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Summary

In this paper the temperature distribution of nanoscale structure is investigated. Pre-

sented analyses focus on two-dimensional rectangular structure. The problem has been

solved using the Dual-phase-Lag heat transfer model. In order to reduce the complexity

of the problem, the reduction methodology based on Krylov subspace has been used. The

reduced-order model matrices generation has been based on the one-sided Arnoldi algo-

rithm. Moreover, comparison of results received using both reduced and full thermal mod-

els for different number of discretization mesh nodes and different time instants have been

demonstrated. Furthermore, the relative error of generation of reduced thermal model from

full model has been considered. Finally, the most important conclusions from the presented

research have been also included.
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1. Introduction

Nowadays, thermal problems occurring in innovative appliances are one of the most

important areas in development of new technology. One of the reasons of this fact

is signicifant miniaturization of integrated circuit implemented in almost all latest

devices. Another reason is connected with meaningful increase of the operation fre-

quency of mentioned devices. Both these reasons result in rapid growth of the heat

density, which is generated inside analyzed structures. Increased internal heat gener-

ation causes the dramatic rise of the temperature during the device operation. It is

[55]
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worth saying that in the case of very small electronic structures the arrangement of

productive cooling conditions is often imposible. Thus, the operation of the electronic

structure becomes unstabile. Moreover, long-lasting operation in such conditions can

cause many device malfunctions and even permanent damages. Described situations

cause that the thermal analysis is currently the fundamental development step in

modern electronics designing process.

Up to the beginning of twenty first century, the heat transfer problems had been

solving using the approach proposed by Fourier [1]. The mentioned approach was

based on the Fourier’s law and then Fourier-Kirchhoff differential equation presented

in formulas (1) and (2), respectively.

−q (x, y, t) = k∇T (x, y, t) (1)

cv
∂T (x, y, t)

∂t
= −∇ · q (x, y, t) + qgen (x, y, t) (2)

where cv is the volumetric heat capacity, while q (x, y, t), qgen (x, y, t) and T (x, y, t)

mean the density of the heat flux, the internal heat generation and the temperature

function, respectively. All these functions are defined for points (x, y) from two-

dimensional space, x ∈ R, y ∈ R, and for time t ≥ 0.

However, the reserach has shown that the Fourier-Kirchhoff model does not reflect

the realistic thermal behaviour properly [2], [3] and [4]. For example, in this model

the assumptions related to heat propagation with infinite speed and instantaneous

changes of temperature gradient and heat flux are postulated, what do not agree

with experiments, especially for nanometric electronic structures [5] and [6]. Due to

these facts, the Fourier-Kirchhoff model should be replaced by heat transfer model

which is appropriate for nano scale. One of such models is Dual-Phase-Lag approach

developed by D.Y. Tzou [7].

In this paper the Dual-Phase-Lag model will be considered. Moreover, the model

order reduction based on Krylov subspaces methodology will be presented. Apart

from that the simulation results obtained using both full- and reduced-order mod-

els for 2-dimensional structure will be analyzed and compared. Furthermore, the

conclusions will be included.

2. Heat Transfer Model Description

The Dual-Phase-Lag model, considered in this paper, contains some significant mod-

ifications of classical Fourier-Kirchhoff model. It includes two relaxation time con-

stants, τq and τT . The first constant is called the heat flux time lag, while the second

one means the temperatuer time lag. Including the existence of these time lags,
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the mathematical description of the Dual-Phase-Lag model has the form presented

below:





cv
∂T (x,y,t)

∂t = −q (x, y, t)

q (x, y, t) + τq
∂q(x,y,t)

∂t = −k∇T (x, y, t)− kτT ∂∇T (x,y,t)
∂t

(3)

where k reflects the value of material thermal conductivity. However, in the case when

the thermal conductivity of analyzed material does not depend on the temperature

and the internal heat generation is not observed, the Dual-Phase-Lag model can be

expressed in the second-order form presented as follows:





cv
∂T (x,y,t)

∂t = −q (x, y, t)

cv

(
τq

∂2T (x,y,t)
∂t2 + ∂T (x,y,t)

∂t

)
− k

(
τT

∂4T (x,y,t)
∂t +4T (x, y, t)

)
= 0

(4)

The incontestable advantage of Dual Phase-Lag model is fact that it can be

applied for parabolit- and hyperbolic-type models. Thus, it is appropriate for many

cases and it can replace the classical Fourier-Kirchhoff approach which represents

the parabolic type.

