## B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ
2018
Vol. LXVIII
Recherches sur les déformations
no. 2
pp. 85-94
Dedicated to the memory of
Professor Yurii B. Zelinskii

Mariia V. Stefanchuk

## GENERALIZATION OF THE CONCEPT OF CONVEXITY IN A HYPERCOMPLEX SPACE

## Summary

Extremal elements and a $h$-hull of sets in the $n$-dimensional hypercomplex space $\mathbb{H}^{n}$ are investigated. The class of $\mathbb{H}$-quasiconvex sets including strongly hypercomplexly convex sets and closed relatively to intersections is introduced. Some results concerning multivalued functions in the complex space were generalized into the $n$-dimensional hypercomplex space: there was proved the hypercomplex analogue of the Fenchel-Moreau theorem and some properties of functions that are conjugate to functions $f: \mathbb{H}^{n} \backslash \Theta \longrightarrow \mathbb{H}$.

Keywords and phrases: hypercomplexly convex set, $h$-hull of a set, $h$-extremal point, $h$ extremal ray, $\mathbb{H}$-quasiconvex set, linearly convex function, conjugate function

## 1. Introduction

The natural analogue of complex analysis is a hypercomplex analysis. Therefore, there is a need to transfer a series of results of a convex analysis known in $n$ dimensional real and complex spaces, on the $n$-dimensional hypercomplex space $\mathbb{H}^{n}$, $n \in N$, which is a direct product of $n$-copies of the body of quaternions $\mathbb{H}[1]$. G. Mkrtchyan worked on these problems [2, 3]. He introduced the concepts of hypercomplexly convex, strongly hypercomplexly convex sets and transfered a series of results of linearly convex analysis on hypercomplex space $\mathbb{H}^{n}$. Yu. Zelinskii [4] and his students (M. Tkachuk, T. Osipchuk, B. Klishchuk) continued to develop this direction.

Let $E \subset \mathbb{H}^{n}$ be an arbitrary set of the space $\mathbb{H}^{n}$ containing the origin of coordinates $\Theta=(0,0, \ldots, 0)$. We put $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), h=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$, $\langle x, h\rangle=x_{1} h_{1}+x_{2} h_{2}+\cdots+x_{n} h_{n}$. The set $E^{*}=\{h \mid\langle x, h\rangle \neq 1, \forall x \in E\}$ is called the conjugate set to the set $E$ [2].

A hyperplane is called a set $L \subset \mathbb{H}^{n}$ that satisfies one of the conditions $\langle x, a\rangle=w$, $\left\langle x-x_{0}, a\right\rangle=0$, where $x$ is an arbitrary point of the set $L, x_{0}$ is a fixed vector, $w$ is a fixed scalar with $\mathbb{H}$, and $a$ is a fixed covector. We call the covector $a$ a normal. Accordingly, affine we will call only the functions of the species $l(x)=\langle x, a\rangle+b$, $b \in \mathbb{H}$.

Definition 1 [2]. The set $E \subset \mathbb{H}^{n}$ is called a hypercomplexly convex if for any point $x_{0} \in \mathbb{H}^{n} \backslash E$ there exists a hyperplane that passes through the point $x_{0}$ and does not intersect $E$.

Definition 2 [2]. The set $E \subset \mathbb{H}^{n}$ is called a strongly hypercomplexly convex if its arbitrary intersection with the hypercomplex straight line $\gamma$ is acyclic, that is $\widetilde{H}^{i}(\gamma \cap E)=0, \forall i \geq 0$, where $\widetilde{H}^{i}(\gamma \cap E)$ is a consolidated group of Aleksandrov-Cech cohomology sets $\gamma \cap E$ with coefficients in the set of integers.

