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Summary

In this paper we study some properties of weakly m-convex sets in n-dimensional Eu-

clidean space. We obtain estimates for different variants of the shadow problem at a fixed

point. We discuss unsolved questions related to this problem.
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1. Introduction

The purpose of this paper is to study different variants of a problem which can be

called the shadow problem at a fixed point. We construct an example giving a lower

estimate to create a shadow at a point tangent to the sphere S2 in the space R3.

Further, under m-dimensional planes we mean m-dimensional affine subspaces of

the Euclidean space Rn.

Definition 1.1. We say that the set E ⊂ Rn is m-convex with respect to the point

x ∈ Rn\E if there exists an m-dimensional plane L such that x ∈ L and L∩E = ∅.

Definition 1.2. We say that the open set G ⊂ Rn is weakly m-convex if it is

m-convex with respect to each point x ∈ ∂G belonging to the boundary of the set

G. Any set E ⊂ Rn is weakly m-convex if it can be approximated from outside by

the family of open weakly m-convex sets.

It is easy to construct examples of weakly m-convex set which is not m-convex.

[53]
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Example 1.1. Let D = {(x, y) | (|x| < 3, 3 < |y| < 9) ∨ (3 < |x| < 9, |y| < 3)}
be a set consisting of four open squares. This set is weakly 1-convex, but is not an

1-convex set.

Example 1.2. Let B = {(x, y) | x2 + y2 < 1} be an open circle in the plane. We

choose three points of a circle S1 = {(x, y) | x2 + y2 = 1} and consider a simplex σ

with vertices at these points. It is easy to see that a set E = B \ σ is also weakly

1-convex set, but it is not an 1-convex.

2. Properties of weakly m-convex sets

In this section we study properties of m-convex sets. The next proposition was proved

by Yu. Zelinskii in [5].

Proposition 2.1. If E1 and E2 is weakly k-convex and weakly m-convex set respec-

tively, k 6 m, then a set E = E1 ∩ E2 is weakly k-convex set.

Let G(n,m) be Grassmann manifold of m-dimensional planes in Rn[2].

Definition 2.1. A set E∗ is called conjugate to a set E if E∗ is a subset of a set

consisting of m-dimensional planes in G(n,m) that don’t intersect the set E.

Now we prove the following theorem.

Theorem 2.1. If K is weakly m-convex compact set and a set K∗ is connected then

for the section of K by arbitrary (n −m)-dimensional plane L the set L\K ∩ L is

connected.

Proof. As was proved in the proposition 2 [5] the set K∗ is an open set, so any two

of its points can be connected by a continuous arc in K∗. Suppose that there exists

an (n −m)-dimensional plane L for which the set L\K ∩ L is not connected. Thus

the intersection K ∩ L is a carrier of some non-zero (n −m − 1)-dimensional chain

z [2].

Let a point x belong to a bounded component of the set L\K ∩ L. Such points

exist because of the compactness of K. From the weak m-convexity of K it follows

that an m-dimensional plane l1 which does not intersect K passes through the point

x. Now we take other m-dimensional plane l2 outside of some sufficiently large ball

containing the compact K.

If we compactificate the space Rn to a sphere Sn by an infinitely remote point

then we obtain two m-dimensional chains w1 = l1 ∪ (∞) and w2 = l2 ∪ (∞) from

which the first chain is affected by the chain z and the second is not. On the one

hand, these chains can not be translated into one another by homotopy which would

not intersect a chain z and therefore a set K ∩ L.

On the other hand, from the fact that the set K∗ is connected follows the existence
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in K∗ of pairs of points y1, y2 which define the planes l1 and l2 respectively and

connected by an arc in K∗. The points of this arc define the homotopy of the plane

l1 in l2 that has no common points with the set K ∩ L. The resulting contradiction

completes the proof of our theorem. �

3. The shadow problem

Now we study different variants of the shadow problem in n-dimensional Euclidean

space.

