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Summary

A new approach generalizing the classical regression idea has been widely presented in
[5] and [6] in the environment of an arbitrary Hilbert space. The problem of transforming
this idea to a probability space is considered in the present paper.
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Introduction

In [5] and [6] the general problem of regression was discussed and solved. The authors
introduced the concept of the regression structures R := (A, B, d; x,y), where:

I.1. A and B are nonempty sets;

I.2. z: Q3 — A and y: {23 — B are functions defined on given nonempty sets 2
and {29; they can be interpreted as experimental data of the regression model.
Therefore we call them empirical data functions;

I.3. 6: (2 — B) x (Q2 — B) — R is a function which can be interpreted as a
deviation criterion of the theoretic functions from the empirical data.

For a given regression structure R we consider the family of functions F included
in the family A — B of all functions acting from A to B, i.e. F C (A — B). The
family F is said to be a theoretic functional model of the observed phenomena, i.e.,
F consists of all functions describing theoretically the considered phenomena. In the

[21]
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sequel we will restrict our considerations to the case where B = R or B = C and
F is a linear set with respect to the standard operations of adding and multiplying
functions, i.e.,

f+g, N-feF for f,geF and NEB.

A natural question for a given regression structure R is the study and evaluation
the optimal functions of theoretic functional model F, which are, with respect to
the criterion ¢, the best fitted to the empirical data, represented by the empirical
data functions x and y. To be more precise, we consider the extremal problem of
determining all functions fy € F, minimizing the functional

Fof—=F(f)=6fox,y) €R, (0.1)
i.e., all functions fy € F satisfying the following inequality
F(f)> F(fy) for feF. (0.2)

The set of all fy € F satisfying the inequality (0.2) will be denoted by Reg(F, R);
c.f. [6]. Each function fy € Reg(F,fR) is said to be the regression function in F with
respect to R. The problem of describing all regression functions in F with respect to
R, we call the regression problem for F with respect to *R.

Given a nonempty set 2 and o-field B of its subsets, we denote by L(2, B) the
family of all complex valued functions on €2, measurable with respect to B. Further
on we denote by L({2, B) the linear space supported by the set L(€2, B) and equipped
with the standard operations of adding and multiplying of functions, i.e., L(Q2, B) :=
(L(2,B),+,-) .

For a given measure pu: B — [0,+00) and p > 1, let LP(Q2, B, i) stand for the
class of all functions f € L(£2, B) such that

(0.3)

We recall that for each p > 1, the class LP(£2, B, ) is a linear set in L(2,5) and
| - || is a pseudo-norm in the linear space (LP(€2, B, i), +, -) satisfying the following
condition

[fllp =0 <= p({weQ: f(w)#0})=0. (0.4)
Hence the structure
Lp(Qv‘Ba M) = (LP(Q’B’ M)7+7 K H ’ ||p)

is a pseudo-Banach space, i.e., a complete pseudo-normed space.

1. Probabilistic regression structure

Following the general concept of regression structures, cf. [6, Definition 2.1 and Def-
inition 7.1], we introduce a special type of regression structures on the basis of prob-
ability theory.
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Definition 1.1. By a probabilistic regression structure we mean any regression struc-
ture P := (A, B,d;x,y) determined by a probability space P = (€, .A, P), which
satisfies the following conditions:

I1.1. A is nonempty set and B =R or B = C;
I1.2. 2: Q — A and y: Q — B;
I1.3. the function 6: (2 — B) x (Q — B) — R satisfies the equality

5(u,v):/Q|u(w)—v(w)|2dP(w), (1.1)

provided both the functions u and v are .A-measurable, and §(u,v) = +oo
otherwise.

Under the above conditions the regression problem for a probabilistic regression
structure 3 is the extremal problem of determining all functions fy € F minimizing
the functional F' given — in the wake of (0.1) i (1.1) — by the following formula

PP =d(fony)= [ |fou) —yw)dP@),  feF. (2
For a given probabilistic regression structure 8 we define
A, ={Ve2d: 271 (V)e A} (1.3)
and
Az 2V = P (V) := Pz 1(V)) . (1.4)

It is clear that A, is a o-field on A and P, is a probability measure on A,.
For the further discussion we quote the following fact, cf. [1], [2].