## 2. Extremal elements

Let $E \subset \mathbb{H}$ be an arbitrary set. The complement to the union of the unbounded components of the set $\mathbb{H} \backslash E$ is called the $h$-combination of the points of the set $E$ and is denoted by $[E]$. If $E$ is an arbitrary set in the space $\mathbb{H}^{n}, n>1$, then we say that the point $x$ belongs to the $h$-combination of points from $E$ if there exists an intersection of the set $E$ with a hypercomplex straight line $\gamma$ such that $x \in[E \cap \gamma]$. The set of such points with $\mathbb{H}^{n}$ is called the $h$-combination of the points $E$ and denoted $[E]$; the $m$-multiple $h$-combination is determined by the induction $[E]^{m}=\left[[E]^{m-1}\right]$ [4].

Definition 3 [2]. The set $\widehat{E}=\cap_{\pi} \pi^{-1}[\pi(E)]$ is called the $h$-hull of the set $E \subset \mathbb{H}^{n}$, where $\pi: \mathbb{H}^{n} \longrightarrow \lambda$ - all possible linear projections of the set on the hypercomplex straight lines, $[\pi(E)]$ is the $h$-combination of the points of the set $\pi(E)$, and $\pi^{-1}[\pi(E)]=\left\{x \in \mathbb{H}^{n} \mid \pi(x) \in \pi(E)\right\}$ is its complete preimage.

The following theorem [5] asserts that for an arbitrary set of the space $\mathbb{H}^{n}$ the set of points of its $h$-hull coincides with the $h$-combination of the points of this set.

Theorem 1. If the set $E \subset \mathbb{H}^{n}$ is an h-hull, then $E=[E]$.
Proof. Let $x \in[\lambda \cap E]$ for some hypercomplex plane $\lambda$. Then, the inclusion $\pi(x) \in$ $[\pi(\lambda \cap E)]$ for all projections $\pi$ is obviously true, since the restriction of any projection $\pi$ to each straight line is either homeomorphism or projection into a point.

Definition 4 [2]. The $h$-interval with center at the point $x$ of radius $r$ is the intersection of an open ball of radius $r$ with center at the point $x$ with a hypercomplex straight line, which passes through the point $x$.

Definition 5 [2]. A point $x \in E \subset \mathbb{H}^{n}$ is called the $h$-extremal point of the set $E$ if $E$ has no $h$-intervals containing $x$.

We extend the Klee's theorem of a convex analysis [6] to a hypercomplex case.
Definition 6 [5]. The $h$-ray is called a closed unbounded acyclic subset of a hypercomplex straight line with a non-empty boundary.

Definition 7 [5]. The extremal $h$-ray of the set $E \subset \mathbb{H}^{n}$ is called the $h$-ray $H$ belonging to the set $E$ if the set $E \backslash \mathbb{H}$ is hypercomplexly convex and each point of the boundary of the ray $H$ will be an $h$-extremal point for the set $E$. (This is equivalent to that no point of the ray $H$ will be internal to the arbitrary $h$-interval that belongs to the set $E$ and has at least one point outside $H$ ).

For the set $E \subset \mathbb{H}^{n}$ we denote: hext $E$ is the set of its $h$-extremal points, rhext $E$ is the set of $h$-extremal rays, hconv $E$ is the $h$-hull of the set $E$.

Lemma 1. Let $E \subset \mathbb{H}^{n}$ be a closed strongly hypercomplexly convex body (int $E \neq \emptyset$ ) with a non-empty strongly hypercomplexly convex boundary $\partial E$, then $E$ has the form $E=E_{1} \times \mathbb{H}^{n-1}$, where $E_{1}$ is an acyclic subset of straight line $\mathbb{H}$ with non-empty interior relative to this straight line.

Proof. Since the boundary $\partial E$ is strongly hypercomplexly convex, then for an arbitrary point $x \in \operatorname{int} E$ there exists a hyperplane that does not intersect $\partial E$. Therefore, the set $E$ contains a hyperplane. Consequently, by theorem 3 [4], the set $E$ can be depicted in the form of Cartesian product $E=E_{1} \times \mathbb{H}^{n-1}$. The set $E_{1}$ will be acyclic, because there are intersections $E$ be hypercomplex straight lines that are homeomorphic to $E_{1}$.

