
https://doi.org/10.26485/0459-6854/2018/68.3/9 PL ISSN 0459-6854

B U L L E T I N
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2018 Vol. LXVIII

Recherches sur les déformations no. 3

pp. 113–140

Dedicated to the memory of

Professor Yurii B. Zelinskii

Krzysztof Pomorski1,2 and Przemyslaw Prokopow3

ON THE ENGINEERING ASPECTS OF STATISTICAL PHYSICS

AND THEORY OF PHASE TRANSITIONS: LECTURE 1

Summary
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1. Motivation behind Statistical Physics

In 1cm3 of material as piece of wood we have as much as 1023 atoms. Modeling of

each atom behavior on microscopic level or atom mutual interactions brings enor-

mous complications and is beyond current computation capability. Despite this fact

we can predict quite many properties of the given material. It turns out that in the

case of thermal equilibrium or in the non-equilibrium case that is not far from ther-

mal equilibrium we can have only few parameters that characterize the system and

thus microscopic degrees of freedom can be omitted. In such way thermodynamics

laws can be formulated (or more precisely microscopic degrees of freedom become

unimportant). We can correlate thermodynamic variables as pressure, temperature,

volume or mass density for given classes of materials. Among those variables we

have extensive variables (as mass or volume) and intensive variables as pressure or

temperature that does not depend on the scale. Thermodynamics usuallly do not

[113]
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pay attention to one microscopic configuration of the world but takes into account

processes that occur with big frequency and usually are responsible from transferring

the system from one microscopic configuration into antoher one. Because of law of

big numbers we arrive to the equivalence of occurrence of given events and their

probability. At certain point one can recognize that statistical ensemble is the ba-

sic tool used in statistical physics. On another hand statistical ensemble is the tool

that is associated to one particle and to many particles in description of quantum

mechanics. Therefore certain analogies occur between statistical physics and quan-

tum mechanics. Since the classical picture of the world is more intuitive we start

the survey on the statisticall physics using the classical physics. Later we can apply

the concepts of statistical physics to quantum physics. Indeed second quantization

known in advanced quantum mechanics needs to formulated always with reference

to statistical physics and great canonical ensemble known from statistical physics

course. What is more the concept of programmable matter allows us to generate

the new type of systems going beyond known laws of physics [in first apperance

since laws of physics are always conserved]. We can apply the concepts of statstical

physics to the robotic agents and movement of cars (or other agents) in the city (or in

other enviroments), to sociology, economics or to telecommunication systems. Very

last three examples brings certain amount of complications since we can never fully

justify when two or more social agents becomes indisinguishable or distinigushiable.

In such case we are often force to make radical assumptions. For systems of finite

size (but still not of infninite size as in thermodynamical limiti) it is possible to

use both the statstical laws and the description with microscopic degrees of freedom.

The prize to be paid for such assumption is the limited accuracy of statistical picture

that is not fully corresponding to rigorus statistical limit that is reserved only for

homogenous systems of infinite size and when number of particles goes to infinity.

Nevertheless the themometer of small size made of glass and with mercury inside can

measure the temperature of our body in finite time of 5 minutes. Even the glass in

window is the state of matter that is not in thermodynamic stability. The glasses in

windows older than 100 years usually are thicker in lower part since glass can flow

very slowly under gravitation force. Despite the fact that thermodynamical limit is

not fullfilled in orthodox way as it is the case of mercury thermometer of finite size

the use of concepts of thermodynamics for finite size systems and in measurement of

given property of thermodynamical system done in finite time is quite effective and

practical.

1.1. Ideal gas and the equation of state

First idealistic and didactic case is the model of ideal gas made of hard impenetrable

and very stiff spheres of finite radius that collides in elastic way. Let us consider the

particle of finite mass and radius in 2 (3) dimensional box of (L×L×L). If we reduce
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situation to 1 dimension it gives situation as depicted in Fig.1. In such case we can

also use viral theorem.

Fig. 1. Case of particle confined in 1 dimension (left) and 2 or 3 dimensional case of particles
confined in big tank. Relation with of macroscopic and microscopic variables is visualized
[4].

Nevertheless just by using Newtonian physics we obtain the relation between

pressure and volume given by the change of particle momentum. We assume that

collisions are perfect elastic and that are lasting infinitely short time. The change of

momentum with time is dpx
dτ = 2px

2T = 〈Fx〉 = 〈p〉S, where Fx is average force acting

on each wall confining particle and having surface S. At the same time 2L
2T = vx

what brings L
vx

= T and consequently gives
mv2x
L = S〈p〉 so 〈p〉V = 2Ek. Now it

is necessary to assume that Ek = γT that means kinetic energy parameterized in

linear way by temperature T. Thus we arrive to the well-know case of equation of

state for ideal gas pV
T = nR, where n is average density of molls per volume of

ideal gas and R is constant (known as ideal, or universal, gas constant, equal to the

product of the Boltzmann constant and the Avogadro constant). Similar reasoning

can be conducted in 2 and 3 dimensional case and will lead to the same equation of

state. The presented model of ideal gas is important since it shows the connection

between pressure, volume and kinetic energy. It gives first definition of temperature

and develops our intuition about entropy. It will be also helpful in formulation laws

of thermodynamics that needs to be confirmed by more complicated models.

