B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ
2018
Vol. LXVIII

Recherches sur les déformations
no. 2
pp. 95-108
In memory of Professor Yurii Zelinskii

Anna Futa and Dariusz Partyka

THE SCHWARZ TYPE INEQUALITY FOR HARMONIC FUNCTIONS OF THE UNIT DISC SATISFYING
 A SECTORIAL CONDITION

Summary

Let T_{1}, T_{2} and T_{3} be closed arcs contained in the unit circle \mathbb{T} with the same length $2 \pi / 3$ and covering \mathbb{T}. In the paper [3] D. Partyka and J. Zajacc obtained the sharp estimation of the module $|F(z)|$ for $z \in \mathbb{D}$ where \mathbb{D} is the unit disc and F is a complex-valued harmonic function of \mathbb{D} into itself satisfying the following sectorial condition: For each $k \in\{1,2,3\}$ and for almost every $z \in T_{k}$ the radial limit of the function F at the point z belongs to the angular sector determined by the convex hull spanned by the origin and arc T_{k}. In this article a more general situation is considered where the three arcs are replaced by a finite collection $T_{1}, T_{2}, \ldots, T_{n}$ of closed arcs contained in \mathbb{T} with positive length, total length 2π and covering \mathbb{T}.

Keywords and phrases: harmonic functions, Harmonic mappings, Poisson integral, Schwarz Lemma

1. Introduction

Throughout the paper we always assume that all topological notions and operations are understood in the complex plane $\mathrm{E}(\mathbb{C}):=\left(\mathbb{C}, \rho_{e}\right)$, where ρ_{e} is the standard euclidean metric. We will use the notations $\operatorname{cl}(A)$ and $\operatorname{fr}(A)$ for the closure and boundary of a set $A \subset \mathbb{C}$ in $\mathrm{E}(\mathbb{C})$, respectively. $\operatorname{By} \operatorname{Har}(\Omega)$ we denote the class of all complex-valued harmonic functions in a domain Ω, i.e., the class of all twice
continuously differentiable functions F in Ω satisfying the Laplace equation

$$
\frac{\partial^{2} F(z)}{\partial x^{2}}+\frac{\partial^{2} F(z)}{\partial y^{2}}=0, \quad z=x+\mathrm{i} y \in \Omega
$$

The sets $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ and $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ are the unit disc and unit circle, respectively. The standard measure of a Lebesgue measurable set $A \subset \mathbb{T}$ will be denoted by $|A|_{1}$. In particular, if A is an arc then $|A|_{1}$ means its length. Set $\mathbb{Z}_{p, q}:=\{k \in \mathbb{Z}: p \leq k \leq q\}$ for any $p, q \in \mathbb{Z}$.

Definition 1.1. For every $n \in \mathbb{N}$ a sequence $\mathbb{Z}_{1, n} \ni k \mapsto T_{k} \subset \mathbb{T}$ is said to be a partition of the unit circle provided T_{k} is a closed arc of length $\left|T_{k}\right|_{1}>0$ for $k \in \mathbb{Z}_{1, n}$ as well as

$$
\begin{equation*}
\bigcup_{k=1}^{n} T_{k}=\mathbb{T} \quad \text { and } \quad \sum_{k=1}^{n}\left|T_{k}\right|_{1}=2 \pi \tag{1.1}
\end{equation*}
$$

For any function $F: \mathbb{D} \rightarrow \mathbb{C}$ and $z \in \mathbb{T}$ we define the set $F^{* *}(z)$ of all $w \in \mathbb{C}$ such that there exists a sequence $\mathbb{N} \ni n \mapsto r_{n} \in[0 ; 1)$ satisfying the equalities

$$
\lim _{n \rightarrow+\infty} r_{n}=1 \quad \text { and } \quad \lim _{n \rightarrow+\infty} F\left(r_{n} z\right)=w
$$

Definition 1.2. By the sectorial boundary normalization given by a partition $\mathbb{Z}_{1, n} \ni$ $k \mapsto T_{k} \subset \mathbb{T}$ of the unit circle we mean the class $\mathcal{N}\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ of all functions $F: \mathbb{D} \rightarrow \mathbb{D}$ such that for every $k \in \mathbb{Z}_{1, n}$ and almost every (a.e. in abbr.) $z \in T_{k}$,

$$
\begin{equation*}
F^{* *}(z) \subset D_{k}:=\left\{r u: 0 \leq r \leq 1, u \in T_{k}\right\}=\operatorname{conv}\left(T_{k} \cup\{0\}\right) \tag{1.2}
\end{equation*}
$$

Given $n \in \mathbb{N}$ and a partition $\mathbb{Z}_{1, n} \ni k \mapsto T_{k} \subset \mathbb{T}$ of the unit circle we will study the Schwarz type inequality for the class

$$
\mathcal{F}:=\operatorname{Har}(\mathbb{D}) \cap \mathcal{N}\left(T_{1}, T_{2}, \ldots, T_{n}\right) .
$$

If $n \leq 2$ then we have a trivial sharp estimation $|F(z)| \leq 1$ for $F \in \mathcal{F}$ and $z \in \mathbb{D}$, where the equality is attained for a constant function. Therefore, from now on we always assume that $n \geq 3$.

In Section 2 we prove a few useful properties of the class \mathcal{F}. Most essential here is Theorem 2.3. We use it to show in Section 3 Theorem 3.1, which is our main result. Then we apply the last theorem in specific cases; cf. Examples 3.4 and 3.5. In particular, we derive the estimation (3.13), obtained by D. Partyka and J. Zajạc in [3, Corollary 2.2]. Thus the estimation (3.1), valid for an arbitrary partition of \mathbb{T}, generalizes the one (3.13), which holds only in the case where $n=3$ and the $\operatorname{arcs} T_{1}, T_{2}$ and T_{3} have the same length. Note that the estimation (3.12) is a directional improvement of the radial one (3.13). In Example 3.5 we study a general case of an arbitrary partition of the unit circle. As a result, we derive reasonable estimations (3.23) and (3.24), which depend on the largest length among the ones $\left|T_{k}\right|_{1}$ for $k \in \mathbb{Z}_{1, n}$.

