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ON SOME CASES OF PLANE ORTHOTROPY

Summary

There are considered some cases of plane orthotropy in the absence of body forces. Then

every function from a pair-solution of the equilibrium system of equations with respect to

displacements satisfies the elliptic fouth-order equation of the type:
(
α1

∂4

∂x4
+ α2

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0,

with certain real αk 6= 0, k = 1, 2.

Keywords and phrases: the generalized Hook’s law, a plane orthotropy, the equilibrium

system

1. Introduction

As well-known (cf., e.g., [1, 2, 3]), in the case of isotropic plane deformations with

the absence of body forces a function (displacement) u or v from a pair-solution

(u(x, y), v(x, y)) of the equilibrium system of equations in displacements




(λ+ µ)
(

∂2u(x,y)
∂x2 + ∂2v(x,y)

∂x∂y

)
+ µ∆2u(x, y) = 0,

(λ+ µ)
(

∂2u(x,y)
∂x∂y + ∂2v(x,y)

∂y2

)
+ µ∆2v(x, y) = 0∀(x, y) ∈ D,

(1)

as well as the stress Airy’s function, satisfies the biharmonic equation: (∆2)2w(x, y) =

0, where ∆2 := ∂2

∂x2 + ∂2

∂y2 is the 2-D Laplasian, D is a domain of the Cartesian plane

xOy, λ and µ are the Lamé constants.

[71]
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Similar results for anisotrophic solid body are not well-known. One of the reason

of this fact is a difficulty (due to a variety of cofficients) of the generalized Hooke’s

law expressing strains via stresses in a linear form.

The aim of this paper is to prove analogous (to the isotropic case) statements

for some cases of an elastic anisotrophic homogeneous plane solid body — a plane

orthotropic body, or briefly, a plane orthotropy. We will restrict our attention on

some simple but interesting cases of orthotropy.

2. Notations and preliminaries

Let R3×3 be a set of all real 3× 3 matrices, A ∈ R3×3, detA is a determinant of A.

If detA 6= 0 then there exists the inverse matrix B = A−1 such that AB = BA = 1,

where 1 is the unity matrix. By R3×3
+ we define all matrices of R3×3 which are

symmetric and positive defined. A symbol
←−
ϑ defines a vector-column having three

real coordinates ϑk, k = 1, 2, 3.

Let a model of an elastic anisotropic medium occupied a domain D of the Carte-

sian plane xOy be a homogeneous (cf., e.g., [4, p. 25]) plane orthotropic (cf., e.g., [4,

p. 35]) body.

Let ←−ε has coordinates equal to strains (cf., e.g., [4, p. 18]):

ε1 := εx, ε2 := εx, ε3 = γxy.

Let ←−σ has coordinates equal to stresses (cf., e.g., [4, p. 16]):

σ1 := σx, σ2 := σy, σ3 := τxy.

The generalized Hooke’s law for our model has two equivalent forms (cf., e.g., [4,

§ 3], [5, § 4.1.3]):
←−ε = A←−σ , ←−σ = A−1←−ε , (2)

with A ∈ R3×3
+ of the form

A =



a11 a12 0

a12 a22 0

0 0 a66


 , (3)

where

a11 > 0, a11a22 − (a12)2 > 0, a66 > 0. (4)

Unequalities (4) follows from the Sylvester’s criterion of positive definiteness of the

matrix (3).

A numbers aij and Aij , k ≤ m, k,m = 1, 2, 6, are called elastic constants ([4,

p. 27]). They are constants in D due to the homogeneity of the solid body.
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Consider notations for elements of A−1:

A−1 =:



A11 A12 0

A12 A22 0

0 0 A66


 , (5)

where Akm satisfy (4) with akm := Akm, k ≤ m, k,m = 1, 2, 6.

A stress function ([6, p. 21] with U ≡ 0) is a function w satisfying relations:

σx(x0, y0) =
∂2w

∂y2
(x0, y0), σy(x0, y0) =

∂2w

∂x2
(x0, y0),

τxy(x0, y0) = − ∂2w

∂x∂y
(x0, y0)∀(x0, y0) ∈ D.

In the absence of body forces, the stress function w(x, y) satisfies the elliptic fouth-

order equation (“ the stress equation”, cf., e.g., [6, p. 27] with a16 = a26 = 0):
(
a22

∂4

∂x2
+ (2a12 + a66)

∂4

∂x2∂y2
+ a11

∂4

∂y4

)
w(x, y) = 0. (6)

The equilibrium system of equations with respect to the displacement vector

(u(x, y), v(x, y)) has a form (cf., e.g., [4, p. 75]):



(
A11

∂2

∂x2 +A66
∂2

∂y2

)
u(x, y) + (A12 +A66) ∂2v(x,y)

∂x∂y = 0,

(
A66

∂2

∂x2 +A22
∂2

∂y2

)
v(x, y) + (A12 +A66) ∂2u(x,y)

∂x∂y = 0,
(7)

where all (x, y) ∈ D; Akm, k ≤ m, k,m = 1, 2, 6, are defined in (5).

3. Cases of orthotropy and solutions of their equilibrium sys-
tems and stress equation

Consider the following equation (particular case of (6)):

l0,pw(x, y) ≡

≡
(

(2p− 1)
∂4

∂x4
+ 2p

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0 ∀(x, y) ∈ D, (8)

where p 6= 1 is a real parameter.

