https://doi.org/10.26485/0459-6854/2018/68.2/3

PL ISSN 0459-6854

BULLETIN

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE LÓDŹ 2018 Vol. LXVIII

Recherches sur les déformations	no. 2

pp. 37–44

Dedicated to the memory of Professor Yurii B. Zelinskii

Aleksandr Bakhtin, Liudmyla Vyhivska, and Iryna Denega

INEQUALITY FOR THE INNER RADII OF SYMMETRIC NON-OVERLAPPING DOMAINS

Summary

The paper deals with the following problem stated in [1] by V.N. Dubinin and earlier in different form by G.P. Bakhtina [2]. Let $a_0 = 0$, $|a_1| = \ldots = |a_n| = 1$, $a_k \in B_k \subset \overline{\mathbb{C}}$, where B_0, \ldots, B_n are non-overlapping domains, and B_1, \ldots, B_n are symmetric domains about the unit circle. Find the exact upper bound for $r^{\gamma}(B_0, 0) \prod_{k=1}^n r(B_k, a_k)$, where $r(B_k, a_k)$ is the inner radius of B_k with respect to a_k . For $\gamma = 1$ and $n \geq 2$ this problem was solved by L.V. Kovalev [3, 4]. In the present paper it is solved for $\gamma_n = 0, 25n^2$ and $n \geq 4$ under the additional assumption that the angles between neighboring line segments $[0, a_k]$ do not exceed $2\pi/\sqrt{2\gamma}$.

Keywords and phrases: inner radius of domain, non-overlapping domains, radial system of points, separating transformation, quadratic differential, Green's function

In geometric function theory of a complex variable problems maximizing the product of inner radii of non-overlapping domains are well known [1-10]. One of the such problems is considered in the article.

Let \mathbb{N} , \mathbb{R} be a sets of natural and real numbers, respectively, \mathbb{C} be a complex plane, $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be an expanded complex plain or a sphere of Riemann, $\mathbb{R}^+ = (0, \infty)$. Let r(B, a) be the inner radius of the domain $B \subset \overline{\mathbb{C}}$ with respect to the point $a \in B$ (see, f.e. [1–5]). The inner radius of the domain B is associated with the generalized Green function $g_B(z, a)$ of the domain B by the relations

$$g_B(z,a) = -\ln|z-a| + \ln r(B,a) + o(1), \quad z \to a,$$

 $g_B(z,\infty) = \ln|z| + \ln r(B,a) + o(1), \quad z \to \infty.$

Let U_1 be a unit circle $|w| \leq 1$.

The system of non-overlapping domains is called a finite set of arbitrary domains $\{B_k\}_{k=0}^n, n \in \mathbb{N}, n \geq 2$ such that $B_k \subset \overline{\mathbb{C}}, B_k \cap B_m = \emptyset, k \neq m, k, m = \overline{0, n}$.

Further we consider the following system of points $A_n := \{a_k \in \mathbb{C}, k = \overline{1, n}\}, n \in \mathbb{N}, n \geq 2$, satisfying the conditions $|a_k| \in \mathbb{R}^+, k = \overline{1, n}$ and $0 = \arg a_1 < \arg a_2 < \cdots < \arg a_n < 2\pi$. Denote by

$$P_{k} = P_{k}(A_{n}) := \{ w : \arg a_{k} < \arg w < \arg a_{k+1} \}, \quad a_{n+1} := a_{1},$$
$$\alpha_{k} := \frac{1}{\pi} \arg \frac{a_{k+1}}{a_{k}}, \quad \alpha_{n+1} := \alpha_{1}, \quad k = \overline{1, n}, \quad \sum_{k=1}^{n} \alpha_{k} = 2.$$

Consider the following problem.