2. Auxiliary results

Let $\mathrm{P}[f]$ stand for the Poisson integral of an integrable function $f: \mathbb{T} \rightarrow \mathbb{C}$, i.e., $\mathrm{P}[f]: \mathbb{D} \rightarrow \mathbb{C}$ is the function given by the following formula

$$
\begin{equation*}
\mathrm{P}[f](z):=\frac{1}{2 \pi} \int_{\mathbb{T}} f(u) \frac{1-|z|^{2}}{|u-z|^{2}}|\mathrm{~d} u|=\frac{1}{2 \pi} \int_{\mathbb{T}} f(u) \operatorname{Re} \frac{u+z}{u-z}|\mathrm{~d} u|, z \in \mathbb{D} . \tag{2.1}
\end{equation*}
$$

The Poisson integral provides the unique solution to the Dirichlet problem in the unit disc \mathbb{D} provided that the boundary function f is continuous. It means that $\mathrm{P}[f]$ is a harmonic function in \mathbb{D}, which has a continuous extension to the closed disc $\operatorname{cl}(\mathbb{D})$ and its boundary values function coincides with f. For any function $F: \mathbb{D} \rightarrow \mathbb{C}$ we define the radial limit function of F by the formula

$$
\mathbb{T} \ni z \mapsto F^{*}(z):= \begin{cases}\lim _{r \rightarrow 1^{-}} F(r z), & \text { if the limit exists } \\ 0, & \text { otherwise }\end{cases}
$$

Since a real-valued harmonic and bounded function in \mathbb{D} has the radial limit for a.e. point of \mathbb{T} (see e.g. [2, Cor. 1, Sect. 1.2]), it follows that $F^{*}=(\operatorname{Re} F)^{*}+\mathrm{i}(\operatorname{Im} F)^{*}$ almost everywhere on \mathbb{T} provided $F \in \operatorname{Har}(\mathbb{D})$ is bounded in \mathbb{D}. Therefore,

$$
\begin{equation*}
F^{* *}(z)=\left\{F^{*}(z)\right\} \quad \text { for every } F \in \mathcal{F} \text { and a.e. } z \in \mathbb{T} \text {. } \tag{2.2}
\end{equation*}
$$

In particular, for each function $F: \mathbb{D} \rightarrow \mathbb{D}, F \in \mathcal{F}$ if and only if $F \in \operatorname{Har}(\mathbb{D})$ and $F^{*}(z) \in D_{k}$ for $k \in \mathbb{Z}_{1, n}$ and a.e. $z \in T_{k}$. From the property (2.2) it follows that for each $F \in \mathcal{F}$ the sequence $\mathbb{N} \ni m \mapsto f_{m}$, where

$$
\mathbb{T} \ni u \mapsto f_{m}(u):=F\left(\left(1-\frac{1}{m}\right) u\right), \quad m \in \mathbb{N}
$$

is convergent to F^{*} almost everywhere on \mathbb{T}. Then applying the dominated convergence theorem we see that for every $z \in \mathbb{D}$,

$$
F\left(\left(1-\frac{1}{m}\right) z\right)=\mathrm{P}\left[f_{m}\right](z) \rightarrow \mathrm{P}\left[F^{*}\right](z) \quad \text { as } m \rightarrow+\infty
$$

which yields

$$
\begin{equation*}
F=\mathrm{P}\left[F^{*}\right], \quad F \in \mathcal{F} \tag{2.3}
\end{equation*}
$$

Let χ_{I} be the characteristic function of a set $I \in \mathbb{T}$, i.e., $\chi_{I}(t):=1$ for $t \in I$ and $\chi_{I}(t):=0$ for $t \in \mathbb{T} \backslash I$.

Lemma 2.1. For all $F \in \mathcal{F}$ and $z \in \mathbb{D}$ there exists a sequence $\mathbb{Z}_{1, n} \ni k \mapsto c_{k} \in D_{k}$ such that the following equality holds

$$
\begin{equation*}
F(z)=\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right](z) \tag{2.4}
\end{equation*}
$$

Proof. Fix $F \in \mathcal{F}$ and $z \in \mathbb{D}$. Since $\left|T_{k}\right|_{1}>0$ for $k \in \mathbb{Z}_{1, n}$, it follows that

$$
\begin{equation*}
0<p_{k}:=\mathrm{P}\left[\chi_{T_{k}}\right](z)<1, \quad k \in \mathbb{Z}_{1, n} \tag{2.5}
\end{equation*}
$$

By (1.2) each sector $D_{k}, k \in \mathbb{Z}_{1, n}$, is closed and convex. Moreover, from (1.2) and (2.2) we see that $F^{*}(z) \in D_{k}$ for $k \in \mathbb{Z}_{1, n}$ and a.e. $z \in T_{k}$. Then applying the integral mean value theorem for complex-valued functions we deduce from (2.5) that

$$
c_{k}:=P\left[\frac{1}{p_{k}} \cdot F^{*} \cdot \chi_{T_{k}}\right](z) \in D_{k}, \quad k \in \mathbb{Z}_{1, n}
$$

Hence and by (2.3),

$$
\begin{aligned}
F(z)=\mathrm{P}\left[F^{*}\right](z)=\mathrm{P}\left[\sum_{k=1}^{n} F^{*} \cdot \chi_{T_{k}}\right](z) & =\sum_{k=1}^{n} \mathrm{P}\left[F^{*} \cdot \chi_{T_{k}}\right](z) \\
& =\sum_{k=1}^{n} p_{k} \mathrm{P}\left[\frac{1}{p_{k}} \cdot F^{*} \cdot \chi_{T_{k}}\right](z)=\sum_{k=1}^{n} p_{k} c_{k}
\end{aligned}
$$

which implies the equality (2.4).
Lemma 2.2. For every sequence $\mathbb{Z}_{1, n} \ni k \mapsto c_{k} \in D_{k}$,

$$
\begin{equation*}
F:=\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right] \in \mathcal{F} \tag{2.6}
\end{equation*}
$$

