
https://doi.org/10.26485/0459-6854/2018/68.1/8 PL ISSN 0459-6854

B U L L E T I N
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1. Galois extension theory for Turing machine

In this Section we introduce the concept of noncommutative Galois-type theory and

construct the theory for the Turing machine of m-words.

Galois-type theory for algebras

We introduce the theory of a (noncommutative) Galois-type theory for an algebra.

Let A be an algebra and let Θ1,Θ2, . . . ,ΘN be a system of complex matrices. We

make the extension of A by Θi (i = 1, 2, . . . , N) in the following way:

A[Θ] = {a1Θ1 + a2Θ2 + · · ·+ aNΘN | ai ∈ A},
where aiΘi = ai ⊗Θi, (i = 1, 2, . . . , N). We put

Θ = a1Θ1 + a2Θ2 + · · ·+ aNΘN .

The authomorphism

G : Θ→ Θ′,

where Θ′ = a1Θ′1 +a2Θ′2 + · · ·+aNΘ′N is called Galois group action if G|A =identity.

When G2 =Id or G3 =Id holds, the extension is called binary (resp. ternary). The

typical Galois group is generated by the shift operation:

G : Θi → Θi+1.

When the extension consists of two parts {Θi} and {Θi} which are called conjugate,

we have the conjugation relation

A[Θ,Θ] = {ΣaiΘi, ΣaiΘi}
and we have the conjugation operation: Θi → Θi (Θi → Θi).

Galois-type theory for Turing machine

We introduce a concept of Galois extension for Turing machine L(m) whose invariant

elements are identical with {an1an2 . . . anm | n > 0}.

(1) The Galois extension of L(2)

We consider L(2) which is generated by a1 and a2

L(2) = {an1an2 | n > 0}.
We construct a Galois extension with the invariance L(2). Putting

{
Θ = a1Θ1 + a2Θ2

Θ̄ = a1Θ̄1 + a2Θ̄2
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we shall make the Galois A[Θ, Θ̄] extension over A[a1, a2]. We take the Galois group

which is generated by the conjugation

g : Θ→ Θ̄.

Then we can see that the extension is binary. Next we proceed to the construction

of the extension explicitly:

ΘΘ̄ = (a1Θ1 + a2Θ2)(a1Θ̄1 + a2Θ̄2)

= a21Θ1Θ̄1 + a1a2(Θ1Θ̄2 + Θ2Θ̄1) + a22Θ2Θ̄2.

Hence choosing

Θ1Θ̄1 = 0, Θ2Θ̄2 = 0, Θ1Θ̄2 + Θ2Θ̄1 = 1

we can obtain

ΘΘ̄ = a1a2 ⊗ 1.

When we choose

Θ1 = Θ̄1 =

(
0 1

0 0

)
, Θ2 = Θ̄2 =

(
0 0

1 0

)

the above condition is satisfied.

Replacing a1 =⇒ an1 , a2 =⇒ an2 , we can obtain the desired invariant space.

(2) The Galois extension of L(3)

We construct the Galois extension for L(3). We shall make the extension over the

elements:

L(3) = {an1an2an3 | n > 0} .
We consider

Θ = a1Θ1 + a2Θ2 + a3Θ3,

Θ′ = a1Θ2 + a2Θ3 + a3Θ1,

Θ′′ = a1Θ3 + a2Θ1 + a3Θ2.

We consider the Galois group which is generated by the shift operation:

g : Θ→ Θ′, Θ′ → Θ′′, Θ′′ → Θ.

Next we determine the {Θi}. Putting

ΘiΘjΘk =

{
I3 i, j, k are different

0 otherwise.

Then we have

ΘΘ′Θ′′ = a1a2a3 ⊗ I3.
Hence we obtain the desired Galois extension. The Galois-type theory for L(m) can

be obtained in an analogous manner.
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The 3-generation in Galois extension

Next we proceed to the 3-generation of m-words system. We will describe the mech-

anism in terms of the Galois extension. We take

L(4) = {an1an2an3an4 | n > 0} .
Then, following the process as described for L(3), in this case we have:





Θ = a1Θ1 + a2Θ2 + a3Θ3 + a4Θ4

G(Θ) = a2Θ1 + a3Θ2 + a4Θ3 + a1Θ4

G2(Θ) = a3Θ1 + a4Θ2 + a1Θ3 + a2Θ4

G3(Θ) = a4Θ1 + a1Θ2 + a2Θ3 + a3Θ4.

We consider the invariant form:

= Θ ·G(Θ) ·G2(Θ) ·G3(Θ).

