https://doi.org/10.26485/0459-6854/2018/68.2/9 PL ISSN 0459-6854

BULLETIN

DE LA SOCIETE DES SCIENCES ET DES LETTRES DE LODZ

2018 Vol. LXVIII
Recherches sur les déformations no. 2
pp. 85-94

Dedicated to the memory of
Professor Yurii B. Zelinskii

Mariia V. Stefanchuk

GENERALIZATION OF THE CONCEPT OF CONVEXITY
IN A HYPERCOMPLEX SPACE

Summary

Extremal elements and a h-hull of sets in the n-dimensional hypercomplex space H"
are investigated. The class of H-quasiconvex sets including strongly hypercomplexly convex
sets and closed relatively to intersections is introduced. Some results concerning multivalued
functions in the complex space were generalized into the n-dimensional hypercomplex space:
there was proved the hypercomplex analogue of the Fenchel-Moreau theorem and some
properties of functions that are conjugate to functions f: H" \ © — H.
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1. Introduction

The natural analogue of complex analysis is a hypercomplex analysis. Therefore,
there is a need to transfer a series of results of a convex analysis known in n-
dimensional real and complex spaces, on the n-dimensional hypercomplex space H",
n € N, which is a direct product of n-copies of the body of quaternions H [1].
G. Mkrtchyan worked on these problems [2, 3]. He introduced the concepts of hy-
percomplexly convex, strongly hypercomplexly convex sets and transfered a series
of results of linearly convex analysis on hypercomplex space H". Yu. Zelinskii [4]
and his students (M. Tkachuk, T. Osipchuk, B. Klishchuk) continued to develop this
direction.
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Let E C H"™ be an arbitrary set of the space H"™ containing the origin of co-
ordinates © = (0,0,...,0). We put © = (z1,22,...,25), b = (h1,ha, ..., hy),
(x,h) = x1h1 + x2ho + -+ + xphy. The set E* = {h|(z,h) # 1, Vax € E} is called
the conjugate set to the set E [2].

A hyperplane is called a set L C H"™ that satisfies one of the conditions (z,a) = w,
(x — xg,a) = 0, where z is an arbitrary point of the set L, x¢ is a fixed vector, w
is a fixed scalar with H, and a is a fixed covector. We call the covector a a normal.
Accordingly, affine we will call only the functions of the species I(x) = (x,a) + b,
b e H.

Definition 1 [2]. The set F C H" is called a hypercomplexly convex if for any point
xo € H" \ E there exists a hyperplane that passes through the point xg and does not
intersect E.

Definition 2 [2]. The set £ C H" is called a strongly hypercomplexly convex if
its arbitrary intersection with the hypercomplex straight line v is acyclic, that is
H? (yNE) =0, Vi > 0, where Hi (YN E) is a consolidated group of Aleksandrov-Cech
cohomology sets v N E with coefficients in the set of integers.

2. Extremal elements

Let E C H be an arbitrary set. The complement to the union of the unbounded
components of the set H \ F is called the h-combination of the points of the set E
and is denoted by [E]. If E is an arbitrary set in the space H", n > 1, then we say
that the point x belongs to the h-combination of points from FE if there exists an
intersection of the set E with a hypercomplex straight line  such that € [ENy|. The
set of such points with H" is called the h-combination of the points £ and denoted
[E]; the m-multiple h-combination is determined by the induction [E]|™ = [[E]™™}]
[4].

Definition 3 [2]. The set E = N, [x(E)] is called the h-hull of the set £ C H",
where 7: H" — X — all possible linear projections of the set on the hypercom-
plex straight lines, [7(E)] is the h-combination of the points of the set m(E), and
7 r(E)] = {zx € H"| n(z) € m(E)} is its complete preimage.

The following theorem [5] asserts that for an arbitrary set of the space H" the
set of points of its h-hull coincides with the h-combination of the points of this set.

Theorem 1. If the set E C H" is an h-hull, then E = [E].

Proof. Let x € [AN E] for some hypercomplex plane A. Then, the inclusion 7(x) €
[m(ANE)] for all projections 7 is obviously true, since the restriction of any projection
7 to each straight line is either homeomorphism or projection into a point. U]
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Definition 4 [2]. The h-interval with center at the point x of radius r is the inter-
section of an open ball of radius r with center at the point x with a hypercomplex
straight line, which passes through the point x.

Definition 5 [2]. A point x € F C H" is called the h-extremal point of the set E if
F has no h-intervals containing z.

We extend the Klee’s theorem of a convex analysis [6] to a hypercomplex case.

Definition 6 [5]. The h-ray is called a closed unbounded acyclic subset of a hyper-
complex straight line with a non-empty boundary.

