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Summary

This paper presents the comparison of the temperature distribution in two-dimensional

nanometric structure received using two different heat transfer models. The first one is the

classical approach based on Fourier-Kirchhoff model, while the second one uses the modern

methodology related to Dual-Phase-Lag equation. In both cases the reduced order models

have been also prepared. The reduction process was based on the Krylov subspace method.

All results have been carefully analysed and discussed in this paper.
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1. Introduction

Modelling of the temperature distribution in modern electronic structures is one of

the most significant area related to the designing of innovative systems and devices.

Proper estimation of the temperature observed inside the electronic appliances pre-

vents the devices malfunctions. Due to this fact the choice of the accurate thermal

model is crucial issue.

The most popular model, which is used to temperature distribution modelling, is

thermal model based on Fourier-Kirchhoff approach [1],[2]. The mentioned model de-

scribes properly the temperature distribution in relatively big structures, however it

may not be appropriate for determination of the temperature in very small structures

[2]. The research presented in [3] has shown that in the case of the one-dimensional

structure, being a simple model of some nanometric transistor, the Fourier-Kirchhoff

[69]
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model may produce overestimated results, especially in the heat source. It means

that investigated model should not be used for such small structures.

The better description of the temperature distribution can be obtained using

Dual-Phase-Lag thermal model [4]. According to the research demonstrated in [3],[5],

[6], the Dual-Phase-Lag model generates outputs which are more convenient and

approximates temperature values more accurate than the Fourier-Kirchhoff model.

However, in the case of more complex nanoelectronic structures, the computation

time consuming during the process of the temperature distribution determination can

be relatively long [5]. Thus, the model order reduction is needed to be used in order

to reduce the complexity of the problem, power consumption and time saving. There

exist different order reduction methodologies. One of them, used in this paper, is

based on the Krylov subspace method [7].

Obtained results are carefully compared and analysed in detail. Moreover, differ-

ences between outputs produced by both investigated thermal model have been also

demonstrated. Finally, the conclusions have been included.

2. Heat Transfer Methodology

As it was mentioned previously, for one-dimensional nanometric structures, the Dual-

Phase-Lag model produces more adequate results than the Fourier-Kirchhoff model.

However, investigation presented in this paper is related to two-dimensional struc-

tures. Thus, results obtained using both described thermal models will be compared.

In this section expressions describing mentioned thermal models are demon-

strated. All parameters, which are used in these formulas and in figures are shown

in Table 1.

The basic form of the Dual-Phase-Lag model can be presented using the following

formula:

q (x, y, t) + τq
∂q (x, y, t)

∂t
= −k∇T (x, y, t)− kτT

∂∇T (x, y, t)

∂t
(1)

In the case when the value of the temperature time lag is equal to 0, the expression

(1) has the form shown below:

q (x, y, t) + τq
∂q (x, y, t)

∂t
= −k∇T (x, y, t) (2)

The foregoing expression is commonly known as Cattaneo-Vernote relation being the

hyperbolic-type equation. The other case, when the temperature time lag as well as

the heat flux time lag are equal to 0 leads to the following equation:

−q (x, y, t) = k∇T (x, y, t) (3)
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Table 1. Parameters’ description.

Parameter symbol Parameter interpretation

q Heat flux density function

x Coordinate related to X axis

y Coordinate related to Y axis

t Time variable

τq Heat flux time lag

k Material thermal conductivity

T Temperature function

τT Temperature time lag

cv Volume-specific heat capacity

qgen Internal generated heat function

Lx Structure length

Ly Structure width

nx Number of nodes in X axis

ny Number of nodes in Y axis

This formula reflects classic Fourier law. On the other hand, the Dual-Phase-Lag

model can be represented by the second order differential equation in the following

form:

cv

(
τq
∂2T (x, y, t)

∂t2
+
∂T (x, y, t)

∂t

)
− k

(
τT
∂ 4 T (x, y, t)

∂t
+4T (x, y, t)

)
= 0 (4)

This formula is used when the internal heat generation in not observed and the ther-

mal conductivity parameter is independent form the temperature values. However,

when both time lags are equal to 0, the equation (4) is transformed to the form

demonstrated below:

cv
∂T (x, y, t)

∂t
= −∇ · q (x, y, t) + qgen (x, y, t) (5)



72 T. Raszkowski, A. Samson, and M. Zubert

The presented dependencies between Fourier-Kirchhoff and Dual-Phase-Lag model

will be used to obtain the temperature distribution inside the analysed 2-dimensional

structure.