Problem. Let $a_0 = 0$, $|a_1| = \ldots = |a_n| = 1$, $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{0, n}$, where B_0, \ldots, B_n are pairwise non-overlapping domains and B_1, \ldots, B_n are symmetric domains with respect to the unit circle. Find the exact upper bound of the product

$$I_n(\gamma) = r^{\gamma}(B_0, 0) \prod_{k=1}^n r(B_k, a_k).$$

For $\gamma = 1$ the problem was formulated as an open problem in the paper [1]. L.V. Kovalev solved the problem for $n \ge 2$ and $\gamma = 1$ [3, 4]. The following theorem substantially complements the results of the papers [2, 3, 4].

Theorem 1. Let $n \in \mathbb{N}$, $n \geq 2$, $\gamma \in (0, \gamma_n]$, $\gamma_2 = 1, 49$, $\gamma_3 = 3, 01$, $\gamma_n = 0, 25 n^2$, $n \geq 4$. Then for any different points of a unit circle |w| = 1 such that $0 < \alpha_k \leq 2/\sqrt{2\gamma}$, $k = \overline{1, n}$ and for any different system of non-overlapping domains B_k , $a_0 = 0 \in B_0 \subset \overline{\mathbb{C}}$, $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{1, n}$, where the domains B_k , $k = \overline{1, n}$, have symmetry with respect to the unit circle |w| = 1, the following inequality holds

$$r^{\gamma}(B_0,0)\prod_{k=1}^n r(B_k,a_k) \le \left(\frac{4}{n}\right)^n \frac{\left(\frac{2\gamma}{n^2}\right)^{\frac{\gamma}{n}}}{\left|1 - \frac{2\gamma}{n^2}\right|^{\frac{n}{2} + \frac{\gamma}{n}}} \left|\frac{n - \sqrt{2\gamma}}{n + \sqrt{2\gamma}}\right|^{\sqrt{2\gamma}}.$$
(1)

Equality in this inequality is achieved when a_k and B_k , $k = \overline{0, n}$, are, respectively, poles and circular domains of the quadratic differential

$$Q(w)dw^{2} = -\frac{\gamma w^{2n} + 2(n^{2} - \gamma)w^{n} + \gamma}{w^{2}(w^{n} - 1)^{2}} dw^{2}.$$
(2)

Proving the theorem 1. Consider the system of functions

$$\pi_k(w) = \left(e^{-i \arg a_k}w\right)^{\frac{1}{\alpha_k}}, \quad k = \overline{1, n}$$

The family of functions $\{\pi_k(w)\}_{k=1}^n$ is called admissible for separating transformation of domains B_k , $k = \overline{0, n}$ with respect to angles $\{P_k\}_{k=1}^n$.

Let $\Omega_k^{(1)}$, $k = \overline{1, n}$, denote the domain of the plane \mathbb{C}_{ζ} , obtained as a result of the union of the connected component of the set $\pi_k(B_k \cap \overline{P}_k)$, containing the point $\pi_k(a_k)$ with the own symmetric reflection with respect to the real axis. In turn, by $\Omega_k^{(2)}$, $k = \overline{1, n}$, one denotes the domain of the plain \mathbb{C}_{ζ} , which are obtained as a result of the union of the connected component of the set $\pi_k(B_{k+1} \cap \overline{P}_k)$, containing the point $\pi_k(a_{k+1})$ with the own symmetric reflection with respect to the real axis, $B_{n+1} := B_1, \pi_n(a_{n+1}) := \pi_n(a_1)$. Moreover, we denote $\Omega_k^{(0)}$ as the domain of the plane \mathbb{C}_{ζ} , obtained as a result of the union of the connected component of the set $\pi_k(B_0 \cap \overline{P}_k)$ containing the point $\zeta = 0$ with the own symmetric reflection with respect to the real axis. Denote by

$$\pi_k(a_k) := \omega_k^{(1)} = 1, \quad \pi_k(a_{k+1}) := \omega_k^{(2)} = -1, \quad k = \overline{1, n}.$$