We can introduce the algebraic structure by

ΘiΘjΘkΘl =

{
I4 if i, j, k, l are different,

0 otherwise.

Then we have

= a1a2a3a4 ⊗ I3.
Next we proceed to the 3-generations of the algebra. We consider

A[Θ1,Θ2,Θ3,Θ4] = A[Θ4]A[Θ1,Θ2,Θ3],

i.e. we treat the algebra of Θ1,Θ2,Θ3 with the parameter algebra A[Θ4]. we treat

the Galois extension structure

Θ1
G→ Θ2

G→ Θ3
G2

→ Θ1

”ignoring the parameter space”, we can consider the ternary Galois extension. Then

we have the invariant form
′

= Y (a4)a1a2a3.

Making a different decomposition:

A[Θ1,Θ2,Θ3,Θ4] = A[Θ1]A[Θ2,Θ3,Θ4]

we can obtain
′′

= X(a1)a2a3a4.

Hence we have

=
′ ∩ ′′

.

2. Generation of an m-words system and its Galois extension

In physics and biology we can observe several types of generations of m-words sys-

tems. Here we give several generations and try to construct their systems.



Binary and ternary structires in physics III 115

Generations of m-words systems

Here we give several classes of generations of m-words systems. For the description we

prepare a ”match sticks” and, by making combinations of them we generate systems.

(1) Binary system

In this case we have only one type of generation

Fig. 1. Generation for binary system.

(2) Ternary system

In this case we have the following two types:

α-spontaneous generation

Fig. 2. α -spontaneous generation of ternary system.

β-successive generation

Fig. 3. β-successive generation of ternary system.

We prefer to write this generation in the following manner:

Fig. 4. Two-step generation of ternary system.
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Examples

(1) Spontaneous generation

(α) colors of quarks

(β) x, y, z of the space dimensions

(2) Successive generation

(α) Generation of curbon by 3-Heliums

(β) Transcription mechanism in molecular biology

The Galois extensions for generations

We have given the Galois extension for the spontaneous generation. Below we give

the Galois extensions for successive generations.

At first we make the binary extension which we have given in Section 1:

L̂(2) =
{
a1Θ1 + a2Θ2 : a1, a2 ∈ L(2)

}
.

Next we will make a central extension of L̂(2):

ˆ̂L(2) = L̂(2) ⊗Θ3R,

where ΘΘ3 = Θ3Θi, i = 1, 2. Then we have a ternary extension which corresponds

to the implication

Fig. 5. Ternary extension.

L̂(2) ⊕Θ3R =⇒ ˆ̂L(2)

Galois-type theory for atom physics

We apply the construction of Galois-type theory to atom physics which is given in

Section 1.

Following the scheme of the construction of the binary Galois extension, we can

obtain the following Galois extension:
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Following the scheme of the construction of the ternary Galois extension, we can

obtain the following [7, 8, 12, 16, 20, 23]:

Here we notice the two types of generations of atoms

proton-proton chain CNO cycle

From our observations of atoms by Galois extension we can propose the following

problem:

Problem. Can we describe the generation of atoms in terms of the repetition of

Galois extensions of binary and ternary type and can we obtain the Mendeleev table

of atoms?

Remark. From the fact that the binary and ternary extension structures are re-

structured, we can determine the Galois extensions and we can describe binary and

ternary structures.

We have the following theorems (c.f. [19]; a detailed proof will appear in Fractals

and chaos related to Ising-Onsager lattices. Quaternary approach vs ternary approach

by the present authors and A. Niemczynowicz, submitted for publication):

Theorem I. (1) The nonion algebra is a ternary Galois extension of the algebra

B : N = B[ 3
√
I3]. The extension can be realized by B[τ ] (τ3 = I3) with the choice of

τ = Qi, Q̄i (i = 1, 2, 3).

(2) Ñ is a binary extension of B′ : Ñ = B′[ 2
√
I3]. Hence we have the following
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commutative diagram:

(1)

Theorem II. (3) We have the following Galois extensions:




A[R] = {xR1 + yR2 + zR3 |x, y, z ∈ R[j]},
A[Qi] = {xR1 + yQi + zQ̄i |x, y, z ∈ R[j]} (i = 1, 2, 3),

A[Q̄i] = {xR1 + yQ̄i + zQi |x, y, z ∈ R[j]} (i = 1, 2, 3).

