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Summary

Let T1, T> and T3 be closed arcs contained in the unit circle T with the same length 27 /3
and covering T. In the paper [3] D. Partyka and J. Zajac obtained the sharp estimation of
the module |F(z)| for z € D where D is the unit disc and F' is a complex-valued harmonic
function of D into itself satisfying the following sectorial condition: For each k € {1,2,3}
and for almost every z € T} the radial limit of the function F' at the point z belongs to
the angular sector determined by the convex hull spanned by the origin and arc T}. In this
article a more general situation is considered where the three arcs are replaced by a finite
collection 131,75, ..., T, of closed arcs contained in T with positive length, total length 27
and covering T.
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1. Introduction

Throughout the paper we always assume that all topological notions and operations
are understood in the complex plane E(C) := (C,p.), where p. is the standard
euclidean metric. We will use the notations cl(A) and fr(A) for the closure and
boundary of a set A C C in E(C), respectively. By Har({2) we denote the class of
all complex-valued harmonic functions in a domain €2, i.e., the class of all twice

[95]



96 A. Futa and D. Partyka

continuously differentiable functions F' in €2 satisfying the Laplace equation
0?’F(2) 0%F(2)
Ox? + 0y?
The sets D := {2z € C: |z] <1} and T := {2z € C : |2| = 1} are the unit disc and
unit circle, respectively. The standard measure of a Lebesgue measurable set A C T
will be denoted by |Al;. In particular, if A is an arc then |A|; means its length. Set
Lpq =1k €Z:p<k<q} for any p,q € Z.

=0, z=z+iye .

Definition 1.1. For every n € N a sequence Z; , > k — T}, C T is said to be a
partition of the unit circle provided T}, is a closed arc of length |Ty|; > 0 for k € Z; ,
as well as

UZe=T and > |Ti|s =2m. (1.1)
k=1 k=1

For any function F': D — C and z € T we define the set F**(z) of all w € C such
that there exists a sequence N 3 n +— 7, € [0;1) satisfying the equalities

lim 7, =1 and lim F(r,z)=w.
n—-+oo n—-+o0o

Definition 1.2. By the sectorial boundary normalization given by a partition Zi , >

k+— T, C T of the unit circle we mean the class N(T1,Ts,...,T,) of all functions
F : D — D such that for every k € Z,, and almost every (a.e. in abbr.) z € T},
F**(2)C D :={ru:0<r<1,ue&Ty}=conv(T, U{0}). (1.2)

Given n € N and a partition Z; ,, 3 k +— T}, C T of the unit circle we will study
the Schwarz type inequality for the class

F :=Har(D) "N (T1,T5,...,T,).

If n < 2 then we have a trivial sharp estimation |F(z)| < 1 for F' € F and z € D,
where the equality is attained for a constant function. Therefore, from now on we
always assume that n > 3.

In Section 2 we prove a few useful properties of the class F. Most essential
here is Theorem 2.3. We use it to show in Section 3 Theorem 3.1, which is our
main result. Then we apply the last theorem in specific cases; cf. Examples 3.4 and
3.5. In particular, we derive the estimation (3.13), obtained by D. Partyka and J.
Zajac in [3, Corollary 2.2]. Thus the estimation (3.1), valid for an arbitrary partition
of T, generalizes the one (3.13), which holds only in the case where n = 3 and
the arcs Ty, To and T35 have the same length. Note that the estimation (3.12) is a
directional improvement of the radial one (3.13). In Example 3.5 we study a general
case of an arbitrary partition of the unit circle. As a result, we derive reasonable
estimations (3.23) and (3.24), which depend on the largest length among the ones
Ty |1 for k € Zy 5.