Theorem 1.2. For every measurable space (2, A, P) and every function z: Q —
A, the structure (A, A, Py) is also a measurable space. Moreover, for every A,-
measurable function u: A — B,

ue LY (A A, P) < uox e LY(Q,A, P)

as well as

/uox(w)dP(w) :/u(t)dPx(t), we LY (A4, A, P,) . (1.5)
Q

A
Remark 1.3. It is well known that the function

L2(A, Ay, Py) x L2(A, Ay, P2) 5 (u,0) — (u]o) ::/Au(t)-@dpx(t) (1.6)

is well defined and the following properties
(AMu+ Av|w)

(ulv)
(ufu)

A1 (u]w) + Ao (vjw) ;
ol (1.7)

)

—

(AVANI
o
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hold for all A\;, A2 € B and u,v,w € L?(A, Az, P.). Moreover the functional

L2(A, Ap, Py) 3 u e |Jul| := +/(ufu) = </ lu(t)[?d Py ( ) . (1.8)

has the following properties

[Aull = [A[-fJull - and flu+ o] < Jlull + ]
as well as
[ull =0 <= Py({t € A:u(t) #0}) =0
for all A € B and u,v € L?(A, Ay, P.), cf. [9]. Therefore, || - || is a pseudo-norm on

the linear space (L?(A, Az, Py), +,-).
From the properties (1.7) the following Schwarz inequality

[{ulv)[ < lull - flo] -, u,v € L*(A, Ay, Py) (1.9)

can be derived in the standard way, cf. [11].

Since the space L?(A, A, P.) is complete, cf. [1], we see that the structure H(53) :=
(L2(A, Az, Py), +, -, (:|")) is a pseudo-Hilbert space (complex if B = C or real if
B =R), i.e., the structure (L?(4, Az, P),+,+, | - ||) is a pseudo-Banach space.

Similarly to (1.3) and (1.4) we see that
A, ={Ve2P.y ' (V)e A} (1.10)
is a o-field on B and
A, 2V = P(V):= Py (V) (1.11)

is a probabilistic measure on A,.

Remark 1.4. Given u € L?(A4, A;, P,) and g € L*(B, A,, P,) we see that |u|?> €
LY(A, Ay, Py) and |g|? € LY(B, Ay, P,). Since |u|? oz = Juoz|? and |g|? oy = |goyl|?,
we conclude from (1.3), (1.4), (1.10), (1.11) and Theorem 1.2 that uox, goy €
L%(Q, A, P) and

/|uox )2dP(w /|u VPP, (t u € L*(A, Ay, Py) .

Hence
2

= (/Q \goy(w)lzdP(w))U < +o0
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and applying the Schwarz inequality for Lebesgue integral we have

/Q\uox(w).goy‘(w)\dp(w) (1.12)

< ([ wostorar ) ([ 1govrare) -
M, (/ u(t)|2dP, (t)) — M, | .

Therefore for every g € L?(B, A, P,) the functional ¢g*: L*(4, A,, P,) — B is well-
defined by the formula

L?(A, Ay, Py) > u — g*(u) == / uox(w)goy(w)dP(w) . (1.13)
Q
and by (1.12) we obtain
lg" (u)| < My - ||ull, u € L3(A, Ay, Py) . (1.14)
Thus ¢* is a linear and bounded functional on (L?(A, Ay, P.),+,-, || - ||) for every

g€ L*(B, Ay, Py).

2. The regression problem for the probabilistic regression
structures

Let P := (A, B,J;z,y) be a probabilistic regression structure determined by a prob-
ability space P = (2, A, P). Then for a given g: B — B,

By = (4, B,6;2,90y)
is a probabilistic regression structure determined by P. We interpret the function g
as a scaling function of the data function y.

From now on we shall study the regression problem for F with respect to ‘B,
where F is a linear functional model with standard operations of adding and multi-
plying functions.

The following result is a counterpart of [6, Lemma 3.1].

Theorem 2.1. If F # () is a linear set in H(B) and g € L*(B, Ay, P,), then for
every f € F the following condition holds:
f € Reg(F,By) <= (h|f) =g"(h), heT. (2.1)
Proof. Given g € L*(B, A,, P,) we define the functional
(A= B)> f—= Fy(f):=06(fox,goy).