In general the following equation of the state is fulfilled

pf(V ) = nRT. (1)

One of particular cases of mentioned equation is van der Waals equation.

(p+ aN2/V 2)(V −Nb) = nRT (2)

This equation brings the correction to contribution to particle pressure since it

assumes 2 body particle-particle interaction conveyed at certain distance and rep-

resented by term a
V 2 . At the same time this equation assumes that the gas can be

squeezed into some minimum residual volume b. Quite obviously if we have N balls

with certain radius it is the case. It is quite important that ideal gas model does
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not predict any phase transition while van der Waals model is able to describe phase

transition. Van der Waals equation is also able to predict existence of tricritical point

in water when there is coexistence of all 3 phases: solid, liquid and gas.

2. Laws of thermodynamics

Now we need to formulate or to postulate 4 laws of thermodynamics. There are many

excellent books on this topic as [1], [3]. It shall be underlined that those laws can

be achieved only in thermodynamical limit when number of particles under consid-

eration → +∞ and volume of system goes to infinity with constant kept density of

particles n → N→+∞
V→+∞ = constant. In practical way it means that we need to deal

with infinite uniform physical systems that are never existing in nature since sys-

tems perceived by us are of finite size and usually non-uniform (only in certain small

volume can be regarded as uniform). Also observation time needed for assessment

average value of thermodynamical quantities shall be infinite but in case of experi-

ment is large and finite. This means that in practical cases the thermodynamics laws

are very useful approximation of reality.

O: Zero law of thermodynamics states that if A system is in thermal equi-

librium with B system and if B system is in thermal equilibrium with C system that

A is in thermal equilibrium with C system.

Example can be verified experimentally. If I use thermometer with mercury and

place it to the body for sufficient long time it will achieve thermal equilibrium with

our body. In normal state of our body (that is average case) the thermometer should

measure 36.6 C degrees. If we pass given thermometer to another person and he/she

measures the temperature of his/her body and gets 36.6 degree C than we can say

that two bodies are in the thermal equilibrium. We shall notice that in order to

achieve thermal equilibrium between two physical systems (finite or infinite) we need

to wait infinite long time, which is not the case of real experiments.

Another issue that was not touched is the fact that system in given thermodynamical

equilibrium might be subjected to some local excitation. Usually excitations decay

with some characteristic time τ . However if the excitation is not small it might bring

the whole system to new phase as by pushing the system into phase transition. In

this context it is interesting to point on the case of matter subjected to extremly en-

ergetic gamma radiation. If one photon coming from space has extremly high energy

as 1 Joule and hits the solid state that is in equilibrium state it will generate the

whole moving cloud of highly energetic particles. Only after certain time the whole

system thermalize and will approach equilibrium. However before thermalization the
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system cannot be described by thermodynamics that avoids micrsocopic degrees of

freedom (and assumes that all microscopic degrees of freedom can be approximated

by few thermodynamic paramters) and one needs to account all particle-particle in-

teractions.

Only basing on imagination and suggestions coming from model of ideal gas we

can postulate zero, first and second law of thermodynamics. However the reality ex-

hibits much complex behaviour than ideal gas. We need to assume that more detailed

quantum description of matter will bring the corrections to model of ideal gas. From

classical and quantum description of the world we can obtain 3rd law of thermody-

namics.

I: First law of thermodynamics states that work performed over given physical

system is equivalent to the transfer of heat and change of internal energy of the given

physical system. This law of thermodynamics is depicted in Fig.2. This can expressed

by equation dW = dU + dQ which means of given work dW is used (partitioned)

into change of internal energy of the system dU and into heat energy dQ.

This law can also be stated that energy can be converted from one form into

another form but never disappears.

Fig. 2. Work and heat equivalence in 2 cases [4]: (Left) conversion of kinetic energy into
heat in water, (Right) conversion of heat energy into kinetic energy. Depicted situation is
known as James Joule’s famous experiment that demonstrated the mechanical equivalence
of heat energy and work.

II: Second law of thermodynamics states that entropy of open system always

increases with long time.

Entropy is a measure of uncertainty or lack of information. Let us consider the
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case of brick moving on some rough surface with occurrence of friction perpendicular

to the Earth gravitational field. Since we never fully know the exact texture of surface

the exact mechanism of heat generation cannot be modeled for given system. One

moving brick is slowing down and its energy kinetic energy movement in one direction

is transferred to many energetic channels. Such situation is very common in nature.

We use to say that the entropy is increasing. Formally the whole system is still

deterministic. Nevertheless at some point we are loosing the ability to model its exact

state due to lack of full information on the system and due to finite computational

resources. In such way we are pushed into statistical way of thinking.

Another similar example can be the situation with kinetic energy of macroscopic

ball moving in space. It can be always changed into heat energy of many vibrating

particles from which given ball is made of. While moving macroscopic ball has certain

dynamical state, which is correlated with certain information allowing deterministic

prediction of ball position and velocity, many vibrating particles in the ball does

not transfer explicit information that can be perceived on macroscopic level. If such

ball (as the bullet coming from gun) hits its solid target most of its kinetic energy

is converted into heat. Thus entropy is a measure of the amount of energy which is

unavailable to do work. Entropy change dS is defined as dS = dQ
T .