The Schwarz type inequality for harmonic functions 97

2. Auxiliary results

Let P[f] stand for the Poisson integral of an integrable function f : T — C, i.e.,
P[f] : D — C is the function given by the following formula

PUI) = o [ f0) =l = o [ Fre

lu — z|? u—z
The Poisson integral provides the unique solution to the Dirichlet problem in the
unit disc D provided that the boundary function f is continuous. It means that P[f]

|dul, z € D. (2.1)

is a harmonic function in I, which has a continuous extension to the closed disc cl(D)
and its boundary values function coincides with f. For any function F' : D — C we
define the radial limit function of F' by the formula

lim F(rz), if the limit exists,
T>z— Ff(z) =g r=1"
0, otherwise.

Since a real-valued harmonic and bounded function in D has the radial limit for a.e.
point of T (see e.g. [2, Cor. 1, Sect. 1.2]), it follows that F* = (Re F)* 4+ i(Im F)*
almost everywhere on T provided F' € Har(D) is bounded in . Therefore,

F*(z) ={F*(2)} forevery F € F and a.e. z € T. (2.2)

In particular, for each function F' : D — D, F' € F if and only if F' € Har(D) and
F*(z) € Dy, for k € Z 5, and a.e. z € T}. From the property (2.2) it follows that for
each F' € F the sequence N > m — f,,, where

T2ur f(u):=F((1— L)), meN,

is convergent to F* almost everywhere on T. Then applying the dominated conver-
gence theorem we see that for every z € D,

F((1- %)z) = P[fn](z) = P[F*](z) as m — +o0,

which yields
F =P[F*], FeclF. (2.3)

Let X be the characteristic function of a set I € T, i.e., X;(¢t) := 1 for t € I and
Xr(t):=0forteT\I.

Lemma 2.1. For all F € F and z € D there exists a sequence Zy n, 3 k — ¢, € Dy,
such that the following equality holds

F(z) =) PXp](2). (2.4)
k=1

Proof. Fix F € F and z € D. Since |Ty|; > 0 for k € Z; 5, it follows that
0<pr:=PXp](z) <1, ke&Zy,. (2.5)
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By (1.2) each sector Dy, k € Zj ,, is closed and convex. Moreover, from (1.2) and
(2.2) we see that F*(z) € Dy, for k € Z , and a.e. z € T). Then applying the integral
mean value theorem for complex-valued functions we deduce from (2.5) that

1
Cp = P[p— F* -ka] (2) € Dy, k€Zy,.

k

Hence and by (2.3),
F(z) = PIF*](2) = P[> F* - Xg | (2) = Y P[F* 33, ] (2)
k=1 k=1
n 1 mn
= ka[_'F* -XTk}(Z)=ZPka,
k=1 Pk k=1

which implies the equality (2.4). O
Lemma 2.2. For every sequence Z1 ., > k — ci, € Dy,

F:=) e PXg] €T (2.6)

k=1

Proof. Given a sequence Zy , 3 k +— ¢ € Dy, consider the function F' defined by
the formula (2.6). Since P[Xr,| € Har(D) for k € Z; ,, we see that F' € Har(D).
Furthermore, for each z € D,

> Pz )(2) = P30 xr, | (2) = Plxel(z) = 1,
k=1 k=1
whence

[F(2)] <) lerl PX7](2) < ) PXp](2) = L.
k=1 k=1

By the definition of the function F' we have
F*(z) =Y aXr(z), z€T\E, (2.7)
k=1

where E is the set of all w € T such that u is an endpoint of a certain arc among the
arcs Ty, for k € Zy .