From the property I1.3 it follows that
/\fo:c —goy(w)?dP(w), fer. (2.2)
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Fix f,h € F and A € B. Then by (2.2), we have
Fyd +30) = [ I(F +Ak) 0 ) =g 0 ) 4P ()

= [ 17 0a@)+ Mhoa(w) — g oy(w) P AP
- /Q <|f 0 2(w) = g o y(w)* + 2Re | (f o 2(w) — g o y(w)) Ao 2(w)]

+ AR o x<w>|2> dP(w)

/Ifoa: goy(w)dPw)
1 / e [(f o #(w) — g o y() Mo w(w)| dP(w)
+|)\\2/Q]hox(w)|2dP(w).

Hence, by (2.2), (1.8) and (1.5), we get

E,(f + AR) = E,(f) + APIA] + 2Re / f o x(w)Mh o 2(w) dP(w)

—2Re/ goy(w)A\hox(w)dP(w) .
Q
From (1.6), (1.13) and (1.5) we conclude that
Fy(f +Ah) = Fy(f) + AR + 2Re |A((1f) = g* ()] -
Therefore, for A € B and f,h € F, we have
Fy(f + AR) = Fy(f) = 2Re [A((R1f) = g"(0)) | +IA2IRJ1 (2.3)
Fix f € F satistying (h|f) = ¢*(h), h € F. Applying (2.3) with A := 1 we obtain
Fy(f +h) = Fy(f) =] = 0

and so

Fy(f +h) = Fy(f), heF,

which means that f € Reg(F,%,).
Conversely, assume now that f € Reg(F,B,). Then from (2.3) we conclude that

2Re A((R|f) — g*(B)] + [AP[R|> >0, heF, AeB. (2.4)
Replacing h by —h in (2.4) we get
—2Re A((hlf) — g*(h))] + [AP[|A]I> > 0. (2.5)
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Combining (2.4) and (2.5) we can see that
1 . 1
—5 PPN < Re[M(RIF) —g" ()] < SAPIIRI®, heF, AeB.
Fixing h € F, a € R and assuming that A = |\|e’® we get
1 (1 * 1

2N < Be [ ({h1f) — g" ()] < LN
In the limiting case as |A| — 0, the following equality holds

Re [e"((hlf) —g*(h))] =0,  heF, ack.

Choosing a € {0, 5} we conclude that (h|f) — g*(h) = 0 for h € F, which completes
the proof. O

By the basic properties of a pseudo-norm we can see that the set
0 :={hcL?*(A, A, P,): ||h|| =0}

is linear. We call it the null set of H(’E). As a matter of fact © is the closed ball with
radius 0 and center at the zero function 0, defined by 6(t) := 0 for t € A.

We may extend the standard operations of adding and multiplying functions by
a constant to any sets Fy, Fy C (A — B) as follows:

Py + Py :={f1 + fo: f1 € 1, fa € 2} ;
A Fy={\fi: ie [}, MA€EB;
f+F ={f}+F and Fi+f:=F+{f}, fe(A— B).
Corollary 2.2. If F # () is a linear set in H(R) and g € L*(B, Ay, P,), then
Reg(F,By) = F NReg(© + F,PB,) . (2.6)
If additionally F C ©, then Reg(F,B,) = F.

Proof. Fix f,h € L%(A, A;, P,). If ||h|| = 0, then by the Schwarz inequality (1.9)
and (1.14) it follows that

1/2
[(RIAOT < ([RI[fl =0 and [g"(R)| < </Q |goy(uJ)|2dP(w)) [l =0
Hence
(h|f) =0=g"(h), f€L2(A,Am,Pm), heo. (2.7)

Assume that f € Reg(F,B,) and h € © + F are given. Then h = hg + h; for some
ho € © and hy € F. Applying now (2.7) and Theorem 2.1 we see that

(hlf) = (holf) + (half) = 0+ g"(h1) = g7 (ho) + g"(h1) = g"(h), he©+F.