Consider an orthotropy with

a11 = a12 = 1, a22 = 2p− 1, a16 = a26 = 0, a66 = 2(p− 1). (9)

Then the equation (8) is a stress equation. It is easy to check that the matrix (3)

is positive defened only for p > 1. So a case p < 1 has no elastic meaning and we are

to investigate a case p > 1. Calculating the inverse matrix A−1 we find:

A11 =
2p− 1

2(p− 1)
, A12 = − 1

2(p− 1)
, A22 = A66 = −A12. (10)

Since A12 +A66 = 0 a system (7) takes a form
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



1
2(p−1) l1,pu(x, y) = 0,

1
2(p−1) ∆2v(x, y) = 0∀(x, y) ∈ D,

(11)

where l1,p := (2p− 1) ∂2

∂x2 + ∂2

∂y2 .

Taking into account that the operator (8) can be factorisated in the form:

l1,p = l1,p ◦∆2 = ∆2 ◦ l1,p
(l1 ◦ l2 is a symbol of composition of operators l1 and l2), we see that if a pair (u, v)

is a solution of (11) then w := u or w := v is a solution of the equation (8). So we

proved the following theorem.

Theorem 1. Let p > 1, an orthotropy is defined by (2), (9). Then every displace-

ment-function from a pair of solution of the eqilibrium system (11) satisfies the equa-

tion (8).

Now consider another cases of orthotropy for which an equilibrium equation splits

onto two equations containing except of operators of the type l1,p an extra term-

operator ∂2

∂x∂y acted to another unknown function and has a non-zero coefficient.

Let p be an arbitrary fixed number: 0 < p < 1.

Take into consideration the plane orthotropy:

a11 = a22 = 1, a16 = a26 = 0, a66 = 2(p− a12), −1 < a12 < p. (12)

An a12 belongs to such measures due to the positiveness of the matrix (3). Therefore,

we have:

A11 = A22 =
1

1− a212
, A21 = A12 = − a12

1− a212
, A66 =

1

2(p− a12)
.

The equilibrium system (7) gets a form:




1
1−a2

12

∂2

∂x2u(x, y) + 1
2(p−a12)

∂2

∂y2u(x, y)+

+
(
− a12

1−a2
12

+ 1
2(p−a12)

)
∂2v(x,y)
∂x∂y = 0,

1
2(p−a12)

∂2

∂x2u(x, y) + 1
1−a2

12

∂2

∂y2 v(x, y)+

+
(
− a12

1−a2
12

+ 1
2(p−a12)

)
∂2u(x,y)
∂x∂y = 0,

(13)

where all (x, y) ∈ D.

Consider the following (“stress”) equation:

l2,pw(x, y) ≡

≡
(
∂4

∂x4
+ 2p

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0∀(x, y) ∈ D. (14)
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The system (13) is equivalent to the following system:




B11
∂2u(x,y)

∂x2 +B12
∂2u(x,y)

∂y2 + ∂2v(x,y)
∂x∂y = 0,

B21
∂2v(x,y)

∂x2 +B22
∂2v(x,y)

∂y2 + ∂2u(x,y)
∂x∂y = 0∀(x, y) ∈ D.

(15)

where

B11 = B22 :=
2 (p− a12)

(a12 − p)2 + 1− p2 ,

B12 = B21 :=
1− (a12)2

(a12 − p)2 + 1− p2 .

Theorem 2. Let 0 < p < 1, an orthotropy is defined by (2), (12). Then every

displacement-function from a pair of solution of the eqilibrium system (15) satisfies

the equation (14).

Proof. Acting by the differential operator ∂2

∂x∂y on the second equation of (15) and

substituting to the obtained equation an expression of ∂2v
∂x∂y , we arrive at the equation:

∂4u(x, u)

∂x4
+ C2

∂4u(x, y)

∂x2∂y2
+ C3

∂4u(x, y)

∂y4
∀(x, y) ∈ D, (16)

where

C3 =
B22B12

B11B21
≡ 1, C2 :=

B11B22 +B12B21 − 1

B11B21
.

So, to prove Theorem we need to check the equality C2 = 2p. In terms of p and

a12 the relation C2 = 2p can be rewritten in the form:

α2 + β2 + 2pαβ = (α+ a12β)
2
,

where α := 1 − a212, β := 2(a12 − p). By doing simple algebraic transformation, the

last one is equivalent to the relation

1− a212 = 2(a12 − p)
α

β
,

which with use of the definitions of α and β is an identity. So, we proved that if (u, v)

is a solution of (15) then v satisfies the equation (14).

A similar statement for v can be proved analogously. The theorem is proved. �
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O PEWNYCH PRZYPADKACH P LASKIEJ ORTHOTROPII

S t r e s z c z e n i e
Rozpatrywane sa̧ pewne przypadki p laskiej orthotropii przy za lożeniu braku oddzia-

 lywania si l cia la. Wówczas każda funkcja z pary rozwia̧zań uk ladu równowagi równań ze
wzglȩdu na przemieszczenia spe lnia równanie eliptyczne czwartego rzȩdu typu:

(
α1

∂4

∂x4
+ α2

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0,

z pewnymi rzeczywistymi sta lymi αk 6= 0, k = 1, 2.

S lowa kluczowe: uogólnione prawo Hooke’a, orthotropia p laska, uk lad równowagi


