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Summary

We consider conditions for convergence of Dirichlet series on a finite-dimensional space
in Stepanov’s metric. Also, we obtain some applications for Stepanov’s and Besicovitch’s
almost periodic functions.
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Consider a Dirichlet series Y are**, ap € C, A\ € R. In the paper [4] and [5],

k
V. Stepanov obtained the following result:

Theorem S. Suppose that > |ar|? < co. If \gy1 — A > a > 0, k € Z, « does

k=—0c0
N .
not depend on n, then the sums Sy (z) = > age**** form a Cauchy sequence with
k=—N
respect to the integral metric, namely
1
y+1 2
sup / 1Sar — Sndz | —0 M,N — oco.
yeER
y

[61]
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The quantity
x+1

Dy (). g(a)) = supl; /Nf WPy, p>1,
xEe

is called Stepanov’s distance of order p (p > 1) associated with length [ (I > 0). The
corresponding metric is called Stepanov’s one.

Here we assume that functions f(z), g(x) are pth power integrable on each seg-
ment. Note that Stepanov’s distances are equivalent for various [ > 0; the space of
functions with finite Stepanov’s norm Dgr[f(z), 0] is complete (see [4]).

In our paper we prove an analogue of Theorem S on the space R?. In one-
dimensional case our result is stronger than Theorem S.

We need some definitions and notations.

Let B(xg,r) be the open ball with center at the point zo € R? and radius r > 0,
(t,z) be the scalar product on R%, and wy be the volume of a unit ball in R

Suppose that f: R? — C, g: R? — C are measurable and LP-integrable functions
on each compact set.

Definition 1.

P

Dglf g = swp |~ [ 1f0) -~ gwldy| . p=1.

rzER4
B(z,l)

The metrics generating by these distances with different [ > 0 are equivalent and
complete, therefore we will take [ =1 and write Dg» instead of Dgr. Such distance
is called Stepanov’s metric.

By SH(R?) denote the Schwartz space of smooth functions f(z), r € R¢, with
the following property: for any m = (m,ma, ..., mq) € (NU{0})¢ and for any k € N

the equality < griimat A f) (r) =0 <| 1| ) x — oo holds true.

Ox™10x™2...0x™d

Definition 2. (sce [6]) The function f(¢) f f(x)e 2 dz t € R?, is called the

Fourier transform of f(x) € L'(RY).

It is known (see, for example, [6], [8]), that the Fourier transform is the automor-
phism on SH(R?).
Let {(an, A\n)}S2, be a set of pairs where a,, € C, A, € R% Let A = |_| A; be
7j=1
a partition of the set A = {\,}72, with the property diamA; <1, j =1,2,...

N
Denote Sy(x) = > ape’re®),
k=
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Theorem 1. Suppose a, > 0,0 < r < oo. Then
2

Z Z an | < Cjsup / |Sn () |*d,
N

j=1 \An€A; B (o)
where C; = Cy(r,d).

Proof. Let o(x) € SH(R?) be an even nonnegative function such that supp ¢(z) C
B(0,%). Put ¢(z) = s7(p * ¢)(%) for § € (0,1). Clearly, supp¢(x) C B(0,6r) and
Y(t) = |B(5t)|* > 0, 4(0) > 0 and

b(t)>e>0, teB(0,1) (1)

for appropriate 9.

Let M = supv(x). We have the following sequence of inequalities:
Rd

R

B(0;7)

N N

>0 [w@lsw(@)de =M [ o) 303 anaret s =
Rd nd n=1I=1

=M" 1ZZanal/¢ )et A=A @) o — M 122anal¢ (N — An).

n=1 [=1 n=1 [=1

Since w(t) > 0 we omit all the terms where the elements \,,, A\ belong to different
sets A; and get the following inequalities:

N N
M3N " anarh(h — >Mlz S anah(h = Ay) >

n=1[]=1 | 1<n,I<N
)\n,AkEA

2

zM_lsz Z anal:M_leSZ Z ay,

j 1<nJ<N i | 1<n<nN
>\n7>\l€Aj )\»,LEAJ‘
Thus,
2
> > " an | <Cisup / Sy () da.
- N
7o \Aneh B(0.7)

This completes the proof of the Theorem. [
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Define T, = {(j,1) : m < dist(A;, A;) < m+ 1}. Note that N2 = | | Tj,.
m=0

Let {B(z;,1)} be a set of balls such that multiplicities of their intersections do
not exceed h and A; C B(zj,1) for all j € N. Note that for a fixed k£ and any j
such that B(zg,2) N B(z;,2) # 0 we have |x; — x| < 4 and B(zj,1) C B(z,5).
Let M be a number of such balls B(x;,1). The sum of volumes of these balls is at
most Mwy. Clearly, Mwy < h5%ug, therefore multiplicities of the system of the balls
B(z;,2) bound by H = h5%. Replace each ball B(z;,1) by some ball B(z},1) with
x; € Aj C B(zj,1). Note that A; C B(z},1). Since B(z},1) C B(w;,2), we see that
multiplicities of intersections of the system {B(z’,1)} are bounded by H. Hence we
may suppose that x; € A;.