Definition 8. An affine subset $L$ is called a tangent to the set $E$ if $L \cap \bar{E} \subset \partial E$, $L \cap \bar{E} \neq \emptyset$.

Lemma 2. If $E \subset \mathbb{H}^{n}$ is a strongly hypercomplexly convex closed set and $L$ is its tangent hypercomplex straight line, then $\operatorname{hext}(E \cap L)=($ hext $E) \cap L$.

Proof. Since the inclusion of sets $E \cap L \subset E$ is fair, then by the definition of $h$ extremal points we have $\operatorname{hext}(E \cap L) \supset(\operatorname{hext} E) \cap L$. Let $x \in \operatorname{hext}(E \cap L)$. Then, inclusion $x \in[K] \backslash K$, where $K \subset E$, can not be performed, because otherwise $K \subset E \cap L$ (since $x \in L$ and $L$ is a hypercomplex straight line, tangent to $E$ ). This contradicts the fact that $x \in \operatorname{hext}(E \cap L)$. Consequently, the inverse inclusion of $\operatorname{hext}(E \cap L) \subset($ hext $E) \cap L$ is correct and the lemma is proved.

Remark 1. Analogically, we can prove the equality $\operatorname{rhext}(E \cap L)=(\operatorname{rhext} E) \cap L$ for $h$-extremal rays.

Theorem 2. Each closed strongly hypercomplexly convex set $E \subset \mathbb{H}^{n}$, which does not contain a hypercomplex straight line, will be the $h$-hull of its $h$-extremal points and $h$-extremal rays $E=\operatorname{hconv}($ hext $E \cup \operatorname{rhext} E)$.

Proof. The proof is carried out by induction according to the hypercomplex dimension of the set $E$. For $\operatorname{dim}_{\mathbb{H}} E=0$ and $\operatorname{dim}_{\mathbb{H}} E=1$, the theorem is obvious. Assume that the theorem is valid for all hypercomplex dimensions of the set $E$, which are less than $m(1<m \leq n)$. Let us prove it for $\operatorname{dim}_{\mathbb{H}} E=m$.

By the condition of the theorem, the set $E$ does not contain a hypercomplex straight line, therefore it can not coincide neither with its affine hull, nor with the Cartesian product $E_{1} \times \mathbb{H}^{n-1}$. Therefore, it follows from lemma 1 that the non-empty boundary $\partial E$ will not be strongly hypercomplexly convex set.

By the definition of a strong hypercomplex convexity, the intersection of the set $E$ with an arbitrary hypercomplex straight line will also be strongly hypercomplexly convex. Let $x$ be an arbitrary point of the set $E$. If $x$ belongs to a certain tangent straight line $L$ to $E$, then by the hypothesis of induction we have the inclusion

$$
x \in \operatorname{hconv}((\operatorname{hext} E \cap L) \cup \operatorname{rhext}(E \cap L))
$$

If there are points of the set $E$, through which there is no hypercomplex straight line tangent to $E$, then there is a point $x \in \operatorname{int} E$.

In this case, we draw a hypercomplex straight line $l$ through the point $x$. The intersection of $l \cap E$ is a strongly hypercomplexly convex set and does not coincide with $l$. Therefore, $x \notin[\partial(l \cap E)]$. Now let $y$ be an arbitrary point of the boundary of intersection $\partial(l \cap E)$. Taking into account the strong hypercomplex convexity through the point $y$, one can draw a straight line $T$ tangent to the set $E$. By the hypothesis of induction, we obtain $y \in \operatorname{hconv}((\operatorname{hext} E \cap T) \cup \operatorname{rhext}(E \cap T))$. We note that this is fair for every point $y \in \partial(l \cap E)$. Then, taking into account the lemma 2 and the remark 1, we obtain $x \in \operatorname{hconv}($ hext $E \cup$ rhext $E)$. As a result of arbitrariness of choice of the point $x$ we obtain the inclusion $E \subset$ hconv (hext $E \cup \operatorname{rhext} E$ ). The inverse inclusion is trivial. The theorem is proved.