Definition 7 [5]. The extremal h-ray of the set £ C H" is called the h-ray H
belonging to the set E if the set E \ H is hypercomplexly convex and each point
of the boundary of the ray H will be an h-extremal point for the set E. (This is
equivalent to that no point of the ray H will be internal to the arbitrary h-interval
that belongs to the set E and has at least one point outside H).

For the set E C H" we denote: hext E is the set of its h-extremal points, rhext £
is the set of h-extremal rays, hconv E is the h-hull of the set E.

Lemma 1. Let E C H" be a closed strongly hypercomplexly convex body (intE # ()
with a non-empty strongly hypercomplexly convexr boundary OF, then E has the form
E = B, x H* 1, where E; is an acyclic subset of straight line H with non-empty
intertor relative to this straight line.

Proof. Since the boundary OF is strongly hypercomplexly convex, then for an arbi-
trary point x € int E there exists a hyperplane that does not intersect OF. Therefore,
the set E contains a hyperplane. Consequently, by theorem 3 [4], the set E can be
depicted in the form of Cartesian product £ = E; x H"~!. The set E; will be
acyclic, because there are intersections E be hypercomplex straight lines that are
homeomorphic to Ej. O

Definition 8. An affine subset L is called a tangent to the set F if LN E C 0F,
LNE #0.

Lemma 2. If E C H" is a strongly hypercomplexly conver closed set and L is its
tangent hypercomplex straight line, then hext(E N L) = (hext E) N L.

Proof. Since the inclusion of sets E N L C FE is fair, then by the definition of A-
extremal points we have hext(E N L) D (hext F) N L. Let « € hext(E N L). Then,
inclusion z € [K] \ K, where K C FE, can not be performed, because otherwise
K C ENL (since x € L and L is a hypercomplex straight line, tangent to E). This
contradicts the fact that x € hext(E N L). Consequently, the inverse inclusion of
hext(E'N L) C (hext F) N L is correct and the lemma is proved. O
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Remark 1. Analogically, we can prove the equality rhext(E N L) = (rhext £) N L
for h-extremal rays.

Theorem 2. Fach closed strongly hypercomplexly conver set E C H"™, which does
not contain a hypercomplex straight line, will be the h-hull of its h-extremal points
and h-extremal rays E = hconv(hext F U rhext E).

Proof. The proof is carried out by induction according to the hypercomplex dimen-
sion of the set E. For dimy F = 0 and dimyg £ = 1, the theorem is obvious. Assume
that the theorem is valid for all hypercomplex dimensions of the set E, which are
less than m (1 < m < n). Let us prove it for dimyg F = m.

By the condition of the theorem, the set F does not contain a hypercomplex
straight line, therefore it can not coincide neither with its affine hull, nor with the
Cartesian product £y x H* 1. Therefore, it follows from lemma 1 that the non-empty
boundary dF will not be strongly hypercomplexly convex set.

By the definition of a strong hypercomplex convexity, the intersection of the set
FE with an arbitrary hypercomplex straight line will also be strongly hypercomplexly
convex. Let x be an arbitrary point of the set E. If x belongs to a certain tangent
straight line L to E, then by the hypothesis of induction we have the inclusion

x € hconv((hext EN L) Urhext(E N L)).

If there are points of the set E, through which there is no hypercomplex straight line
tangent to F, then there is a point x € int F.

In this case, we draw a hypercomplex straight line [ through the point x. The
intersection of [ N E is a strongly hypercomplexly convex set and does not coincide
with [. Therefore, x ¢ [0(IN E)]. Now let y be an arbitrary point of the boundary of
intersection O(INE). Taking into account the strong hypercomplex convexity through
the point y, one can draw a straight line 7" tangent to the set E. By the hypothesis of
induction, we obtain y € hconv((hext ENT")Urhext(ENT)). We note that this is fair
for every point y € 9(I N E). Then, taking into account the lemma 2 and the remark
1, we obtain z € hconv(hext EUrhext E). As a result of arbitrariness of choice of the
point x we obtain the inclusion E C hconv(hext E U rhext ). The inverse inclusion
is trivial. The theorem is proved. (]

3. H-quasiconvex sets

The class of strongly hypercomplexly convex sets is non-closed relatively to the inter-
section [3]. Therefore, the main axiom of the convexity is not fulfilled: the intersection
of any number of convex sets must be convex. We denote the class of sets, which
includes strongly hypercomplexly convex sets and is closed relatively to intersections.

Definition 9 [5]. A hypercomplexly convex set £ C H" is called H-quasiconvex set
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if its intersection with an arbitrary hypercomplex straight line v does not contain a
three-dimensional cocycle, i.e. H3(y N E) = 0.

It is obvious that the class of H-quasiconvex sets includes a strongly hypercom-
plexly convex domains and compacts.

Let us show the closure of a class of H-quasiconvex sets in the sense that the
intersection of an arbitrary family of compact H-quasiconvex sets will be an H-
quasiconvex set.

