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Summary

The paper is devoted to one extremal problem in geometric function theory of complex

variables associated with estimates of functionals defined on the systems of non-overlapping

domains. We consider Dubinin’s problem of the maximum of product of inner radii of n

non-overlapping domains containing points of the unit circle and the power γ of the inner

radius of a domain containing the origin. The problem was formulated in 1994 in the work of

Dubinin and then repeated in his monograph in 2014. Currently it is not solved in general.

In this paper we generalized it to the case of the more general system of points and obtained

a solution of this problem for some concrete values of n and γ.
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Extremal problems on non-overlapping domains constitute known classical direc-

tion of the geometric function theory of a complex variable. A lot of such problems

are reduced to determination of the maximum of product of inner radii on the sys-

tem of non-overlapping domains satisfying a certain conditions. Start point of the

theory of extremal problems on non-overlapping domains is the result of Lavrentev

[1] who in 1934 solved the problem of product of conformal radii of two mutually

non-overlapping simply connected domains.

Theorem 1. [1] Let a1 and a2 be some fixed points of the complex plane C, Bk,
ak ∈ Bk, k = 1, 2 be an arbitrary mutually non-overlapping domains of C, and
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functions w = fk (z) , k = 1, 2, are regular in the circle {z : |z| < 1} and univalently

map unit circle onto domains Bk, k = 1, 2, so that fk (0) = ak, k = 1, 2. Then the

following inequality holds

|f ′1 (0)| · |f ′2 (0)| ≤ |a1 − a2|2 .
Equality in the inequality is achieved iff

B1 =

{
w ∈ C :

∣∣∣∣
w − a1
w − a2

∣∣∣∣ < 1

}
, B2 =

{
w ∈ C :

∣∣∣∣
w − a1
w − a2

∣∣∣∣ > 1

}
.

Goluzin in [2] generalized this theorem on the case of an arbitrary finite number

of mutually disjoint domains and obtained an accurate evaluation for the case of

three domains
3∏

k=1

|f ′k(0)| ≤ 64

81
√

3
· |a1 − a2| · |a1 − a3| · |a2 − a3|.

Further Kuzmina [3] showed that the problem of the evaluation for the case of four

domains is reduced to the smallest capacity problems in the certain continuum family

and got the exact inequality for n = 4

4∏

k=1

|f ′k(0)| ≤ 9

4
8
3

(|a1 − a2| · |a1 − a3| · |a2 − a3| · |a1 − a4| · |a2 − a4| · |a3 − a4|)
2
3 .

For n ≥ 5 full solution of the problem is not obtained at this time. Since, the

evaluation of the product of conformal radii of mutually non-overlapping domains if

n ≥ 5 without any restriction on the domains Bk and points ak, k = 1, ..., 5 is quite

difficult and interesting problem.

In 1955 Kolbina [4] generalized the Lavrentev result adding some degrees α and

β to conformal radii and obtained the inequality

|f ′α1 (0)| ·
∣∣∣f ′β2 (0)

∣∣∣ ≤ |a1 − a2|α+β ·Aαβ ,
where

Aαβ =
4α+βααββ

|α− β|α+β
[√

α−√β√
α+
√
β

]2√αβ
, Aαα = 1.

In 1975 Lebedev [5] considered the more general extremal problem of product of

conformal radii.

Problem 1. [5] There are n various fixed points ak, k = 1, n, n > 3, on a plane w.

Functions w = fk(z), k = 1, n, are regular in the circle |z| < 1 and univalent map

circle |z| < 1 onto non-overlapping domains Bk, which contain the corresponding

points ak, k = 1, n, and in such a way, that fk(0) = ak, k = 1, n. What about

maximum of product
n∏

k=1

|f ′k(0)|γk −→ max, γk > 0, n > 3,
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relatively to any functions fk(z), k = 1, n?

However, this problem is generally not solved so far. Further Problem 1 was gen-

eralized to more general classes of multiply connected domains replacing conformal

radius to the inner radius.

Let N, R be the sets of natural and real numbers, respectively, C be the complex

plane, C = C
⋃{∞} be a one point compactification and R+ = (0,∞). Let χ(t) =

1
2 (t + t−1), t ∈ R+, be the function of Zhukovsky. Let B be a domain in C, a ∈ B
be a point in B and r(B, a) be an inner radius of the domain B ⊂ C with respect

to the point a ∈ B. Inner radius is a generalization of conformal radius for multiply

connected domains.

Inner radius of the domain B is associated with a generalized Green’s function

gB(z, a) of the domain B by the relations

gB(z, a) = ln
1

|z − a| + ln r(B, a) + o(1), z → a.

gB(z,∞) = ln |z|+ ln r(B,∞) + o(1), z →∞.
Let n ∈ N. A set of points An :=

{
ak ∈ C : k = 1, n

}
, n ∈ N, n ≥ 2 is called

n-radial system if |ak| ∈ R+, k = 1, n and

0 = arg a1 < arg a2 < . . . < arg an < 2π.