## 3. $\mathbb{H}$-quasiconvex sets

The class of strongly hypercomplexly convex sets is non-closed relatively to the intersection [3]. Therefore, the main axiom of the convexity is not fulfilled: the intersection of any number of convex sets must be convex. We denote the class of sets, which includes strongly hypercomplexly convex sets and is closed relatively to intersections.

Definition 9 [5]. A hypercomplexly convex set $E \subset \mathbb{H}^{n}$ is called $\mathbb{H}$-quasiconvex set
if its intersection with an arbitrary hypercomplex straight line $\gamma$ does not contain a three-dimensional cocycle, i.e. $\mathbb{H}^{3}(\gamma \cap E)=0$.

It is obvious that the class of $\mathbb{H}$-quasiconvex sets includes a strongly hypercomplexly convex domains and compacts.

Let us show the closure of a class of $\mathbb{H}$-quasiconvex sets in the sense that the intersection of an arbitrary family of compact $\mathbb{H}$-quasiconvex sets will be an $\mathbb{H}$ quasiconvex set.

Theorem 3. The intersection of an arbitrary family of $\mathbb{H}$-quasiconvex compacts will be an $\mathbb{H}$-quasiconvex compact.

Proof. It is enough to do the proof for two compacts. Let $K_{1}, K_{2}$ be two arbitrary $\mathbb{H}$-quasiconvex compacts, $\gamma$ is an arbitrary hypercomplex straight line that intersects the set $K_{1} \cap K_{2}$. We use the exact cohomological sequence of Mayer-Vietoris [7]

$$
\begin{gathered}
H^{3}\left(\gamma \cap K_{1}\right) \oplus H^{3}\left(\gamma \cap K_{2}\right) \rightarrow \\
\rightarrow H^{3}\left(\gamma \cap K_{1} \cap K_{2}\right) \rightarrow H^{4}\left(\gamma \cap\left(K_{1} \cup K_{2}\right)\right) .
\end{gathered}
$$

Since the compacts $K_{1}$ and $K_{2}$ are $\mathbb{H}$-quasiconvex, then $H^{3}\left(\gamma \cap K_{1}\right)=0$ and $H^{3}\left(\gamma \cap K_{2}\right)=0$. Therefore

$$
H^{3}\left(\gamma \cap K_{1}\right) \oplus H^{3}\left(\gamma \cap K_{2}\right)=0 .
$$

On the other hand, a compact intersection

$$
\gamma \cap\left(K_{1} \cup K_{2}\right)=\left(\gamma \cap K_{1}\right) \cup\left(\gamma \cap K_{2}\right)
$$

can not hold the entire hypercomplex straight line $\gamma$, which is a four-dimensional real manifold, therefore $H^{4}\left(\gamma \cap\left(K_{1} \cup K_{2}\right)\right)=0$.

From the accuracy of the cohomological sequence it follows that $H^{3}\left(\gamma \cap K_{1} \cap K_{2}\right)=$ 0 . This is equivalent to the assertion, that the intersection of the set $K_{1} \cap K_{2}$ with an arbitrary hypercomplex straight line does not contain a three-dimensional cocycle. From the previous follows the $\mathbb{H}$-quasiconvexity of the compact $K_{1} \cap K_{2}$. The theorem is proved.

## 4. Linearly convex functions

Definition 10 [8]. The function $f: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ is called multivalued if the image of the point $x \in \mathbb{H}^{n}$ is a set of $f(x) \in \mathbb{H}$.

The domain of definition of such a function will be denoted by $E_{f}:=\left\{x \in \mathbb{H}^{n}\right.$ : $y \in \mathbb{H}, y=f(x)\}$.