For every set E ⊂ Rn we can consider the minimal m-convex set containing E

and call it m-convex hull of a set E.

Introducing the concept of m-convex hull of a set E, we obtain the next problem:

to find the criterion that the point x ∈ Rn \ E belongs to the m-convex hull of the

set E. For a case of 1-convex hull of a set that is a union of some set of balls the

problem was formulated by G. Khudaiberganov and named the shadow problem [1].

The shadow problem. What is the minimum number of mutually disjoint closed

or open balls in the space Rn with centers on the sphere Sn−1 and of radii smaller

than the radius of the sphere with condition that any straight line passing through

the center of the sphere intersects at least one of these balls?

In other words, this problem can be formulated as follows. What is the minimum

number of mutually disjoint closed or open balls in the space Rn with centers on the

sphere Sn−1 and of radii smaller than the radius of the sphere with condition that

the center of the sphere belongs to an 1-convex hull of the family of these balls?

G. Khudaiberganov proved that in the case n = 2 two discs are sufficient to create

a shadow in the center of a circle. He assumed that for n > 2 the minimum number

of such balls equals n. Subsequently, professor Yu. Zelinskii [8] proved that in the

case n = 3 three balls are not enough to create a shadow for the center of the sphere.

At the same time the four balls create the shadow. In the general case it is sufficient

n+ 1 balls.

Theorem 3.1. There exist two closed (open) balls with centers on the unit circle

and of radii smaller than one with condition that the center of the circle belongs to

an 1-hull of these balls.

Theorem 3.2. In order that the center of a sphere Sn−1 in the n-dimensional Eu-

clidean space Rn (n > 2) belongs to an 1-convex hull of a family of mutually disjoint

open (closed) balls of radii whose values do not exceed (smaller than) of the radius of

the sphere and with centers on the sphere it is necessary and sufficient (n+ 1) balls.

Note that professor Yu. Zelinskii generalized the shadow problem for an arbitrary

point inside the sphere.
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Problem 3.1. What is the minimum number of mutually disjoint closed or open

balls in the space Rn with centers on the sphere Sn−1 and of radii smaller than

the radius of the sphere with condition that the interior of the sphere belongs to an

1-convex hull of the family of these balls?

He obtained [9] the solution of this problem in a case n = 2.

Theorem 3.3. In order that an interior of a circle belongs to an 1-convex hull of a

family of mutuall disjoint open or closed discs with centers on the circle and of radii

smaller than the radius of the circle it is sufficient 3 discs.

In a case where the point doesn’t necessarily belong to some sphere, the following

theorem obtained by Yu. Zelinskii is true [7].

Theorem 3.4. In order that a chosen point in the n-dimensional Euclidean space Rn
for n > 2 belongs to an 1-hull of a family of open (closed) balls that do not contain

this point and do not intersect pairwise it is necessary and sufficient n balls.

Note that where balls are of the same radius we have the next result[10].

Theorem 3.5. Any set consisting of three balls of the same radius which do not

intersect pairwise forms an 1-convex set in the three-dimensional Euclidean space

R3.

Now we consider a set consisting of three balls in the space Rn. The following

statement is true.

Theorem 3.6. For an arbitrary point of the space Rn \
3⋃
i=1

Bi, where B1, B2, B3 are

three balls of the same radius that do not intersect pairwise and do not pass through

this point, there exists an (n − 2)-dimensional plane containing this point and does

not intersect any of the balls.

Proof. Let B1, B2, B3 be three balls of the same radius that do not intersect pairwise

and do not pass through some point x ∈ Rn. Let us construct a three-dimensional

plane L passing through three centers of the balls and a point x. The intersections

of the selected balls with the plane L are three three-dimensional balls B′1, B′2, B′3.

Then according to Theorem 3.5, in the plane L there exists a straight line l which

does not intersect any of these balls.

Now we consider the orthogonal complement L1 of a plane L in the space Rn.