3. Problem Description

The mentioned two-dimensional structure has the form of the square. It is heated

from the one of the corners and perfectly cooled in each point of its perimeter.

The detailed description of the investigated structure is presented in [8]. The simple

visualisation of this structure is shown in Figure 1.

The temperature distribution inside analysed structure has been obtained using

the Finite Difference Method. The discretization mesh has been composed of the

same number of nodes in both axes. Nodes are numbered along the rows from the

left to the right side of the square. The consecutive rows are filled by nodes from the

bottom side to the top one.

Fig. 1. The visualization of the investigated structure with marked direction of the heat flux
and the adiabatic boundary conditions.

As it was mentioned earlier, the Krylov subspace methodology [5], [7] has been

used due to reduction of the order of the thermal model. Primarily, taking into

consideration that the Finite Difference Method is employed, the model (4) has been

transformed into the following system of equations [8]:
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



MT̈ (t) +DṪ (t) +KT (t) = bu (t)

y (t) = cTT (t)

(6)

Matrices and vectors used in (6) have the forms presented below:

M = cv · τq ·




1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1




(7)

D =
M

τq
− k · τT

∆x2




−2 1 0 · · · 1 0 0 · · · 0 0 0

1 −4 1 · · · 0 1 0 · · · 0 0 0

0 1 −4 · · · 0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

1 0 0 · · · −4 1 0 · · · 1 0 0

0 1 0 · · · 1 −4 1 · · · 0 1 0

0 0 1 · · · 0 1 −4 · · · 0 0 1
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0 · · · −4 1 0

0 0 0 · · · 0 1 0 · · · 1 −4 1

0 0 0 · · · 0 0 1 · · · 0 1 −4




(8)

K = − k

∆x2




−2 1 0 · · · 1 0 0 · · · 0 0 0

1 −4 1 · · · 0 1 0 · · · 0 0 0

0 1 −4 · · · 0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

1 0 0 · · · −4 1 0 · · · 1 0 0

0 1 0 · · · 1 −4 1 · · · 0 1 0

0 0 1 · · · 0 1 −4 · · · 0 0 1
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0 · · · −4 1 0

0 0 0 · · · 0 1 0 · · · 1 −4 1

0 0 0 · · · 0 0 1 · · · 0 1 −4




(9)
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b =
c

∆x




1

0
...

0

0




(10)

c =




1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1




(11)

In order to make the analysis easier, the second order model (6) has been equivalently

rewritten to the first order system and then, the reduction process based on the

moment matching technique has been carried out [5]. Due to numerical problems

described in [8] the Krylov subspaces have been used. The final reduced order model

matrices have been generated employing one-sided Arnoldi algorithm [9].

The similar analyses have been conducted for Fourier-Kirchhoff thermal model

taking the system (5), for which values of the heat flux and temperature time lags

are equal to 0. In this case, the system of equations (6) has the following form:





DFK Ṫ (t) = KFKT (t) + bFKu (t)

y (t) = cTFKT (t)

(12)

where matrices DFK , KFK , bFK and cFK are described as follows:

DFK = cv ·




1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1



, KFK = −K, bFK = b, cFK = c. (13)

Finally, four sets of results have been generated during the simulation process:

• two sets related to full thermal models (Fourier-Kirchhoff and Dual-Phase-Lag

models),

• two sets related to reduced thermal models (reduced Fourier-Kirchhoff and

reduced Dual-Phase-Lag models).

All obtained results have been carefully analysed, compared and presented in the

next section.
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4. Simulation

All simulations have been supported by the computational unit including Intel Core

i7 CPU and the Microsoft Windows 10 Operating System. Moreover, parameter

values used during the simulation process are listed below:

• t = 0÷ 1 s,

• τq = 3 ps (Dual-Phase-Lag model), τq = 0 s (Fourier-Kirchhoff model),

• k = 0.16 kW
m K ,

• τT = 60 ps (Dual-Phase-Lag model), τT = 0 s (Fourier-Kirchhoff model)

• cv = 1780 kJ
m3K ,

• Lx = 5 nm,

• Ly = 5 nm,

• nx = 5÷ 100 with the step of 5,

• ny = 5÷ 100 with the step of 5,

In order to make analyses more convenient, all temperature values has been trans-

formed into their normalized forms. The normalization has been performed according

to the following formula:

Tnormk
(t) =

Tk (t)

max{Tk (t)} for k ∈ {1, 2, . . . , nx · ny}, t ≥ 0 (14)

The comparisons of normalized steady state temperature rise inside structure ob-

tained using both full and reduced thermal models are presented in Figures 2 - 5.
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Fig. 2. Normalized steady state tempera-
ture rise inside structure obtained using full
Dual-Phase-Lag model for 10 000 nodes [8].
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Fig. 3. Normalized steady state temperature
rise inside the structure obtained using full
Fourier-Kirchhoff model for 10 000 nodes.
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Fig. 4. Normalized steady state temperature
rise inside structure obtained using reduced
Dual-Phase-Lag model for 10 000 nodes [8].
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Fig. 5. Normalized steady state temperature
rise inside structure obtained using reduced
Fourier-Kirchhoff model for 10 000 nodes.