Definition 11. The function $l: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ is called affine if its graph is a hyperplane.
Definition $12[8,9]$. A multivalued function $f: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ is called a linearly convex if there exists an affine function $l: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ for an arbitrary pair of points $\left(x_{0}, y_{0}\right) \in$
$\left(\mathbb{H}^{n} \times \mathbb{H}\right) \backslash \Gamma(f)$ such that $y_{0}=l\left(x_{0}\right)$ and $\Gamma(l) \cap \Gamma(f)=\emptyset$ for all $x \in \mathbb{H}^{n}$, where the graphs of functions $l$ and $f$, respectively, are denoted by $\Gamma(l)$ and $\Gamma(f)$.

Definition 13. A linearly concave function is called a multivalued function $f$ for which the function $\varphi=\mathbb{H} \backslash f$ is linearly convex.

This means that $\mathbb{H}^{n+1} \backslash \Gamma(f)$ is a graph of a linearly convex function, i.e. through each point $\left(x_{0}, y_{0}\right) \in \Gamma(f)$ the graph of the affine function passes, which is completely contained in $\Gamma(f)$.

Definition $14[8,9]$. A multivalued affine function is called a function that is linearly convex and linearly concave simultaneously, and for which there is at least one point $x \in \mathbb{H}^{n}$, in which each of the sets $(f(x) \cap \mathbb{H})$ and $(\mathbb{H} \backslash f(x))$ is non-empty.

The definition of a linearly convex function can be extended to multivalued functions that take values in an expanded hypercomplex plane $\mathbb{H}^{o}=\mathbb{H} \cup(\infty)$, compacted by one point.

Here are some examples of linearly convex functions.
Definition 15. A function

$$
W_{E}(y)=\mathbb{H}^{o} \backslash \cup_{x \in E}\langle x, y\rangle
$$

is called the reference function of the set $E \subset \mathbb{H}^{n}$.
Definition 16. If $E \subset \mathbb{H}^{n}$ is a linearly convex set, then the function

$$
\delta_{E}(x)= \begin{cases}0, & \text { if } x \in E \\ \infty, & \text { if } x \notin E\end{cases}
$$

is called its indicator function.
It is easy to verify that the reference and indicator functions are linearly convex.
Theorem 5. If $f_{\alpha}, \alpha \in \mathrm{A}$, is a family of linearly convex functions, where $A$ is an arbitrary set of indices, then the function $f=\cap_{\alpha \in A} f_{\alpha}$ is linearly convex.

Proof. We have $\Gamma(f)=\cap_{\alpha \in A} \Gamma\left(f_{\alpha}\right)$. Let us take an arbitrary point

$$
\left(x_{0}, y_{0}\right) \in\left(\mathbb{H}^{n} \times \mathbb{H}\right) \backslash \Gamma(f)=\left(\mathbb{H}^{n} \times \mathbb{H}\right) \backslash \cap_{\alpha \in A} \Gamma\left(f_{\alpha}\right)
$$

Then

$$
\left(x_{0}, y_{0}\right) \in\left(\mathbb{H}^{n} \times \mathbb{H}\right) \backslash \Gamma\left(f_{\alpha}\right)
$$

for some $\alpha$, and therefore there is an affine function $l: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ whose graph does not intersect $\Gamma\left(f_{\alpha}\right)$. Therefore, it does not intersect $\Gamma(f)$. Consequently, the function $f$ is linearly convex. The theorem is proved.

## 5. Conjugate functions

Definition 17. A function conjugated to $f$ is called a function given by the equality

$$
\begin{equation*}
f^{*}(y)=\mathbb{H}^{o} \backslash \cup_{x}(\langle x, y\rangle-f(x)) . \tag{1}
\end{equation*}
$$

From the definition of conjugate function follows a hypercomplex analogue of Jung-Fenhel's inequality [10]:

$$
\begin{equation*}
\langle x, y\rangle \notin f(x)+f^{*}(y) \tag{2}
\end{equation*}
$$

The correlation (2) can be rewritten in the form

$$
\langle x, y\rangle \in \mathbb{H} \backslash\left(f(x)+f^{*}(y)\right),
$$

or

$$
f(x) \cap\left(\langle x, y\rangle-f^{*}(y)\right)=\emptyset
$$

with all $x \in \mathbb{H}^{n}, y \in \mathbb{H}^{n}$.
We find a function conjugate to a function $f^{*}$ :

$$
f^{* *}(x)=\left(f^{*}\right)^{*}(x)=\mathbb{H}^{o} \backslash \cup_{y}\left(\langle x, y\rangle-f^{*}(y)\right) .
$$