Lemma. For any l,m € N the number of elements of the set {k € N: (k,l) € T,,,}
does not exceed CoHme™1, Cy = Cy(d).

Proof. Let (k,l) € Tp,,. We have m < dist(Ax, A;) < |zp — 2] < dist(Ag, Ay) +2 <
m + 3. Therefore, all balls B(xy,1) with (k,l) € T, are contained in the spherical
layer {x : m — 1 < |z — x;] < m+ 4}. The volume of this spherical layer is wq((m +
4)4 — (m —1)?) < Cowgm?—1, where Co depends on d only.

Hence a common value of the set T, of balls B(xzy,1) with (I, k) € T, does not
exceed Co Hmd1. [

’n,:17

Theorem 2. Let A= {\,}o2,, A= || A;, diamA; <1,57=1,2,.... Suppose that
j=1

A; C B(zj,1), z; € A;j and the multiplicities of intersections of the balls B(x;,1) do

2
o0
not exceed h, also suppose that > ( > |an|> = K? < oo for some a,, € C.

Then the following conditions are fulfilled:

a) DSQ [SN(Hf),O] < CgK,

N
where Sy () = 3. are’* @ Cy does not depend on N.
k=1

b) ,im  Ds:[Sn (), Su(2)] =0,

(MK,

therefore the series > axe ) converges in the metric Dgz.

k

Proof. Let o(x) € SH(R?) be a function such that ¢(z) = 1, = € B(0;1) and
suppyp(z) C B(0,2), 0 < p(x) < 1.

Then
/ |SN(m)|2dx§/g0(x—y) Z Z apage’ ML T g =

B(y:1) R 1<k<N 1<I<N
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Z Z akal/ 1(/\k—>\z,:v+y)dx§

1<k<N 1<ZIKN

< XX laulml| [ el =

1<k<N 1IN

> larllallgn — Xl

1<k<N 1<I<N

Since p € SH(RY), we get |p(z)| < Cymin{l, |w|+“} After appropriate rear-
rangement of the summands

> Y larllall@(hk — M)l

1<k<N 1<I<N

we get:

S larllallgne — M| =

1<k<N 1<I<N

=3 > JallallEon - Al

J 1<k, I<N
Ak ALEA;

+Z S500Y lallalldOn = M) = T + .

=1(j, p)ET, 1<k, ISN
)\kEAJ,)\ZGA

We estimate the sums »; and X, separately.

We have |p(Ap — A)| < C4 for any j under the condition g, \; € A;. Hence the
next bound for ¥; holds:

> lanllal|@Ok =A< Co Y awl Y il =Cu | Y asl |

1<k, I<N )\kEAj AZEAJ* )\kGAj
)\k,)\ZEAj
Therefore,
¥ < O4K2. (2)

Further, for each fixed m > 1 :

> o arllallgOe =M < Co—r > D aw] D il <

(4,p)ETm 1<k, I<N (],p YETm 1<k<N 1<I<KN
)\kEAj, >\l€Ap AkEA AZEAP
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2 2

Cir X || X lad] +[ X @)

(J,p)ETm Ak eAj ALEAP

<

N | —

Using Lemma and replacing the summation over p such that (j,p) € T, by the
summation over all s € N, we obtain the following estimate for (3):

=) (Z ak>2+<2 ) =C;§4Z<Z )

AL €A, M EA; S AN EA;

Therefore,
Yo < C5K2. (4)

Finally, taking into account (2) and (4), we obtain

|SN(LU)|2dI' S 06 . K2,
B(y;1)

where Cg does not depend on N. Hence, Dg2[Sn(x)] < C5 - K, where C3 does not

depend on N, so the proposition a) is proved.
2

Prove the proposition b). Let K% = > lak| | . Actually we have just

i | 1<k<N
)\kEAJ
proved the inequality
sup / S (@) Pz < (C5EKx )2 (5)

y
B(y,1)

Substituting the sum Sy (z) — Sps(z) for Sy(z) in inequality (5), we get

Dg2[Sn (), Su(2)] < C5(KR — Kjy),

here K% — K2, = Z(M<Z<N la])?.
j M<n<

AnEAj
Prove that (K% — K?2;) — 0 as N, M — oo. Assume that M is sufficiently large.

2
By the condition ) ( > |an|> = K2, for each € > 0 there exists ¢ € N (¢ does

o
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Next, for each fixed 1 < j < q there exists M such that the inequality
2

3" Janl gziq

An EAj

\V]

q
is satisfied for n > M. Then ) > lan|| <q-5 = 5. Hence, for each ¢ >0
: q
j=1 \ M<n<N
AnEAj

we obtain (K% — K2,) < e. This completes the proof. [l
N M

Remark 1. Theorem 2 is true for diamA; < r,j = 1,2,..., and for the balls of
radius R > r.

