by the above expression in the initial equation we obtain

ot (DA\® | do' A g datda! (ANE_ o dotdd
d\2 \ du d\ du2 ' FUax d\ \du) d\ du’
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or

(1)

e ey ) @) TN T dE
The right side of the equation will be zero iff

(d%i - dat dxl) (dA)2 gy datd X da

d\  d*X\
hu)— — — =0
() du  du?
or
dz* d\  d?\
2 20710 — =0.
@ K du du? 0
On the other hand, if we differentiate
dA
22— 02
du €
then we have
d?\ dx*
=200 j—.
du? ~ SO
Putting 22 into the equation (2) we obtain (reminding that 9 = ¢0?)
dz* d\ dz*
20710 —2eQQ —— =
Fga da 2 =0
and the equations (1) take the form
d*x’ . dx® dx¢

+
o Ty T
Therefore the new parameter A\ which satisfies the equation
— =c0?
du ’
where ¢ = const, is the affine parameter. (|

Definition 5. The curvature tensor (the Riemann-Christoffel tensor or the Rie-
mann tensor) is defined as follows [1]

a a n a n
bed = Lbde = Uhea + Tne - Thg — Tig - The

The curvature tensor is the tensor of type (1,3) and its components are defined
by the metric tensor and its derivatives. It is a basic tool used in the differential
geometry bacause it is a measure of the local curvature. Lets notice that for a
flat manifold the Christoffel’s symbols are not already equal zero in the curvilinear
coordinates but the curvature tensor R, is equal zero.

Fact 11. The Riemann curvature changes under the conformal transformation of
the metric as follows
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Q a
Ryeq = Ry + — 5 (082 — 9ocS2a)

Q
=Req+ — (5 Qay — 03 — ge2% — Goa2%).

Proof. The idea of our proof is to show that the both sides of the equation are equal.
From the definition we have

Aflbcd:fgd,c_fgc,d+f%c' Fad F
:ng,c+Péld,c_rgc,d_Pbc,d+(Fnc_‘_P'r(Llc)'(ng'i_PI;?i)
— (T + Paa) - (Tp. + PL)
g+ Poae = Toea = Poea + Tine - Tog + e - Pog + P - Ty
+ Pre Pog —Tha - The = Thg - P — Pg - The — Prig - Ppe
= (Tpaec = Thea + e Tha — Tha - The) + (Prae — Pre.a)
+(FZC'P§Q+P§c'de+PSC'Pbd Iha- Pre — Pia-Th. — Pg - Pye)
= R%a+ (Poge— Poea+The Pog+ Pre - Tpg + Pre - Pog — Ty - Py
— Plq-Th. — Py Pe),
where
bed = Tbae = Thea + Tie - Tpg — g - T

To make easier further calculations we will divide the equation into three parts. Lets
denote

Il:r;lzc'Pszl—"_P':Llc' Fad Pbc Sd'rgw

I P;Llc Perl_ ;zld'anc?
Iy =Py . — P g
Then we compute I, Is and I3.
L= QM T8 (05 a + 052 — 9" ghaf2e) + Tig(0n e + 620 — 9% gneQe)
LRa(65 Qe+ 6020 — 9™ gefe) — Te(6na + 0320 — 9% gnaf,e)]
= [ S+ T — 509" gualde + T5a8c + T0e Qn — g™ gnef,e
bd97C - ch,b + Fndg 6956976 - F(blch - gcang + gcgaegndgﬁ}
= QN (TE082 0 — T g™ gbae — Thag" gneSd.e)
+ QN (T5ag" goee — The03 2 n + T5.9" gna.e),



Invariants under conformal rescaling of the space-time 19

Iy = Q72(60Q + 0200 — 9" Gnee) (67 Q.a + 05, — g™ 96a 5)

— Q720924+ 050 — 0°°9na.e) (07 Qe + 67 — g™ gueQ p)

= Q72 (00,05 Qa + 502 652y — 002 09" GoaQ.e + 02Q 00 Qg
+ 062 n0q Qb — 02 ng" gbale — 9 Gne.e0y a — G Gne0g
+ 9" gneQeg™ goafl f — 522 05 Y — 522 a0 + 522 49" GocS?
= 0qn0y Qe — 052007 b + 652,09 Goc Qe + 9 gnalle 0y Qe
+ 9% Gnd2,e00 L — 9 9na2,e9"™ gl 5)