Example 1. Conjugate with a multivalued affine function $f(x)=\left\langle x, y_{0}\right\rangle+f(\Theta)$, where $f(\Theta) \subset \mathbb{H}$ is the set which is the image of the point $\Theta=(0,0, \ldots, 0) \in \mathbb{H}^{n}$, is the function

$$
\begin{gathered}
f^{*}(y)=\mathbb{H}^{o} \backslash \cup_{x}\left(\langle x, y\rangle-\left\langle x, y_{0}\right\rangle-f(\Theta)\right)=\mathbb{H}^{o} \backslash \cup_{x}\left(\left\langle x, y-y_{0}\right\rangle-f(\Theta)\right)= \\
= \begin{cases}\mathbb{H}^{o} \backslash(-f(\Theta)), & \text { if } y=y_{0}, \\
\infty, & \text { if } y \neq y_{0} .\end{cases}
\end{gathered}
$$

Example 2. Let $E \subset \mathbb{H}^{n}, \mathbb{H}^{n} \backslash E \neq \emptyset, f(x)=\delta_{E}(x)$. Then

$$
f^{*}(y)=\mathbb{H}^{o} \backslash \cup_{x}\left(\langle x, y\rangle-\delta_{E}(x)\right)=\mathbb{H}^{o} \backslash \cup_{x \subset E}\langle x, y\rangle,
$$

that is, conjugate with the indicator function of its own subset $E$ will be the reference function of this set.

Theorem 6. For each multivalued function $f: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ the inclusion $f \subset f^{* *}$ is valid.

Proof. Let us take an arbitrary pair of points

$$
x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{H}^{n}, \quad y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{H}^{n}
$$

We obtain from the inequality 2

$$
\langle x, y\rangle-f^{*}(y) \cap f(x)=\emptyset,\langle x, y\rangle-f^{*}(y) \subset \mathbb{H}^{o} \backslash f(x),
$$

i.e.

$$
\mathbb{H}^{o} \backslash\left(\langle x, y\rangle-f^{*}(y)\right) \supset f(x) .
$$

Taking in the last inclusion the intersection of all $y \in \mathbb{H}^{n}$, we will obtain such inclusions

$$
\begin{gathered}
\cap_{y}\left[\mathbb{H}^{o} \backslash\left(\langle x, y\rangle-f^{*}(y)\right)\right] \supset f(x), \\
\mathbb{H}^{o} \backslash \cup_{y}\left(\langle x, y\rangle-f^{*}(y)\right) \supset f(x), f \subset f^{* *} .
\end{gathered}
$$

The theorem is proved.
Definition 18. A multivalued function $f: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ is called an open (respectively, closed or compact) function when its graph is open (respectively, closed or compact) set in $\mathbb{H}^{n+1}$.

Theorem 7. Let $f: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ be a multivalued function. Then the function $f^{*}$ conjugate to it is linearly convex. If $f$ is open then $f^{*}$ is closed.

Proof. The value of the conjugate function can be written as

$$
f^{*}(y)=\cap_{x}\left(\mathbb{H}^{o} \backslash(\langle x, y\rangle-f(x))\right) .
$$

For a fixed $x$ the function $y \mapsto \mathbb{H}^{o} \backslash(\langle x, y\rangle-f(x))$ is a multivalued affine function in $y$, and therefore it can be presented in the form

$$
\begin{equation*}
y \mapsto\langle x, y\rangle+\left[\mathbb{H}^{0} \backslash(-f(x))\right] \tag{3}
\end{equation*}
$$

The function $f^{*}$ is the intersection of linearly convex functions of the form (3), and hence by the Theorem $5 f^{*}$ is a linearly convex function. Moreover, if $f$ is open, then each of the functions (3) is closed, and therefore $f^{*}$ is also closed. The theorem is proved.