Denote an+1 := a1, αk := 1
π arg ak+1

ak
, αn+1 := α1, k = 1, n,

n∑
k=1

αk = 2.

For an arbitrary n-radial system of points An = {ak}nk=1 and γ ∈ R+ ∪ {0} we

introduce the ”control” functional

L(γ)(An) :=
n∏

k=1

[
χ

(∣∣∣ ak
ak+1

∣∣∣
1

2αk

)]1− 1
2γα

2
k n∏

k=1

|ak|1+
1
4γ(αk+αk−1).

If γ = 0 then

L(0)(An) :=

n∏

k=1

χ

(∣∣∣ ak
ak+1

∣∣∣
1

2αk

)
· |ak|.

It is clear that the class of n-radial systems of points for which L(γ)(An) = 1 au-

tomatically includes all systems of n distinct points that are located on the unit

circle.

Note that to describe the extremal configurations of domains we use notion of

quadratic differential (see, for example, [6, 7]). Quadratic differential G(z)dz2 on a

Riemann surface is a rule which associates to each local parameter z mapping a

parametric neighbourhood U ⊂ R into the extended complex plane C(z : U → C),

a function Gz : z(U) → C such that for any local parameters z1 : U1 → C and

z2 : U2 → C with U1 ∩ U2 non-empty, the following holds in this intersection

Gz2(z2(p))

Gz1(z1(p))
=

(
dz1(p)

dz2(p)

)2

, p ∈ U1 ∩ U2,
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here z(U) is the image of U in C under z. In other words, a quadratic differential is

a non-linear differential of type (2, 0) on a Riemann surface. The functions entering

into the definition of a quadratic differential are ordinarily assumed to be measurable

or even analytic.

Consider an extremal problem which in the case of a unit circle was formulated

in 1994 in the paper of Dubinin [8, P.68, no.9.2] in the list of unsolved problems and

then repeated in 2014 in monograph [9, P.330, no.16].

Problem 2. For any fixed value of γ ∈ (0, n] to find the maximum of the functional

In(γ) = rγ (B0, 0)

n∏

k=1

r (Bk, ak) ,

where n ∈ N, n > 2, a0 = 0, An = {ak}nk=1 are n-radial systems of points, such that

L(γ) (An) ≤ 1, L(0) (An) ≤ 1, {Bk}nk=0 is any system of pairwise non-overlapping

domains, such that ak ∈ Bk ⊂ C for k = 0, n, and to describe all extremals.

Currently it is not solved in general only partial results are known. In [10] the

Problem 2 was solved for 0 < γ < 1 and n ≥ 2. In [11, 12] the authors got the solution

to this problem with some restrictions on the geometry location of sets of points,

namely, for n ≥ 4 and subclass points systems satisfying condition 0 < αk ≤ 2/
√
γ,

k = 1, n. In [13] the Problem 2 was solved for γ ∈ (0, n0,38] and n ≥ 5. Some partial

cases of the above-posed problem in the case of a unit circle |ak| = 1 were considered

in [14, 15, 16, 17, 18, 19].

Further let

I0n(γ) = rγ (D0, 0)

n∏

k=1

r (Dk, dk) (1)

where dk and Dk are, respectively, poles and circular domains of the quadratic dif-

ferential

G(w)dw2 = − (n2 − γ)wn + γ

w2(wn − 1)2
dw2.

Denote

Qn(γ) =

[
2n 2√

γ

(
2− 2√

γ

)n−1
(n− 1)

−(n−1)
]1− γn

(
4
n

)n ( 4γ

n2 )
γ
n

(1− γ

n2 )
n+

γ
n

(
1−
√
γ

n

1+
√
γ

n

)2
√
γ

. (2)

We obtain the following result.

Theorem 2. Let n ∈ N, n ≥ 6, be a fixed natural number and a number γ, γ ≥ 1.

Then for any configuration of domains Bk and points ak (k = 0, n) satisfying the

conditions of Problem 2 and also provided that α0 >
2√
γ , α0 = max

1≤k≤n
αk, the following
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sharp estimate holds

In(γ)

I0n(γ)
≤ Qn(γ), (3)

where I0n(γ) and Qn(γ) are defined by the relations (1) and (2). If γ0n be a root of

the equation Qn(γ) = 1 then for an arbitrary γn such that 1 ≤ γn < γ0n the following

inequality holds

In(γn)

I0n(γn)
< 1.

Note that if we shall prove Theorem 2 we could solve the Problem 2 for n ≥ 6,

γ = γ0n, and indicate its solution for an arbitrary γn such that 1 < γn < γ0n.

Proof of the Theorem 2. Let a0 = 0, An = {ak}nk=1 are n-radial systems of points,

such that L(γ) (An) ≤ 1, L(0) (An) ≤ 1. We can assume that 0 = arg a1 < arg a2 <

... < arg an < 2π. Denote the number αk, k = 1, n, as follows α1 := 1
π (arg a2−arg a1),

α2 := 1
π (arg a3−arg a2), . . . , αn := 1

π (2π−arg an). Let α0 = max
k

αk. In the paper [12]

Problem 2 was solved for an arbitrary natural number n, n ≥ 4, 0 < γ ≤ 0, 1215n2

and provided that α0 ≤ 2√
γ . Therefore we will consider only the configurations of

domains Dk and points dk for which α0 >
2√
γ .