= 972(6597097,1 + 05925 — 9" gpa€,cQ e + 022 Q2 g+ 650 4
— 02 g " gbae — 9 G a — 9°°9aceQp + 9701 9a f Qe — 05
=024 + 9 agpce — 0G0 e — 052 Ly + 652 ng" Goe2
+ 9% 00a. e + 07 Gea.eQp — gUTEQ 1D L gbe)

= Q72022500 — 052 g™ goale — 05y + 65209 Gpe e
+ 9" 6a2,eQc — 9 gue2,ae),

,e

e

I3 = QN0+ 052 — 9" ghae) e — Q7 (05 Qe + 6000 — 9% G0e2e)
= Q760D ac + 65 pe — 9% gba e — 9 Gbd, e — 9 GoaS,ec)
— Q7 (05 ca + 65 pa — 9% Goee — 9% Ghe,de — 9% GheQea)
+ QN (2 a + 052 — 9" grae) — QG (05 Qe + 0225 — g Gbef.c)
= Q70U ca + 652be — 9% Gale — 9" PoacQe — 9" Goacc)
— Q768 cq + 682 d — 9% Goee — 9" Goe,dRe — 9 GoeSLed)

,C
QQ
- Q_l(égQ,bc - g,acegbdQ,e - gaegbd,cQ,e - gaegbdQ,ec - 5gQJ)d + g,adegch7e

Q
(6894 4 030, — g% gpaQ.e) + Q—’j(agg,c 690 — g™ guefde)

Q crsa a ae
+ 9% Goe,dQe + 9 Goc 2 ea) — oz (05 0a + 052 p — 9" gpall.c)

Q
o7 (05 + 620 — 9" guc.c)-

Summing Iy, I5 and I3 we obtain

_|_

O (L5689 — Tineg" 9602 — Th29" gnee + Tiiag™ goe e — L0
+ 15" 9nde + 0642 pe — 9% gpale — 9 Gbd,cQe — 9" Gba cc — 0e QL pd
+ 9% Qe + 97 Gbe,d2e + 97 GoeSed)
+ Q7282400 — 02Q 19" GpaQ e — 0520 + 05 19" Gpe e
+ 9" 96a2eQ.c — 9" Gbe.aQe — 0 Qa — 052 Qb + 97 G0d 2, Qe
+ 05 Q2a8  + 002 a5 — 99 gue,a8 e ).
Using the equations gpg,c = I'y.gna + 1. 9on and gyc.a = I'iygne + T'hygon we obtain

Qil(gbc,dgaeQ,e - gbd,cgaeQ,e - F;)ngaegncg,e + Fgcgaegndg,e) = 0.
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Lets take the equation
gae ;C = gae ,C + F’(Illcgne + FZCgan

and

a

9 .a=9" 4+ 549" + 149
then the formula reduces as follows
Q*l(I‘Zd(S‘ClQ,n + FchgangbdQ,e - gcdgﬂ,n + Jgﬂ,bc - 529,&1 - gaegbdQ,ec
+ gaegch,ed - Ffwlgcmgch,e)
T2(209Q,4Q  — 205959 + 29" e gpae + 65 90eg™ Q0 Qe
- 29aegch,eQ,d - 6ggnegbdQ,nQ,e)-

After extending the right side of the initial equation we get the following form

bed T 5 (5[ch]b - gb[cQ‘d})
bed T &5 5 (5 Qap — 03Qep) — 3 (96e82% — gpaf2%.)

QQ
=RYyq+— (5 Qap — 03t — gue Q% + gpa2%).

Lets denote by I the expression

2
- (0 — 53 = oy + 9a Q%)

Putting into
Qi = gaall,
::gad[4<ﬂ*l><Q‘4>wegae——2<aflxp<ﬂ*1xtgmag
=4(Q7) (277 4 Gaag™ =2(271) , (271) ; Gaag™ 5}
=4(Q7) @), —2(Q7) , (@), gag”
and developing in a similar way Q., 29, and Q2 we have

