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Summary

Extremal elements and a h-hull of sets in the n-dimensional hypercomplex space Hn

are investigated. The class of H-quasiconvex sets including strongly hypercomplexly convex

sets and closed relatively to intersections is introduced. Some results concerning multivalued

functions in the complex space were generalized into the n-dimensional hypercomplex space:

there was proved the hypercomplex analogue of the Fenchel-Moreau theorem and some

properties of functions that are conjugate to functions f : Hn \Θ −→ H.
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1. Introduction

The natural analogue of complex analysis is a hypercomplex analysis. Therefore,

there is a need to transfer a series of results of a convex analysis known in n-

dimensional real and complex spaces, on the n-dimensional hypercomplex space Hn,

n ∈ N , which is a direct product of n-copies of the body of quaternions H [1].

G. Mkrtchyan worked on these problems [2, 3]. He introduced the concepts of hy-

percomplexly convex, strongly hypercomplexly convex sets and transfered a series

of results of linearly convex analysis on hypercomplex space Hn. Yu. Zelinskii [4]

and his students (M. Tkachuk, T. Osipchuk, B. Klishchuk) continued to develop this

direction.
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Let E ⊂ Hn be an arbitrary set of the space Hn containing the origin of co-

ordinates Θ = (0, 0, . . . , 0). We put x = (x1, x2, . . . , xn), h = (h1, h2, . . . , hn),

〈x, h〉 = x1h1 + x2h2 + · · · + xnhn. The set E∗ = {h|〈x, h〉 6= 1, ∀x ∈ E} is called

the conjugate set to the set E [2].

A hyperplane is called a set L ⊂ Hn that satisfies one of the conditions 〈x, a〉 = w,

〈x − x0, a〉 = 0, where x is an arbitrary point of the set L, x0 is a fixed vector, w

is a fixed scalar with H, and a is a fixed covector. We call the covector a a normal.

Accordingly, affine we will call only the functions of the species l(x) = 〈x, a〉 + b,

b ∈ H.

Definition 1 [2]. The set E ⊂ Hn is called a hypercomplexly convex if for any point

x0 ∈ Hn \E there exists a hyperplane that passes through the point x0 and does not

intersect E.

Definition 2 [2]. The set E ⊂ Hn is called a strongly hypercomplexly convex if

its arbitrary intersection with the hypercomplex straight line γ is acyclic, that is

H̃i(γ∩E) = 0, ∀i ≥ 0, where H̃i(γ∩E) is a consolidated group of Aleksandrov-Cech

cohomology sets γ ∩ E with coefficients in the set of integers.

2. Extremal elements

Let E ⊂ H be an arbitrary set. The complement to the union of the unbounded

components of the set H \ E is called the h-combination of the points of the set E

and is denoted by [E]. If E is an arbitrary set in the space Hn, n > 1, then we say

that the point x belongs to the h-combination of points from E if there exists an

intersection of the set E with a hypercomplex straight line γ such that x ∈ [E∩γ]. The

set of such points with Hn is called the h-combination of the points E and denoted

[E]; the m-multiple h-combination is determined by the induction [E]m = [[E]m−1]

[4].

Definition 3 [2]. The set Ê = ∩ππ−1[π(E)] is called the h-hull of the set E ⊂ Hn,

where π : Hn −→ λ — all possible linear projections of the set on the hypercom-

plex straight lines, [π(E)] is the h-combination of the points of the set π(E), and

π−1[π(E)] = {x ∈ Hn| π(x) ∈ π(E)} is its complete preimage.

The following theorem [5] asserts that for an arbitrary set of the space Hn the

set of points of its h-hull coincides with the h-combination of the points of this set.

Theorem 1. If the set E ⊂ Hn is an h-hull, then E = [E].

Proof. Let x ∈ [λ ∩ E] for some hypercomplex plane λ. Then, the inclusion π(x) ∈
[π(λ∩E)] for all projections π is obviously true, since the restriction of any projection

π to each straight line is either homeomorphism or projection into a point. �
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Definition 4 [2]. The h-interval with center at the point x of radius r is the inter-

section of an open ball of radius r with center at the point x with a hypercomplex

straight line, which passes through the point x.

Definition 5 [2]. A point x ∈ E ⊂ Hn is called the h-extremal point of the set E if

E has no h-intervals containing x.