Suppose that there exists a set of balls {B(z;, R)} such that multiplicities of
intersections of the balls do not exceed h, and the numbers of points A € A contained
in B(z;, R) are uniformly bounded.

j

Put Al =A N B(CL‘l,R), A2 =A N B(I’l,R) \Al, Aj - (A N B(I’l,R)) \ U Ak
k=1

The sets A; satisfy all the conditions of Theorem 2 and for any j the number of

elements Aj does not exceed some bound s < oo.

2
oo
Clearly, Y |an|? < oo implies > ( > ’an’> <5 > lanl? < oo
=1 A, €A,

n=1 ]:1 )‘n EAJ' J
We get the following consequence of Theorem 2:

Theorem 3. Let A = {\,}22, and {B(xj, R)} be a set of balls such that multiplic-
ities of intersections of the balls do not exceed h. Suppose that numbers of elements
of the sets AN B(x;, R) are uniformly bounded for all j € N. If for some a, € C

3 |an|? < 0o, then the following conditions are fulfilled:

n=1

a)sup Sy (z) < oo,
N
N .
here Sy (x) = 3 ape’re),
k=1

b) M,llifrgoo Dsz [SN(.’,E), SM (.’,E)] =0.
Consider some applications of the obtained results.
Definition 3. (see [2] for the case d=1). Function f(x): R? — C is called Stepanov’s
almost periodic function of order p (SP-almost periodic function) if there exists a
sequence of finite exponential sums S, (z) = 3 ¢;e?*:?) ¢; € C, \; € R?, such that
J

nh_)rréo Dg»[f(x), Sn(x)] = 0.
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To each SP-almost periodic function f(z), x € R, we associate the Fourier series

Fa) ~ ) a(\, e,
AER4E

[ f(x)e ¥ dy.

where a(), f) = TILm
B(0, T)

_1
w,de
Definition 4. (see [2] for the case d = 1 and [3] for the case d > 1) The spectrum
of function f(z) is the set spf = {\ € R?: a(\, f) # 0}.

It is well known (for the case d = 1 see [2], the proof for the case d > 1 can be
treated in the same way) that spectrum of SP-a.p.function is at most countable. The
properties of the spectrum of the almost periodic functions in various metrics were
considered in [7]. There were considered Stepanov’s, Weil’s and Besicovitch’s almost
periodic functions on R¢.

Theorem 4. For any set of pairs {(an,, A\n) 52, that satisfy the conditions of Theo-

rem 2 there exists S%— almost periodic function f(z) with Fourier series Y. aye**n®).

n

Proof. Tt follows from the completeness of the metric Dg2 and Theorem 2 that the

sums > anpe’?
n<N

) converge to f(x) with respect to the metric Dgs. O

Also we get

Theorem 5. For any set of pairs {(an,, A\n) 52, that satisfy the conditions of Theo-

rem 3 there exists S%— almost periodic function f(x) with Fourier series Y. aye**n®).

n

Let the functions f: R — C, ¢g: R? — C be measurable and LP-integrable on
each compact in R?.

Generalizing the definition of Besikovitch’s distance ( see [1]) for the function on
R? we have the following definition.

Definition 5. Put

P

/If(y)—g(y)lpdy , p>1,

B(0,T)

Dp» [f(a:),g(x)] - Tli_r>noowdT”

the metric generated by this distance is called Besicovitch’s distance of order p.

Definition 6. (see [1] for the case d=1) Function f(z): R — C is called Besi-

covitch’s almost periodic function of order p (BP—almost periodic function) if there

exists a sequence of finite exponential sums S, (z) = > ¢;ei*i:?) ¢; € C,\; € RY,
J

such that
lim Dpge[f(z),Sn(z)] =0.

n—oo
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Each BP—almost periodic function f (x), x € R?, has at most countable spectrum

spf ={A:a(\ f) = hm

/ fx)e " M dg £ 0}

B(0, T)

Moreover, for each B? — almost periodic function f we have

> e, P

An€spf

The proof is similarly to the case d = 1.

Hence we obtain

Theorem 6. Let f(x), © € R, be B%- almost periodic function with the spectrum
A = { e} . Suppose that there exists a set of balls {B(x;, R)} such that the multi-
plicities of intersections do not exceed h, and numbers of elements A € AN B(x;, R)
is uniformly bounded. Then the function f(x) is S? — almost periodic.
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O ZBIEZNOSCI SZEREGU DIRICHLETA W PRZESTRZENI
SKONCZENIE WYMIAROWEJ

Streszczenie

Rozwazamy warunki zbieznosci szeregéw Dirichleta w przestrzeni skoniczenie wymiaro-
wej przy metryce Stepanova. Uzyskujemy tez pewne zastosowania dla funkcji prawie okre-
sowych Stepanova i Besicovitcha.

Stowa kluczowe: szereg Dirichleta, wykladniki w szeregu Dirichleta, szereg Fouriera, metryka

Stepanova, metryka Besicovitcha, funkcje prawie okresowe