From the definition of the function π_k , it follows that

$$\begin{aligned} |\pi_k(w) - 1| &\sim \frac{1}{\alpha_k} \cdot |w - a_k|, \quad w \to a_k, \quad w \in \overline{P_k}, \\ |\pi_k(w) + 1| &\sim \frac{1}{\alpha_k} \cdot |w - a_{k+1}|, \quad w \to a_{k+1}, \quad w \in \overline{P_k}, \\ |\pi_k(w)| &\sim |w|^{\frac{1}{\alpha_k}}, \quad w \to 0, \quad w \in \overline{P_k}. \end{aligned}$$

Further, using the result of the papers [1, 2], we obtain the inequalities

$$r\left(B_{k},a_{k}\right) \leq \left[\alpha_{k}r\left(\Omega_{k}^{\left(1\right)},1\right) \cdot \alpha_{k-1}r\left(\Omega_{k}^{\left(2\right)},-1\right)\right]^{\frac{1}{2}}, \quad k=\overline{1,n},\tag{3}$$

$$r(B_0, 0) \le \left[\prod_{k=1}^{n} r^{\alpha_k^2} \left(\Omega_k^{(0)}, 0\right)\right]^{\frac{1}{2}}.$$
(4)

From inequalities (3) and (4), and using the technique developed in [5, p. 269–274], we obtain

$$I_{n}(\gamma) \leq \prod_{k=1}^{n} \left[r\left(\Omega_{k}^{(0)}, 0\right) \right]^{\frac{\gamma \alpha_{k}^{2}}{2}} \prod_{k=1}^{n} \left[\alpha_{k-1} r\left(\Omega_{k}^{(2)}, -1\right) \alpha_{k} r\left(\Omega_{k}^{(1)}, 1\right) \right]^{\frac{1}{2}} = \left(\prod_{k=1}^{n} \alpha_{k}\right) \left[\prod_{k=1}^{n} r^{\gamma \alpha_{k}^{2}} \left(\Omega_{k}^{(0)}, 0\right) r\left(\Omega_{k}^{(1)}, 1\right) r\left(\Omega_{k}^{(2)}, -1\right) \right]^{\frac{1}{2}}.$$
(5)

Further, consider the product of three domains

$$r^{\gamma \alpha_k^2}(G_0, 0)r(G_1, 1)r(G_2, -1).$$

To the domains G_0, G_1, G_2 we again apply separating transformation. Let

$$T_k := \{z : (-1)^{k+1} Im \, z > 0\}, \quad k \in \{1, 2\},$$
$$D_1 = \overline{T_1} \cap U_1, \quad D_2 = \overline{\mathbb{C}} \setminus U_1 \cap \overline{T_1}, \quad D_3 = \overline{T_2} \cap U_1, \quad D_4 = \overline{\mathbb{C}} \setminus U_1 \cap \overline{T_2},$$
$$\beta(z) = \frac{2z}{1+z^2}.$$

From the definition of the function $\beta(z)$, it follows that

$$\begin{split} |\beta(z)| &\sim 2|z|, \quad z \to 0, \quad z \in \overline{T_k}, \\ |\beta(z) - 1| &\sim \frac{1}{2} |z - 1|^2, \quad z \to 1, \quad z \in \overline{T_k}, \\ |\beta(z) + 1| &\sim \frac{1}{2} |z + 1|^2, \quad z \to -1, \quad z \in \overline{T_k}. \end{split}$$