45119 ,bd 85?Q,bﬂ’d 4(5?112[1976 . 45?Q)pﬂ’tgptgdb>

04 Q3 04

450 ch 86900, 469050, 455Q,0,6" gue
o s Ot

(49 deg“Gbc  82acg*ghe 4FZEQ,pgbcg“e>

04 Q3

40 ceg “gba 89" gpa AT nGbag™
Q4 - 03

M%M%M%M%



Invariants under conformal rescaling of the space-time 21

= Q7N (=02 pa + 05T 54 e + 50 pe — 03T 52 e + Q 4e g goe
= T0e2p96c9™ — Qcegbag™ + e, 90a9")
+ Q72(209Q 52 g — 620 Q2 19" gpa — 2652, ¢
+ 0392 p2,697 goe — 292,d2,9° Gbe + 22,2, Gbag*®)-
After changing some of the indexes we finally obtain that the left side of the previous
equation equals the right side.
= Q7 (=02Qpa + 5: L5420 + 3G Qe — 051520 + Q,aeg* goe
— Lo egbeg™ — Qeegrag™ + L Qegrag™™)
+ Q72269050 4 — 62 Qg™ gra — 20524 .
+ 0q20n 29" ghe — 202,a92,69% goe + 22,2, Gbag"®).
If Q(x) = const, then Rf‘bcd =R% . O

Definition 6. The Ricci tensor is defined as [2]
b _ b _ _acp.b.. _ pcb..
Ry =R} =g"R;;, = R’

a.cg

Fact 12. The Ricci tensor changes under the conformal transformation of the metric
as follows
~ Qb gt
b _ O-2pb g g
R, =Q Rg+7+zﬂf‘a.

Proof. In the proof we are using the transformation laws for the curvature tensor
and for the metric tensor.

~ ~ o 02
Ry =" Riyg = 726" | Rl + 1 (90 = 9ag2s = 61 Qa + garsy)

1
= QR + 1 (6092% — 6595 — g% Qgq + 6502°)
1
_o-2pb by b b b
=Q7°R’, + 1 (6,94, — Q% — Q8 +4Q°)
Qb bOa
— 2Rt 4S9 Zgta
9T 2 + 4
After lowering the upper index we obtain the form of the Ricci tensor as below
~ o~ b 5t
Rag = G Ry = Qg Q2RY + Vgay—* + Qgar =
0?2 02
2 Qu, +—
2 Y + 4
2 QQ "
= Rag + 7Qag =+ ZgagQ.a.

= Rag + gab(slgjﬂfla

If Q(z) = const, then RY = Q@ 2R" and Ruy = Ray. O
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Definition 7. The curvature scalar we define as follows [2]

R:=g""Ra, = RY,.

Fact 13. The curvature scalar changes under the conformal transformation of the
metric in the following way

R=0Q72R+ 29.‘;-

Proof. One has
R =R
In our proof we are using the transformation law for the Ricci tensor.

~ A~ SO @
R=Ri=0R,+ 54 e,

) O 4
_ 972 v St ZQa
R + 5 t 7%
=Q 2R + §Qaa.
i
If Q(z) = const, then R = Q~2R. 0
Definition 8. The Weyl tensor is defined as [1]

1
Cabcd L= Rabcd + 5 (gadRcb - gacRdb + gbcRda - gbdRca)

1
+ 6R (GacYdb — GadJen )-

In GR the Weyl tensor describes the free gravitational field, i.e. the gravitational
field independent of matter.

Fact 14. The Weyl tensor of the conformal curvature C¢, ., is an invariant of the
conformal transformation

~a _ a
.bed — ~.bed®

Proof. Using the formula for Cyp.q we calculate at first the Weyl tensor C'¢_;.

1
Cabcd L= Rabcd + 5 (gadRcb - gacRdb + gbcRda - gbdRca)

1
+ gR (gacgdb — GadYcb )
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C,ebcd = gae Cabcd

1
= gaeRabcd + §gae (gadRcb - gacRdb + gbcRda - gbdRca)

1
+ ggaeR (GacGdb — JadGev)

=Rt 5 . (5dRcb 6cRay + goe RSy — goaRS,)
+ ER (6c9db — 639cb )-
After the conformal rescaling of the metric one has
Clhea = Biea + 5 . (5d eb = 02 Rap + Goc Ity — Zl\bdﬁflc) + éﬁ (629ab — 03 Feb)
— Ryt o (00— 500 — e + 910 2%)

+ %53 [Rcb + %2 (ch + @Qe ﬂ - *5'1 |:Rdb + — @ (de + @Qe )}

1 Q4 64 Qe 62
792 O 2 pa “d Qe _ 792 QO 2 pa e Zc Qe
T 58 e ( R+ 5 4 4 1 5t b RY + 5 +

1 3
+5 (STQR + Qi) (652 gpa — 050 gep)

