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Summary

We consider monogenic functions taking values in a topological vector space being an
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1. Introduction

A commutative algebra A with unit is called harmonic (see [1, 2, 3, 4]) if in A there

exists a triad of linearly independent vectors e1, e2, e3 satisfying the relations

e2
1 + e2

2 + e2
3 = 0, e2

k 6= 0, k = 1, 2, 3 .

Such a triad e1, e2, e3 is also called harmonic.

In the papers [1, 2, 3, 4, 5, 6, 7, 8] harmonic algebras are used for constructions of

spatial harmonic functions, i.e. doubly continuously differentiable functions u(x, y, z)

[25]
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satisfying the three-dimensional Laplace equation

∆3u(x, y, z) :=

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
u(x, y, z) = 0 . (1)

I. Mel’nichenko [3, 4] found all three-dimensional harmonic algebras and devel-

oped a method for finding all harmonic bases in these algebras. But it is impossible

to obtain all solutions of equation (1) in the form of components of differentiable

in the sense of Gâteaux functions taking values in finite-dimensional commutative

algebras (see, e.g., [4, p. 43]).

In the papers [4, 6] spherical functions are obtained as the first components

of decompositions of corresponding analytic functions with respect to the basis of

an infinite-dimensional commutative Banach algebra F. To obtain all solutions of

equation (1) in the form of components of differentiable in the sense of Gâteaux

functions, in the papers [7] we included corresponding algebras in topological vector

spaces.

In the paper [8] we constructed spatial harmonic functions in the form of principal

extensions of analytic functions of a complex variable into a complexification FC
of the algebra F. We considered special extensions of differentiable in the sense of

Gâteaux functions with values in a topological vector space F̃C being an expansion

of the algebra FC. Moreover, we considered also relations between the mentioned

extensions and spatial potentials, in particular, axial-symmetric potentials.

For monogenic functions given in an infinite-dimensional algebra or a topolog-

ical vector space associated with axial-symmetric potentials, analogues of classical

integral theorems of complex analysis was proved in the paper [9].

In the present paper, using ideas of the paper [9], we prove integral theorems

for monogenic functions taking values in an infinite-dimensional algebra FC and a

topological vector space F̃C.

2. An infinite-dimensional algebra FC

Consider an infinite-dimensional commutative associative Banach algebra over the

field of real numbers R, namely:

F :=
{
a =

∞∑

k=1

akek : ak ∈ R,
∞∑

k=1

|ak| <∞
}

with the norm ‖a‖F :=
∞∑
k=1

|ak| and the basis {ek}∞k=1 , where the multiplication table

for the basis elements is of the following form:

ene1 = en, e2n+1e2n =
1

2
e4n ∀n ≥ 1 ,

e2n+1e2m =
1

2

(
e2n+2m − (−1)me2n−2m

)
∀n > m ≥ 1 ,
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e2n+1e2m =
1

2

(
e2n+2m + (−1)ne2m−2n

)
∀m > n ≥ 1 ,

e2n+1e2m+1 =
1

2

(
e2n+2m+1 + (−1)me2n−2m+1

)
∀n ≥ m ≥ 1 ,

e2ne2m =
1

2

(
−e2n+2m+1 + (−1)me2n−2m+1

)
∀n ≥ m ≥ 1 .

This algebra was proposed in the paper [4] (see also [7]). Inasmuch as e2
1 +e2

2 +e2
3 = 0,

the algebra F is harmonic and the vectors e1, e2, e3 form a harmonic triad.

Now, consider a complexification FC := F ⊕ iF ≡ {a + ib : a, b ∈ F} of the

algebra F such that the norm in FC is given as ‖c‖ :=
∞∑
k=1

|ck|, where c =
∞∑
k=1

ckek,

ck ∈ C, and C is the field of complex numbers.

Note that the algebra FC is isomorphic to the algebra FC of absolutely convergent

trigonometric Fourier series

c(θ) = c0 +
∞∑

k=1

(
ak i

k cos kθ + bk i
k sin kθ

)

with c0, ak, bk ∈ C and the norm ‖c‖FC := |c0| +
∞∑
k=1

(
|ak| + |bk|

)
. In this case, we

have the isomorphism e2k−1 ↔ ik−1 cos (k − 1)θ, e2k ↔ ik sin kθ between elements

of bases.

3. Monogenic and analytic functions taking values in the alge-
bra FC

Below, we shall consider functions given in subsets of the linear manifold E4 := {ξ =

xe1 + s ie1 + ye2 + ze3 : x, s, y, z ∈ R} containing the complex plane C. With a set

Q ⊂ R4 we associate the set Qξ := {ξ = xe1 + s ie1 + ye2 + ze3 : (x, s, y, z) ∈ Q} in

E4. In what follows, ξ = xe1 + s ie1 + ye2 + ze3.

A function Ψ : Qξ → FC is called analytic in a domain Qξ if in a certain neighbor-

hood of each point ξ0 ∈ Qξ it can be represented in the form of the sum of convergent

power series

Ψ(ξ) =

∞∑

k=1

ck(ξ − ξ0)k, ck ∈ FC. (2)

A continuous function Φ : Qξ → FC is called monogenic in a domain Qξ ⊂ E4

if Φ is differentiable in the sense of Gâteaux in every point of Qξ, i. e., if for every

ξ ∈ Qξ there exists an element Φ′(ξ) ∈ FC such that

lim
ε→0+0

(Φ(ξ + εh)− Φ(ξ)) ε−1 = hΦ′(ξ) ∀h ∈ E4 . (3)
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It is obvious that an analytic function Φ : Qξ → FC is monogenic in the domain

Qξ and its derivative Φ′(ξ) is also monogenic in Qξ.