Proof. Given a sequence $\mathbb{Z}_{1, n} \ni k \mapsto c_{k} \in D_{k}$ consider the function F defined by the formula (2.6). Since $\mathrm{P}\left[\chi_{T_{k}}\right] \in \operatorname{Har}(\mathbb{D})$ for $k \in \mathbb{Z}_{1, n}$, we see that $F \in \operatorname{Har}(\mathbb{D})$. Furthermore, for each $z \in \mathbb{D}$,

$$
\sum_{k=1}^{n} \mathrm{P}\left[\chi_{T_{k}}\right](z)=\mathrm{P}\left[\sum_{k=1}^{n} \chi_{T_{k}}\right](z)=\mathrm{P}\left[\chi_{\mathbb{T}}\right](z)=1
$$

whence

$$
|F(z)| \leq \sum_{k=1}^{n}\left|c_{k}\right| \mathrm{P}\left[\chi_{T_{k}}\right](z) \leq \sum_{k=1}^{n} \mathrm{P}\left[\chi_{T_{k}}\right](z)=1
$$

By the definition of the function F we have

$$
\begin{equation*}
F^{*}(z)=\sum_{k=1}^{n} c_{k} \chi_{T_{k}}(z), \quad z \in \mathbb{T} \backslash E \tag{2.7}
\end{equation*}
$$

where E is the set of all $u \in \mathbb{T}$ such that u is an endpoint of a certain arc among the $\operatorname{arcs} T_{k}$ for $k \in \mathbb{Z}_{1, n}$.
Assume that $\left|F\left(z_{0}\right)\right|=1$ for some $z_{0} \in \mathbb{D}$. By the maximum modulus principle for complex-valued harmonic functions (cf. [1, Corollary 1.11, p. 8]) there exists $w \in \mathbb{T}$ such that $F(z)=w$ for $z \in \mathbb{D}$, and so $F^{*}(z)=w$ for $z \in \mathbb{T}$. By (2.7), $F^{*}(z)=c_{k}$ for $k \in \mathbb{Z}_{1, n}$ and $z \in T_{k} \backslash E$. Therefore $w=c_{k} \in D_{k}$ for $k \in \mathbb{Z}_{1, n}$, and so $w \in D_{1} \cap D_{2} \cap D_{3}=\{0\}$. Hence $w=0$, which contradicts the equality $|w|=1$. Thus $F(z)<1$ for $z \in \mathbb{D}$, and so $F: \mathbb{D} \rightarrow \mathbb{D}$. Furthermore, from (2.7) it follows that for all $k \in \mathbb{Z}_{1, n}$ and $z \in T_{k} \backslash E, F^{*}(z)=c_{k} \in D_{k}$. Thus $F \in \mathcal{N}\left(T_{1}, T_{2}, \ldots, T_{n}\right)$, which implies (2.6).

Theorem 2.3. For every compact set $K \subset \mathbb{D}$ there exist a sequence $\mathbb{Z}_{1, n} \ni k \mapsto$ $c_{k} \in D_{k}$ and $z_{K} \in \operatorname{fr}(K)$ such that

$$
\begin{equation*}
F_{K}:=\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right] \in \mathcal{F} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
|F(z)| \leq\left|F_{K}\left(z_{K}\right)\right|=\left|\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{K}\right)\right|, \quad F \in \mathcal{F}, z \in K \tag{2.9}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\max (\{|F(z)|: F \in \mathcal{F}, z \in K\})=\left|F_{K}\left(z_{K}\right)\right| . \tag{2.10}
\end{equation*}
$$

Proof. Fix a compact set $K \subset \mathbb{D}$. Since $F(K) \subset F(\mathbb{D}) \subset \mathbb{D}$ for $F \in \mathcal{F}$,

$$
\begin{equation*}
M_{K}:=\sup (\{|F(z)|: F \in \mathcal{F}, z \in K\}) \leq 1 \tag{2.11}
\end{equation*}
$$

Hence, there exist sequences $\mathbb{N} \ni m \mapsto F_{m} \in \mathcal{F}$ and $\mathbb{N} \ni m \mapsto z_{m} \in K$ such that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty}\left|F_{m}\left(z_{m}\right)\right|=M_{K} \tag{2.12}
\end{equation*}
$$

From Lemma 2.1 it follows that for each $m \in \mathbb{N}$ there exists a sequence $\mathbb{Z}_{1, n} \ni k \mapsto$ $c_{m, k} \in D_{k}$ such that

$$
\begin{equation*}
F_{m}\left(z_{m}\right)=\sum_{k=1}^{n} c_{m, k} \mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{m}\right) \tag{2.13}
\end{equation*}
$$

Since the set D_{k} is compact for $k \in \mathbb{Z}_{1, n}$ we see, using the standard technique of choosing a convergent subsequence from a sequence in a compact set, that there exists an increasing sequence $\mathbb{N} \ni l \mapsto m_{l} \in \mathbb{N}$, a sequence $\mathbb{Z}_{1, n} \ni k \mapsto c_{k} \in D_{k}$ and $z_{K}^{\prime} \in K$ such that

$$
\begin{equation*}
c_{m_{l}, k} \rightarrow c_{k} \quad \text { as } l \rightarrow+\infty \quad \text { for } k \in \mathbb{Z}_{1, n} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{m_{l}} \rightarrow z_{K}^{\prime} \quad \text { as } l \rightarrow+\infty . \tag{2.15}
\end{equation*}
$$

By Lemma 2.2, the property (2.8) holds. From (2.13) we conclude that for every $m \in \mathbb{N}$,

$$
\begin{aligned}
\left|F_{K}\left(z_{m}\right)-F_{m}\left(z_{m}\right)\right| & =\left|\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{m}\right)-\sum_{k=1}^{n} c_{m, k} \mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{m}\right)\right| \\
& \leq \sum_{k=1}^{n}\left|c_{k}-c_{m, k}\right| \mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{m}\right) \\
& \leq \sum_{k=1}^{n}\left|c_{k}-c_{m, k}\right|
\end{aligned}
$$

which together with (2.14) leads to

$$
\begin{equation*}
\lim _{l \rightarrow+\infty}\left|F_{K}\left(z_{m_{l}}\right)-F_{m_{l}}\left(z_{m_{l}}\right)\right|=0 \tag{2.16}
\end{equation*}
$$