We extend the Klee’s theorem of a convex analysis [6] to a hypercomplex case.

Definition 6 [5]. The h-ray is called a closed unbounded acyclic subset of a hyper-

complex straight line with a non-empty boundary.

Definition 7 [5]. The extremal h-ray of the set E ⊂ Hn is called the h-ray H

belonging to the set E if the set E \ H is hypercomplexly convex and each point

of the boundary of the ray H will be an h-extremal point for the set E. (This is

equivalent to that no point of the ray H will be internal to the arbitrary h-interval

that belongs to the set E and has at least one point outside H).

For the set E ⊂ Hn we denote: hextE is the set of its h-extremal points, rhextE

is the set of h-extremal rays, hconvE is the h-hull of the set E.

Lemma 1. Let E ⊂ Hn be a closed strongly hypercomplexly convex body (intE 6= ∅)
with a non-empty strongly hypercomplexly convex boundary ∂E, then E has the form

E = E1 × Hn−1, where E1 is an acyclic subset of straight line H with non-empty

interior relative to this straight line.

Proof. Since the boundary ∂E is strongly hypercomplexly convex, then for an arbi-

trary point x ∈ intE there exists a hyperplane that does not intersect ∂E. Therefore,

the set E contains a hyperplane. Consequently, by theorem 3 [4], the set E can be

depicted in the form of Cartesian product E = E1 × Hn−1. The set E1 will be

acyclic, because there are intersections E be hypercomplex straight lines that are

homeomorphic to E1. �

Definition 8. An affine subset L is called a tangent to the set E if L ∩ E ⊂ ∂E,

L ∩ E 6= ∅.

Lemma 2. If E ⊂ Hn is a strongly hypercomplexly convex closed set and L is its

tangent hypercomplex straight line, then hext(E ∩ L) = (hextE) ∩ L.

Proof. Since the inclusion of sets E ∩ L ⊂ E is fair, then by the definition of h-

extremal points we have hext(E ∩ L) ⊃ (hextE) ∩ L. Let x ∈ hext(E ∩ L). Then,

inclusion x ∈ [K] \ K, where K ⊂ E, can not be performed, because otherwise

K ⊂ E ∩ L (since x ∈ L and L is a hypercomplex straight line, tangent to E). This

contradicts the fact that x ∈ hext(E ∩ L). Consequently, the inverse inclusion of

hext(E ∩ L) ⊂ (hextE) ∩ L is correct and the lemma is proved. �
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Remark 1. Analogically, we can prove the equality rhext(E ∩ L) = (rhextE) ∩ L
for h-extremal rays.

Theorem 2. Each closed strongly hypercomplexly convex set E ⊂ Hn, which does

not contain a hypercomplex straight line, will be the h-hull of its h-extremal points

and h-extremal rays E = hconv(hextE ∪ rhextE).

Proof. The proof is carried out by induction according to the hypercomplex dimen-

sion of the set E. For dimHE = 0 and dimHE = 1, the theorem is obvious. Assume

that the theorem is valid for all hypercomplex dimensions of the set E, which are

less than m (1 < m ≤ n). Let us prove it for dimHE = m.

By the condition of the theorem, the set E does not contain a hypercomplex

straight line, therefore it can not coincide neither with its affine hull, nor with the

Cartesian product E1×Hn−1. Therefore, it follows from lemma 1 that the non-empty

boundary ∂E will not be strongly hypercomplexly convex set.

By the definition of a strong hypercomplex convexity, the intersection of the set

E with an arbitrary hypercomplex straight line will also be strongly hypercomplexly

convex. Let x be an arbitrary point of the set E. If x belongs to a certain tangent

straight line L to E, then by the hypothesis of induction we have the inclusion

x ∈ hconv((hextE ∩ L) ∪ rhext(E ∩ L)).

If there are points of the set E, through which there is no hypercomplex straight line

tangent to E, then there is a point x ∈ intE.