Assume that |F(zp)] = 1 for some zy € D. By the maximum modulus principle
for complex-valued harmonic functions (cf. [1, Corollary 1.11, p. 8]) there exists
w € T such that F(z) = w for z € D, and so F*(z) = w for z € T. By (2.7),
F*(z) =cy for k € Zy 5, and z € T}, \ E. Therefore w = ¢, € Dy, for k € Z; ,, and so
w € DN DyNDs = {0}. Hence w = 0, which contradicts the equality |w| = 1. Thus
F(z) <1for z € D, and so F' : D — D. Furthermore, from (2.7) it follows that for
all k € Z1, and z € Ty, \ E, F*(2) = ¢ € Dy. Thus F € N(T1,T5,...,T,), which
implies (2.6). O
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Theorem 2.3. For every compact set K C D there exist a sequence Zy ., > k
ck € Dy and zx € fr(K) such that

Fx =Y aPXp]eF (2.8)
k=1
and .
IF(2)] < |Fx(2x)] = ‘ch P[ka](zK)‘, FeF, zeKk. (2.9)
k=1
In particular,
max({|F(z)|: F e F,ze€ K}) = |Fk(zk)|. (2.10)
Proof. Fix a compact set K C D. Since F(K) C F(D) C D for F € F,
Mg :=sup({|F(z)|: Fe F,ze K}) <1. (2.11)
Hence, there exist sequences N> m — F,,, € F and N 2 m — z,, € K such that
ml_lgloo |F(2m)| = Mk (2.12)

From Lemma 2.1 it follows that for each m € N there exists a sequence Z; ,, 3 k
¢m,k € Dy, such that

n

F(2m) = Y €mx PX1 ) (2m).- (2.13)
k=1

Since the set Dy is compact for k € Z; , we see, using the standard technique of
choosing a convergent subsequence from a sequence in a compact set, that there
exists an increasing sequence N > [ — m; € N, a sequence Z; ,, > k +— ¢ € Dy and
25 € K such that

Cmyk = Cr asl—+4oo forkeZ, (2.14)

and
Zmy, — 25 as |l — +oo. (2.15)

By Lemma 2.2, the property (2.8) holds. From (2.13) we conclude that for every
m € N,

i (2m) = Fa(zm)| = |3 e PX] () = 3 et PP (2m)

k=1 k=1
< ler = mkl P (2m)
k=1

n
S Z |Ck: - Cm,k|7
k=1

which together with (2.14) leads to
lim |Fg(zm,) — Fm, (zm,)| = 0. (2.16)

l—+o00
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Since |cx| < 1 for k € Z; j, it follows that

|Fr(2k) — Fr(zm)| < ‘Z cr PX1 ) (2k) — D eu P[Xxy ) (2m)
< ekl - | PXp)(25) — PIXp, ] (2m)]
k=1

< 3 IPXg,)(z) — PXg)(z)l, me N,
k=1

This together with (2.15) yields
lim |Fg(2%) — Fk(zm,)| = 0. (2.17)

l—+o00

Since for every [ € N,

[Fx (2k) = Finy (2m))| < [Fr (2K) = Fr (2my)| + [F (2m,) = Finy (2,
we deduce from (2.17) and (2.16) that

m | Fp, (zm,)] = [Fic(25)].

l—+oo

Hence and by (2.12), |Fk (2} )| = Mk. Since Fx € Har(D), the maximum modulus
principle for complex-valued harmonic function (cf. [1, Corollary 1.11, p. 8]) implies
that there exists zx € fr(K) such that |Fk(z)| < |Fk(zk)| for z € K. In particular,
Mgk = |Fk(2k)| < |Fk(2k)|- On the other hand, by (2.8) and (2.11), |Fk(zx)| <
My . Eventually, |Fk(zx)| = Mg. This implies (2.10), and thereby, the inequality
(2.9) holds, which is the desired conclusion. O

3. Estimations

As an application of Theorem 2.3 we shall prove the following result.