02
Ryeq + — (5 Qap — 030t — goe % + 96a2%)
2

Q 02 02
(5d cb + 5d b+ — G070, — dg Ray — 75‘59111) - 4539db9_ee>

2 4
1 Q a Q2 a e a Q2 a Q2 a e
+ 5 (gbcRid + 5 — b8y + Zgbcédﬂ,e — gpa RS, — ?gbdQ_c - 45cgbd9.e>
1 1
+ ER (02 gba — 0ggen) + Zé‘éQQdeQi - 15392%1)9.6@
1 1
=Riea+ 5 (5dRcb Se Rap + goe RSy — gvaRY,) + e (029ay — 039cp)

= C.ul;cd'
If we change the location of the indexes in the Weyl tensor, then the above

3 . ta ANab __ ~beAa _ 0O—2,bera _ O—2ab
invariance is missed, e.g. C®,=9"°C ., =Q72gcC% , =Q7°C2. O

Definition 9. The Einstein equations (in the other words the field equations in GR
or the equations of the gravitational field) have the following form [1]
sz = KTi..kv

_ 8nG
ct -

where K :

If we use the geometrized units G = ¢ = 1, then x = 87 and the Einstein’s
equation has the simpler form G:* = 87T;*. The left side of the equation represents
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the geometry of the space-time. On the other hand the right side describes matter
and energy which fills the space-time. The Einstein’s equation can be summarized
as:

the distribution of the matter and the energy in the space-time determines its local
geometry.

The tensor G;* has the following structure

1.
G =Rf-S0R

and it is called the Einstein tensor. Raising or lowering one of the indexes we obtain
the Einstein tensor in the covariant or contravariant form.

1
Gik = Rir — z9iR,

Gik _ R'Lk o

Fact 15. The Finstein tensor changes under the conformal transformation of metric

in the following way

1

—7GE 4 (0 -0k,

Proof.
~ N 1 ., ~
R
QF
:Q—2R;F+f+ ' ( QR+ Qa)
QF ok 3
— Q2R - Lot + %00 gkqe
R’L. 2 R + 2 4 4 K2 .a
Ok
a2Gk 4 i Ly
. + 2 2 1 .a
_ 1 a
—7GE 4 (0 ok,
As we can see the Einstein tensor is not conformally invariant. O

3. Selected physical aspects of conformal transformations

In the previous chapter we have calculated the formula for the Einstein tensor under
the conformal rescaling of the metric. Now we will show the transformation law for
the right side of the Einstein equations, the matter tensor Tzk, which is responsible
for the curvature of the space-time.
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Definition 10. The matter tensor of the macroscopic matter (the matter energy-
momentum tensor or the stress tonsor) we define as follows [1]

T;% = (p+ pyuiu® — pof,

where p denotes a density of the matter and p pressure.

Fact 16. The matter tensor changes under the conformal transformation of the met-
ric in the following way
T;F = QT

2.

Proof. In the proof we will use the formula for the conformal rescaling of the metric
gir and also the formula for mass of the matter contained in the volume element
d*Q = \/Hd‘l:v of 4-dimentional space-time, where g = det[g;]. Hence

M = \/lglpd*z,

where p is proper density of matter. After the conformal rescaling of the metric
d*Q) transforms into d*Q = \/g|d*z. The conformal rescaling of the metric does not
change the mass included in the volume element d*). It changes only into its density
p — p. As a consequence one has

= pd'Q = \/[g|pd"x,

where M indicates the mass of the matter contained in the element /|g|d*x.
Because this mass does not change under the conformal rescaling of the metric, we
can compare both values and hence we get

(3) Vidlad'e = /Tgled*z.

Using the formula for § = Q8¢ and putting the expression \/[g] = Q*/|g| in (3)
we obtain the transformation law for the density of the matter under the conformal

O/ glpd*z = \/|glpd*x
p=0".

Returning to the initial equation which describes the matter tensor and using
the transformtion formula for the density of the matter we obtain

rescaling of the metric.