The result of separating transformation the domain G_0 with respect to the function $\beta(z)$ and the system of domains $\{\overline{D}_k\}_{k=1}^4$ denote by $G_0^{(k)}$, $k = \overline{1,4}$; besides, the result of separating transformation the domain G_j , $j \in \{1,2\}$, with respect to the function $2z/(1+z^2)$ and the system of domains $\{\overline{D}_k\}_{k=1}^4$ denote by $G_1^{(k)}, G_2^{(k)}, k = \overline{1,4}$. Further, we obtain the inequalities

$$r\left(G_{0},0\right) \leq \left[\frac{1}{2}r\left(G_{0}^{(1)},0\right) \cdot \frac{1}{2}r\left(G_{0}^{(2)},0\right)\right]^{\frac{1}{2}},$$

$$r\left(G_{1},1\right) \leq \left[2r\left(G_{1}^{(1)},1\right)2r\left(G_{1}^{(2)},1\right)2r\left(G_{1}^{(3)},1\right)2r\left(G_{1}^{(4)},1\right)\right]^{\frac{1}{8}},$$

$$r\left(G_{2},-1\right) \leq \left[2r\left(G_{2}^{(1)},-1\right)2r\left(G_{2}^{(2)},-1\right)2r\left(G_{2}^{(3)},-1\right)2r\left(G_{2}^{(4)},-1\right)\right]^{\frac{1}{8}}.$$
the domains C_{1} , C_{2} , here summatry with respect to the unit circle, then

Since the domains G_1 , G_2 , have symmetry with respect to the unit circle, then

$$r^{\alpha_k^2 \gamma} (G_0, 0) r (G_1, 1) r (G_2, -1) \leq \leq 2^{1-\alpha_k^2 \gamma} \left[r^{2\alpha_k^2 \gamma} \left(G_0^{(1)}, 0 \right) r \left(G_1^{(1)}, 1 \right) r \left(G_2^{(1)}, -1 \right) \right]^{\frac{1}{2}} \times \left[r^{2\alpha_k^2 \gamma} \left(G_0^{(3)}, 0 \right) r \left(G_1^{(3)}, 1 \right) r \left(G_2^{(3)}, -1 \right) \right]^{\frac{1}{2}}.$$

In case $2\alpha_k^2 \gamma \leq 4$, using paper [1], we obtain

$$r^{2\alpha_{k}^{2}\gamma}\left(G_{0}^{(s)},0\right)r\left(G_{1}^{(s)},1\right)r\left(G_{2}^{(s)},-1\right) \leq \frac{2^{2\gamma\alpha_{k}^{2}+6}(\alpha_{k}\sqrt{2\gamma})^{2\gamma\alpha_{k}^{2}}}{(2-\alpha_{k}\sqrt{2\gamma})^{\frac{1}{2}(2-\alpha_{k}\sqrt{2\gamma})^{2}}(2+\alpha_{k}\sqrt{2\gamma})^{\frac{1}{2}(2+\alpha_{k}\sqrt{2\gamma})^{2}}}, \quad s \in \{1,3\}.$$

Equality in this inequality is achieved when $G_0^{(s)}$, $G_1^{(s)}$, $G_2^{(s)}$ are circular domains of the quadratic differential

$$Q(z)dz^{2} = -\frac{(4 - 2\alpha_{k}^{2}\gamma)z^{2} + 2\alpha_{k}^{2}\gamma}{z^{2}(z^{2} - 1)^{2}} dz^{2}$$
(6)

 $(0 \in G_0^{(s)}, 1 \in G_1^{(s)}, -1 \in G_2^{(s)}, s \in \{1,3\})$. Since $\alpha_k^2 \gamma \leq 2$, then according to the papers [1, 6], the inequality holds