Theorem 3.1. For every z € D the following inequality holds

[F(z)| <1—(n—=S8)p(z), FE€F, (3.1)
where
S = Sup({Re(ﬂ vk> u€e€T,Zin2k— v, € Dk}> (3.2)
and :
p(z) == min({P[X1,](2) : k € Z1 ,,}). (3.3)

Proof. 1t is clear that K := {2z} is a compact set for a given z € D. By Theorem 2.3
there exists a sequence Z1 ,, > k — ¢, € Dy, such that

Fr =Y cPXg]€F
k=1
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and
|F(2)| < |Fk(2)], FeF. (3.4)

Setting u := F(2)/|Fk(2)| if Fx(z) # 0 and u := 1 if Fg(2z) = 0, we see that u € T
and F(z) = u|Fk(2)|. Hence

|Fr(2)| = uFk(z) = Re(uFk (2 ( chpk) = ZRe(ﬂck)pk, (3.5)
k_
where py, := P[X1,|(2) for k € Z; ,,. Since
Zpk =1 and Re(ucy) < M :=max({Re(uc)) : 1 €Z1n}) <1, k€ Zin,

k=1
we deduce from the formula (3.3) that

ZRe ucy)pr = Z(Re(ﬂck) — M + M)pyg
k=1

= MZpk + Z(Re(ﬁck) — M)py,
k=1 —1

(|
||M§
¥ -1
lzs

|

:

’B

[ﬁ

z

Q

Q

=1—np(z —|—p(z)ZRe ucy,)-

This together with (3.5) and (3.2) yields

n

[F(2)| < 1—np(2) +p(2) Y Re(ticy)
k=1

<1 —np(z2) +p(2)S
=1—(n—9)p(z).
Hence and by (3.4) we obtain the estimation (3.1), which proves the theorem. [

The estimation (3.1) is useful provided we can estimate p(z) from below and S
from above. The first task is easy and depends on the following quantity

5 e %min({|Tk|1 ke Zin)). (3.6)
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Lemma 3.2. For every a € (0;m/2] the following estimation holds

P[X,.](2) > PX..](2]) = %arctan <Sm—m)) _Y LeD,

where I, := {e'' : [t — | < a}.

Proof. Given o € (0;7/2] we see that e; := el("=®) =

|z| + cos(a) s

(3.7)

—e 1% and g 1= i) = gl

are the endpoints of the arc I,. Let z € D be arbitrarily fixed. Since I, C €2, :=

C\{z+t:t> 0}, the function Q, > ¢ — log

ielt

d
&bg(z —e't) =

eit — 5’

(z — ¢) is holomorphic and

ter—ao;m+al.

Here we understand the function log as the inverse of the function exp|q, where

Q:={CeC:|Im(| <7} By (2.1) we have

P[X]a](z):—/X] u)Re

elt
= R
27T T—Q ¢
1 T+o
= — Re(

elt

1
21 Jo_q e

””|du|

+ 2z
—Z

dt

2it
ks —1>dt

t_— 2

1 T+o s A1t
=2 [ (a2
T Jre e —z ™

«

dt

™ —

1 T+ d ]
= — / Im — log(z — e')dt — e

™

— Ltz — ) ~ logl — ex)] - 2

Therefore, for an arbitrarily fixed r € [0; 1),

P[X; ](re'?) = - Im[log(re + e'*) — log(re'? + e7*)] — %, 6 € R.

Consequently,
d 1 irei? irei?
— PIx A — [ . — - — . }
de Xr(re”) — relf 4+ el pelf 4 o-ia
r [ iei@(_eia + e—ia) :|
T (7’619 + eloz)(rele + e—la)

_ 2rsin(a) Im[e'?(re ™ + e71)(re ¥ + 1))

- [rei? + oia|2[relf 1 o—ia|2
_ 2rsin(a) Im[r2e™ 4+ re™1@ 4 rel® 4+ eif]
= 76?1 cio2[reif 4 o—ia|2

27(1 — r?) sin(«) sin(6)

0 € R.