In a similar way from theorem 5.4.1 [17] we obtain the following result

I0n(γ) =

(
4

n

)n (
4γ
n2

) γ
n

(
1− γ

n2

)n+ γ
n

(
1−

√
γ

n

1 +
√
γ

n

)2
√
γ

.

It is easy to see that

In(γ) =
n∏

k=1

[r(B0, 0)r(Bk, ak)]
γ
n

[
n∏

k=1

r(Bk, ak)

]1− γn
.

From the Lavrentev theorem [1] we obtain the following inequality

r(B0, 0)r(Bk, ak) ≤ |ak|2.

Then it follows from the theorem 5.1.1 [17] that

n∏

k=1

r(Bk, ak) ≤ 2n
n∏

k=1

αk · L(0) (An) .

From the condition L(0) (An) ≤ 1 it follows that
n∏
k=1

|ak| ≤ 1. Thus

In(γ) ≤
[

2n ·
n∏

k=1

αk

]1− γn
. (4)
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Since
n∑
k=1

αk = 2 than taking into account the Cauchy inequality between the geo-

metric mean and arithmetic mean we have

n∏

k=1

αk ≤ α0

n∏

k=1,k 6=k0
αk ≤ α0




n∑
k=1,k 6=k0

αk

n− 1




n−1

= α0

(
2− α0

n− 1

)n−1
.

From (4) we obtain the estimate

In(γ) ≤
[

2nα0

(
2− α0

n− 1

)n−1]1− γn
. (5)

Summing the above relations and taking condition (5) into account we obtain

rγ(B0, 0)
n∏
k=1

r(Bk, ak)

I0n(γ)
≤

[
2n · 2√

γ

(
2− 2√

γ

)n−1
(n− 1)

−(n−1)
]1− γn

(
4
n

)n ( 4γ

n2 )
γ
n

(1− γ

n2 )
n+

γ
n

(
1−
√
γ

n

1+
√
γ

n

)2
√
γ

.

Thus the inequality (3) is proved. Further we prove that the root of the equation

Qn(γ) = 1 exists for any n ≥ 6. It is easy to see that Qn(1) = 0 for every n. On the

other hand

Qn(n) =

(
1 + 1√

n

1− 1√
n

)2
√
n(

1− 1

n

)n+1 (n
4

)n+1

� 1.

In this way Qn(1) = 0 and Qn(n) > 1. The root of the equation Qn(γ) = 1 exists

and belongs to the interval (1, n). We can easily see that the function
[

2n · 2√
γ

(
2− 2√

γ

)n−1
(n− 1)

−(n−1)
]1− γn

is monotonically increasing with respect to γ on the interval (1, n]. We further inves-

tigate the function I0n(γ). It is elementary to verify that

(I0n(γ))′ = I0n(γ)

(
1

n
ln

(
4γ

n2 − γ

)
+

1√
γ

ln

(
n−√γ
n+
√
γ

))
.

In this case we shall say that the function I0n(γ) decreases for fixed n ≥ 6 and

γ ∈ (1, n]. We agree to say that

I0n(γ0n) ≤ I0n(γn).

Taking last condition and property of monotonic increase of the function
[

2n · 2√
γ

(
2− 2√

γ

)n−1
(n− 1)

−(n−1)
]1− γn
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into account we obtain that the function Qn(γ) increases monotonically with respect

to γ on the interval [1, γ0n] and thus

Qn(γn) < Qn(γ0n) = 1.

Theorem 2 is proved. �
We note that if function Qn(γ) is monotonic, it then follows from the obvious

inequalities γ2 < γ1, Qn(γ1) < 1, that Qn(γ2) < 1.
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O PROBLEMIE EKSTREMALNEJ DEKOMPOZYCJI

P LASZCZYZNY ZESPOLONEJ

S t r e s z c z e n i e
Rozpatrujemy funkcjona l określony na uk ladzie niezachodza̧cych na siebie obszarów.

Wynik dotyczy problemu Dubinina-poszukiwania maksimum iloczynu promieni wpisanych
kó l w niezachodza̧ce na siebie obszary zawieraja̧ce punkty okrȩgu jednostkowego i potȩgȩ γ
promienia wpisanego kola w obszar zawieraja̧cy pocza̧tek uk ladu wspó lrzȩdnych. Problem
zosta l sformu lowany w 1994r. w pracy Dubinina, a nastȩpnie powtórzony w monografii tegoż
autora z roku 2014. Problem nie jest rozwia̧zany w ogó;nym przypadku. W obecnej pracy
problem w postaci dotycza̧cej bardziej ogólnego uk ladu punktów jest uzyskany dla pewnych
konkretnych wartości n oraz γ.

S lowa kluczowe: promień wewnȩtrzny obszaru, ekstremalna dekompozycja p laszczyzny ze-

spolonej