Since $\left|c_{k}\right| \leq 1$ for $k \in \mathbb{Z}_{1, n}$, it follows that

$$
\begin{aligned}
\left|F_{K}\left(z_{K}^{\prime}\right)-F_{K}\left(z_{m}\right)\right| & \leq\left|\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{K}^{\prime}\right)-\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{m}\right)\right| \\
& \leq \sum_{k=1}^{n}\left|c_{k}\right| \cdot\left|\mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{K}^{\prime}\right)-\mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{m}\right)\right| \\
& \leq \sum_{k=1}^{n}\left|\mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{K}^{\prime}\right)-\mathrm{P}\left[\chi_{T_{k}}\right]\left(z_{m}\right)\right|, \quad m \in \mathbb{N}
\end{aligned}
$$

This together with (2.15) yields

$$
\begin{equation*}
\lim _{l \rightarrow+\infty}\left|F_{K}\left(z_{K}^{\prime}\right)-F_{K}\left(z_{m_{l}}\right)\right|=0 \tag{2.17}
\end{equation*}
$$

Since for every $l \in \mathbb{N}$,

$$
\left|F_{K}\left(z_{K}^{\prime}\right)-F_{m_{l}}\left(z_{m_{l}}\right)\right| \leq\left|F_{K}\left(z_{K}^{\prime}\right)-F_{K}\left(z_{m_{l}}\right)\right|+\left|F_{K}\left(z_{m_{l}}\right)-F_{m_{l}}\left(z_{m_{l}}\right)\right|,
$$

we deduce from (2.17) and (2.16) that

$$
\lim _{l \rightarrow+\infty}\left|F_{m_{l}}\left(z_{m_{l}}\right)\right|=\left|F_{K}\left(z_{K}^{\prime}\right)\right|
$$

Hence and by (2.12), $\left|F_{K}\left(z_{K}^{\prime}\right)\right|=M_{K}$. Since $F_{K} \in \operatorname{Har}(\mathbb{D})$, the maximum modulus principle for complex-valued harmonic function (cf. [1, Corollary 1.11, p. 8]) implies that there exists $z_{K} \in \operatorname{fr}(K)$ such that $\left|F_{K}(z)\right| \leq\left|F_{K}\left(z_{K}\right)\right|$ for $z \in K$. In particular, $M_{K}=\left|F_{K}\left(z_{K}^{\prime}\right)\right| \leq\left|F_{K}\left(z_{K}\right)\right|$. On the other hand, by (2.8) and (2.11), $\left|F_{K}\left(z_{K}\right)\right| \leq$ M_{K}. Eventually, $\left|F_{K}\left(z_{K}\right)\right|=M_{K}$. This implies (2.10), and thereby, the inequality (2.9) holds, which is the desired conclusion.

3. Estimations

As an application of Theorem 2.3 we shall prove the following result.
Theorem 3.1. For every $z \in \mathbb{D}$ the following inequality holds

$$
\begin{equation*}
|F(z)| \leq 1-(n-S) p(z), \quad F \in \mathcal{F} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S:=\sup \left(\left\{\operatorname{Re}\left(\bar{u} \sum_{k=1}^{n} v_{k}\right): u \in \mathbb{T}, \mathbb{Z}_{1, n} \ni k \mapsto v_{k} \in D_{k}\right\}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
p(z):=\min \left(\left\{\mathrm{P}\left[\chi_{T_{k}}\right](z): k \in \mathbb{Z}_{1, n}\right\}\right) \tag{3.3}
\end{equation*}
$$

Proof. It is clear that $K:=\{z\}$ is a compact set for a given $z \in \mathbb{D}$. By Theorem 2.3 there exists a sequence $\mathbb{Z}_{1, n} \ni k \mapsto c_{k} \in D_{k}$ such that

$$
F_{K}:=\sum_{k=1}^{n} c_{k} \mathrm{P}\left[\chi_{T_{k}}\right] \in \mathcal{F}
$$

and

$$
\begin{equation*}
|F(z)| \leq\left|F_{K}(z)\right|, \quad F \in \mathcal{F} \tag{3.4}
\end{equation*}
$$

Setting $u:=F_{K}(z) /\left|F_{K}(z)\right|$ if $F_{K}(z) \neq 0$ and $u:=1$ if $F_{K}(z)=0$, we see that $u \in \mathbb{T}$ and $F_{K}(z)=u\left|F_{K}(z)\right|$. Hence

$$
\begin{equation*}
\left|F_{K}(z)\right|=\bar{u} F_{K}(z)=\operatorname{Re}\left(\bar{u} F_{K}(z)\right)=\operatorname{Re}\left(\bar{u} \sum_{k=1}^{n} c_{k} p_{k}\right)=\sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} c_{k}\right) p_{k} \tag{3.5}
\end{equation*}
$$

where $p_{k}:=\mathrm{P}\left[\chi_{T_{k}}\right](z)$ for $k \in \mathbb{Z}_{1, n}$. Since

$$
\sum_{k=1}^{n} p_{k}=1 \quad \text { and } \quad \operatorname{Re}\left(\bar{u} c_{k}\right) \leq M:=\max \left(\left\{\operatorname{Re}\left(\bar{u} c_{l}\right): l \in \mathbb{Z}_{1, n}\right\}\right) \leq 1, \quad k \in \mathbb{Z}_{1, n}
$$

we deduce from the formula (3.3) that

$$
\begin{aligned}
\sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} c_{k}\right) p_{k} & =\sum_{k=1}^{n}\left(\operatorname{Re}\left(\bar{u} c_{k}\right)-M+M\right) p_{k} \\
& =M \sum_{k=1}^{n} p_{k}+\sum_{k=1}^{n}\left(\operatorname{Re}\left(\bar{u} c_{k}\right)-M\right) p_{k} \\
& \leq M \sum_{k=1}^{n} p_{k}+\sum_{k=1}^{n}\left(\operatorname{Re}\left(\bar{u} c_{k}\right)-M\right) p(z) \\
& =M \sum_{k=1}^{n}\left(p_{k}-p(z)\right)+p(z) \sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} c_{k}\right) \\
& \leq \sum_{k=1}^{n}\left(p_{k}-p(z)\right)+p(z) \sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} c_{k}\right) \\
& =1-n p(z)+p(z) \sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} c_{k}\right) .
\end{aligned}
$$