The principle of entropy increase is illustrated on the example of difussion of ink

in water and charged billard balls moving on billiard table in Fig.17. - Fig.22 and

participating in perfect elastic collisions (that last infinitely short time and there is

no transfer of charge between balls). They participate in elastic collisions. The phys-

ical system under evolution with time is occupying (passing via) all available states

(possibilities).

It shall be notes that the entropy might fluctuate but for sufficiently long time

will always increase. The entropy fluctuations are prominent for small systems that

are very far from assumptions coming from thermodynamical limit.

Second law of thermodynamics also states that it is not possible to build the en-

gine efficient in 100 percent that transfers heat energy (as coming from combustion

of some fuel type as oil) into mechanical work and that such engine has efficiency

always smaller than 100 percent. Such conclusion can be extracted from right side

of Fig.2.

Heat flow from hotter body to colder body is due to principle of increasing entropy.

It shall be mentioned that in nanosystems it is not always the case since thermody-

namic limit is not fullfilled.
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It is worth mentioning that increasing entropy points direction of time arrow. All

irreversible process are characterized by entropy increase. Diffusion process is very

characteristic and illustrating principle of entropy increase. In this context Brownian

movement is also example of the case when entropy is increasing.

III: Third law of thermodynamics (sometimes known as zero law or Nernst

law) states that for temperature of physical system going to zero we have entropy of

system going to zero. Basically it means that density of states (number of possible

configurations) is decreasing when system approaches zero temperature. The dramatic

effect is that in case of all physical systems specific heat is proportional to temperature

for sufficiently low temperatures T → 0.

The entropy is the measure of volume of possible states occupied by the system.

In certain cases entropy can be understood as lack of ordering. For low temperatures

tends to be zero (Nernst law). Thus ferromagnetic (antiferromagnetic) materials

tends to have all spins directed in one direction in low temperatures in parallel (or in

antiparallel fashion) and entropy is going to 0. On another hand in high temperature

situation spins can have arbitrary direction and thus it can be translated as lack of

ordering. This lack of ordering is due to the fact that spins have much bigger phase

space.

With increase of temperature we have more and more possible states in which

particles might be and thus volume of occupied states is bigger. Thus we are dealing

with increasing entropy.

Another fundamental quantity is temperature. In case of hard spheres it parame-

terizes their average kinetic energy in proportional way. Thus we have Ek = 1
2mv

2
k =

akbT , where a is some constant. However it needs to be defined in more precise way

in relation to other thermodynamic variables.

Before moving to more detailed description it is necessary to mention 3 basic

cases that needs to be analyzed and that have name of ensembles: microcanonical,

canonical and grand canonical ensemble. In first case the good number is energy E,

in second case the good number is free Helmoholtz energy F and in third case the

good number is grand canonical potential Ω.

In insulated physical system we have energy conservation as it is the case of satellite

moving on given orbit in gravitational field of Earth (with absence of other sources

of fields). In case of satellite is convenient to describe the system with use of Hamil-

tonian (that is the sum of kinetic and potential energy) approach so position of

i-th particle qi(t) and its momentum pi(t) with components s = x, y, zare governed

by equations (
dpi,s
dt = − dH

dqi,s
,
dqi,s
dt = + dH

dqi,s
). Hamiltonian is preserved in case of



120 K. Pomorski and P. Prokopow

insulated physical system. The good example is pendulum depicted in Fig.3. In men-

tioned example we have full determinism of behavior of system with time. At the

same time we have all the information about the system.

Fig. 3. Pendulum and its phase space [19].

It shall be underlined that in general the whole universe can be described by one

Hamiltonian. However this Hamiltonian is unknown since we do not know all position

and velocities of particles at given time and we have limited computation possibili-

ties. At the same time there are still new laws of physics that need to be discovered

or reformulated.

We have to accept the fact that we do not know the positions of all particles and

their energy. However they still transport energy and momentum. The equivalence

of heat to work (that can be understood as change of kinetic energy) was the base

for first thermodynamic principle.

In such case kinetic energy can be converted into heat and some heat can be

converted into kinetic energy while some energy can be stored as internal energy.

On another hand temperature is measure of average kinetic energy of vibrating par-

ticles.

The main principle governing the thermodynamical ensembles is principle of max-

imum entropy.

If we set conglomeration of balls concentrated in one region on the billboard

table and evolve in time after long evolution they will be dislocated in more kind of

uniform way. Thus the entropy of the system will be maximized after long evolution

time.

Now we need to formalize all concepts and physical quantities as (pressure p,

temperature T , entropy S) and bring reference to certain physical cases.

Let us start from concept of entropy. We will define it as the measure of states

that can be achieved by the system.
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2.1. Characterization of microcanonical ensemble (NVE)

Such ensemble is basically isolated physical system that has no interaction with

external world. The system is confined in space with certain fixed volume V =

constant, fixed average energy E and fixed number of particles N = constant. Thus

we deal with NVE ensemble. All particles are subjected to equations of motions

expressed as
d

dt
p = +

dH(q, p)

dq
(3)

and
d

dt
q = −dH(q, p)

dp
. (4)

We have two conjugate variables as q and p that determines of phase space. (In case

of classical harmonic oscillator q=x and p = mdx
dt = mv and H(q, p) = p2

2m + k q
2

2 .)

The scheme of system in microcanonical ensemble is given by collection of parti-

cles confined in isolated container what is depicted in Fig.4.