= 7|rei® + eie2[rei + e—ia |2’
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Combining this with (3.8) we derive the estimation (3.7), which proves the lemma. [
Corollary 3.3. The following estimation holds

sin(9)
|z| + cos(6)
where p(z) and § are defined by the formulas (3.3) and (3.6), respectively.

p(z) > PX5](|z]) = %arctan < ) — é, z €D, (3.9)

>

Proof. Let Zy,,, 2 k +— aj, € T be the sequence of midpoints of the partition Z; , >
kw— T, CT,ie.,

Ty := {age' : [t| < ap}, (3.10)
where o, 1= %|Tk|1 for k € Z; ,,. Hence and by (3.6) we obtain Is C I,, for k € Z1 ,,
where I, := {el' : |t — 7| < a} for a € (0;7]. Then applying the formula (2.1) we see
that for an arbitrarily fixed z € D,

PXp, J(12]) = PIX5](12]) + PIXr, 1] (12]) = PIX5](12]), K € Zo .

Therefore

min({P[Xz,, ]([z]) : k € Z1,n}) = PXg,](|2]), (3.11)
because § = ays for some k' € Zy,. Fix k € Z;,. Using the rotation mapping
Co¢w ) := —a,:lC we have ¢(Ty) = I,, . Then integrating by substitution we
deduce from the formula (2.1) that

PX7)(2) = PXy(1)[(0(2)) = P[Xy,, [(0(2))-

On the other hand, by Lemma 3.2,

PXr, J(#(2)) = PIXy, [(le(2)]) = PXy, ](]2])-
Thus
PX7,|(2) > P[Xy, 1(|2]), & € Zin.
Combining this with (3.3) and (3.11) we derive the estimation (3.9), which completes
the proof. O

A more difficult problem is to estimate from above the quantity S given by the
formula (3.2). It will be studied elsewhere. Now we present two examples.

Example 3.4. Suppose that Z;3 > k — T}, C T is a partition of T such that
|T1|1 = |T2]1 = |T5|1- As in the proof of [3, Theorem 2.1] we can show that S < 2.
Hence and by Theorem 3.1 we obtain

|F(2)] <1—p(z) =1—min({P[Xp](2) : k € Z13}), FeF,zecD. (3.12)
Corollary 3.3 now implies the estimation

V3

1+ 2|z|

cf. [3, Corollary 2.2]. Therefore, the estimation (3.12) is a directional type enhance-
ment of the radial one (3.13) for the class F.

4 2
|F(z)] < = — — arctan
3 7

), FeF, zeD (3.13)
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Example 3.5. Suppose that Z; , > k — T}, C T is a partition of T such that

A =max({|Tx|1 : k € Z1n}) < g (3.14)
Then
s
= — ) > 1. .
N Ent(zA) >1 (3.15)

Fix v € T and a sequence Zy , > k +— vy € Dj. There exist a bijective function o
of the set Z; ,, onto itself and an increasing sequence Z; , > k — «j, € R such that
an =27 + o, u € Ty(1) and
Tcr(k) = {eit o1 <t < Otk}, k € Zl,n-
Hence there exist 6 € [ag; 1] and a sequence Zj ,, 3 k — (rg,0;) € [0;1] x R such
that u = €', vy, = rpel% for k € 24y and
a1 < Hg(k) <ap, k&Zin,. (3.16)
Since for each k € Z1 ,,,
Re(uv) = Re (rkeie’“e_ig) = Re (Tkei(ek_0)> = 11 cos(f — 0),
we conclude that
Re(uvy) < max({0, cos(6x — 0)}), k € Zqn. (3.17)
From (3.14) it follows that
J

aj—o;= Y (—o1) < (G—DA, i,j€Lop,i<j. (3.18)
l=i+1

Setting
3

> +6)

p:=min({k € Z1 ,, : oy > g +6}) and ¢:=max({k € Z1, :ar <
we conclude from (3.15) and (3.18) that
NAgggap—HSap—ao < pA
as well as
NAS%:aq—l—g—aq<27r+9—aqSan—aq—l—al—aog(n—q—!—l)A.