By definition, f € F C © + F. From Theorem 2.1 it follows that f € F N Reg(© +
F,PB,), and so

Reg(F,By) C FNReg(© + F,By) - (2.8)
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Conversely, assume now that f € F N Reg(© + F,P,) and h € F are given. Since
h € © + F, we conclude from Theorem 2.1, that
(hlf)=g"(h), heF.
Thus applying Theorem 2.1 once more, we get f € Reg(F,B,), and so
F NReg(©NF,P,) C Reg(F,By) -

Combining this inclusion with the inclusion (2.8) we derive the equality (2.6). Since
© C L3(A, A,, P,), the equalities in (2.7) hold for all f,h € ©. Then Theorem 2.1
yields Reg(0O,B,) D ©, whereas the opposite inclusion is obvious.

Thus Reg(0,B,) = ©. If now F C O, then the equality (2.6) takes the form
Reg(F,PB,) = F, which proves the theorem. O

By St we denote the orthogonal complement of S C L2(A4, A, P;) in the space

H(P), i.e.,
St.={fecl?(A A, P): (hf)=0 for he S} .

Theorem 2.3. If F # 0 is a closed and linear set in H(B) and g € L*(B, A,, P,),
then Reg(F,B,) # 0 and Reg(F,Py) = O + f for each f € Reg(F,B,). Moreover,
if F C S = (g*)71(0), then Reg(F,B,) = O. Otherwise (FNS)LNF\ O #0 and
g”h(ﬁ;)h, he(FNS)*NnF\oe. (2.9)
Proof. Assume that Reg(F,JB,) # 0 and choose arbitrarily f € Reg(F,J,) and
freL2(A, A,, Py). If f' € Reg(F,B,) then, by Theorem 2.1,

(hlf)=9g"(h), helF, (2.10)

and (h|f’) = g*(h) for h € F. Hence, setting h := f — f’ we conclude from (2.10)
that

Reg(F,PB,) =0+

|R1* = (hlf = ') = (RLf) = (Bl f') = g"(h) — g"(h) = 0 .
Thus f" € © + f for f' € Reg(F,B,), and so Reg(F,B,) C O + f. Conversely,

suppose that f* € © + f. Then, by Schwarz inequality (1.9), we see that for every
h e F,

[(ALEY) = RIAOT= 1AL = ORI - ILF = fll=0.

Hence, and by (2.10), we get (h|f’') = (h|f) = g*(h) for h € F. Since F is closed and
linear in H(*B), we see that © C F and so © + f C F. Applying Theorem 2.1 we
see that f’ € Reg(F,P,) for f' € ©+ f, and so © + f C Reg(F,B,). This inclusion
together with the inverse one yields the equality Reg(F,B,) = © + f, provided
Reg(F,B,) # 0, and so we obtain the following implication

Reg(F,PBy) #0 = Reg(F,PB,) =0+ . (2.11)
Assume now that F C S. Then

(hl0) =0=g"(h), heF,
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which shows, by Theorem 2.1, that 8 € Reg(F,B,). Hence and by (2.11) we see that
Reg(F,By) = © +0 = O. It remains to consider the case where the inclusion F C S
does not hold. If so, then F N S # F. By the assumption F is a closed set in H(}3).
Since g € L?(B, Ay, P,), g* is a continuous functional on H(B), and so S is also a
closed set in H(’B). Therefore F N S is a closed set in H(*R), and consequently

OCFNS#F. (2.12)
Hence F\(FNS) # 0. Since FNS is closed in H(P), it follows that each h € F\(FNS)

has an orthogonal projection hg onto F NS, i.e.,

hs € FNS and (h—hglh')=0, heFnS. (2.13)
Hence h — hg € (FNS)-NF.If h — hg € O, then from (2.12) and (2.13) it follows
that h = hg +(h — hg) € FNS+ 6O = FNS, which is impossible. Therefore
h—hg ¢ ©,andso h—hg € (FNS)ENF\O. Thus (FNS)LtNF\O #0. Given
h e (FNS)tNF\O we see that ||h|| # 0, and so g*(h) # 0. Hence, for each b’ € F,