Fig. 4. Physical situation corresponding to microcanonical ensemble as N particles confined
in box of volume V with impenetrable and isolative walls [9].

We can make some analogies with our solar system or with atom described in

classical way (when we omit the emission of electromagnetic waves due to acceleration

of charged particles and when electrons and nucleus are impenetrable balls of certain

radius). Basing on this analogy we can state that certain orbits have higher frequency

of appearance than others.

However in most general case we are dealing with N body Hamiltonian for spec-

ified big number of particles Nt. In such case the evolution of the system depends

only on the initial parameters of all positions of particles and their velocities. Still

total Hamiltonian of system is time independent. The Poincar recurrence theorem

states (as given by Wikipedia) that certain confined (as bounded particles) systems

will, after a sufficiently long but finite time, return to a state very close to the initial

state. The result applies to isolated mechanical systems subject to some constraints,

e.g., all particles must be bound to a finite volume. The example of usage of Poincare

recurrence theorem is depicted in Fig.5.
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Fig. 5. In many body situations of particle confined in some classes of potential [18] the
trajectories might be complicated. Still statistical frequency of orbits present in system
brings certain order and stochastic determinism.

2.2. Liouville theorem

Let us assume that given measure observable f(q,p) depends explicitly on position

and momentum of all particles in the system. Due to the evolution of all position

and momenta in time we have non-explicit dependence of f on time. We can write

df

dt
=
df

dq

dq

dt
+
df

dp

dp

dt
= [q̇

d

dq
− ṗ d

dp
]f = [

dH

dp

d

dq
− dH

dq

d

dp
]f = −iL̂f. (5)

It shall be noticed that the solution can be written in operator form as f(t) =

e−iL̂(t−t0)f(t0). Liouville approach is valid both in classical and in quantum picture.

In this context it is usefull to introduce Poisson bracket of two variables A(p, q)

and B(p, q) defined as.
{
A,B

}
= ( ddqA

d
dqB − d

dqB
d
dqA). Indeed Poissonian will be

the precursor of commutator of two obserables A and B ([A,B] = AB − BA) so

heavily used in quantum mechanics . The equation of motion for observable f is

df

dt
= {f,H}. (6)

It shall be underlined that aveaged measured value of f observable is given as

< f >=

∫ +∞

−∞

∫ +∞

−∞
f(p, q)ρ(p, q)dpdq. (7)

Similar relation occurs in quantum mechanics. There are certain analogies be-

tween quantum physics and statistical physics.
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Act of observation is usually performed in time scale that is infinetly long in

comparison in time scale characteristic for microscopic processes.

< f >= lim
T→+∞

∫ T

0

f(t)dt. (8)

Here we will assume that f(p, q) distribution is constant. Such assumption is

only partially true in case of N number of interacting particles in given volume as

it is depicted in Fig.4, where one can have mixture of balls positively and negatively

charged and impenetrable.

f(p, q) =

{
1

Γ(N,V,E) , if E < H(p, q) < E + ∆

0, otherwise.

Here volume of phase space Γ(N,V,E) is defined as

Γ(N,V,E) =

∫
dpdrρ(H(p, r))dpdr = const

∫

E<H(p,q)<E+∆

dpdr. (9)

We can state that the energies up to certain energy and momentum are occupied

since particles are in bound state.

In given context we can define entropy as measure of volume of available phase

space

S(N,E, V ) = kb ln(Γ(N,V,E)). (10)

It shall be noticed that only some occupied subspace is available to us that is de-

scribed with thickness ∆.

Much bigger space Φ(N,V,E) =
∫
H(p,q)<E

dpdq. It implies relation between two

spaces Φ(N,V,E) and Γ(N,V,E) as Γ(N,E, V ) = dΦ(N,E,V )
dE ∆. Later we can make

analogy of Γ with space of available states at Fermi surface in solid state physics.

Most states below Fermi level are not available that is the case of Φ space. Therefore

somehow more interesting is Γ space that is surface of Φ space with thickness ∆.

In case of two statistically independent systems given by spaces Γ1 and Γ2 we

have Γ = Γ1Γ2. In such case the entropy is additive S = kb ln(Γ) = kb ln(Γ1Γ2) =

kb ln(Γ1) + kb ln(Γ2) = S1 + S2. In other case the entropy is not additive.

Now we can ask the question about the relation between temperature, energy and

entropy. One of postulated relation can be dU
T = dS and it will be analogical to ideal

gas where we replaced dQ with dE and change of internal energy dU is equivalent

to dE that is the case of microcanonical ensemble.

It is first Maxwell relation that can be written for microcanonical ensemble. Let

us make small hole in insulative wall. In such case the particles can leave the system
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and work on them dW = −pdV = dU . This brings another Maxwell relation.

Writing dU = dE is justified since we have no heat flow in case of microcanonical

ensemble. We can also write dE
T = dΓ 1

Γ and introduced Density of States D(E) = dΓ
dE .

Density of states (D(E)) is always finite. When T → 0 Γ
T = D(E) → constant. It

means that for low temperatures Γ(∆) ∝ T . It is because of ∆ ∝ T .

Fig. 6. Volume of phase space in microcanonical ensemble [3].