$$r^{\gamma}(B_{0},0)\prod_{k=1}^{n}r(B_{k},a_{k}) \leq \left(\frac{1}{\sqrt{2\gamma}}\right)^{n}\prod_{k=1}^{n}\left(\alpha_{k}\sqrt{2\gamma}\right)2^{\frac{1-\alpha_{k}^{2}\gamma}{2}}\times\\\times\left[\frac{2^{2\gamma\alpha_{k}^{2}+6}(\alpha_{k}\sqrt{2\gamma})^{2\gamma\alpha_{k}^{2}}}{(2-\alpha_{k}\sqrt{2\gamma})^{\frac{1}{2}(2-\alpha_{k}\sqrt{2\gamma})^{2}}(2+\alpha_{k}\sqrt{2\gamma})^{\frac{1}{2}(2+\alpha_{k}\sqrt{2\gamma})^{2}}}\right]^{\frac{1}{4}} =\\=\left(\frac{1}{\sqrt{2\gamma}}\right)^{n}\prod_{k=1}^{n}\left[\frac{2^{8}(\alpha_{k}\sqrt{2\gamma})^{2\gamma\alpha_{k}^{2}+4}}{(2-\alpha_{k}\sqrt{2\gamma})^{\frac{1}{2}(2-\alpha_{k}\sqrt{2\gamma})^{2}}(2+\alpha_{k}\sqrt{2\gamma})^{\frac{1}{2}(2+\alpha_{k}\sqrt{2\gamma})^{2}}}\right]^{\frac{1}{4}}$$

Consider the function

$$\Psi(x) = 2^8 \cdot x^{x^2+4} \cdot (2-x)^{-\frac{1}{2}(2-x)^2} \cdot (2+x)^{-\frac{1}{2}(2+x)^2},$$

where $x = \alpha_k \sqrt{2\gamma}, x \in (0, 2].$

Consider the extremal problem

$$\prod_{k=1}^{n} \Psi(x_k) \longrightarrow \max, \quad \sum_{k=1}^{n} x_k = 2\sqrt{2\gamma},$$
$$x_k = \alpha_k \sqrt{2\gamma}, \quad 0 < x_k \le 2.$$

Let $F(x) = \ln(\Psi(x))$ and $X^{(0)} = \left\{x_k^{(0)}\right\}_{k=1}^n$ is any extremal point above the indicated problem. Repeating the arguments of [6], we obtain the statement: if $0 < x_k^{(0)} < x_j^{(0)} < 2$, then the following equalities hold $F'(x_k^{(0)}) = F'(x_j^{(0)})$, and when some $x_j^{(0)} = 2$, then for any $x_k^{(0)} < 2$, $F'(x_k^{(0)}) \leq F'(2)$, where $k, j = \overline{1, n}, k \neq j$,

$$F'(x) = 2x \ln x + (2-x) \ln(2-x) - (2+x) \ln(2+x) + \frac{4}{x}$$

(see. Fig. 1).

We verify that assertion is correct: if the function $Z(x_1, \ldots, x_n) = \sum_{k=1}^n F(x_k)$ reaches a maximum at the point $(x_1^{(0)}, \ldots, x_n^{(0)})$ with conditions $0 < x_k^{(0)} \le 2, k = \overline{1, n}, \sum_{k=1}^n x_k^{(0)} = 2\sqrt{2\gamma}$, then

$$x_1^{(0)} = x_2^{(0)} = \ldots = x_n^{(0)}.$$

For the simplicity, let $x_1^{(0)} \le x_2^{(0)} \le \ldots \le x_n^{(0)}$. The function

$$F''(x) = \ln\left(\frac{x^2}{4-x^2}\right) - \frac{4}{x^2}$$

strictly ascending by (0, 2) and exist $x_0 \approx 1,768828$ such that

$$signF''(x) \equiv sign(x - x_0).$$

Fig. 1. Graph of the function y = F'(x)

Taking into consideration properties of the function F'(x), the condition of theorem and relying on the method developed in [6], we obtain that for F'(x) the inequality $(x_1 - 1, 45) n + (x_2 - x_1) > 0$ always holds for $n \ge 4$. Hence $nx_1 + (x_2 - x_1) > 1, 45 n$. And, finally, we get

$$(n-1)x_1 + x_2 > 1,45n = 2\sqrt{2\gamma_n}, \quad \gamma_n = 0,25n^2, \quad n \ge 4.$$

So, in the case $n \ge 4$ the set of points $\left\{x_k^{(0)}\right\}_{k=1}^n$ can not be extreme under the condition $x_n^{(0)} \in (x_0, 2]$. Thus, for an extreme set $\left\{x_k^{(0)}\right\}_{k=1}^n$ is possible only the case when $x_k^{(0)} \in (0, x_0]$, $k = \overline{1, n}$, and $x_1^{(0)} = x_2^{(0)} = \ldots = x_n^{(0)}$. For any $\gamma < \gamma_n$, $n \ge 4$, all previous arguments remain.