“(R) g (h')
et =S e Fag and W = he (FNS)EnF. (2.14
ST m ST SIS 21
Since
“(h
°C|’|h—(”2)he (FNS)*nrF,
we conclude from (2.14) that
*(h) g*(h) g ("), 19*(h)
| SN g |9 N h h
< 12 > < )2 > <g*(h) 172 >
g (') [ g*(h) iy )
— hh) =g (W), K eF.
() (uhuz Bk = 5" ()
Applying now Theorem 2.1, we see that
“(h
F.=19 ( )heReg(f,mg), he (FNS)FNnF\O. (2.15)

172}
Therefore Reg(F,PB,) # 0 and, combining (2.15) with (2.11), we derive the equality
(2.9) provided the inclusion F C S does not hold.
In both the cases Reg(F,B,) # 0, which completes the proof. (I

3. Calculating procedure of the regression functions

Write Zp, = {n € Z:p < n < ¢} and Z, := {n € Z: p < n} for p,q € Z. In
particular N = Z;. Given a nonempty set S C L?(4, A,, P.), we denote by lin(.9)
the set of all linear combinations ZZ:1 AV where n € N, Z; ,, 2 k= A\ € B and
Ziyn 2 k— v, € S. It is easy to check that lin(S) is the smallest linear subset of
L2(A, Ay, P;) containing S.
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Assume that F is arbitrarily chosen linear and closed set in the space H(*J3) and
g € L?(B, Ay, P,) is given. Then by Theorem 2.3 we conclude that Reg(F,B,) # 0.
Moreover, Theorem 2.3 enables us to find regression functions in F with respect to
B, provided we can determine the linear set (F N S)+ N F. This is rather difficult
task, in general. However in the case where the set F is finitely dimensional we can
effectively calculate all the regression functions in F with respect to B, in terms of
a given base of this space. Obviously, this case is most essential from the practical
point of view and will be considered later on.

For every f,h € L?(A, A., P,), we will write f L h if (f|h) = 0. Given p,q €
Z, p < q, and a sequence Z, , 3> k — Fj, of nonempty sets in the space H(’B), we
write > Fy for the set of all 3 5;_ fi where Z,, 3 k + fr € Fi. Obviously,

S Fr=Fi+ Fo

Theorem 3.1. Given p € N let Z1, > k — hy € L2(A, Ay, Py) \ © be an orthogonal
sequence in H(P), i.e.,

th_hj, kﬁ,jGZl,p, ]{375] . (31)
If g € L*(B, Ay, P,), then

Reg(F,B,) = {g ”thQ } ) (3.2)

where
F=lin({hg: k€ Z1,}) . (3.3)

Proof. Fix p € N and a sequence Zy , 3 k — hi, € L?(A, A, P;) \ O satisfying the
assumptions. From (3.3) and (3.1) it follows that Fy := O+ F is a closed set in H(}3).
Therefore Reg(Fo,B,) # 0 by the assumption g € L?(B, Ay, P,) and Theorem 2.3.

If g*(hx) = 0 for k € Zy,, then by (3.3), Fop € S := (¢*)~1(0). From Theorem
2.3 it follows that Reg(Fo,B,) = O. Hence, and by Corollary 2.2, we conclude that
Reg(F,PB,) = ©NF. Fix h € FNO. By (3.3) there exists a sequence Zy, > k —
Ak € B such that h =Y 7_; Aghy. From (3.1) it follows that

p
D Pl = [1n)* =
k=1

By the assumption, ||hg|| > 0 for k € Z; . Therefore A\, = 0 for k € Z; , and so
h = 6. Consequently

Fne={f. (3.4)

Thus Reg(F,PB,) = {6}, and so the equality (3.2) holds.

Assume, in contrary, that g*(hy) # 0 for some k € Z; ,,. Then Fo\S # 0 and applying
again Theorem 2.3 we can see that (FoNS)=NFo\ O # 0 as well as that the equality
(2.9) holds. Thus we have to find an element h € F such that h € (FoNS)tNFy\ 6.
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Then by (3.3) there exists a sequence Z , 3 k — A\, € B such that

p
h=> Xc-hg . (3.5)
k=1

If p=1, then h = A1hy and g*(h1) # 0. Hence A\ # 0, and hy € Fy \ ©. Moreover,
for any f € Fp NS there exist A € B and fy € © such that f = fy + A\hy. Since
f €S, we obtain