This together with (3.5) and (3.2) yields

$$
\begin{aligned}
\left|F_{K}(z)\right| & \leq 1-n p(z)+p(z) \sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} c_{k}\right) \\
& \leq 1-n p(z)+p(z) S \\
& =1-(n-S) p(z)
\end{aligned}
$$

Hence and by (3.4) we obtain the estimation (3.1), which proves the theorem.
The estimation (3.1) is useful provided we can estimate $p(z)$ from below and S from above. The first task is easy and depends on the following quantity

$$
\begin{equation*}
\delta:=\frac{1}{2} \min \left(\left\{\left|T_{k}\right|_{1}: k \in \mathbb{Z}_{1, n}\right\}\right) . \tag{3.6}
\end{equation*}
$$

Lemma 3.2. For every $\alpha \in(0 ; \pi / 2]$ the following estimation holds

$$
\begin{equation*}
\mathrm{P}\left[\chi_{I_{\alpha}}\right](z) \geq \mathrm{P}\left[\chi_{I_{\alpha}}\right](|z|)=\frac{2}{\pi} \arctan \left(\frac{\sin (\alpha)}{|z|+\cos (\alpha)}\right)-\frac{\alpha}{\pi}, \quad z \in \mathbb{D} \tag{3.7}
\end{equation*}
$$

where $I_{\alpha}:=\left\{\mathrm{e}^{\mathrm{i} t}:|t-\pi| \leq \alpha\right\}$.
Proof. Given $\alpha \in(0 ; \pi / 2]$ we see that $e_{1}:=\mathrm{e}^{\mathrm{i}(\pi-\alpha)}=-\mathrm{e}^{-\mathrm{i} \alpha}$ and $e_{2}:=\mathrm{e}^{\mathrm{i}(\pi+\alpha)}=-\mathrm{e}^{\mathrm{i} \alpha}$ are the endpoints of the arc I_{α}. Let $z \in \mathbb{D}$ be arbitrarily fixed. Since $I_{\alpha} \subset \Omega_{z}:=$ $\mathbb{C} \backslash\{z+t: t>0\}$, the function $\Omega_{z} \ni \zeta \mapsto \log (z-\zeta)$ is holomorphic and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \log \left(z-\mathrm{e}^{\mathrm{i} t}\right)=\frac{\mathrm{ie}^{\mathrm{i} t}}{\mathrm{e}^{\mathrm{i} t}-z}, \quad t \in[\pi-\alpha ; \pi+\alpha] .
$$

Here we understand the function \log as the inverse of the function $\exp _{\mid \Omega}$, where $\Omega:=\{\zeta \in \mathbb{C}:|\operatorname{Im} \zeta|<\pi\}$. By (2.1) we have

$$
\begin{aligned}
\mathrm{P}\left[\chi_{I_{\alpha}}\right](z) & =\frac{1}{2 \pi} \int_{\mathbb{T}} \chi_{I_{\alpha}}(u) \operatorname{Re} \frac{u+z}{u-z}|\mathrm{~d} u| \\
& =\frac{1}{2 \pi} \int_{\pi-\alpha}^{\pi+\alpha} \operatorname{Re} \frac{\mathrm{e}^{\mathrm{i} t}+z}{\mathrm{e}^{\mathrm{i} t}-z} \mathrm{~d} t \\
& =\frac{1}{2 \pi} \int_{\pi-\alpha}^{\pi+\alpha} \operatorname{Re}\left(\frac{2 \mathrm{e}^{\mathrm{i} t}}{\mathrm{e}^{\mathrm{i} t}-z}-1\right) \mathrm{d} t \\
& =\frac{1}{\pi} \int_{\pi-\alpha}^{\pi+\alpha} \operatorname{Im}\left(\frac{\mathrm{ie}^{\mathrm{i} t}}{\mathrm{e}^{\mathrm{i} t}-z}\right) \mathrm{d} t-\frac{\alpha}{\pi} \\
& =\frac{1}{\pi} \int_{\pi-\alpha}^{\pi+\alpha} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{~d} t} \log \left(z-\mathrm{e}^{\mathrm{i} t}\right) \mathrm{d} t-\frac{\alpha}{\pi} \\
& =\frac{1}{\pi} \operatorname{Im}\left[\log \left(z-e_{2}\right)-\log \left(z-e_{1}\right)\right]-\frac{\alpha}{\pi} .
\end{aligned}
$$

Therefore, for an arbitrarily fixed $r \in[0 ; 1)$,

$$
\begin{equation*}
\mathrm{P}\left[\chi_{I_{\alpha}}\right]\left(r \mathrm{e}^{\mathrm{i} \theta}\right)=\frac{1}{\pi} \operatorname{Im}\left[\log \left(r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \alpha}\right)-\log \left(r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \alpha}\right)\right]-\frac{\alpha}{\pi}, \quad \theta \in \mathbb{R} \tag{3.8}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \theta} \mathrm{P}\left[\chi_{I_{\alpha}}\right]\left(r \mathrm{e}^{\mathrm{i} \theta}\right) & =\frac{1}{\pi} \operatorname{Im}\left[\frac{\mathrm{i} r \mathrm{e}^{\mathrm{i} \theta}}{r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \alpha}}-\frac{\mathrm{i} r \mathrm{e}^{\mathrm{i} \theta}}{r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \alpha}}\right] \\
& =\frac{r}{\pi} \operatorname{Im}\left[\frac{\mathrm{ee}^{\mathrm{i} \theta}\left(-\mathrm{e}^{\mathrm{i} \alpha}+\mathrm{e}^{-\mathrm{i} \alpha}\right)}{\left(r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \alpha}\right)\left(r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \alpha}\right)}\right] \\
& =\frac{2 r \sin (\alpha)}{\pi} \frac{\operatorname{Im}\left[\mathrm{e}^{\mathrm{i} \theta}\left(r \mathrm{e}^{-\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \alpha}\right)\left(r \mathrm{e}^{-\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \alpha}\right)\right]}{\left|r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \alpha}\right|^{2}\left|r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \alpha}\right|^{2}} \\
& =\frac{2 r \sin (\alpha)}{\pi} \frac{\operatorname{Im}\left[r^{2} \mathrm{e}^{-\mathrm{i} \theta}+r \mathrm{e}^{-\mathrm{i} \alpha}+r \mathrm{e}^{\mathrm{i} \alpha}+\mathrm{e}^{\mathrm{i} \theta}\right]}{\left|r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \alpha}\right|^{2}\left|r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \alpha}\right|^{2}} \\
& =\frac{2 r\left(1-r^{2}\right) \sin (\alpha) \sin (\theta)}{\pi\left|r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \alpha}\right|^{2}\left|r \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \alpha}\right|^{2}}, \quad \theta \in \mathbb{R} .
\end{aligned}
$$