= Q4 puu” + pu;at — ﬁéf.
In order flk to be connected with T;* by the transformation rule ﬁk = Q*T:F
the pressure must change under the conformal rescaling of the metric following the
formula
p=9""p,
because
k

U;u = ﬂiﬁk, 55 = (Sf
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If this condition is satisfied, then the transformation formula has the following form

T = 'T
Raising or lowering one of the indexes we obtain the other useful transformation
rules
Pik _ il Pk _ =6k
2.
and Ti = GuT;* = Q 2Ty, O

Fact 17. Finstein’s equations are not conformally invariant.

Proof. In the proof we use the formula for the Einstein tensor after the conformal
transformation of the metric, which we have proved in the Fact 15. Using the Ein-
stein’s equations in the metric g;;. and replacing the Einstein tensor by the matter
tensor we get

~ 1
(@ GF = w07 4 L (0 - b,

Converting the relation between the matter tensor in the initial gauge and the new
one we obtain

(5) Tk =0Tk — TF = QTR
Replacing T;* in (4) by (5) one has

~ ~ 1

Gif = rOPTF + 5 (O3 - 679%)

or

where ¥ = L1 (0 — st ). -

The final formula shows that Einstein’s equations are not conformally invariant,
i.e. we do not have the formula of the form élk = /ifl{k. As a consequence there is a
new additional matter described by the tensor ik, apart from the matter which had
already existed before, the conformal rescaling of the metric, and satisfied Einstein’s
equations G;* = kT;F.

This fact was used in the articles “An interesting property of the Friedman uni-
verses” [6], “On Energy of the Friedman Universes in Conformally Flat Coordinates”
[7] and “Superenergy, conformal transformations, and Friedman universes” [8] writ-
ten by J. Garecki. Namely, he used the conformal rescaling of the metric to create the
Friedman dust universes from the empty Minkowskian space-time. One should em-
phasize in this context that Friedman universes are actually the best mathematical
models of the real universe.

As a consequence of Einstein’s Equivalence Principle the gravitional field does
not have an energy-momentum tensor. It has only the energy-momentum pseu-
dotensors. One such pseudotensor is given in the book “Teoria pola” by L. Landau
i E. M. Lifshitz. It is described in the definition 11.
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Definition 11. The Landau-Lifshitz pseudotensor of the energy-momentum of the
gravitational field is defined as [1]

1

tik =Ja- (2F?m1—‘gr)tp - Z}I‘pmn - ?’I‘L]‘—‘pmp) (gilgkm - gikglm)

167
1 .

+ 7gzlgm” (Ffpl—‘fnn —+ annl—‘fp — Fﬁprfm — Ffmrﬁp)

167

1 kl _mn % ) % )

+ 1679 g ( lprgzn + an]‘—‘fp - anrfm - lmrlr)zp)
1 l i Tk i k

+ 1677'(‘9 mgnp (F;nrmp - F;mrnp)

Fact 18. The Landau-Lifshitz pseudotensor of the energy-momentum of the gravita-

tional field changes under the conformal transformation of the metric in the following
way

N 1 o~ ~ - ~ , ,
P =16 (200Dt ~ T In, ~ Thl%, ) (39 35"

167 np

b1 g (DB, + 04, B, - B, - T,
e (F T+ T, - T T~ T,
+ 3500 (Tt~ Tinl)

) 1 ) ) 1 .
_ Qf4t7,k 9757 Izk Izk 9*671”6.
* 167r(1+2)+ 1673

The analytical structures of I3*, IEF and Ik are given in the proof.

Proof.

. 1 [n o oo PPN - .
i = (20500, ~ T T, — TR, (397 - 379™)

1 . ~p o~ ~ ~ A~ ~ A~
+ 7gzlgmn (Ffprgln + ann]'—‘fp — Fﬁprm — Ffmrip>

167
1 4 BN A e o P
Iy N Bk ™ Tk
+ 1679 m§np ( ;nl—‘mp - ;ml—‘np)

Putting ffm =TI} + P in the equation, where
Pl = ot (5an,m + 62 — glmgneQ,e)

and g™" = Q" 2¢™" we obtain
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= 1é (205,15, = D50, = T3 lh,) (979" = g™g"™)
+ 0 L it gmn (TP + Th Y, = Th, 0, = T, I7, )
+ 9‘416%9’”9’"” ( IS N LA R | Fimfﬁp)
+ 074 gmg (7], Tk, ~ T, Tk,