0=g"(f)=9"(fo) + \g"(h1) = Ag" (h1) ,

and so A = 0. Therefore, f = fo € O, which gives (hy|f) = 0. Hence h; € (FoNS)+,
and we see that h = A\jhy € (Fo N S)t N Fy\ ©. Then Theorem 2.3 leads to

*(h *(h
Reg(Fo,By) = g||h(||2)h O+ g||h(1||12) hi . (3.6)

It remains to consider the case where p > 1. Without lost of generality we may assume

now that g*(hy) # 0. Since hy — Z E E) pyy € Sforke Zy,and h e (FonS)tnFy

we have

*(hy
- Eh ihl, ke Zi,.
1

Combining this with (3.1) and (3.5) we see that for each j € Z1 ,,

0:<h g*(hj)h1> — (hlhy) — <h g*(hj)h1>

" () g (i)

k=1
=3 wthulng) — () X wnthud)
Aslhglhgh = 2 (LG ) i) = Al (L0 ) P

Hence

A (9*(hj)) 2 .
Aj = hil”, JE Liy.
i = P gy I Lo

This together with (3.5) leads to

a k) 2 M 2 . g* (h)
=3 =3 ot (LG i b = RS

whence )\1 # 0. By (3.1) we see that

p
EZ: ||hk\|2

B DN e (11 Z|g (o) |”
gt ()2 17 |2

Ihll? = f:luhlu
g (hl)
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Moreover,

— A1 ~ g*(hx)
g*<h>=g*<* IRy PEAUOIN
o Tl
P
) g Ml -l ()P
- g* (hy) = .
kguhknz o) = =) Z Tl

Applying now (2.9) we obtain

1

Rl g o ()P
() ) 2 el
Reg( F =0 -h=06 - h
°8(F0, %) =0+ o TP 2 g )P
IR 2 el
g*(h1) A1 s <= 9" (i)
o+ - a2 ™
M2 g (i) 2 2
P
g*(hx)
© h
+ 2 e

Hence, and by (3.6), we see that for each p € N,

Reg(f07q39) = @ +f7

where, in view of (3.3),

p
=3 thk”2 hi € lin({hy: k € Zy,)}) =
k=1

From Corollary 2.2, (3.7), (3.8) and (3.4) it follows that

Reg(F,By) = F NReg(Fo, By) = FN(O+ ) =(FNO)+ f={f}.

This yields the equality (3.2), which completes the proof.

(3.8)

O

As far as applications are concerned we will study theoretic models F spanned

by sequences Z1, > k +— hj which are not, in general, orthogonal in the space

H(*B), because the pseudo-inner product (-|-) depends on the empirical data function
x:  — A and probability measure P. Therefore we can not apply Theorem 3.1

directly. However, in such a case we may orthogonalize those sequences. To this end

we may use the generalized Gram - Schmidt orthogonalization method, saying that,

n—1
=hy and Rl =ty — > ANhn,hi) by, nE€ZLyy ,

k=1

(3.9)
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where A is defined by

(ulv) .
f >0,
L2(A, A., Py) x L2(A, Ay, Py) 2 (u,v) = AMu,v) == < |[v]|? it ol (3.10)

0 if ||| =0.

Corollary 3.2. Givenp € N and Zy, 2 k +— hy, € L?(A, Ay, Py) let Zyp 3 k — R,
be a sequence defined by (3.9). If g € L*(B, Ay, P,) and

|PLl >0, kE€Zi,, (3.11)
then
g (hy) s
= 12

where F is given by (3.3).

Proof. Under the assumption we see that hj L hj for k,I € Z; , such that k # [.
From (3.3) and (3.9) it follows that lin({h}: k € Z; ,}) = F. Moreover, by (3.11),
), € L?(A, A, P;) \ © for k € Z; ,. Thus, applying Theorem 3.1 for the sequence
Zip 2 k +— hy, replaced by its orthogonal associate Z; , > k +— h) we derive the
equality (3.12), which is our claim. O

Remark 3.3. From [6, Lemma 5.2] it follows the condition (3.11) holds if and only
if a sequence Z; , 3 k +— hy, is linearly independent and 7 N © = {#}. In particular,
the condition (3.11) holds provided a sequence Z; , 3 k +— hy, is linearly independent
and the functional is a norm in (L2(A, Ay, Py), +, ).