As it can be seen, the steady state temperature distribution is similar for both full

Dual-Phase-Lag and Fourier-Kirchhoff models as well as for both reduced versions of

these models. It means that Dual-Phase-Lag and Fourier-Kirchhoff models estimate

the final distribution of the temperature in the same way, what is visible in Figures

2 - 3. Moreover, the reduction processes in both cases also produce the similar final

steady state temperature distributions, what can be seen in Figures 4 - 5.

However, in the case of Fourier-Kirchhoff model the temperature rises signifi-

cantly faster than in the case of the Dual-Phase-Lag model, what is confirmed by

the transient analysis presented in Figures 6 - 11.
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Fig. 6. Temperature rise inside structure
obtained using full Dual-Phase-Lag model
for 10 000 nodes, 1 fs after simulation start.
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Fig. 7. Temperature rise inside structure
obtained using full Fourier-Kirchhoff model
for 10 000 nodes, 1 fs after simulation start.
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Fig. 8. Temperature rise inside structure
obtained using full Dual-Phase-Lag model
for 10 000 nodes, 100 fs after simulation
start.
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Fig. 9. Temperature rise inside structure
obtained using full Fourier-Kirchhoff model
for 10 000 nodes, 100 fs after simulation
start.
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Fig. 10. Temperature rise inside structure
obtained using full Dual-Phase-Lag model
for 10 000 nodes, 5 ps after simulation start
[8].
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Fig. 11. Temperature rise inside structure
obtained using full Fourier-Kirchhoff model
for 10 000 nodes, 5 ps after simulation start.

As it can be seen, the steady state temperature distribution, yielded using full

Fourier-Kirchhoff model, is achieved meaningfully quicker than in the case of full

Dual-Phase-Lag model. The similar results are obtained for reduced-order thermal

models, what is shown in Figures 12 - 17.

The analysis of Figures 6 - 17 confirmes that the Fourier-Kirchhoff model overesti-
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Fig. 12. Temperature rise inside the ana-
lyzed structure obtained using reduced Dual-
Phase-Lag model for 10 000 nodes, 1 fs after
simulation start.
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Fig. 13. Temperature rise inside the an-
alyzed structure obtained using reduced
Fourier-Kirchhoff model for 10 000 nodes, 1
fs after simulation start.
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Fig. 14. Temperature rise inside the ana-
lyzed structure obtained using reduced Dual-
Phase-Lag model for 10 000 nodes, 100 fs af-
ter simulation start.
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Fig. 15. Temperature rise inside the an-
alyzed structure obtained using reduced
Fourier-Kirchhoff model for 10 000 nodes,
100 fs after simulation start.

mated temperatures, especially in areas close to the heat source.

However, the order reduction of the Fourier-Kirchhoff model can give a slightly

different outputs than analogous reduction of Dual-Phase-Lag model. It is partic-

ularly visible at the beginning of the simulation process. For example, the main

difference is observed for time instant equal 1 fs after the simulation start, what is

shown in Figures 7 (full Fourier-Kirchhoff model) and 13 (reduced Fourier-Kirchhoff
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Fig. 16. Temperature rise inside the ana-
lyzed structure obtained using reduced Dual-
Phase-Lag model for 10 000 nodes, 5 ps after
simulation start [8].
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Fig. 17. Temperature rise inside the an-
alyzed structure obtained using reduced
Fourier-Kirchhoff model for 10 000 nodes, 5
ps after simulation start.

model). For long times of the analysis, outputs received using full and reduced

Fourier-Kirchhoff model are very similar. The described phenomenon is not observed

in the case of Dual-Phase-Lag model, for which results yielded using both full and

reduced version of this model for all analyzed time instants are comparable. The

comparison of fittings of reduced thermal models to their full versions for the steady

state are presented in Figures 18 (Dual-Phase-Lag model) and 19 (Fourier-Kirchhoff

model). The differences in scale on the vertical axis are caused by very small abso-

lute temperature rises. Small differences between these values can give big differences

during the normalization process.