Theorem 3. The intersection of an arbitrary family of H-quasiconvex compacts will
be an H-quasiconvexr compact.

Proof. 1t is enough to do the proof for two compacts. Let Ky, K5 be two arbitrary
H-quasiconvex compacts, v is an arbitrary hypercomplex straight line that intersects
the set K3 N Ko. We use the exact cohomological sequence of Mayer-Vietoris [7]

H*(yNKy) ® H(yN Ka) —
— H*(yN K1 N Ky) = HY(yN (K1 U Ky)).
Since the compacts K; and K, are H-quasiconvex, then H3(y N K;) = 0 and
H3(yN K3) = 0. Therefore
H3(yNK;) @ H*(yN Ky) =0.
On the other hand, a compact intersection
YN (K1 UKs) = (yN KU (yNK)

can not hold the entire hypercomplex straight line v, which is a four-dimensional
real manifold, therefore H*(y N (K; U K3)) = 0.

From the accuracy of the cohomological sequence it follows that H3(yNK1NK3) =
0. This is equivalent to the assertion, that the intersection of the set K1 N Ky with an
arbitrary hypercomplex straight line does not contain a three-dimensional cocycle.
From the previous follows the H-quasiconvexity of the compact K1NK5. The theorem
is proved. U

4. Linearly convex functions

Definition 10 [8]. The function f: H® — H is called multivalued if the image of
the point x € H" is a set of f(x) € H.

The domain of definition of such a function will be denoted by Ef := {x € H" :
y €M, y= f(x)}.
Definition 11. The function [: H" — H is called affine if its graph is a hyperplane.

Definition 12 [8, 9]. A multivalued function f: H" — H is called a linearly convex
if there exists an affine function {: H” — H for an arbitrary pair of points (xg, yo) €
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(H™ x H) \ T'(f) such that yo = (o) and T'({) "N T'(f) = 0 for all z € H", where the
graphs of functions [ and f, respectively, are denoted by I'(l) and T'(f).

Definition 13. A linearly concave function is called a multivalued function f for
which the function ¢ = H \ f is linearly convex.

This means that H" ™1\ T'(f) is a graph of a linearly convex function, i.e. through
each point (zg,yo) € I'(f) the graph of the affine function passes, which is completely
contained in T'(f).

Definition 14 [8, 9]. A multivalued affine function is called a function that is linearly
convex and linearly concave simultaneously, and for which there is at least one point
x € H", in which each of the sets (f(x) NH) and (H\ f(z)) is non-empty.

The definition of a linearly convex function can be extended to multivalued func-
tions that take values in an expanded hypercomplex plane H° = HU (c0), compacted
by one point.

Here are some examples of linearly convex functions.
Definition 15. A function
We(y) = H° \ Urer(z,y)
is called the reference function of the set £ C H".

Definition 16. If £ C H"” is a linearly convex set, then the function

5 () 0, ifxek,
€Tr) =
F 0, ifz¢E,

is called its indicator function.
It is easy to verify that the reference and indicator functions are linearly convex.

Theorem 5. If f,, a € A, is a family of linearly convex functions, where A is an
arbitrary set of indices, then the function f = Nacafa 15 linearly convex.

Proof. We have I'(f) = Naeal'(f,). Let us take an arbitrary point

(zo,y0) € (H" x H) \I'(f) = (H" x H) \ Naecal'(f,)-
Then
(zo,90) € (H" x H) \ T'(f,)

for some «, and therefore there is an affine function /: H™ — H whose graph does
not intersect I'(f,). Therefore, it does not intersect I'(f). Consequently, the function
f is linearly convex. The theorem is proved. U
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5. Conjugate functions

Definition 17. A function conjugated to f is called a function given by the equality
f(y) ="\ U ((z,y) — f(2)). (1)

From the definition of conjugate function follows a hypercomplex analogue of
Jung-Fenhel’s inequality [10]:

(z,y) & [(x) + [*(y)- (2)
The correlation (2) can be rewritten in the form
(z,y) € H\ (f(z) + f*(v)),
fle)n({z,y) = 7 (y)) =0

with all z € H", y € H".
We find a function conjugate to a function f*:

) = () (x) = HO\ Uy ({2, y) = f7(y))-

Example 1. Conjugate with a multivalued affine function f(x) = (x,y0) + f(O),
where f(©) C H is the set which is the image of the point © = (0,0, ...,0) € H", is
the function

J*(y) = HO\ Ua((2,9) = (2, 50) = f(©)) = HO\ Ua((z,y — yo) — f(©)) =
_ {H"\(—f(@)), if 5 = o,
00, if y # yo.
Example 2. Let £ C H", H" \ E # (), f(x) = dg(x). Then
F(y) = H\ Uy ((2,9) — 65(x)) = H* \ Uy (a, ),

that is, conjugate with the indicator function of its own subset E will be the reference
function of this set.