In this case, we draw a hypercomplex straight line l through the point x. The

intersection of l ∩ E is a strongly hypercomplexly convex set and does not coincide

with l. Therefore, x /∈ [∂(l ∩E)]. Now let y be an arbitrary point of the boundary of

intersection ∂(l∩E). Taking into account the strong hypercomplex convexity through

the point y, one can draw a straight line T tangent to the set E. By the hypothesis of

induction, we obtain y ∈ hconv((hextE∩T )∪rhext(E∩T )). We note that this is fair

for every point y ∈ ∂(l∩E). Then, taking into account the lemma 2 and the remark

1, we obtain x ∈ hconv(hextE∪ rhextE). As a result of arbitrariness of choice of the

point x we obtain the inclusion E ⊂ hconv(hextE ∪ rhextE). The inverse inclusion

is trivial. The theorem is proved. �

3. H-quasiconvex sets

The class of strongly hypercomplexly convex sets is non-closed relatively to the inter-

section [3]. Therefore, the main axiom of the convexity is not fulfilled: the intersection

of any number of convex sets must be convex. We denote the class of sets, which

includes strongly hypercomplexly convex sets and is closed relatively to intersections.

Definition 9 [5]. A hypercomplexly convex set E ⊂ Hn is called H-quasiconvex set
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if its intersection with an arbitrary hypercomplex straight line γ does not contain a

three-dimensional cocycle, i.e. H3(γ ∩ E) = 0.

It is obvious that the class of H-quasiconvex sets includes a strongly hypercom-

plexly convex domains and compacts.

Let us show the closure of a class of H-quasiconvex sets in the sense that the

intersection of an arbitrary family of compact H-quasiconvex sets will be an H-

quasiconvex set.

Theorem 3. The intersection of an arbitrary family of H-quasiconvex compacts will

be an H-quasiconvex compact.

Proof. It is enough to do the proof for two compacts. Let K1, K2 be two arbitrary

H-quasiconvex compacts, γ is an arbitrary hypercomplex straight line that intersects

the set K1 ∩K2. We use the exact cohomological sequence of Mayer-Vietoris [7]

H3(γ ∩K1)⊕H3(γ ∩K2)→
→ H3(γ ∩K1 ∩K2)→ H4(γ ∩ (K1 ∪K2)).

Since the compacts K1 and K2 are H-quasiconvex, then H3(γ ∩ K1) = 0 and

H3(γ ∩K2) = 0. Therefore

H3(γ ∩K1)⊕H3(γ ∩K2) = 0.

On the other hand, a compact intersection

γ ∩ (K1 ∪K2) = (γ ∩K1) ∪ (γ ∩K2)

can not hold the entire hypercomplex straight line γ, which is a four-dimensional

real manifold, therefore H4(γ ∩ (K1 ∪K2)) = 0.

From the accuracy of the cohomological sequence it follows thatH3(γ∩K1∩K2) =

0. This is equivalent to the assertion, that the intersection of the set K1∩K2 with an

arbitrary hypercomplex straight line does not contain a three-dimensional cocycle.

From the previous follows the H-quasiconvexity of the compact K1∩K2. The theorem

is proved. �

4. Linearly convex functions

Definition 10 [8]. The function f : Hn −→ H is called multivalued if the image of

the point x ∈ Hn is a set of f(x) ∈ H.

The domain of definition of such a function will be denoted by Ef := {x ∈ Hn :

y ∈ H, y = f(x)}.
Definition 11. The function l : Hn −→ H is called affine if its graph is a hyperplane.

Definition 12 [8, 9]. A multivalued function f : Hn −→ H is called a linearly convex

if there exists an affine function l : Hn −→ H for an arbitrary pair of points (x0, y0) ∈
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(Hn ×H) \ Γ(f) such that y0 = l(x0) and Γ(l) ∩ Γ(f) = ∅ for all x ∈ Hn, where the

graphs of functions l and f , respectively, are denoted by Γ(l) and Γ(f).

Definition 13. A linearly concave function is called a multivalued function f for

which the function ϕ = H \ f is linearly convex.

This means that Hn+1 \Γ(f) is a graph of a linearly convex function, i.e. through

each point (x0, y0) ∈ Γ(f) the graph of the affine function passes, which is completely

contained in Γ(f).

Definition 14 [8, 9]. A multivalued affine function is called a function that is linearly

convex and linearly concave simultaneously, and for which there is at least one point

x ∈ Hn, in which each of the sets (f(x) ∩H) and (H \ f(x)) is non-empty.