2.3. Considerations in relation to Liouville theorem

Instead of talking about qi and pi as independent variables we shall categorize them

as members of phase space. In case of N particles we have 6N phase space com-

ponents u = (q1,x, q1,y, q1,z, ..., qN,x, qN,y, qN,z, p1,x, p1,y, p1,z, ..., pN,x, pN,y, pN,z). We

can introduce the 6th dimensional speed in our phase space. In such case we define

6N dimensional velocity in our phase space given as

du/dt = (
dq1,x
dt ,

dq1,y
dt ,

dq1,z
dt , ...,

dqN,x
dt ,

dqN,y
dt ,

dqN,z
dt ,

dp1,x
dt ...,

dpN,z
dt

In given context it is quite natural to think about 6N dimensional current flowing

in our phase space Γ. Let us introduce density of probability of occupation of given

area of space ρ(q1,x, q1,y, q1,z, ..., qN,x, qN,y, qN,z, p1,x, p1,y, p1,z, ..., pN,x, pN,y, pN,z) .

Here ρ plays the same role as density of electric charge. It is normalized over the whole

Γ space what is expressed by the condition
∫
ρdqdp = 1 (or some constant in general

case). Here dq = dq1,xdq1,ydq1,zdq2,xdq2,ydq2,z...dqN,xdqN,ydqN,z and consequently

dp = dp1,xdp1,ydp1,zdp2,xdp2,ydp2,z...dpN,xdpN,ydpN,z. Thus we can introduce mass

current j = ρ(du/dt) in our phase space. Explicitly it is given as

j = (11)

=ρ(
dq1,x

dt
,
dq1,y

dt
,
dq1,z

dt
, ...,

dqN,x
dt

,
dqN,y
dt

,
dqN,z
dt

, F1,x, F1,y, F1,z, ..., FN,x, FN,y, FN,z).

The conservation of electric charge brings relation between electric current density
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and change of current at given position in space expressed in relation

dρ(x, y, z)

dt
+ div3(j(x, y, z)) = 0.

Here divergence in 3 dimensional space is defined as div3(j(x, y, z)) = d
dxjx(x, y, z) +

d
dy jy(x, y, z) + d

dz jz(x, y, z). Mathematically it can be explained by the divergence

theorem ( more commonly known especially in older literature as Gauss’s theorem

(e.g., Arfken 1985) and also known as the Gauss-Ostrogradsky theorem).Now we can

extend the definition of current to Γ space. In such case we obtain

div6N (j) = d
dq1,x

(q̇x(1)ρ)+ d
dq1,y

(q̇y(1)ρ)+ d
dq1,z

(q̇z(1)ρ)+ d
dq2,x

(q̇x(2)ρ)+ d
dq2,y

(q̇y(2)ρ)+
d

dq2,z
(q̇z(2)ρ)+ ...+ d

dqN,x
(q̇x(N)ρ)+ d

dqN,y
(q̇y(N)ρ)+ d

dqN,z
(q̇z(N)ρ)+ d

dp1,x
(ṗx(1)ρ)+

d
dp1,y

(ṗy(1)ρ) + d
dp1,z

(ṗ1,zρ) + ...+ d
dpN,x

(ṗx(N)ρ) + d
dpN,y

(ṗy(N)ρ) + d
dpN,z

(ṗN,zρ) =

−ddtρ(qx(1), qy(1), qz(1), q̇x(1), q̇y(1), q̇z(1),.., qx(1), qy(1), qz(1), q̇x(N), q̇y(N), q̇z(N)).

We are considering the stationary case when probability distribution does not de-

pend on the time so d
dt (ρ) = 0. For simplicity let us limit considerations to 1 dimen-

sion. We consider terms as Lx = d
dq1,x

(q̇x(1)ρ)+ . . .+ d
dqN,x

(q̇x(N)ρ)+ d
dp1,x

(ṗx(1)ρ)+

. . . + d
dpN,x

(ṗx(N)ρ). If ρ is uniform and is not depending on q(i)x, q(i)y, q(i)z and

on p(i)x, p(i)y, p(i)z we have

Lx = ρ
d

dq1,x
(q̇x(1))+ . . .+

d

dqN,x
(q̇x(N))+

d

dp1,x
(ṗx(1))+ . . .+

d

dpN,x
(ṗx(N)). (12)

Coming back to Hamilton equations we notice that for i-th particle occurs rela-

tions
dq̇x(i)

dqx(i)
= −dṗx(i)

dpx(i)
=

d2H

dqx(i)dpx(i)
.

The same properties occur for y and z coordinates so

dq̇y(i)

dqy(i)
= −dṗy(i)

dpy(i)
=

d2H

dqy(i)dpy(i)
.

The uniformity of ρ (that is lack of its dependence on position of particles and

their momenta) implies the stationary condition that ρ is time independent. Mathe-

maticians like to have ideal cases as constant uniform ρ. However this is no case of

any physical system!! In particular we have granular matter and point-like electric

charges etc. However looking on the system from certain perspective we can attempt

such assumptions.

2.4. Characterization of canonical ensemble (TVN)

Such ensemble is basically physical system 1 that can exchange heat but no particles

(N1=constants) with external world 2 as it is depicted in Fig.7. The good example

is plastic closed bottle embedded in the steady lake.
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Fig. 7. Physical situation corresponding to canonical ensemble where T, V, N numbers
determine the state of the small system embedded in large system with possible heat flow,
and work done on small system and fixed number of particles N1 = constant1 and N2 =
constant2 in both systems. The good realistic example is plastic bottle placed in the lake
[9].