However, the Dual-Phase-Lag described by equation (4) is characterized by bigger

computational complexity than Fourier-Kirchhoff one. Due to this fact, the deter-

mination of temperature distribution using full-order thermal model can take plenty

of time, especially when the investigated structure is discretized using relatively big

number of nodes. Therefore, the model order reduction of the full thermal model is

needed and it will be described in the next sections. Nonetheless, the investigated

structure description will be demonstrated at first.

3. Description of the Investigated Structure

The simple two-dimensional rectangular slab is taken into consideration. Without

loss of generality, it was assumed that both sides of analyzed rectangle are equal.

Moreover, the structure is heated from external heat source. The heat flux is directed

towards the one of the corners of the slab. In remaining points of the sturcture edges

the adiabatic boundary conditions are imposed. The described situation is presented

in Figure 1.

The temperature distribution inside the structure has been modelled using the Fi-

nite Difference Method. Due to this fact, the structure had to be primarily discretized.

The discretization mesh has been generated using the following dependences:

qk (t) = q (x, y, t) for x = i · 4x, y = j · 4y (5)
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Fig. 1. The visualization of the investigated two-dimensional rectangular slab with marked
adiabatic boundary conditions and direction of the heat flux.

Tk (t) = T (x, y, t) for x = i · 4x, y = j · 4y (6)

where i ∈ {1, 2, . . . , nx}, j ∈ {1, 2, . . . , ny}, k ∈ {1, 2, . . . , nx · ny}, while nx and ny
reflect the number of discretization mesh nodes along the structure length and width,

respectively. The total number of nodes describing the structure is equal to nx · ny.

Nodes are numbered from the heated corner (node no. 1) through nodes located

along one side of the rectangular structure to the node in opposite corner (node no.

nx). Then, the numbering process is repeated from the node neighbouring with the

heated corner (node no. nx + 1) to the node neighbouring with the opposite corner

(node no. 2 · nx). The numbering process is finished when the last layer of nodes

along the edge of the structure are numbered (nodes no. from (ny−1) ·nx to nx ·ny).

Additionaly, it was assumed that the distances between nodes located along the

structure’s lenght and width are equal, i.e. 4x = 4y. The graphical representation

of the discretization mesh nodes in the structure and the way of nodes numbering

process is demonstrated in Figure 2.

The distribution temperature problem has been solved using the initial conditions

described by the following equations:

Tk (t) = 0 for k ∈ {1, 2, . . . , nx · ny}, t = 0 (7)

Furthermore, the boundary conditions listed below have been considered:

qk (t) = c for k = 1, t ≥ 0, c ∈ R+ (8)
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Fig. 2. The graphical representation of the discretization mesh nodes inside the structure
and the way of nodes numbering process.

Tk (x, y, t) = 0 for t ≥ 0,

(x = 0 ∧ y > 0) ∨ (x = nx · 4x ∧ y ≥ 0)∨
∨ (y = 0 ∧ x > 0) ∨ (y = ny · 4y ∧ x ≥ 0)

(9)

4. Second-Order Dual-Phase-Lag Equation Reduction

Taking into consideration the described discretization mesh and the Dual-Phase-Lag

model represented by system of equations (4), the distribution of the temperature

in investigated structure can be described by the system of equations demonstrated

below:



60 T. Raszkowski, A. Samson, and M. Zubert





MT̈ (t) +DṪ (t) +KT (t) = bu (t)

y (t) = cTT (t)

(10)

where M,D,K, cT ∈ Rnx·ny×nx·ny , b, y ∈ Rnx·ny×1 and u ∈ R. Moreover, T̈ , Ṫ and

T ∈ Rnx·ny×1 include the second-order time derivatives of the temperature variables,

the first-order time derivatives of the temperature variables and the temperature

variables, respectively.

However, in order to make analysis easier, this second-order system of Dual-

Phase-Lag equations has been equivalently rewritten to the first-order one according

to (11):





EṪ (t) = AT (t) +Bu (t)

y (t) = CTT (t)

(11)

where E,A,CT ∈ R2·nx·ny×2·nx·ny and B ∈ R2·nx·ny×1. Moreover, Ṫ and T ∈
R2·nx·ny×1 include the first- and the second-order time derivatives of the tempera-

ture variables
(
Ṫ
)

and the temperature variables and the first-order time derivatives

of the temperature variables
(
T
)
. Furthermore, forms of matrices E, A, C and B

present as follows:

E =

[
I Θ

Θ I

]
, A =

[
Θ I

−K −D

]
, B =

[
Θ1

b

]
, C =

[
c Θ

Θ c

]
(12)

where I,Θ ∈ Rnx·ny×nx·ny and Θ1 ∈ Rnx·ny×1. The matrix I is the identity matrix,

while matrices Θ and Θ1 are the zero matrices.