Combining this with (3.8) we derive the estimation (3.7), which proves the lemma.
Corollary 3.3. The following estimation holds

$$
\begin{equation*}
p(z) \geq \mathrm{P}\left[\chi_{I_{\delta}}\right](|z|)=\frac{2}{\pi} \arctan \left(\frac{\sin (\delta)}{|z|+\cos (\delta)}\right)-\frac{\delta}{\pi}, \quad z \in \mathbb{D}, \tag{3.9}
\end{equation*}
$$

where $p(z)$ and δ are defined by the formulas (3.3) and (3.6), respectively.
Proof. Let $\mathbb{Z}_{1, n} \ni k \mapsto a_{k} \in \mathbb{T}$ be the sequence of midpoints of the partition $\mathbb{Z}_{1, n} \ni$ $k \mapsto T_{k} \subset \mathbb{T}$, i.e.,

$$
\begin{equation*}
T_{k}:=\left\{a_{k} \mathrm{e}^{\mathrm{i} t}:|t| \leq \alpha_{k}\right\} \tag{3.10}
\end{equation*}
$$

where $\alpha_{k}:=\frac{1}{2}\left|T_{k}\right|_{1}$ for $k \in \mathbb{Z}_{1, n}$. Hence and by (3.6) we obtain $I_{\delta} \subset I_{\alpha_{k}}$ for $k \in \mathbb{Z}_{1, n}$, where $I_{\alpha}:=\left\{\mathrm{e}^{\mathrm{i} t}:|t-\pi| \leq \alpha\right\}$ for $\alpha \in(0 ; \pi]$. Then applying the formula (2.1) we see that for an arbitrarily fixed $z \in \mathbb{D}$,

$$
\mathrm{P}\left[\chi_{I_{\alpha_{k}}}\right](|z|)=\mathrm{P}\left[\chi_{I_{\delta}}\right](|z|)+\mathrm{P}\left[\chi_{I_{\alpha_{k}} \backslash I_{\delta}}\right](|z|) \geq \mathrm{P}\left[\chi_{I_{\delta}}\right](|z|), \quad k \in \mathbb{Z}_{1, n}
$$

Therefore

$$
\begin{equation*}
\min \left(\left\{\mathrm{P}\left[\chi_{I_{\alpha_{k}}}\right](|z|): k \in \mathbb{Z}_{1, n}\right\}\right)=\mathrm{P}\left[\chi_{I_{\delta}}\right](|z|), \tag{3.11}
\end{equation*}
$$

because $\delta=\alpha_{k^{\prime}}$ for some $k^{\prime} \in \mathbb{Z}_{1, n}$. Fix $k \in \mathbb{Z}_{1, n}$. Using the rotation mapping $\mathbb{C} \ni \zeta \mapsto \varphi(\zeta):=-a_{k}^{-1} \zeta$ we have $\varphi\left(T_{k}\right)=I_{\alpha_{k}}$. Then integrating by substitution we deduce from the formula (2.1) that

$$
\mathrm{P}\left[\chi_{T_{k}}\right](z)=\mathrm{P}\left[\chi_{\varphi\left(T_{k}\right)}\right](\varphi(z))=\mathrm{P}\left[\chi_{I_{\alpha_{k}}}\right](\varphi(z)) .
$$

On the other hand, by Lemma 3.2,

$$
\mathrm{P}\left[\chi_{I_{\alpha_{k}}}\right](\varphi(z)) \geq \mathrm{P}\left[\chi_{I_{\alpha_{k}}}\right](|\varphi(z)|)=\mathrm{P}\left[\chi_{I_{\alpha_{k}}}\right](|z|) .
$$

Thus

$$
\mathrm{P}\left[\chi_{T_{k}}\right](z) \geq \mathrm{P}\left[\chi_{I_{\alpha_{k}}}\right](|z|), \quad k \in \mathbb{Z}_{1, n}
$$

Combining this with (3.3) and (3.11) we derive the estimation (3.9), which completes the proof.

A more difficult problem is to estimate from above the quantity S given by the formula (3.2). It will be studied elsewhere. Now we present two examples.
Example 3.4. Suppose that $\mathbb{Z}_{1,3} \ni k \mapsto T_{k} \subset \mathbb{T}$ is a partition of \mathbb{T} such that $\left|T_{1}\right|_{1}=\left|T_{2}\right|_{1}=\left|T_{3}\right|_{1}$. As in the proof of [3, Theorem 2.1] we can show that $S \leq 2$. Hence and by Theorem 3.1 we obtain

$$
\begin{equation*}
|F(z)| \leq 1-p(z)=1-\min \left(\left\{\mathrm{P}\left[\chi_{T_{k}}\right](z): k \in \mathbb{Z}_{1,3}\right\}\right), \quad F \in \mathcal{F}, z \in \mathbb{D} \tag{3.12}
\end{equation*}
$$

Corollary 3.3 now implies the estimation

$$
\begin{equation*}
|F(z)| \leq \frac{4}{3}-\frac{2}{\pi} \arctan \left(\frac{\sqrt{3}}{1+2|z|}\right), \quad F \in \mathcal{F}, z \in \mathbb{D} \tag{3.13}
\end{equation*}
$$

cf. [3, Corollary 2.2]. Therefore, the estimation (3.12) is a directional type enhancement of the radial one (3.13) for the class \mathcal{F}.