Fig. 8. (Left): Experimental confirmation of diffusion of ink in water.
(Right): Evolution of system from states concentrated in one geometrical place of billiard
table into equiprobable states.

In certain approximation we can write

H(q1, p1, q2, p2) = H1(q1, p1) +H2(q2, p2) + V (q1, p1, q2, p2) =

≈ H1(q1, p1) +H2(q2, p2). (13)

The exchange of heat with external world makes the energy the quantity that is

not preserved. The ensemble is known as TVN ensemble and is depicted in Fig. 7.

In such case E2 > E1 (energy of given system embedded in reservoir is smaller than

the energy of reservoir), mass of given system is much smaller than the mass of reser-

voir (N2 > N1) and N1 = constans, N2 = constans. Obviously sum of energy of

given system E1 and reservoir E2 that is E1 + E2 is preserved. However it does not

imply preservation of E1 energy. Basing on first thermodynamical principle we have

the relation dW = dU − dQ. Since T=constans we have dQ=TdS and this implies

dW = dU − dTS. Therefore one needs introduce new quantity that is Helmholtz

free energy F = U − TS so dF = dU − TdS. There dF plays role of work dW.

Therefore role of energy was taken by free energy F. Indeed it is seen in Maxwell

relations as when we compare canonical to micro-canonical ensemble. In particu-

lar we have P = − dF
dV T,V=constant

,S = −dFdT N,V=constant
, µ = − dF

dN T,V=constant
in

canonical ensemble, while we have P = − dUdV E,T=constant
,S = −dUdT V,N,=constant,
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µ = − dU
dN E,V=constant

in microcanonical ensemble. In this context we shall mention

that pressure is thermodynamical force coming from Maxwell relations. Instead of

pressure we might have electrostatic field if we are dealing with another physical

system, etc.

Partition function (for canonical ensemble) is defined as Z =
∑
n e
− En
kbT , where

we sum over all energies En occuring in the system. More general definiton of partion

function for TVN esemble can be pointed

Z(T, V,N) =
1

h3NN !

∫
exp(−βH(q, p))dqdp, (14)

where H is Hamiltonian of the system, β = 1
kT and N! is because of indistingusihi-

bility of particles. Here h is Planck constant. Partition function has certain class of

properties that can be exploited in statistical analysic of physical systems. If we are

dealing with 2 non-interacting physical systems with Hamiltonians H1 and H2 and

number of particles N1 and N2 we obtain the following partion function

Z(T, V,N) = (15)

1

h3N1N1!

∫
exp(−βH1(q1, p1))dq1dp1

1

h3N2N2!

∫
exp(−βH(q2, p2))dq2dp2

= Z1Z2.

We can also obtain average value of energy < H > by differentiation of partion

function in way as given below:

< H >= −
d
dβZ(T, V,N)

Z
= − d

dβ
log(Z(T, V,N)). (16)

Acting in the same fashion as before we can obtain < H2 >= d2

d2βZ(T, V,N) so

variation < ∆H >=< H2 > −(< H >)2 =
d2

d2β
Z(T,V,N)

Z − (
d
dβZ

Z )2. In such way

we can compute any cummulant of any order of variable H. Later we will see that

e
− F
kbT = Z In very real sense F can be treated as effective Hamiltonian. In the

canonical ensemble, the system acquire a temperature by having a thermal contact

with a thermostat (heat bath) with temperature T. Thus the system is no longer

isolated any more. Its total energy, i.e., Hamiltonian is no longer conserved. In other

words, we should expect some fluctuation of total energy in the canonical ensemble.

The non-zero variance of H is its measure of fluctuations strenght.

The mathematical comparison between microcanonical and canonical ensemble

is give in Fig.9. Since energy is unique and established for microcanonical ensemble

we can write volume of microstates as Γ(N,V,E) =
∫
dpdqδ(E1 − E)dE1.



128 K. Pomorski and P. Prokopow

Fig. 9. Comparison of microcanonical and canonical esemble [3].

Physical system that can be described by canonical ensemble is electric wire lying

on the table in the room of certain temperature. The number of atoms in wire are

preserved. Therefore canonical ensemble shall give hint in determination of noise

present in electric cable.

2.5. Properties of grand canonical ensemble (T, V, µ)

Such ensemble is basically physical system that can exchange particles and energy

with with external world. However it is in thermal equilibrium with outside reservoir

and is depicted in Fig.10. The good example is ice swimming in the lake.

H(N = N1 +N2) = H1(q1, p1, N1) +H2(q2, p2, N2)− µ(N1 −N2) (17)

µ is the heat needed to melt the ice in very slow way so its volume can be preserved.

During the whole process µ is set to constant.

Fig. 10. Physical situation corresponding to grand canonical ensemble where µ, V, T num-
bers determine the state of the small system embedded in large system with possible heat
flow, and work done on small system and can be exchange of particles N1 6= constant while
N1 +N2 = constant2 in both systems. The good realistic example is piece of ice swimming
in the lake[9].