(2)

The extension does not depend on the choice of τ with B′[τ ] (τ3 = 1). Namely we

have

N = A[Q1] = A[Q2] = A[Q3]. (3)

3. The noncommutative Galois-type theory
for elementary particles

In this section we give a method of Galois-type theory for the description of the

hierarchy structure in elementary particles. We shall be concerned with the following

topics (c.f. [8, 12, 16, 23, 24]):

1. Nishijima and Gell-Mann formula,

2. Galois-type theory for Gell-Mann and Zwick model,

3. Galois-type theory for Kobayashi-Masukawa model.

(1) Nishijima and Gell-Mann formula

In the well-known SU(3) description for the quark theory for the three quarks: u, d, s

the basic idea can be described as follows: Gell-Mann and Zwick gave the coordinates:

(Iz, Q, S), where Iz is the z-component of isospin, S: strangeness, Y: hyper charges,

Q: charge.

Table 1. Gell-Mann and Zwick coordinates of quarks.
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Quark - Property I Iz S B Y Q

u 1/2 1/2 0 1/3 1/3 2/3

d 1/2 -1/2 0 1/3 1/3 -1/3

s 0 0 - 1 1/3 0 -1/3

By the use of the fundamental formula

Q = Iz + Y/2

we can plot their coordinates on the plane as follows:

Table 2. Another visualization of Gell-Mann and Zwick coordinates of quarks.

(2) SU(3) Theory

We can realize these configurations by the use of the representations of SU(3). We

consider V 3(C) and V3(C):

V 3(C) = {(ξi)| i = 1, 2, 3}, V3(C) = {(ξj)| j = 1, 2, 3}.
Then we have the basic representations:

U : V 3(C)→ V 3(C), (ξj) =⇒ (ξ′(j
′)) = U(ξ(j)),

U∗ : V ∗3 (C)→ V ∗3 (C), (ξj)
∗ =⇒ (ξ′j′) = ξj′U

∗.

By the use of the representation we construct the representation which describes

mesons and baryons.

(i) Mesons

We consider the matrix

Mij =

(
ξ

i
⊗ ξj

)
∈M3(C).

Then we have the adjoint representation:

AdV :

(
ξ

i
⊗ ξj

)
=⇒ (U(ξiξj)U

∗)
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which is denoted by 3∗ ⊗ 3. The invariant space is given by



x0
√
2

+ y√
6

x4 K+

−π− − x0
√

2
+ y√

6
K0

K− −K0 −
√

2
3
η


 ,

by which we can obtain the following configuration which is identical with the Nishi-

jima and Gell-Mann configuration:

Fig. 6. The Nishijima and Gell-Mann configuration for mesons.

(ii) Baryons

In the same manner, putting

T ijk = ξi ⊗ ξj ⊗ ξk

and considering representation

AdUT = 3⊗ 3⊗ 3

we can obtain the following decomposition:

T = 1⊕ 8⊕ 8⊕ 10.

Then we can associate baryons to 8 and 10 components.
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Fig. 7. The Nishijima and Gell-Mann configuration for baryons.

These configurations are identical with the Nishijima and Gell-Mann configura-

tion.

(3) Noncommutative Galois theory for SU(3) model

Considering the fact that SU(3) is not a continuous group but a discrete subgroup,

we can realize the above model in terms of

A3 ⊂ S3 ⊂ SU(3),

where S3 is the permutation group of three words and A3 is an alternating subgroup

of S3.

(i) The construction of mesons by A3

We consider an algebra which is generated by u, s, d:

A = A[u, s, d].

We make a binary extension A[u, s, d]. We express it by:

θ = uθ1 + dθ2 + sθ3, θ̄ = ūθ̄1 + d̄θ̄2 + s̄θ̄3.

We find the invariance under the Galois group:

θ =⇒ θ̄.

The invariant forms are{
Hk1 = (uθ1 + dθ2 + sθ3)(ūθ̄1 + d̄θ̄2 + s̄θ̄3)

Hk0 = u1ū1 + ss̄+ uū.

Hence we have the matrix form of the invariant

Hk1 =




uū ud̄ us̄

ūd dd̄ sd̄

ūs d̄s ss̄


 ,

Hk2 = (uū+ dd̄+ ss̄)⊗ 13.

Making

= 1 + λ 2

we have the invariance

=

(
(1 + λ)uū+ λdd̄+ λss̄ ud̄ us̄

ūd uū+ (1 + λ)dd̄+ λss̄ ds̄
ūs d̄s λuū+ λdd̄+ (1 + λ)ss̄

)
.
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When we choose λ = − 1
3 , we can obtain the well known Ge’llMann’s matrix:

( 1
3
(2uū− dd̄− ss̄) ud̄ us̄

ūd 1
3
(−uū+ 2dd̄− ss̄) ds̄

ūs d̄s 1
3
(−uū− dd̄+ 2ss̄)

)
.