The following theorem is a hypercomplex analogue of the Fenhel-Moro theorem.
Theorem 8. Let the multivalued function $f: \mathbb{H}^{n} \longrightarrow \mathbb{H}$ be such that $\mathbb{H} \backslash f(x) \neq \emptyset$ for all $x \in \mathbb{H}^{n}$. Then $f^{* *}=f$ if and only if when $f$ is linearly convex.

Proof. We shall show that the equality $f^{* *}=f$ is equivalent to the linear convexity of the function $f$.

If $f^{* *}=f$, then, according to the Theorem 7 , a function conjugate to an arbitrary function will be linearly convex. If $f\left(\mathbb{H}^{n}\right) \equiv \infty$, then the equality $f^{* *}=f$ is obtained from formulas 1 and 2 . We have $f^{*}(y)=\mathbb{H}$ for all $y \in \mathbb{H}^{n *}$ and $f^{* *}=\infty$. Since $f \subset f^{* *}$ by Theorem 6 , it suffices to show that the inverse inclusion $f \supseteq f^{* *}$ is valid for a linearly convex function.

Let there be inequality $f\left(x_{0}\right) \neq f^{* *}\left(x_{0}\right)$ at some point $x_{0}$. Then there is an affine function $l(x)=\left\langle x, y_{0}\right\rangle+\alpha$, such that $\Gamma(l) \cap \Gamma(f)=\emptyset$ and $w_{0}=\left\langle x_{0}, y_{0}\right\rangle+\alpha$, where $w_{0} \in f^{* *}\left(x_{0}\right) \backslash f\left(x_{0}\right)$. Then

$$
f^{*}\left(y_{0}\right)=\mathbb{H}^{o} \backslash \cup_{x}\left(\left\langle x, y_{0}\right\rangle-f(x)\right)=\cap_{x}\left[\mathbb{H}^{o} \backslash\left(\left\langle x, y_{0}\right\rangle-f(x)\right)\right] \supsetneq(-\alpha),
$$

because $\left[\left\langle x, y_{0}\right\rangle-f(x)\right] \neq-\alpha$ for all $x \in \mathbb{H}^{n}$. For the function $f^{* *}$ valid is an inclusion

$$
f^{* *}\left(x_{0}\right)=\cap_{y}\left[\mathbb{H}^{o} \backslash\left(\left\langle x_{0}, y\right\rangle-f^{*}(y)\right)\right] \subset
$$

$$
\subset \mathbb{H}^{o} \backslash\left(\left\langle x_{0}, y_{0}\right\rangle-f^{*}\left(y_{0}\right)\right) \subset \mathbb{H}^{o} \backslash\left(\left\langle x_{0}, y_{0}\right\rangle+\alpha\right)=\mathbb{H}^{o} \backslash w_{0}
$$

Therefore, $w_{0} \notin f^{* *}\left(x_{0}\right)$, which contradicts the choice of the point $w_{0} \in f^{* *}\left(x_{0}\right) \backslash$ $f\left(x_{0}\right)$. The theorem is proved.

Definition 19. Let $f_{\alpha}: \mathbb{H}^{n} \longrightarrow \mathbb{H}, \alpha \in A$, be multivalued functions. The function $\left(\cup_{\alpha} f_{\alpha}\right)(x):=\cup_{\alpha} f_{\alpha}(x)$ we call the union of functions $f_{\alpha}$, and the function $\left(\cap_{\alpha} f_{\alpha}\right)(x):=\cap_{\alpha} f_{\alpha}(x)$ we call their intersection.