Additionally, in order to confirm the good agreement of the fittings of reduced

models to the full ones, the relative error has been determined according to the

following equation [8]:

Relerror (t) =


CTT (t)− cTT (t)

cTT (t)

 t ≥ 0 (15)

The relative error values, for some chosen time instants and both investigated ther-

mal models, are presented in Figures 20 - 21. The analysis of these figures leads

to the conclusion that the biggest relative error values are observed for very small

time instants, at the beginning of the simulation, while over the simulation time the

relative error becomes inconsiderable. This situation confirmes that the reduction

process ensures high quality results. Moreover, the proposed approach is convergent,

what is extremely important from the numerical point of view.

Finally, the simulation times have been also compared. Their comparisons are
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Fig. 18. Comparison of normalized steady
state temperature rise inside structure ob-
tained using full and reduced Dual-Phase-
Lag model for 10 000 nodes.
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Fig. 19. Comparison of normalized steady
state temperature rise inside structure ob-
tained using full and reduced Fourier-
Kirchhoff model for 10 000 nodes.
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Fig. 20. Relative error of full thermal model
reconstruction from the reduced one in the
case of Dual-Phase-Lag model for 10 000
nodes.
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Fig. 21. Relative error of full thermal model
reconstruction from the reduced one in the
case of Dual-Phase-Lag model for 10 000
nodes.

shown in Figures 22 - 23.

As it can be seen, full version of the Dual-Phase-Lag model demands significantly

more time to obtain the temperature distribution inside the analyzed structure than

the Fourier-Kirchhoff model. It is related to bigger computational complexity of

the algorithm including the Dual-Phase-Lag system of equations. However, longer

simulation time ensures more reliable results. On the other hand, the reduced versions

of both investigated thermal models require the similar computational power, what

causes that simulation times in both these cases are comparable.
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Fig. 22. Simulation times comparison for
full and reduced Dual-Phase-Lag model for
10 000 nodes [8].
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Fig. 23. Simulation times comparison for
full and reduced Fourier-Kirchhoff model for
10 000 nodes.

5. Conclusions

Analyses of obtained results lead to the following conclusions. using the Fourier-

Kirchhoff model, the final temperature distribution inside the investigated structure

is received in quicker time than that one related to the use of Dual-Phase-Lag model.

However, the Fourier-Kirchhoff model overestimates the temperature values, espe-

cially near the hear source. Due to this fact the use of Dual-Phase-Lag model is more

appropriate for such small nanomertic structures.

In order to reduce the computational complexity of the problem and the simula-

tion time, the model order reduction is needed. The reduction process based on the

moment maching using the Krylov subspace method and Arnoldi algorithm ensures

obtaining high quality results. The fitting of outputs yeilded using reduced-order

models to these ones obtained using full order models is characterized by a very good

agreement. This situation is observed in both Fourier-Kirchhoff and Dual-Phase-Lag

cases. However, for short times of thermal analyses, the relative error values of full

Fourier-Kirchhoff model reconstruction from the reduced one are significantly grather

than relative error values of full Dual-Phase-Lag model reconstruction. Neverthless,

for longer times of analyses, the relative errors are on a comparatively low level.
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PORÓWNANIE REDUKCJI RZȨDU DWUWYMIAROWYCH

MODELI DUAL-PHASE-LAG I FOURIERA-KIRCHHOFFA

PRZY UŻYCIU METODY PODPRZESTRZENI KRYLOVA

S t r e s z c z e n i e
Niniejszy artyku l prezentuje porównanie rozk ladów temperatury w dwuwymiarowej

strukturze nanometrycznej otrzymanych przy pomocy dwóch różnych modeli przep lywu
ciep la. Pierwszy z nich wyraża klasyczne podej́scie bazuja̧ce na modelu Fouriera-Kirchhoffa,
podczas gdy drugi wykorzystuje nowoczesna̧ metodologiȩ nawia̧zuja̧ do równania Dual-
Phase-Lag. W obu przypadkach dokonano również redukcji rzȩdu modeli termicznych. Pro-
ces redukcji oparto na metodzie podprzestrzeni Krylova. Wszystkie wyniki zosta ly ponadto
uważnie przeanalizowane i omówione.

S lowa kluczowe: model Fouriera-Kirchhoff, równanie Dual-Phase-Lag, przep lyw ciep la w

nanoskali, rozk lad temperatury, redukcja rzȩdu modeli, metoda podprzestrzeni Krylova,

algorytm Arnoldiego