4. Examples and complementary remarks

In this section we present examples and comments which illustrate our considerations
from the previous section. From now on we always assume that

= (A, B, §;x,y) is a given probabilistic regression structure determined by a prob-
ability space P = (Q, A, P) and g € L?*(B, A,, P,) is arbitrarily fixed.

Example 4.1. Let us consider the case where the functional model F is spanned by
one arbitrarily fixed function h; € L2(4, A,, P.) \ ©, i.e., F = lin({h1}). Applying
Theorem 3.1 we can see that

Reg(F,PB,) = {%hl} ) (4.1)

Using the expected value operator for the probability space P we conclude from the
formula (1.13) that

*(hy) /(h1 o z(w)) - g o y(w)dP(w) = E[(h1 0 z) - §57] , (4.2)
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and from the formula (1.8) and Theorem 1.2 that

Il = [ ©FaP.o) = [ b oa@ldPw) =Elhioaf].  (@3)
A Q
Hence we can rewrite (4.1) in terms of the expected value as follows

_ [E[(hiox)goy]
Reg(]—",mg)_{ B[ o2 -h1} :

Given « € Z suppose that A = B, g € L?(B, Ay, P,) and hy € L?(A, A,, P,) where
hi(t) :==t* and g(t) :=t for t € B. Then

El(hiox)(goy)] =E[E" -y and E[hsox’] =E[z**],

(4.4)

and so (4.4) implies
E[z® - y]
Reg(]—",iB):{ABtH—-to‘} , (4.5)
Ef|z[2]
provided z is not equal 0 a.s. on €.
If x is a real random variable, then putting o := 1 in (4.5) we see that E[zy] can be

expressed by means of regression functions Reg(F,%3) and E[z?]. Putting o := 0 in
(4.5) we obtain

Reg(F,B) ={Act— Ely]} . (4.6)
Notice that the equality (4.6) is still valid even if A # B.

Example 4.2. Let us consider the case where the functional model F is spanned
by two arbitrarily fixed functions hi,he € L?(A, Ay, Py), ie., F = lin({hy, ha}).
Suppose that ||R]|| > 0 and ||h5]| > 0, where Z; 2 3 k — k) is a sequence defined by
(3.9). Applying Corollary 3.2 we can see that

g*(h) g*(hy)
Reg(F,F,) = T )+ o 2hy o (4.7)
17l 13l
where, according to (3.9),
halh
hll = hl and hl2 = hg — Ll;hl . (48)
[ha
Hence h}, L hy, and consequently
holh
141 =(hl0s) = (e = ST ) = (o) (4.9)
(ha|hi) o |{ha|ha)|?
=(hg — hilha) = |[h2||” — :
1P| [ ||

Setting

*(ho)||h1]|? — g* (h1)(ha|h *(hy) — (holh
= (ho)[l]” — g*(h1){holha) o o _ 9 1)“h(“22| 1o
1

1h2|[2[|1[[* = (e lha)[?

(4.10)
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we conclude from (4.7), (4.8) and (4.9) that
Reg(]:, ’Bg) = {a2h2 + Oélhl} . (4.11)

We can calculate the coefficients as and a by means of the expected value operator
E for the probability space P using the following equalities

g"(hx) = E[(hgxox)-goy] and Hthz = El[|h o 5(;|2] , ke€eZis (4.12)

as well as

(ha|h1) = /Ahg( ) - hi(t)dP,(t) = E[(hg o z)(hy o x)] . (4.13)

To prove them we appeal to the equalities (4.2), (4.3), (1.6) and Theorem 1.2.
In particular, suppose that A = B, g € L?(B, Ay, P,) and hy,hy € L*(A, A, P;)
where g(t) :=t, hi(t) :== 1 and hs(t) := t for t € B. Applying now the equalities
(4.12), (4.13) we can rewrite the formulas (4.10) as

oy = EZ -yl — Bl7] - Ely]

Efz[?] — (E[z])?

provided z is a not a constant a.s. on ). Therefore the coefficients ao and «aq given
by (4.14) coincide with the classical linear regression coefficients in the case of real

and oy = E[y] — E[z] - as (4.14)

random variables, cf. [3], [4].