Example 3.5. Suppose that $\mathbb{Z}_{1, n} \ni k \mapsto T_{k} \subset \mathbb{T}$ is a partition of \mathbb{T} such that

$$
\begin{equation*}
\Delta:=\max \left(\left\{\left|T_{k}\right|_{1}: k \in \mathbb{Z}_{1, n}\right\}\right) \leq \frac{\pi}{2} \tag{3.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
N:=\operatorname{Ent}\left(\frac{\pi}{2 \Delta}\right) \geq 1 \tag{3.15}
\end{equation*}
$$

Fix $u \in \mathbb{T}$ and a sequence $\mathbb{Z}_{1, n} \ni k \mapsto v_{k} \in D_{k}$. There exist a bijective function σ of the set $\mathbb{Z}_{1, n}$ onto itself and an increasing sequence $\mathbb{Z}_{1, n} \ni k \mapsto \alpha_{k} \in \mathbb{R}$ such that $\alpha_{n}=2 \pi+\alpha_{0}, u \in T_{\sigma(1)}$ and

$$
T_{\sigma(k)}=\left\{\mathrm{e}^{\mathrm{i} t}: \alpha_{k-1} \leq t \leq \alpha_{k}\right\}, \quad k \in \mathbb{Z}_{1, n}
$$

Hence there exist $\theta \in\left[\alpha_{0} ; \alpha_{1}\right]$ and a sequence $\mathbb{Z}_{1, n} \ni k \mapsto\left(r_{k}, \theta_{k}\right) \in[0 ; 1] \times \mathbb{R}$ such that $u=\mathrm{e}^{\mathrm{i} \theta}, v_{k}=r_{k} \mathrm{e}^{\mathrm{i} \theta_{k}}$ for $k \in \mathbb{Z}_{1, n}$ and

$$
\begin{equation*}
\alpha_{k-1} \leq \theta_{\sigma(k)} \leq \alpha_{k}, \quad k \in \mathbb{Z}_{1, n} \tag{3.16}
\end{equation*}
$$

Since for each $k \in \mathbb{Z}_{1, n}$,

$$
\operatorname{Re}\left(\bar{u} v_{k}\right)=\operatorname{Re}\left(r_{k} \mathrm{e}^{\mathrm{i} \theta_{k}} \mathrm{e}^{-\mathrm{i} \theta}\right)=\operatorname{Re}\left(r_{k} \mathrm{e}^{\mathrm{i}\left(\theta_{k}-\theta\right)}\right)=r_{k} \cos \left(\theta_{k}-\theta\right)
$$

we conclude that

$$
\begin{equation*}
\operatorname{Re}\left(\bar{u} v_{k}\right) \leq \max \left(\left\{0, \cos \left(\theta_{k}-\theta\right)\right\}\right), \quad k \in \mathbb{Z}_{1, n} \tag{3.17}
\end{equation*}
$$

From (3.14) it follows that

$$
\begin{equation*}
\alpha_{j}-\alpha_{i}=\sum_{l=i+1}^{j}\left(\alpha_{l}-\alpha_{l-1}\right) \leq(j-i) \Delta, \quad i, j \in \mathbb{Z}_{0, n}, i<j \tag{3.18}
\end{equation*}
$$

Setting

$$
p:=\min \left(\left\{k \in \mathbb{Z}_{1, n}: \alpha_{k} \geq \frac{\pi}{2}+\theta\right\}\right) \quad \text { and } \quad q:=\max \left(\left\{k \in \mathbb{Z}_{1, n}: \alpha_{k}<\frac{3 \pi}{2}+\theta\right\}\right)
$$

we conclude from (3.15) and (3.18) that

$$
N \Delta \leq \frac{\pi}{2} \leq \alpha_{p}-\theta \leq \alpha_{p}-\alpha_{0} \leq p \Delta
$$

as well as

$$
N \Delta \leq \frac{\pi}{2}=\alpha_{q}+\frac{\pi}{2}-\alpha_{q}<2 \pi+\theta-\alpha_{q} \leq \alpha_{n}-\alpha_{q}+\alpha_{1}-\alpha_{0} \leq(n-q+1) \Delta
$$

Therefore $N \leq p$ and $q+N \leq n$. Given $k \in \mathbb{Z}_{1, n}$ the following four cases can appear. If $p+1-N \leq k \leq p$ then by (3.16) and (3.18),

$$
\frac{\pi}{2}+\theta-\theta_{\sigma(k)} \leq \alpha_{p}-\alpha_{k-1} \leq(p+1-k) \Delta \leq N \Delta \leq \frac{\pi}{2}
$$

as well as

$$
\frac{\pi}{2}+\theta-\theta_{\sigma(k)}>\alpha_{p-1}-\alpha_{p} \geq-\Delta \geq-\frac{\pi}{2}
$$

which gives

$$
\cos \left(\theta_{\sigma(k)}-\theta\right)=\sin \left(\pi / 2+\theta-\theta_{\sigma(k)}\right) \leq \sin ((p+1-k) \Delta)
$$

Hence and by (3.17) we obtain

$$
\begin{equation*}
\operatorname{Re}\left(\bar{u} v_{\sigma(k)}\right) \leq \sin ((p+1-k) \Delta), \quad k \in \mathbb{Z}_{p+1-N, p} \tag{3.19}
\end{equation*}
$$

If $p+1 \leq k \leq q$ then by (3.16),

$$
\frac{\pi}{2}+\theta \leq \alpha_{k-1} \leq \theta_{\sigma(k)} \leq \alpha_{k}<\frac{3 \pi}{2}+\theta
$$

and so $\cos \left(\theta_{\sigma(k)}-\theta\right) \leq 0$. This together with (3.17) leads to

$$
\begin{equation*}
\operatorname{Re}\left(\bar{u} v_{\sigma(k)}\right) \leq 0, \quad k \in \mathbb{Z}_{p+1, q} \tag{3.20}
\end{equation*}
$$