Therefore N < p and ¢+ N < n. Given k € Z; ,, the following four cases can appear.
If p+1— N <k <p then by (3.16) and (3.18),

g+0—90(k)gap—ak_lg(p+1—k)A§NA§

o]

as well as

g+9_‘90(k)>ap—l_ap2_A2__
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which gives
cos(Og )y — 0) = sin(m/2 + 0 — 0,(1y) <sin((p+1—k)A).
Hence and by (3.17) we obtain
Re(@v,(ry) <sin((p+1—-Fk)A), k€ Zpy1i-np. (3.19)
If p+1 <k < q then by (3.16),
g+9§ak_1 <Oy < o < 3§+9,

and so cos(0y(x) — ) < 0. This together with (3.17) leads to

Re(gky) <0, k€ Zpy1q. (3.20)
If g+1 <k <q+ N then by (3.16) and (3.18),
37 37

Ha(k)—E—QSak—7—9<ak—aqS(k—q)ASNAg

VS

as well as

3T s
ea(k)_7_02aq_aq+1 Z_AZ_Ea

and consequently,
cos(0g (k) — 0) = sin(Oy )y — 37/2 — 0) < sin((k — q)A).
Hence and by (3.17) we obtain
Re(uvg (k) <sin((k —q)A), k€ Zgy1,4+N- (3.21)

If1<k<p—Norq+N+1<k<n,then clearly Re(@v,)) < 1. Combining this
with (3.19), (3.20) and (3.21) we see that

n D q+N
> Re(gm) < Y, sin((p+1-k)A)+ Y sin((k—q)A) (3.22)
k=1 k=p+1-N k=q+1
+(P—-N)+(n—q—N)
= QZsin(ij) +n—2N — (q — p).
k=1

Since ™ < agr1 — ap—1 < (¢ —p+ 2)A, we deduce from (3.15) that 2N <g—p+1.
Combining this with (3.22) we get

n N
Z Re(uvg(ry) < 2 Z sin(kA)+n—2N — (2N — 1)
k=1 k=1
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Hence and by (3.2),

Theorem 3.1 now shows that

(N+1)AY - (NA
2 )Asm( 2 )>p(z), FeF,2eD, (3.23)
Sln(§>

sin (

F(z)] <1— <4N—1—2

where N and p(z) are defined by (3.15) and (3.3), respectively. Applying now Corol-
lary 3.3 we derive from (3.23) the following estimation of radial type

sin (YDA gip (NA
|F<z>|s1—<4N—1—2 ( ;n()é) = )>P[><151<|z|>,

FeF,zeD, (3.24)
where 0 is given by the formula (3.6).
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Presented by Zbigniew Jakubowski at the Session of the Mathematical-Physical Com-
mission of the L6dz Society of Sciences and Arts on April 16, 2018.

NIEROWNOSCI TYPU SCHWARZA DLA FUNKCJI
HARMONICZNYCH W KOLE JEDNOSTKOWYM
SPELNIAJACYCH PEWIEN WARUNEK SEKTOROWY

Streszczenie

Niech T1, T5 i T3 beda lukami domknietymi, zawartymi w okregu jednostkowym T, o
tej samej dlugosci 27/3 1 pokrywajacymi T. W pracy [3] D. Partyka and J. Zajac otrzymali
dokladne oszacowanie modutu |F'(z)| dla z € D, gdzie D jest kolem jednostkowym, zas F jest
funkcja harmoniczna o wartosciach zespolonych kota D w siebie, spelniajacych nastepujacy
warunek sektorowy: dla kazdego k € {1,2,3} i prawie kazdego z € T} granica radialna
funkcji F' w punkcie z nalezy do sektora katowego bedacego otoczka wypukta zbioru {0} U
Tr. W tym artykule rozwazamy ogdlniejszy przypadek, gdzie trzy tuki sa zastapione przez
skoniczony uklad tukéw domknietych Ti,T%,...,T, zawartych w T, o dodatniej dtugoéci,
catkowitej dlugosci 27 i pokrywajacych T.

Stowa kluczowe: calka Poissona, funkcje harmoniczne, lemat Schwarza, odwzorowania har-

moniczne