Remark. We can also derive noncommutative Galois extension from the Dirac equa-

tion of SU(3).

The construction of baryons by S3

In a similar manner we can realize baryons by the use of ternary Galois extension.

For this we take the algebra A[u, d, s] and make the ternary Galois extension:

Ã[u, d, s] = {θ1 +Gθ2 +G2θ3 | θi ∈ A[u, d, s]},

where

G =




0 1 0

0 0 1

1 0 0


 .

Then we have the invariance:

(θ1u+ θ2d+ θ3s)(θ1u+ θ2uG
2 + θ3sG)j(θ1u+ θ2dG+ θ3sG

2)

= (uuuθ31 + dddθ32 + sssθ33)⊗ 1

+[(uud+ udu+ duu)θ21θ2 + (ddu+ dud+ udd)θ2θ
2
1 + (ssd+ sds+ dss)θ2θ

2
3

+(dds+ dsd+ sdd)θ23θ2 + (uus+ usu+ suu)θ21θ3 + (ssu+ sus+ uss)θ1θ
2
1

+(usd+ uds+ dus+ dsu+ sud+ uds)θ1θ2θ3]⊗ Ĝ,

where

Ĝ = 1 +G+G2 ( 6= 0).

Hence we can obtain 10 (resp. 7) baryons from the symmetric elements when they

satisfy the Pauli condition with (resp. without) colour condition (as for colours see

Sect. 5 below).

4. Galois-type theory for Kobayashi-Masukawa model

Next we proceed to the construction of the noncommutative Galois-type theory for

3-generations of quarks. People say that the quarks t and b are created at first. Then

the quark b and the anti-quark b̄ decay and the quark d and its conjugate d̄, and u,
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ū are created:

e+ + e− → υ(4s)(= bb̄)→





B0 + B̄0 → · · ·
(db̄) (bd̄) · · ·

B+ + B̄− → · · ·
(ub̄) (ūb) · · ·

By this process we can obtain (u,d) from (b). In a similar manner

e+ + e− → J/Ψ

(cc̄)

→





π+ + π−

(ud̄) (ūd)

D+ + D̄−

(cd̄) (c̄d)

e+ + e− → Φ

(ss̄)

→





K+ + K−

(us̄) (ūs)

π+ + π0 + π−

(ud̄) (dd̄) (ud̄)

By this process we can obtain (u,d), (c,d) form (c) and (u,s), (u,d) from (s). From

these processes we have the generations by

Fig. 8. Generation of quarks.

We shall try to describe the process in terms of Galois extension. We consider the

algebra

A = A[u,d, ū, d̄]

and the ternary Galois extension

A(G) = {θ1 + uθ2 + dθ3}+ {θ1 + uGθ2 + dG2θ3}+ {θ1 + uG2θ2 + dGθ3}.
Here we understand the construction of quark generations as in the following dia-

grams:

Fig. 9. Construction of quark generations vs. ternary Galois extension.
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When each generation is equivalent to (i), we can realize it in terms of the Galois

extension. Putting {
uG = c dG2 = s

uG2 = s, uG = t

we may describe the 3-generations of quark families.

In the case of (ii) we may construct it in terms of the repetition of the binary

extensions.

5. The description of the 3-generations

Next we proceed to the description on the origin of the 3-generations of the quarks.

Here we shall make use of the fact:

Z2 × Z3 = Z3 × Z2 = Z6

and we assume the Gell-Mann model. Then we may accept three quarks: u, d, s.

Here we assume that we have a binary extension. Then we can obtain three quarks:

t, b, c. Hence we have the basic form.

= θ1u+ θ2d+ θ3s+ θ4c+ θ5b+ θ6t

and its conjugate form

= θ1ū+ θ2d̄+ θ3s̄+ θ4c̄+ θ5b̄+ θ6t̄.

By this we can obtain the meson table :

Table 2. The meson table

Ω =




uū ud̄ us̄ uc̄ ub̄ εut̄
dū dd̄ ds̄ dc̄ db̄ εdt̄
sū sd̄ ss̄ sc̄ sb̄ εst̄
cū cd̄ cs̄ cc̄ cb̄ εct̄
bū bd̄ bs̄ bc̄ bb̄ εdt̄
εtū εtd̄ εts̄ εtc̄ εtb̄ ε2tt̄




Also we can obtain the baryon table which is generated by

θ1u+ θ2d+ θ3s+ θ4c.

We choose the following triples:

[u,d,s], [u,d,c], [d,s,c], [u,s,c].