Since in canonical ensemble the effective allowed mechanical work was dF=dU-

TdS then in grand canonical ensemble would be dφ = dU − TdS − µdN . Therefore

we need to introduce new quantity φ = U − TS −µN . There is no change of volume

of smaller system embedded in bigger system. Total energy change of embedded

system can be achieved only when µ and T are kept constant and when dU, dS and
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dN are non-zero. Therefore such ensemble has the name (µ, V, T) ensemble. The

new quantity has the name of grand thermodynamical potential φ. In given context

we can also define another thermodynamical ensemble G = U − TS + pV − µN It

has also the name of Gibbs free energy G and the whole ensemble has the name of

Gibbs ensemble.

It is often usefull to consider canonical ensembles given as depicted in Fig.11. In

this context both from mathematical motivation or from physical motivation we can

also postulate another thermodynamic potential as enthalpy H = U+pV . The family

of introduced thermodynamical potetials is specified in Fig.12. They are interlinked

by Legendre transformations.

Fig. 11. Different ensembles as occuring in different biasing thermodynamical conditions
[Wikipedia].

Fig. 12. Different possibilities for definition of thermodynamical potentials. One shall relate
it with conjugate thermodynamical variables 15.

The summary on thermodynamical potentials and Maxwell relations is given in

16. In this context we can point thermodynamical forces that are different in different

physical systems. For example we can have pressue p in one system or intensity of

electric field in another system.
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Fig. 13. Simple ways to relate thermodynamical potentials with thermodynamical variables
[3].

Fig. 14. Analogies between classical mechanics and thermodynamics [9].

Pressure Volume

Temperature Entropy

Chemical potential Particle number

Fig. 15. Conjugate variables in thermodynamics. Left variables do not depend on the system
size (intensive variables), while right variables scale with system size (extensive variables).
In such way for homogenous system we have U(λS, λV, λN) = λU(S, V,N), where λ is
postive and non-zero. More involved reasoning can be found in [2].
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Fig. 16. Summary of thermodynamical potentials and Maxwell relations for different sta-
tistical ensembles [9].
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Partition function is simply given as Z =
∑
n e
− En
kbT , where we have the sum is

over all energies En occuring in the system. More exact definiton of partion function

of grand canonical ensemble (TVN esemble) will include use of intergrals

Z(T, V, µ) =
+∞∑

k=0

1

h3NN !

∫
exp(−βH(q, p)− µk)dqdp, (18)

where H is Hamiltonian of the system and β = 1
kT . Here we can recognize that

Z(T, V, µ) =
+∞∑

k=0

1

h3NN !

∫
exp(−βH(q, p)− µk)dqdp = (19)

=

∞∑

n=0

Z(T, V,N)e
n( µ
kbT

)
=

∞∑

n=0

Z(T, V,N)enz.

Thus we have zeta transform [z transformation known in digital signall processing]

present in definition of grand canonical partition function. Term z = e
µ
kT is denoted

as the fugacity. Partition function for grand canonical ensemble has analogical prop-

erties as in case of canonical ensemble. For example < H >=
− d
dβZ(T,V,µ)

Z(T,V,µ) and in

similar way we can compute higher cumulants of H variable. It shall be underlined

that Z has its importance in Quantum Field Theory and it is the generator of Green

functions. In particular we have Z[J ] =
∫
Dφ exp( i~ [S[φ] +

∫
d4xJ(x)φ]), where S is

action and and n-point Green function will be obtained by functional differentiation

The generating functional Z[J ] can be used to calculate the above path integrals

using an auxiliary function J (called current in this context). Finally we can obtain

n-body Green function.

G(x1, .., xn) = (−i~)n
1

Z[J ]

δnZ

δJ(x1)..δJ(xn)J→0

. (20)

More details can be found in Peskin and Schroesder book - An introduction To

Quantum Field Theory.

3. Universal model of reality as combined statistical approach
with microscopic corrections

We never know how many layers of organization occurs in matter that is described

by laws of physics. We also know that matter organize itself in certain order. In

particular the concepts as temperature or pressure are usefull and their use does not

impose the necessity to know all microscopic details of matter state. This order can

be perceived and described by statistical physics that is able to ommit most or all

microscopic degrees of freedom. However there are certain situation when we cannot

use thermodynamics. In such case we have to cover most of aspects of the system by

thermodynamics and some asepcts by microscopic theory.
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At first let us move to the cases that can be both described by thermodynamics

and by microscopic theory as it is the case of Figures 17-22.

Fig. 17. Initial step t0 and two sets of charged billard balls with plus and minus charged in
each set. The whole system is confined in rectangular box.

Fig. 18. During next time step t1 electrostatic repulsive and attractive force among balls
drives the evolution of the system.

Fig. 19. During next time step t2 two oppositely charged sets of balls start to have contact.

Fig. 20. During following step t3 two sets of balls starts to mix.

Fig. 21. During step t4 the mixture of both type of balls continues.
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Fig. 22. In step t5 billard balls are intermixed as atoms in NaCl.

3.1. Pictures of entropy growth

Suppose at the beginning that we have N dieletric balls with +q and N negatively

charged balls with −q charge. All balls have the same mass and radius r. If N

positively charged balls are placed in one confined region and if N negatively charged

balls are placed in another confined region they will tend to move by means of

electrostatic forces. They will note exchange charge as it is our assumption. After

sufficiently long time all balls will be intermixed and they entropy will increase.

Described process is schematically depicted in following steps schematically depicted

in Fig.17-Fig.22.