The definition of a linearly convex function can be extended to multivalued func-

tions that take values in an expanded hypercomplex plane Ho = H∪(∞), compacted

by one point.

Here are some examples of linearly convex functions.

Definition 15. A function

WE(y) = Ho \ ∪x∈E〈x, y〉

is called the reference function of the set E ⊂ Hn.

Definition 16. If E ⊂ Hn is a linearly convex set, then the function

δE(x) =

{
0, if x ∈ E,

∞, if x /∈ E,

is called its indicator function.

It is easy to verify that the reference and indicator functions are linearly convex.

Theorem 5. If fα, α ∈ A, is a family of linearly convex functions, where A is an

arbitrary set of indices, then the function f = ∩α∈Afα is linearly convex.

Proof. We have Γ(f) = ∩α∈AΓ(fα). Let us take an arbitrary point

(x0, y0) ∈ (Hn ×H) \ Γ(f) = (Hn ×H) \ ∩α∈AΓ(fα).

Then

(x0, y0) ∈ (Hn ×H) \ Γ(fα)

for some α, and therefore there is an affine function l : Hn −→ H whose graph does

not intersect Γ(fα). Therefore, it does not intersect Γ(f). Consequently, the function

f is linearly convex. The theorem is proved. �
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5. Conjugate functions

Definition 17. A function conjugated to f is called a function given by the equality

f∗(y) = Ho \ ∪x(〈x, y〉 − f(x)). (1)

From the definition of conjugate function follows a hypercomplex analogue of

Jung-Fenhel’s inequality [10]:

〈x, y〉 /∈ f(x) + f∗(y). (2)

The correlation (2) can be rewritten in the form

〈x, y〉 ∈ H \ (f(x) + f∗(y)),

or

f(x) ∩ (〈x, y〉 − f∗(y)) = ∅
with all x ∈ Hn, y ∈ Hn.

We find a function conjugate to a function f∗:

f∗∗(x) = (f∗)∗(x) = Ho \ ∪y(〈x, y〉 − f∗(y)).

Example 1. Conjugate with a multivalued affine function f(x) = 〈x, y0〉 + f(Θ),

where f(Θ) ⊂ H is the set which is the image of the point Θ = (0, 0, ..., 0) ∈ Hn, is

the function

f∗(y) = Ho \ ∪x(〈x, y〉 − 〈x, y0〉 − f(Θ)) = Ho \ ∪x(〈x, y − y0〉 − f(Θ)) =

=

{
Ho \ (−f(Θ)), if y = y0,

∞, if y 6= y0.

Example 2. Let E ⊂ Hn, Hn \ E 6= ∅, f(x) = δE(x). Then

f∗(y) = Ho \ ∪x(〈x, y〉 − δE(x)) = Ho \ ∪x⊂E〈x, y〉,
that is, conjugate with the indicator function of its own subset E will be the reference

function of this set.

Theorem 6. For each multivalued function f : Hn −→ H the inclusion f ⊂ f∗∗ is

valid.

Proof. Let us take an arbitrary pair of points

x = (x1, . . . , xn) ∈ Hn, y = (y1, . . . , yn) ∈ Hn.

We obtain from the inequality 2

〈x, y〉 − f∗(y) ∩ f(x) = ∅, 〈x, y〉 − f∗(y) ⊂ Ho \ f(x),

i.e.

Ho \ (〈x, y〉 − f∗(y)) ⊃ f(x).
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Taking in the last inclusion the intersection of all y ∈ Hn, we will obtain such

inclusions

∩y[Ho \ (〈x, y〉 − f∗(y))] ⊃ f(x),

Ho \ ∪y(〈x, y〉 − f∗(y)) ⊃ f(x), f ⊂ f∗∗.
The theorem is proved. �
Definition 18. A multivalued function f : Hn −→ H is called an open (respectively,

closed or compact) function when its graph is open (respectively, closed or compact)

set in Hn+1.

Theorem 7. Let f : Hn −→ H be a multivalued function. Then the function f∗

conjugate to it is linearly convex. If f is open then f∗ is closed.

Proof. The value of the conjugate function can be written as

f∗(y) = ∩x(Ho \ (〈x, y〉 − f(x))).