Theorem 6. For each multivalued function f: H" — H the inclusion f C f** is
valid.

Proof. Let us take an arbitrary pair of points
r=(21,...,2,) €EH", y=(y1,...,yn) € H".
We obtain from the inequality 2
(z,y) = ") N fz) =0, (z,y) — f*(y) CH\ f(2),

1.e.

H\ ((z,y) — 7 (y)  f(a).
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Taking in the last inclusion the intersection of all y € H™, we will obtain such
inclusions

Ny[H\ ({2, ) — f*(9))] D f(),
H\ Uy ((z,y) — f*(y)) D fz), f C [
The theorem is proved. 0]

Definition 18. A multivalued function f: H"™ — H is called an open (respectively,
closed or compact) function when its graph is open (respectively, closed or compact)
set in H" 1.

Theorem 7. Let f: H* — H be a multivalued function. Then the function f*
conjugate to it is linearly convex. If f is open then f* is closed.

Proof. The value of the conjugate function can be written as

[ () = Na(H\ ({2, ) — f())).
For a fixed x the function y — H° \ ((z,y) — f(z)) is a multivalued affine function
in y, and therefore it can be presented in the form

y = (z,y) + [\ (= f(2))]. (3)
The function f* is the intersection of linearly convex functions of the form (3), and
hence by the Theorem 5 f* is a linearly convex function. Moreover, if f is open, then
each of the functions (3) is closed, and therefore f* is also closed. The theorem is
proved. L]

The following theorem is a hypercomplex analogue of the Fenhel-Moro theorem.

Theorem 8. Let the multivalued function f: H™ — H be such that H \ f(z) # 0
for all x € H". Then f** = f if and only if when f is linearly convex.

Proof. We shall show that the equality f** = f is equivalent to the linear convexity
of the function f.

If f** = f, then, according to the Theorem 7, a function conjugate to an arbitrary
function will be linearly convex. If f(H") = oo, then the equality f** = f is obtained
from formulas 1 and 2. We have f*(y) = H for all y € H™ and f** = oo. Since
f C f** by Theorem 6, it suffices to show that the inverse inclusion f O f** is valid
for a linearly convex function.

Let there be inequality f(zg) # f**(xo) at some point xg. Then there is an affine
function I(x) = (z,y0) + «, such that T'(I) NT(f) = 0 and wy = (xo,yo) + @, where
wo € f** (o) \ f(zo). Then

f(yo) = H\ Uz ({z, yo) — f(2)) = N[H"\ ({z,50) — f(2))] 2 (—a),
because [(z,yo) — f(z)] # —a for all x € H". For the function f** valid is an inclusion

f7 (o) = Ny [H\ ((xo, ) — " (y))] C
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C H?\ ({zo, y0) — [ (y0)) C H®\ (w0, y0) + ) = H" \ wo.
Therefore, wg ¢ f**(xg), which contradicts the choice of the point wg € f**(xg) \
f(zo). The theorem is proved. O

Definition 19. Let f,: H" — H,a € A, be multivalued functions. The func-
tion (Uqfo)(z) := Uqfoa(z) we call the union of functions f,, and the function
(Nafa)(@) == Na fo(z) we call their intersection.

For the conjugate functions, there is the theorem of duality.

Theorem 9. Let f,: H* — H, a € A, be multivalued functions. Then equality holds

(Uafa)* = maf;-

Proof. From expression 1 we obtain for conjugate functions
(Uafa)*(y) = H° \ Uaz((‘ra y> - Uozfoz(x)) =
=H\ Uz Ua ({2, y) — fa(2)) = H\ Ua Uz ({2,y) — fa(2)) =

= Na(H?\ Uz ((2,9) — fa(2))) = Nafa ().
The theorem is proved. U
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UOGOLNIENIE IDEI WYPUKLOSCI NA PRZESTRZENIE
HIPERZESPOLONE

Streszczenie

Badamy ekstremalne elementy i h-otoczki zbioréw z n-wymiarowej przestrzeni hiperze-
spolonej H". Wprowadzana jest klasa zbioréw H-quasi-wypuklych wlaczajac zbiory silnie
hiperzespolenie wypukte, domkniete w odniesieniu do przecie¢. Pewne wyniki dotyczace
funkcji wielowartosciowych w przestrzeniach zespolonych sa uogdlnione na przestrzenie
hiperzespolone. Dotyczy to twierdzenia Fenchela-Moreau i pewnych wlasno$ci funkcji sprze-
zonych do funkcji f: H" \ © — H.

Stowa kluczowe: zbidér hiperzespolenie wypukty, h-otoczka zbioru, punkt h-ekstremalny,

zbioér H-guasi-wypukly, funkcja liniowo wypukta, funkcja sprzezona