If $q+1 \leq k \leq q+N$ then by (3.16) and (3.18),

$$
\theta_{\sigma(k)}-\frac{3 \pi}{2}-\theta \leq \alpha_{k}-\frac{3 \pi}{2}-\theta<\alpha_{k}-\alpha_{q} \leq(k-q) \Delta \leq N \Delta \leq \frac{\pi}{2}
$$

as well as

$$
\theta_{\sigma(k)}-\frac{3 \pi}{2}-\theta \geq \alpha_{q}-\alpha_{q+1} \geq-\Delta \geq-\frac{\pi}{2}
$$

and consequently,

$$
\cos \left(\theta_{\sigma(k)}-\theta\right)=\sin \left(\theta_{\sigma(k)}-3 \pi / 2-\theta\right) \leq \sin ((k-q) \Delta)
$$

Hence and by (3.17) we obtain

$$
\begin{equation*}
\operatorname{Re}\left(\bar{u} v_{\sigma(k)}\right) \leq \sin ((k-q) \Delta), \quad k \in \mathbb{Z}_{q+1, q+N} \tag{3.21}
\end{equation*}
$$

If $1 \leq k \leq p-N$ or $q+N+1 \leq k \leq n$, then clearly $\operatorname{Re}\left(\bar{u} v_{\sigma(k)}\right) \leq 1$. Combining this with (3.19), (3.20) and (3.21) we see that

$$
\begin{align*}
\sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} v_{\sigma(k)}\right) \leq & \sum_{k=p+1-N}^{p} \sin ((p+1-k) \Delta)+\sum_{k=q+1}^{q+N} \sin ((k-q) \Delta) \tag{3.22}\\
& +(p-N)+(n-q-N) \\
= & 2 \sum_{k=1}^{N} \sin (k \Delta)+n-2 N-(q-p)
\end{align*}
$$

Since $\pi<\alpha_{q+1}-\alpha_{p-1} \leq(q-p+2) \Delta$, we deduce from (3.15) that $2 N \leq q-p+1$. Combining this with (3.22) we get

$$
\begin{aligned}
\sum_{k=1}^{n} \operatorname{Re}\left(\bar{u} v_{\sigma(k)}\right) & \leq 2 \sum_{k=1}^{N} \sin (k \Delta)+n-2 N-(2 N-1) \\
& =n+1-4 N+2 \frac{\sin \left(\frac{(N+1) \Delta}{2}\right) \sin \left(\frac{N \Delta}{2}\right)}{\sin \left(\frac{\Delta}{2}\right)}
\end{aligned}
$$

Hence and by (3.2),

$$
S \leq n+1-4 N+2 \frac{\sin \left(\frac{(N+1) \Delta}{2}\right) \sin \left(\frac{N \Delta}{2}\right)}{\sin \left(\frac{\Delta}{2}\right)}
$$

Theorem 3.1 now shows that

$$
\begin{equation*}
|F(z)| \leq 1-\left(4 N-1-2 \frac{\sin \left(\frac{(N+1) \Delta}{2}\right) \sin \left(\frac{N \Delta}{2}\right)}{\sin \left(\frac{\Delta}{2}\right)}\right) p(z), \quad F \in \mathcal{F}, z \in \mathbb{D} \tag{3.23}
\end{equation*}
$$

where N and $p(z)$ are defined by (3.15) and (3.3), respectively. Applying now Corollary 3.3 we derive from (3.23) the following estimation of radial type

$$
\begin{align*}
|F(z)| \leq 1-\left(4 N-1-2 \frac{\sin \left(\frac{(N+1) \Delta}{2}\right) \sin \left(\frac{N \Delta}{2}\right)}{\sin \left(\frac{\Delta}{2}\right)}\right) \mathrm{P}\left[\chi_{I_{\delta}}\right](|z|) & \\
& F \in \mathcal{F}, z \in \mathbb{D} \tag{3.24}
\end{align*}
$$

where δ is given by the formula (3.6).

References

[1] S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, 2 ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag New York, 2001.
[2] P. Duren, Theory of H^{p}-Spaces, Dover Publications, Inc., Mineola, New York, 2000.
[3] D. Partyka and J. Zajạc, The Schwarz type inequality for harmonic mappings of the unit disc with boundary normalization, Complex Anal. Oper. Theory 9 (2015), 213228.

Department of Mathematics
Maria Curie-Skłodowska University
Plac Marii Skłodowskiej-Curie 1, PL-20-031 Lublin
Poland
E-mail: anna.futa@poczta.umcs.lublin.pl
Institute of Mathematics and Computer Science
The John Paul II Catholic University of Lublin
Al. Racławickie 14, P.O. Box 129, PL-20-950 Lublin
Poland
and
Institute of Mathematics and Information Technology
The State School of Higher Education in Chełm
Pocztowa 54, PL-22-100 Chełm
Poland
E-mail: partyka@kul.lublin.pl

Presented by Zbigniew Jakubowski at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on April 16, 2018.

NIERÓWNOŚCI TYPU SCHWARZA DLA FUNKCJI HARMONICZNYCH W KOLE JEDNOSTKOWYM SPEŁNIAJA̧CYCH PEWIEN WARUNEK SEKTOROWY

Streszczenie

Niech T_{1}, T_{2} i T_{3} bȩdą łukami domkniȩtymi, zawartymi w okrȩgu jednostkowym \mathbb{T}, o tej samej dlugości $2 \pi / 3$ i pokrywajạcymi \mathbb{T}. W pracy [3] D. Partyka and J. Zajạc otrzymali dokładne oszacowanie modułu $|F(z)|$ dla $z \in \mathbb{D}$, gdzie \mathbb{D} jest kołem jednostkowym, zaś F jest funkcjạ harmoniczną o wartościach zespolonych koła \mathbb{D} w siebie, spełniaja̧cych nastȩpujạcy warunek sektorowy: dla każdego $k \in\{1,2,3\}$ i prawie każdego $z \in T_{k}$ granica radialna funkcji F w punkcie z należy do sektora kạtowego bȩdạcego otoczkạ wypukłạ zbioru $\{0\} \cup$ T_{k}. W tym artykule rozważamy ogólniejszy przypadek, gdzie trzy tuki są zastạpione przez skończony układ łuków domkniȩtych $T_{1}, T_{2}, \ldots, T_{n}$ zawartych w \mathbb{T}, o dodatniej długości, całkowitej długości 2π i pokrywaja̧cych \mathbb{T}.

Stowa kluczowe: całka Poissona, funkcje harmoniczne, lemat Schwarza, odwzorowania harmoniczne