For a fixed x the function y 7→ Ho \ (〈x, y〉 − f(x)) is a multivalued affine function

in y, and therefore it can be presented in the form

y 7→ 〈x, y〉+ [H0 \ (−f(x))]. (3)

The function f∗ is the intersection of linearly convex functions of the form (3), and

hence by the Theorem 5 f∗ is a linearly convex function. Moreover, if f is open, then

each of the functions (3) is closed, and therefore f∗ is also closed. The theorem is

proved. �
The following theorem is a hypercomplex analogue of the Fenhel-Moro theorem.

Theorem 8. Let the multivalued function f : Hn −→ H be such that H \ f(x) 6= ∅
for all x ∈ Hn. Then f∗∗ = f if and only if when f is linearly convex.

Proof. We shall show that the equality f∗∗ = f is equivalent to the linear convexity

of the function f .

If f∗∗ = f , then, according to the Theorem 7, a function conjugate to an arbitrary

function will be linearly convex. If f(Hn) ≡ ∞, then the equality f∗∗ = f is obtained

from formulas 1 and 2. We have f∗(y) = H for all y ∈ Hn∗ and f∗∗ = ∞. Since

f ⊂ f∗∗ by Theorem 6, it suffices to show that the inverse inclusion f ⊇ f∗∗ is valid

for a linearly convex function.

Let there be inequality f(x0) 6= f∗∗(x0) at some point x0. Then there is an affine

function l(x) = 〈x, y0〉 + α, such that Γ(l) ∩ Γ(f) = ∅ and w0 = 〈x0, y0〉 + α, where

w0 ∈ f∗∗(x0) \ f(x0). Then

f∗(y0) = Ho \ ∪x(〈x, y0〉 − f(x)) = ∩x[Ho \ (〈x, y0〉 − f(x))] ) (−α),

because [〈x, y0〉−f(x)] 6= −α for all x ∈ Hn. For the function f∗∗ valid is an inclusion

f∗∗(x0) = ∩y[Ho \ (〈x0, y〉 − f∗(y))] ⊂
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⊂ Ho \ (〈x0, y0〉 − f∗(y0)) ⊂ Ho \ (〈x0, y0〉+ α) = Ho \ w0.

Therefore, w0 /∈ f∗∗(x0), which contradicts the choice of the point w0 ∈ f∗∗(x0) \
f(x0). The theorem is proved. �
Definition 19. Let fα : Hn −→ H, α ∈ A, be multivalued functions. The func-

tion (∪αfα)(x) := ∪αfα(x) we call the union of functions fα, and the function

(∩αfα)(x) := ∩αfα(x) we call their intersection.

For the conjugate functions, there is the theorem of duality.

Theorem 9. Let fα : Hn −→ H, α ∈ A, be multivalued functions. Then equality holds

(∪αfα)∗ = ∩αf∗α.

Proof. From expression 1 we obtain for conjugate functions

(∪αfα)∗(y) = Ho \ ∪x(〈x, y〉 − ∪αfα(x)) =

= Ho \ ∪x ∪α (〈x, y〉 − fα(x)) = Ho \ ∪α ∪x (〈x, y〉 − fα(x)) =

= ∩α(Ho \ ∪x(〈x, y〉 − fα(x))) = ∩αf∗α(y).

The theorem is proved. �
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UOGÓLNIENIE IDEI WYPUK LOŚCI NA PRZESTRZENIE

HIPERZESPOLONE

S t r e s z c z e n i e
Badamy ekstremalne elementy i h-otoczki zbiorów z n-wymiarowej przestrzeni hiperze-

spolonej Hn. Wprowadzana jest klasa zbiorów H-quasi-wypuk lych w la̧czaja̧c zbiory silnie
hiperzespolenie wypuk le, domkniȩte w odniesieniu do przeciȩć. Pewne wyniki dotycza̧ce
funkcji wielowartościowych w przestrzeniach zespolonych sa̧ uogólnione na przestrzenie
hiperzespolone. Dotyczy to twierdzenia Fenchela-Moreau i pewnych w lasności funkcji sprzȩ-
żonych do funkcji f : Hn \Θ −→ H.

S lowa kluczowe: zbiór hiperzespolenie wypuk ly, h-otoczka zbioru, punkt h-ekstremalny,

zbiór H-guasi-wypuk ly, funkcja liniowo wypuk la, funkcja sprzȩżona