For each triple we make the ternary invariant form:

(θ1u+ θ2d+ θ3s)(θ1u+ θ2dG
2 + θ3sG)(θ1u+ θ2dG+ θ3sG

2)

and the others. We can obtain the baryon tables.
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Fig. 10. The baryon tables (a) with and (b) without colour condition.

When we want to take the colour condition into account, we have to make a

ternary Galois extension [13].

6. A counterpart for alloys and polymers

The above described theory has its counterpart for metallic alloys [12, 13, 14]. In this

direction one can prove that [20, 19]

Theorem III. We have the binary and ternary extension structures on SU(3):

(4) We have the following adjoint representation on Li (i = 1, 2, 3):




He1H
−1 = −e2, He2H

−1 = e1, He3H
−1 = e3,

H ′e′1H
′−1 = −e′2, H ′e′2H

′−1 = −e′1, H ′e′3H
′−1 = e′3,

H ′e′′1H
′−1 = e′′2 , H ′e′′2H

′−1 = e′′1 , H ′e′′3H
′−1 = e′′3 ,

(4)

where

H =




1 0 0

0 i 0

0 0 1


 , H ′ =




1 0 0

0 1 0

0 0 i


 . (5)

(5) We can obtain the following commutation relations:
{

e21 = e22 = e23 = −1

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.
(6)

After the central extension, we have the Clifford algebra which is isomorphic to the

quaternion algebra. For the case of e′i and e′′i (i = 1, 2, 3), we have the same assertions

on Li (i = 1, 2, 3). Hence we obtain the Dirac operators desired.
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(6) We have

G1e
(0)
k G−11 = e

(1)
k (k = 1, 2, 3), G1e

(1)
k G−11 = e

(2)
k (k = 1, 2), G1e

(1)
3 G−11 = −e(2)3

G1e
(2)
k G−11 = e

(0)
k (k = 1, 3), G1e

(2)
2 G−11 = −e(0)2 ,

(7)

where

G1 =




0 0 1

1 0 0

0 1 0


 . (8)

After the central extension, we have the Clifford algebra which is isomorphic to

the quaternion algebra. For the case of e′i and e′′i (i = 1, 2, 3), we have the same

assertions on Li (i = 1, 2, 3). Hence we obtain the Dirac operators desired.

As far as polymers e.g. pentacene are concerned the idea of decomposing their

structure to two: 2 Carbons-2 Hydrogens elements (Fig. 11) allows reducing relation-

ships between senary-quinary structures to the ternary-binary structures.

Fig. 11. The idea of connecting the phase transitions with collections of

2-Carbon-2-Hydrogen atoms systems.

The concept is related with the Nobel prize in physics 2016 [21] awarded for the-

oretical discoveries of topological phase transitions and topological phases of matter.

The polymer molecules, in fact, nanomolecules, in suitable temperature conditions

form the so-called molecular nanoengines producing the high energy and probably

changing the senary to quinary structure and vice versa. The problem is related to
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that of Nobel Prize in Chemistry 2016 awarded for the design and the synthesis of

molecular machines [18].
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A theorem on generalized nonions and their properties for the applied structures in

physics, Lobachevskii J. Math., Lobachevskii J. of Math., 2017, Vol. 38, No. 2, pp.

255261.

[3] M. Gell-Mann and I. Ne’eman, The Eight-Fold Way, W. A. Benjamin, Inc., New

York-Amsterdam 1964.

[4] F. D. M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Iden-

tication with the O(3) nonlinear sigma model, Phys. Lett. A. 93 (1983), 464–468.

[5] F. D. M. Haldane, Nonlinear Field Theory of Large-Spin Heisenberg Antiferromag-

nets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel
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and chaos related to Ising-Onsager lattices. Ternary approach vs. binary approach,

submitted, 13 pp.
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STRUKTURY BINARNE I TERNARNE W FIZYCE III

TEORIA GALOIS DLA STRUKTUR BINARNYCH I TERNARNYCH

S t r e s z c z e n i e
Przedstawiona jest teoria typu Galois dla maszyny Turinga wraz z jej odpowiednikiem

dla struktur binarnych i ternarnych w fizyce. Ponadto zaprezentowana idea binarno-
ternarnej dekompozycji struktur kwinarnych i senarnych w zastosowaniu do badań nad
polimerami.

S lowa kluczowe: nieprzemienne rozszerzenie Galois, algebry skończenie wymiarowe, pier-

ścienie i algebry  la̧czne, binarne struktury fizyczne, ternarne struktury fizyczne, kwinarne

struktury fizyczne, senarne struktury fizyczne