This is an (n− 3)-dimensional plane. Obviously, the Cartesian product l × L1 is an

(n− 2)-dimensional plane passing through the point x and does not intersect any of

the balls B1, B2, B3. The proof is completed. �

Definition 3.1. We say that a family of sets = = {Fα} creates a shadow tangent to

the manifold M at the point x ∈M if every straight line tangent to the manifold M
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at the point x ∈M \⋃
α
Fα has a non-empty intersection at least with one of the sets

Fα belonging to the family =.

Now we formulate the shadow problem for points of the sphere Sn−1 which don’t

belong to the union of the balls with respect to the straight lines tangent to the

sphere.

Problem 3.2. What is the minimum number of mutually disjoint closed or open

balls {Bi} in the space Rn with centers on the sphere Sn−1 and of radii smaller than

the radius of the sphere which provide a shadow tangent to the sphere Sn−1 at each

point x ∈ Sn−1 \⋃
i

Bi?

Lemma 3.1. We consider an equilateral triangle in the Euclidean plane R2. If we

choose three circles Bi, i = 1, 2, 3, with centers at the vertices of this triangle and of

a radius equals to half of the height of the triangle then every straight line passing

through an arbitrary point x ∈ (
3⋃
i=1

Bi)
∗ \

3⋃
i=1

Bi, where (
3⋃
i=1

Bi)
∗ is a convex hull of

the set
3⋃
i=1

Bi, intersects at least one of the selected circles.

Proof. Without loss of generality we take an unit circle with the center at the ori-

gin and consider an equilateral triangle with vertices in points (0, 1), (
√
3
2 ,− 1

2 ),

(−
√
3
2 ,− 1

2 ) inscribed in the circle. Now we take discs B1, B2, B3 of a radius 3
4

in each vertex of the triangle. We note that the circumscribed circle of this triangle

lies in a convex hull of these three circles.

It is easy to see that any straight line passing through a point x ∈ (
3⋃
i=1

Bi)
∗\

3⋃
i=1

Bi,

where (
3⋃
i=1

Bi)
∗ is a convex hull of the set

3⋃
i=1

Bi, intersects at least one of the three

selected discs. By increasing the radii of the selected discs, we obtain that the lemma

is true for three open circles of a fixed radius.

Lemma 3.1 gives an answer on the problem 3.2 in the case n = 2. �

This result shows that in a three-dimensional case for an arbitrary point of a

sphere it is possible to select three balls touching pairwise and creating a shadow

at all points of a curvilinear triangle created on the sphere by these balls. Note

that the harmonization of such construction for the whole sphere requires additional

considerations. This is shown in the following example.

Example 3.1. There exists a set consisting of 14 open (closed) balls that do not

intersect pairwise with centers on a sphere S2 ⊂ R3 that can not provide a shadow

tangent to the sphere S2 at each point x ∈ S2 \
14⋃
i=1

Bi.

Without loss of generality we can assume that the chosen sphere S2 has center
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at the origin and its radius equals 1. We take a cube with vertices in points (x =

±1/
√

3, y = ±1/
√

3, z = ±1/
√

3) inscribed in this sphere. The length of an edge of

the cube is equal to a = 2/
√

3.

Now we choose eight open balls with centers at the vertices of the cube and radius

r = 1/
√

3 ≈ 0.577 which equals to half of the cube’s edge. We add to this collection

six new open balls with centers at an intersection of the rays going from the origin

and passing through the center of the face of the cube with the sphere S2. Radii

of these balls equal r =
√

2− 2/
√

3 − 1/
√

3. Each of them touches exactly up to

four previously selected balls. This collection of balls of two different radii covers the

sphere. As the calculations show, this set of balls is not sufficient to create a shadow

tangent to the sphere S2 at each point x ∈ S2 \
14⋃
i=1

Bi.

Note that the constructed set of balls gives a lower estimate of the required

number of balls. The question on an upper estimate remains open.

4. Open problems

Unfortunately, Theorem 3.3 gives the solution of the problem 3.1 only in the case

n = 2. The question on the solution of this problem in higher dimensions remains

open.