Having the second-order system of Dual-Phase-Lag equations equivalently rewrit-

ten to the system of the first-order ones, the model order reduction can be carried

out in easier way. The description of this process is presented in the next section.

5. Model Order Reduction Methodology

In the case of structures desribed using relatively big number of nodes, the determi-

nation of the temperature distribution inside the investigated structure can be time-

and power-consuming. Due to this fact, the order of the full thermal model should

be reduced. One of the model order reduction methodology is the moment matching

technique. The so-called moments ml can be described as follows [8]:

ml = CT
(
A−1E

)l
A−1B for l ∈ N ∪ {0} (13)
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Having definition of moments, the transfer function of the model (11) has to be

determined according to the following formula:

Ftransfer (s) = −
∞∑

l=0

mls
l (14)

It is worth saying that transfer functions of full and reduced models are characterized

by the same moments up to some degree. However, due to numerical problems, the

function Ftransfer should not be computed directly. The solution of this problem is

the use of equivalent techniques which deal with numerical instability of function

(14). It turns out that the very useful tool is the Krylov subspace [8] and [9]. Then,

using the Arnoldi algorithm [10], the reduced model is generated. It can be described

by the following system of equations:





WTEV Ṫ r (t) = WTAV T r (t) +WTBu (t)

yr (t) = CTV T r (t)

(15)

where W,V ∈ R2·nx·ny×r are transfer matrices which allow generating the reduced-

order models from the full ones. Moreover, Ṫ r and T r ∈ Rr×1. The constant r reflects

the order of the reduced thermal model. Furthermore, the output yr is characterized

by the same order like output y. It means that yr is the reconstruction of the full

thermal model from the reduced one.

6. Simulation Results

In this section the simulation results related to 2-dimensional temperature distri-

bution modelling are presented. All simulations have been carried out using the

MathWorks Matlab software. The simulation process has been supplied by 4-cores

Intel R© CORETM i7 CPU with the maximal operating frequency equal to 3.5 GHz

and 32 GB DDR4 RAM Memory under contron the Misrosoft Windows 10 OS. The

specially written algorithms include the sparce matrices implementation and support

the multi-threading. Moreover, the variable-order solver based on Gear’s algorithm

has been used. Furthermore, the parameter values demonstrated in Table 1 have

been employed.

The research has been conducted for different number of nodes in the structure.

The smallest one is equal to 25 nodes (5 per each dimension) while the biggest one

equals to 10 000 (100 per each dimension). The temperatures values in each node

have been calculated for different time instants up to achieving the maximal possible

temperatures (steady state). However, due to the fact that the temperature changes
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Table 1. Algorithm parameter values.

Parameter name Parameter symbol Parameter value

Volume-specific heat capacity cv 1.78 MJ
m3K

Material thermal conductivity k 160 W
mK

Heat flux time lag τq 3 · 10−12s

Temperature time lag τT 60 · 10−12s

Structure length Lx 5 · 10−9m

Structure width Ly 5 · 10−9m

Number of nodes in X axis nx {5, 10, 15, . . . , 100}

Number of nodes in Y axis ny {5, 10, 15, . . . , 100}

are relatively small, the temperature rises have been presented in their normalized

forms. Values of normalized temperature rises have been calculated according to the

formula presented below:

Tnormk
(t) =

Tk (t)

max{Tk (t)} for k ∈ {1, 2, . . . , nx · ny}, t ≥ 0 (16)

The normalized temperature rises obtained using both full and reduced thermal

models have been compared. Their comparison for 10000 nodes and some chosen

time instants are presented in Figures 3 - 5.

It is clearly visible that received results are very similar for all analyzed times.

However, in order to determined the rate of fitting of outputs yielded using reduced

model to these ones received using full thermal model, the relative error has been

calculated according to formula (17):
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Fig. 3. The comparison of the temperature distribution inside the investigated structure
described by 10000 nodes obtained using full and reduced thermal models 500 · 10−15s after
start of the simulation process.
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Fig. 4. The comparison of the temperature distribution inside the investigated structure
described by 10000 nodes obtained using full and reduced thermal models 5 · 10−12s after
start of the simulation process.