For the conjugate functions, there is the theorem of duality.
Theorem 9. Let $f_{\alpha}: \mathbb{H}^{n} \longrightarrow \mathbb{H}, \alpha \in \mathrm{~A}$, be multivalued functions. Then equality holds

$$
\left(\cup_{\alpha} f_{\alpha}\right)^{*}=\cap_{\alpha} f_{\alpha}^{*}
$$

Proof. From expression 1 we obtain for conjugate functions

$$
\begin{gathered}
\left(\cup_{\alpha} f_{\alpha}\right)^{*}(y)=\mathbb{H}^{o} \backslash \cup_{x}\left(\langle x, y\rangle-\cup_{\alpha} f_{\alpha}(x)\right)= \\
=\mathbb{H}^{o} \backslash \cup_{x} \cup_{\alpha}\left(\langle x, y\rangle-f_{\alpha}(x)\right)=\mathbb{H}^{o} \backslash \cup_{\alpha} \cup_{x}\left(\langle x, y\rangle-f_{\alpha}(x)\right)= \\
=\cap_{\alpha}\left(\mathbb{H}^{o} \backslash \cup_{x}\left(\langle x, y\rangle-f_{\alpha}(x)\right)\right)=\cap_{\alpha} f_{\alpha}^{*}(y) .
\end{gathered}
$$

The theorem is proved.

## References

[1] I. L. Kantor, A. S. Solodovnikov, Hypercomplex numbers, Nauka, Moscow, 1973 (in Russian).
[2] G. A. Mkrtchyan, On hypercomplexly convex sets, Institute of Mathematics of the AS of USSR, Kiev, 1987 (in Russian).
[3] G. A. Mkrtchyan, On strong hypercomplex convexity, Ukr. Math. Journal 2 (1990), 182-187 (in Russian).
[4] Yu. B. Zelinskii, G. A. Mkrtchyan, On extremal points and hypercomplexly convex domains, Dokl. The USSR AS 6 (1990), 1299-1302 (in Russian).
[5] M. V. Stefanchuk, Extremal elements in a hypercomplex space, Reports of the NAS of Ukraine 4 (2016), 13-19 (in Ukrainian).
[6] K. Leyhtveys, Convex sets, Nauka, Moscow, 1985 (in Russian).
[7] E. H. Spanier, Algebraic topology, Mir, Moscow, 1971 (in Russian).
[8] M. V. Stefanchuk, M. V. Tkachuk, Linearly convex and conjugate functions in a hypercomplex space, Proceedings of the Institute of Mathematics of the NAS of Ukraine 3 (2015), 225-235 (in Ukrainian).
[9] M. V. Stefanchuk, The properties of conjugate functions in the hypercomplex space, Proceedings of the International Geometry Center 2 (2017), 39-46 (in Ukrainian).
[10] Yu. B. Zelinskii, Convexity. Selected chapters, Institute of Mathematics of the NAS of Ukraine, Kyiv, 2012 (in Russian).

Institute of Mathematics
National Academy of Sciences of Ukraine
Tereshchenkivska st. 3, UA-01004, Kyiv
Ukraine
E-mail: mariast@imath.kiev.ua

Presented by Julian Ławrynowicz at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on April 16, 2018.

## UOGÓLNIENIE IDEI WYPUKŁOŚCI NA PRZESTRZENIE HIPERZESPOLONE

Streszczenie
Badamy ekstremalne elementy i $h$-otoczki zbiorów z $n$-wymiarowej przestrzeni hiperzespolonej $\mathbb{H}^{n}$. Wprowadzana jest klasa zbiorów $\mathbb{H}$-quasi-wypukłych włączając zbiory silnie hiperzespolenie wypukłe, domkniȩte w odniesieniu do przeciȩć. Pewne wyniki dotyczące funkcji wielowartościowych w przestrzeniach zespolonych są uogólnione na przestrzenie hiperzespolone. Dotyczy to twierdzenia Fenchela-Moreau i pewnych własności funkcji sprzȩżonych do funkcji $f: \mathbb{H}^{n} \backslash \Theta \longrightarrow \mathbb{H}$.

Stowa kluczowe: zbiór hiperzespolenie wypukły, $h$-otoczka zbioru, punkt $h$-ekstremalny, zbiór $\mathbb{H}$-guasi-wypukły, funkcja liniowo wypukła, funkcja sprzȩżona