Example 4.3. Let us consider the case where the functional model F is spanned by
three arbitrarily fixed functions hy, he, h3 € L?(A, A, P,), i.e., F = lin({hy, ha, h3}).
Suppose that ||k, || > 0 for k € Z; 3, where Zy 3 3 k — h}_is a sequence defined by
(3.9). Applying Corollary 3.2 we obtain

3 * h,

where, by (3.9), we have

hy =hq ,
ha|h1)
oyl
T M
By —hs + 17 hy — (hs|h1) +1 '2<h2|h1> by
171
and _ (halhi)(holha) — (hs|ho) (ha|hy)

B2l [[Aa [ = |Ch2lha)]?
In particular, suppose that x and y are independent real random variables with
normal distributions N(u1,01) and N(ug,02) respectively. Then, cf. [4],

E[(z —p)*™] =0 and E[(z—pu)*]=02s—D!-0}, scN. (4.16)

Setting A := R and B := R we see that hi,ho,hs € L?(A, A;, P.) and g €
L*(B, Ay, P,), where g(t) := t, hi(t) := 1, ho(t) := t and hs(t) := ¢* for ¢t € B.
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Using Theorem 1.2 we conclude from the formula (1.6) that

(o) = / () dPy(2) = / (2 4P, (1) (4.17)
R R
_ / 2 2(0) dP(w) = E[g" 2] . k€ Zus .
Q
Combining (4.17) with (4.16) we calculate
(ha|h1) = 1, (ho|h1) = pa (halh1) = pi + o7 |
(halho) = pi+of,  (hslhe) = (ui +301)m
Hence n = —2u; and so
hll :hl 3 h/2 :hQ—Mlhl y hg :h3—2,u1h2+(,u%—af)h1 . (418)

Since z and y are independent, we conclude from the formula (1.13) that

g* (i) = / i 0 2(w) - 9 0 y(w) dP(w) = / (W) - y(w) dPW)

=E[z" 'y =E[" ' E[y], k€Zis.
This together with (4.18) yields
g (M) =Elyl =p2, g*(hy) =0, and g*(h5)=0.

Using now (4.15) we obtain
Reg(F,B) ={R >t — pa} .
In particular for pus := 0 we get
Reg(F,P) = {0} .

Example 4.4. Assume that A = B. Let F be a functional model consisting of all
polynomials f with coefficients in B and degree degf < p — 1, where p € N. Setting
B >t hy(t) == tF~! for k € Z1, we see that F = lin({hy: k € Z;1,}). Suppose
that hy, € L?(A, A, Py) for k € Z; ;, and ||h},|| > 0 for k € Z; ;,, where Zy , > k — hj,
is a sequence defined by (3.9). Applying Corollary 3.2 we get

Reg(F,P,) = {Z’M%Q } . (4.19)

According to the classical definition, cf., e.g. [3], [10], by a polynomial regression

of the random variable y with respect to the random variable x, we mean each
polynomial fy € F such that

E[lfor—yP)]2E[focx—y[’], feF.
From (1.2) it follows that

F(f)=E[fox—yf], ferF.
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Therefore the class of all such fy coincides with the class Reg(F, ). Suppose that
g € L3(B, Ay, P,), where g(t) :=t for t € B. Then Reg(F,B) = Reg(F,%,) and by
(4.19) we see that there exists the unique polynomial regression fy € F of y with
respect to z and fy can be determined by the following equality

/

p
*(hy,)
; h ||2
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PROBABILISTYCZNE STRUKTURY REGRESJI

Streszczenie

Nowe podejscie uogdlniajace klasyczna koncepcje regresji jest szeroko prezentowane w
[5] 1 [6] na gruncie przestrzeni Hilberta. W niniejszym artykule wyniki tej pracy zostaly
przeniesione na przestrzen probabilistyczna, gdzie uogélnione zagadnienie regresji ma postaé
rozwiazania problemu ekstremalnego, zdefiniowanego na przestrzeni probabilistycznej.

Stowa kluczowe: regresja nieliniowa, regresja wielomianowa, przestrzen probabilistyczna,

funkcje regresji, struktura regresji