+a7 1; (2Tp, P2, + 2P T2 — T PP ) (g gh™ — g% g'™)
Qo (BT + TPl + PiTh,) (99 — g™
+ 9—416%921 m (r Pp, + PLTh, + T Pl + P,’:mrg’p)
- Q*‘*m%gﬂgm" Ty, pPh 4+ Pert —Tp PP o— Pp TP )

+ 9*4%9“ g™ (T4 Pl + PiyThu + T P + Pl TH,)
- 1277 g*gm (Th,Ph + PiIh 4+ T4, PP+ P T )
+Q° 1; 9" 9" (i Py + PlThp = Ui Py = Pl L)
F O (2B PY, ~ PLPL, — PREL,) (579" — g™g™)

1
—4 il mn k k k k
+07 o 9" g™ (PPl + Ph Pl — Ph,Ph, — Py PL,)

- kl mn i 7 i
+Q4 +P ]Dll;)_PinZZ;n_F)lmPsp>

(Porr
+Q glmgnp (‘Pln mp _]DlZmP'r]fp)

Hence the above equation we can write in the form

1

Fik _ o—44ik -5 ik ik 6 ik
="M+ Q ﬁ(I{ + L) +Q o Ig,
where
Iik = (QFlmPnp Z}Pgm - ?’!‘LPTI))’LIJ) (nggkm gzkglm)

+glg™ (rlpPp T N N A )

l Dk i D
+ g mgnp ( lnpmp ;mPrlfp)’
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1 = (2P0,Th, = PiTh,, — Pilh,) (5" — g g™)
il Dk Dk Dk Dk
+ g™ (Pl + PaaTl, = Pa,TT,, = PRI, )

+ gklgmn (F)llprfnn + Prirmrfp - PrleFfm - merﬁp)
+ glmgnp <ﬁlznl—‘]:np - ﬁlzmr']rip )7

1t = (2P, P, — Py Ph, — PPl ) (99" = g*g™)

+ gilgmn (IDII;)P?Z:m + Prlfm‘pl]; - Pflfpf)lz;n - ]Dllinp'gp)
+ 99" Py Phy + PPl = Piy P, = P P2, )

+ gl (%ﬁfw — 151%157’5;))

PP = (629, + 0P ) — g Qe ).

As we can see, the structures of I3, IiF and IF are the same as the structure of ¢
with the change I'T — T'P in I}¥, I'T — PT in I}F and I'T — PP in I, ]

Conformal rescaling of the metric creates an additional energy and momentum
for the gravitation. It is represented by expressions with ~° and Q% in the trans-
formation law of the Landau-Lifshitz pseudotensor t** = ¢*%.

4. Conclusion

e I have proved several transformation formulas for various geometrical objects

under the conformal rescaling of the metric on the Riemannian (or pseudorie-
mannian) manifold.

Some of the formulas I have obtained have simpler form than the formulas
given in standard books. One can easily check this fact by comparing our
formulas with the ones given e.g. in “The Large Structure of Space-Time” by
S. Hawking and G. F. R. Ellis.

The basic equations of the general theory of relativity the Einstein equations
are not conformally invariant. This fact means that there is a creation of the
new matter and there is also possibility of creation of the Friedman universes
from the vaccum.

A new result of this paper is the transformation law for the Landau-Lifshitz
pseudotensor of the energy-momentum of the gravitational field under con-
formal transformation of the metric. It is easily seen from this law that a
conformal rescaling of the metric creates an additional energy and momentum
for gravitation.
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NIEZMIENNIKI KONFOREMNEGO PRZESKALOWANIA
CZASOPRZESTRZENI - BADANIE OBEJMUJACE
KONSEKWENCJE DLA METRYKI

Streszczenie

Transformacje konforemne odgrywaja istotng role w analizie globalnej struktury czaso-
przestrzeni. Gléwnym celem tego artykutu jest sprawdzenie, ktére z geometrycznych i fizy-
cznych obiektéw sg niezmiennikami konforemnego przeskalowania metryki oraz przedstaw-
ienie konsekwecji konforemnego przeskalowania metryki takich jak kreacja energii i pedu
dla pola grawitacyjnego oraz kreacja materii.

Stowa kluczowe: transformacja konforemna metryki, ogélna teoria wzglednosci, rozmaitosé
riemannowska pseudoriemmanowska, lorentzowska, czasoprzestrzen, rownania Einsteina,
pseudotensor energii-pedu Landaua-Lifszyca