Further, let F'(x) = t, $y_0 \leq t \leq -0,78$, $y_0 \approx -1,059$. Consider the following values t: $t_1 = -0,78$, $t_2 = -0,80$, $t_3 = -0,85$, $t_4 = -0,90$, \cdots , $t_{11} = -1,05$, $t_{12} = -1,059$. One finds the solution of equation $F'(x) = t_k$, $k = \overline{1,12}$. For any $t_k \in [y_0, -0,78)$ the equation has two solutions: $x_1(t) \in (0,x_0]$, $x_2(t) \in (x_0,2]$, $x_0 \approx 1,768828$. Direct calculations are presented in the table below.

Taking into consideration properties of the function F'(x) and the condition of theorem, we obtain the following inequality

$$\sum_{k=1}^{n} x_k(t) > (n-1)x_1(t_k) + x_2(t_{k+1}) \ge$$
$$\ge \min_{1 \le k \le 11} \left((n-1)x_1(t_k) + x_2(t_{k+1}) \right) = 2\sqrt{2\gamma_n}$$

where $t_k \leq t \leq t_{k+1}$, $k = \overline{1,11}$. So, we have that for the extremal set $X^{(0)}$ the only case is possible where $\left\{x_k^{(0)}\right\}_{k=1}^n \in (0, x_0], x_0 \approx 1,7688283$, and therefore $x_1^{(0)} = x_2^{(0)} = \cdots = x_n^{(0)}$.

k	t_k	$x_1(t_k)$	$x_2(t_k)$	$x_1(t_k) + x_2(t_{k+1})$	$2x_1(t_k) + x_2(t_{k+1})$
1	-0,78	$1,\!458417$	$1,\!998914$		
2	-0,80	$1,\!470034$	$1,\!994779$	$3,\!453196$	4,911613
3	-0,85	1,501193	$1,\!980165$	$3,\!450199$	4,920233
4	-0,90	$1,\!536275$	1,959964	$3,\!461157$	4,962350
5	-0,95	1,577242	1,932788	3,469063	5,005338
6	-1,00	$1,\!628755$	$1,\!894239$	$3,\!471481$	5,048723
7	-1,01	$1,\!641325$	$1,\!884177$	3,512932	5,141687
8	-1,02	$1,\!655169$	$1,\!872815$	$3,\!514140$	$5,\!155465$
9	-1,03	$1,\!670801$	$1,\!859641$	$3,\!514810$	5,169979
10	-1,04	$1,\!689217$	$1,\!843656$	$3,\!514457$	$5,\!185258$
11	-1,05	1,712998	$1,\!822285$	$3,\!511502$	5,200719
12	-1,059	1,768589	1,769066	3,482064	5,195062

Finally, we have the relation

$$r^{\gamma}(B_0,0)\prod_{k=1}^n r(B_k,a_k) \le \left(\frac{1}{\sqrt{2\gamma}}\right)^n \left[\Psi\left(\frac{2}{n}\sqrt{2\gamma}\right)\right]^{\frac{n}{4}}.$$

Using the specific expression for $\Psi(x)$ and simple transformations, we obtain the inequality (1). In this way, the main inequality of theorem 1 is proved. Realizing in (6) the change of variable by the formula $z = 2w^{\frac{n}{2}}/(1+w^n)$, we obtain the quadratic differential (2). The equality sign is verified directly. The theorem 1 is proved.