Question 4.1. What is the minimum number of mutually disjoint closed or open

balls in n-dimensional Euclidean space with centers on the sphere Sn−1 and of radii

smaller than the radius of the sphere with condition that the interior of the sphere

belongs to an 1-convex hull of the family of these balls?

Finally, Lemma 3.1 gives the answer on the Problem 3.2 for n = 2. At the same

time, Example 3.1 gives a lower estimate in the case n = 3. The questions on an

upper estimate for n = 3 and solution of the problem in the case n > 3 are open.

Question 4.2. What is the minimum number of mutually disjoint closed or open balls

Bi in the space Rn (n > 3) with centers on the sphere Sn−1 and of radii smaller than

the radius of the sphere which provide a shadow tangent to the sphere Sn−1 at each

point x ∈ Sn−1 \⋃
i

Bi?

Acknowledgements

The author acknowledges the Polish-Ukrainain grant No. 39/2014 Topological-analy-

tical methods in complex and hypercomplex analysis of the Polish Academy of Sciences

and the National Academy of Sciences of Ukraine.



Weakly m-convex sets and the shadow problem 59

References

[1] G. Khudaiberganov, On uniformly polynomially convex hull of the union of balls,

Manuscript Dep. in VINITI 21.02.1982, no. 1772 - 85 Dep. (in Russian).

[2] V. A. Rohlin, D. B. Fuks, Basic Topology Course, Nauka, Moscow 1977 (in Russian).

[3] Yu. B. Zelinskii, Multivalued mappings in the analysis, Naukova dumka, Kyiv 1993,

264 pp. (in Russian).

[4] Yu. B. Zelinskii, A. S. Gretsky, I. V. Momot, Some results on generalized convex sets,

Classical analysis, Proceedings of 10-th intern. sympos. Poland 1999, 113–124.

[5] Yu. B. Zelinskii, I. V. Momot, On the (n,m) convex sets, Ukrainian Math. Journal

53, no. 3 (2001), 422–427 (in Russian).

[6] Yu. B. Zelinskii, Convexity. Selected topics, Institute of Mathematics of the NAS of

Ukraine, Kyiv 2012, 92, 280 pp. (in Russian).

[7] Yu. B. Zelinskii, The problem of shadow for family of sets, Proceedings of Institute

of Mathematics of the NAS of Ukraine 12, no. 4 (2015), 197–204 (in Russian).

[8] Yu. B. Zelinskii, I. Yu. Vygovska, M. V. Stefanchuk, Generalized convex sets and

shadows problem, Ukrainian Math. Journal 67, no. 12 (2015), 1658–1666 (in Russian).

[9] Yu. B. Zelinskii, M. V. Stefanchuk, Generalizations of the shadow problem, Ukrainian

Math. Journal 68, no. 6 (2016), 757–762 (in Ukrainian).

[10] Yu. B. Zelinskii, H. K. Dakhil, B. A. Klishchuk On weakly m-convex sets, Reports of

the NAS of Ukraine No. 4 (2017), 3–6 (in Ukrainian).

Institute of Mathematics

National Academy of Sciences of Ukraine

Tereshchenkivska str. 3, UA-01004, Kyiv

Ukraine

E-mail: kban1988@gmail.com

Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Com-
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ZBIORY S LABO m-WYPUK LE I PROBLEM CIENIA

S t r e s z c z e n i e
Badamy w lasności zbiorów s labo m-wypuk lych w n-wymiarowej przestrzeni euklideso-

wej. Uzyskujemy oszacowania dla różnych wariantów problemu cienia w ustalonym punkcie.
Analizujemy również kilka nierozwia̧zanych zagadnień.

S lowa kluczowe: zbiór m-wypuk ly, zbiór s labo m-wypuk ly, rozmaitość Grassmanna, zbiór

sprzȩżony, problem cienia, 1-otoczka rodziny zbiorów