Relerror (t) =


CTT (t)− cTT (t)

cTT (t)

 t ≥ 0 (17)
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Fig. 5. The comparison of the temperature distribution inside the investigated structure
described by 10000 nodes obtained using full and reduced thermal models 1s after start of
the simulation process.
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Fig. 6. The relative error analysis of the reconstruction of the full model consisting of 10000
nodes from the reduced thermal model of order 8 for some chosen time instants.

The sample analysis of the relative error of the reconstruction of the full model
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consisting of 10 000 nodes (100 nodes per axis) from the reduced model of order 8 for

different time instants is presented in Figure 6. As it can be seen, the maximal value

of the relative error does not exceed 0.33%, what means that the results obtained

using reduced model are highly reliable. Moreover, the vaue of the relative error

becomes smaller over the simulation times, what indicates that proposed approach

is convergent.

The times of determination of temperature distribution inside the analyzed struc-

ture using full and reduced models have been also compared. Their comparison for

different number of nodes is shown in Figure 7.

Fig. 7. The comparison of simulation times of the temperature distribution determination
yielded using both full and reduced thermal models for different number of nodes.

It is easy to see that there exists a huge difference in simulation times depending

on employed model. Full thermal model demands even 6 000 s for determination of

temperature distribution in the structure described by 10000 nodes while the simu-

lation time needed in the case of reduced model does not exceed 0.1 s. Fluctuations

visible along the line reflecting the simulation times demanded by the reduced model

are the result of different orders of these models. The smallest number of equations

needed for generating the reduced thermal model equals to 8 and is observed in the

case 100, 1600, 5625, 6400 and 10000. On the other hand, the biggest number of equa-

tions taken to prepared the reduced order model is equal to 50 and it is recorded for
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2025 nodes. Another reason of observed fluctuations is related to memory buffering

problems. However, none of them influence significantly on the simulation times.

7. Conclusions

This paper presents the analyses related to order reduction process based on second-

order Dual-Phase-Lag model. In order to make the research more convenient, the

Dual-Phase-Lag equation has been equivalently rewritten to its first-order form.

The temperature in investigated structure has been modelled using Finite Differ-

ence Method. Due to this fact, the structure has been discretized using 2-dimensional

rectangular mesh. Without loss of generality, it was assumed that the length and the

width of the structure can be described using the same number of nodes. Moreover,

distances between neighbouring nodes have been equal.

Presented analysis clearly indicates that application of reduced models produces

almost the same temperature distribution like in the case of full models, what has

been confirmed by the values of relative error of simulations. Another significant

advantage of use of reduced models is fact that all simulations have been obtained in

shorter time than using the full models. The reduction was based on Krylov subspace

method. Results show that in the case of solving of thausands of differential equations

the model order reduction allow solving the same problem but in much easier way,

in shorter time and with the acceptable level of the relative error.
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Wólczańska 221/223, PL-90-924  Lódź
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REDUKCJA RZȨDU MODELU DUAL-PHASE-LAG PRZY UŻYCIU

METODY PODPRZESTRZENI KRYLOVA DLA STRUKTUR

DWUWYMIAROWYCH

S t r e s z c z e n i e
W pracy rozważono rozk lad temperatury w strukturach nanometrycznych. Zaprezen-

towane analizy dotycza̧ struktury dwuwymiarowej o prostoka̧tnym kszta lcie. Rezultaty
otrzymane zosta ly przy uyciu modelu termicznego Dual-Phase-Lag. W celu zmniejszenia
z lożoności problemu, dokonano redukcji rzȩdu modelu oparta̧ na metodzie podprzestrzeni
Krylova. Generacja macierzy redukcyjnych bazuje na wykorzystaniu algorytmu Arnoldiego.
Ponadto, porównano także rezultaty otrzymane za pomoca̧ zredukowanego oraz pe lnego
modelu termicznego dla różnej liczby punktów dyskretyzacyjnych oraz różnych punktów w
czasie. Dodatkowo, przedstawiono również analizȩ b lȩdu wzglȩdnego wyznaczenia modelu
zredukowanego. Finalnie, obszernie opisano najważniejsze wnioski z przedstawionych analiz.

S lowa kluczowe: równanie Dual-Phase-Lag, model Fouriera-Kirchhoff, przep lyw ciep la, pod-

przestrzenie Krylova, redukcja rzȩdu modelu, struktury elektroniczne, nanotechnologia,

rozk lad temperatury