Finally stage will be situation as in NaCl crystal where Na+ ions are situated in

proximity to Cl− ions. After long time the entropy will maximize and stay at certain

value. It might fluctuate. Finally stage will be robus against distrubing factors.

3.2. Derivation of Boltzmann distribution from principle of maximum en-

tropy growth

We describe the reasoning given in [3]. Any 1, 2 or 3 dimensional system can be

separated into k geometrically separable cells with virtual walls. In such way N

particles are distributed , so in the i-th cell we have ni particles. There is N !∑n
i=1Ni!

of

such possibilities. At the same time N = n1+..+nk is one of constrains. What is more

in each container we have gi number of energy levels. For simplicity we will assume

that those energy levels have discrete levels separated by certain energy difference

∆E so energy in given cell can have value from 0 to (gi − 1)∆E. This brings gnii
possibilities in one cell.

Thus the total number of states Λ is given as W and can be expressed as

W (N1, N2, .., Nn) =
N !∑n
i=1Ni!

n∑

i=1

gNii . (21)

Thus we have constrains as

f1(N1, ..., Nn) =
∑

i

Ni = constant1 (22)
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and

f2 = U(N1, ..., Nn) =
∑

i

EiNi = constant2. (23)

Fig. 23. Concept of different cells distributed at different geometrical places.

(Second constrain is coming from the assumption that all atoms in one cell have

the same energy Ei what is possible when we conduct the whole same reasoning but

accepting only atoms of almost same energies (whose energy is lying in the same nar-

row volume of energies) into one i-th cell). We can say that reasoning is conducted

in Fourier space of positions.

We can evaluate number of states by use of Stirling formula and we obtain

ln(W ) = ln(N !) +
n∑

i=1

Ni ln(gi)−
n∑

i=1

ln(Ni!). (24)

We use simplification for large x as ln(x!) ≈ x ln(x)− x.

This brings consequences

ln(W ) = N ln(N)−N +
n∑

i=1

Ni ln(gi)−
n∑

i=1

Ni ln(Ni) +
n∑

i=1

Ni. (25)

In order to maximize, we need to make use of Lagrange multipliers and Constrains

1 and 2.

d

dNj
ln(W ) + α

df1

dNj
− β df2

dNj
= 0. (26)

After calculations we obtain β = 1/(kbT ) as Legendre multiplier. Finally it turns

out that ni = gi exp(−βEi) exp(−α) what points that from maximum entropy prin-

ciple we obtain Botlzmann distribution.
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Fig. 24. Spectrum of states in each cell as for i from 1 to 5 [3].

Somehow similar reasoning can be conducted for derivation of Fermi and Bose-

Einstein distribution. However we need to take into account the fact that bosons

are symmetric under particle exchange while fermions are antisymmetric. The de-

tailed resasoning can be found in [12].

3.3. Connection between entropy and probability

Let us assume that we are dealing with NVT ensemble.

Suppose a huge number of systems, N , are in thermal contact. n1 of which are

in mircrostate 1, n2 in microstate 2, etc. The number of ways W to make this



Introduction to Statistical Physics I 137

arrangement is

W =
∑

k

N !

n1!n2!..nk!
. (27)

The entropy of the entire ensemble of systems is S = kb ln(W ).

We can use Stirling formula ln(N !) =≈ N ln(N)N for large N . Thus we obtain

log(W ) =
∑

k

[log(N !)− log(n1!n2!..nk!)] =

(N log(N)−N)− (

k∑

i=1

log(ni)ni − ni) =

= (
k∑

i=1

ni log(N)− (
k∑

i=1

log(ni)ni) =
k∑

i=1

(ni log(N)− log(ni)ni) =

−
k∑

i=1

ni log(ni/N) = −
k∑

i=1

N
ni
N

log(ni/N) = N
∑

i

pi log(pi). (28)

The obtained result is commonly known as Shannon entropy.

3.4. Link of statistical physics with other branches of science and fields

of technology

The methodology used in statistical physics can be used in economy[18] or in robotics

with cognitive preprogrammed properties [14]. In addition to physical forces on

robotic agent might act social forces. In such case the concept of Shannon entropy

can be used. Such systems will follow the principle of maximum entropy growth.

More general assemblies of agents playing in different games can be modeled with

use of presented methodology [15]. Very particular class of agents are Braitenberg

vehicles that has 2 wheels, 2 sensors and social force applied in regard to stimulation

coming from light source as it is depicted in Fig.25. The way of application of social

force depends on the connections between sensors and motor system. In principle

they can react in complicated way since neural network can process signal passing

from sensor to motor system.
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Fig. 25. Scheme of Braitenberg vehicles moving in field of stimuli [14] .
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INŻYNIERYJNE ASPEKTY FIZYKI STATYSTYCZNEJ I TEORII

PRZEJŚĆ FAZOWYCH, CZȨŚĆ I

S t r e s z c z e n i e
Artyku l jest krótkim wprowadzeniem do fizyki statystycznej i teorii przej́sć fazowych.

Zak ladana jest wiedza czytelnika z zakresu podstaw mechaniki. Artyku l nakreśla zastoso-
wanie metodologii fizyki statystycznej w rozmaitych ga lȩziach techniki.

S lowa kluczowe: fizyka statystyczna, wielki zespó l kanoniczny, zespó l kanoniczny, zespó l

mikrokanoniczny, przej́scia fazowe