Acknowlegements

The authors acknowledge the Polish-Ukrainian grant no. 39/2014 Topological-analytical methods in complex and hypercomplex analysis of the Polish Academy of Sciences and the National Academy of Sciences of Ukraine.

References

- [1] V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable, Russian Mathematical Surveys **49(1)** (1994), 1–79.
- [2] G. P. Bakhtina, On the conformal radii of symmetric nonoverlapping regions, Modern issues of material and complex analysis, K.: Inst. Math. of NAS of Ukraine, (1984), 21–27.
- [3] L. V. Kovalev, On the inner radii of symmetric nonoverlapping domains, Izv. Vyssh. Uchebn. Zaved. Mat. 6 (2000), 77–78.
- [4] L. V. Kovalev, On three nonoverlapping domains, Dal'nevost. Mat. Zh. 1 (2000), 3–7.
- [5] A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, Topological- Algebraic Structures and Geometric Methods in Complex Analysis, K.: Inst. Math. of NAS of Ukraine, 2008. (in Russian)

- [6] L. V. Kovalev, To the ploblem of extremal decomposition with free poles on a circumference, Dal'nevost. Mat. Sborn. 2 (1996), 96–98.
- [7] A. K. Bakhtin, I. V. Denega, Addendum to a theorem on extremal decomposition of the complex plane, Bulletin de la société des sciences et des lettres de Lódź, Recherches sur les déformations 62, no. 2, (2012), 83–92.
- [8] A. K. Bakhtin, Estimates of inner radii for mutually disjoint domains, Zb. pr. In-t matem. of NAS of Ukraine 14, no. 1, (2017), 25–33.
- [9] A. K. Bakhtin, G. P. Bakhtina, I. V. Denega, Extremal decomposition of a complex plane with fixed poles, Zb. pr. In-t matem. of NAS of Ukraine 14, no. 1, (2017), 34–38.
- [10] J. A. Jenkins, Univalent Functions and Conformal Mappings, Berlin: Springer, 1962.

Institute of Mathematics National Academy of Sciences of Ukraine Tereshchenkivska str. 3, UA-01004, Kyiv Ukraine E-mail: abahtin@imath.kiev.ua liudmylavygivska@ukr.net iradenega@gmail.com

Presented by Andrzej Łuczak at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on May 14, 2018.

NIERÓWNOŚĆ NA WEWNĘTRZNE PROMIENIE SYMETRYCZNYCH NIE ZACHODZĄCYCH NA SIEBIE OBSZARÓW

Streszczenie

Praca dotyczy zagadnienia postawionego przez V. N. Dubinina [1], a przedtem w innej postaci przez G. P. Bakhtina [2]. Niech $a_0 = 0$, $|a_1| = \ldots = |a_n| = 1$, $a_k \in B_k \subset \overline{\mathbb{C}}$, gdzie B_0, \ldots, B_n są nie zachodzącymi na siebie obszarami, przy czym obszary B_1, \ldots, B_n są symetryczne względem okręgu jednostkowego. Problem polega na znalezieniu dokładnego kresu górnego dla $r^{\gamma}(B_0, 0) \prod_{k=1}^{n} r(B_k, a_k)$, gdzie $r(B_k, a_k)$ jest promieniem wewnętrznym obszaru B_k względem punktu a_k . Dla $\gamma = 1$ i $n \geq 2$ problem został rozwiązany przez L.V. Kovaleva [3, 4]. W obecnej pracy problem został rozwiązany dla $\gamma_n = 0, 25n^2$ i $n \geq 4$ przy dodatkowym założeniu, że kąty między sąsiednimi odcinkami $[0, a_k]$ nie przekraczają $2\pi/\sqrt{2\gamma}$.

Słowa kluczowe: promień wewnętrzny obszaru, obszary nie zachodzące na siebie, promienisty układ punktów, transformacja rozdzielająca, różniczka kwadratowa, funkcja Greena