Below, we establish sufficient conditions for a monogenic function Φ : Qξ → FC
to be analytic in a domain Qξ ⊂ E4.

Let us emphasize that in the case where a monogenic function Φ : Qξ → FC
has the continuous Gâteaux derivatives Φ′, Φ′′, it satisfies the identity ∆3Φ(ξ) ≡ 0

because

∆3Φ(ξ) ≡ Φ′′(ξ) (e2
1 + e2

2 + e2
3) ≡ 0 .

Thus, for every component Uk : Q→ C of the decomposition

Φ(ξ) =
∞∑

k=1

Uk(x, s, y, z) ek (4)

of such a function Φ, the functions ReUk(x, s, y, z), ImUk(x, s, y, z) are spatial har-

monic functions for every fixed s.

We say that the functions Uk : Q→ C of the decomposition (4) are R-differentia-

ble in Q if for all points (x, s, y, z) ∈ Q the following relations are true:

Uk(x+ ∆x, s+ ∆s, y + ∆y, z + ∆z)− Uk(x, s, y, z) =

=
∂Uk
∂x

∆x+
∂Uk
∂s

∆s+
∂Uk
∂y

∆y +
∂Uk
∂z

∆z + o(‖∆ξ‖) ,

∆ξ := e1∆x+ ie1∆s+ e2∆y + e3∆z → 0.

The following theorem can be proved similarly to Theorem 4.1 [6].

Theorem 1. Let a function Φ : Qξ → FC be continuous in a domain Qξ ⊂ E4 and

the functions Uk : Q → C from the decomposition (4) be R-differentiable in Q. In

order the function Φ be monogenic in the domain Qξ, it is necessary and sufficient

that the conditions
∂Φ

∂s
=
∂Φ

∂x
i ,

∂Φ

∂y
=
∂Φ

∂x
e2 ,

∂Φ

∂z
=
∂Φ

∂x
e3 (5)

be satisfied in Qξ and the following relations be fulfilled in Q:
∞∑

k=1

∣∣∣∣
∂Uk(x, s, y, r)

∂x

∣∣∣∣ <∞, (6)

lim
ε→0+0

∞∑

k=1

∣∣∣∣∣ Uk(x+ εh1, s+ εh2, y + εh3, r + εh4)− Uk(x, s, y, r)−

−∂Uk(x, s, y, r)

∂x
εh1 −

∂Uk(x, s, y, r)

∂s
εh2 −

∂Uk(x, s, y, r)

∂y
εh3−

−∂Uk(x, s, y, r)

∂r
εh4

∣∣∣∣∣ ε
−1 = 0 ∀h1 , h2 , h3 , h4 ∈ R . (7)
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Note that the first of conditions (5) means that every function Uk from the

equality (4) is holomorphic with respect to the variable x + is for each fixed pair

(y, z).

4. Integral theorems for monogenic functions taking values in
the algebra FC

In the paper [10] for functions differentiable in the sense of Lorch in an arbitrary

convex domain of commutative associative Banach algebra, some properties similar

to properties of holomorphic functions of complex variable (in particular, the integral

Cauchy theorem and the integral Cauchy formula, the Taylor expansion and the

Morera theorem) are established. The convexity of the domain in the mentioned

results from [10] is withdrawn by E. K. Blum [11].

Below we establish similar results for monogenic functions Φ : Qξ → FC given

only in a domain Qξ of the linear manifold E4 instead of domain of whole algebra. Let

us note that a priori the differentiability of the function Φ in the sense of Gâteaux is

a restriction weaker than the differentiability of this function in the sense of Lorch.

Let us also note that in the paper [9] similar results were established for monogenic

functions in an other infinite-dimensional algebra associated with axial-symmetric

potentials.

In the case where Γ is a Jordan rectifiable curve in R4 we shall say that Γξ is also

a Jordan rectifiable curve. For a continuous function Φ : Γξ → FC of the form (4),

where (x, s, y, r) ∈ Γ and Uk : Γ→ C, we define an integral along the curve Γξ with

dξ := e1 dx+ ie1 ds+ e2 dy + e3 dz by the equality
∫

Γξ

Φ(ξ)dξ :=

∞∑

k=1

ek

∫

Γ

Uk(x, s, y, z)dx+ i

∞∑

k=1

ek

∫

Γ

Uk(x, s, y, z)ds+

+
∞∑

k=1

e2ek

∫

Γ

Uk(x, s, y, z)dy +
∞∑

k=1

e3ek

∫

Γ

Uk(x, s, y, z)dz (8)

in the case where the series on the right-hand side of the equality are elements of the

algebra FC.

Theorem 2. Let Φ : Qξ → FC be a monogenic function in a domain Qξ and the

functions Uk : Q→ C from the decomposition (4) have continuous partial derivatives

in Q. Then for every closed Jordan rectifiable curve Γξ ⊂ Qξ homotopic to a point

in Qξ, the following equality holds:
∫

Γξ

Φ(ξ)dξ = 0 . (9)
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Proof. Using the Stokes formula and the equalities (5), we obtain the equality
∫

∂4ξ

Φ(ξ)dξ = 0 (10)

for the boundary ∂4ξ of every triangle4ξ such that4ξ ⊂ Qξ . Now, we can complete

the proof similarly to the proof of Theorem 3.2 [11]. The theorem is proved. �
For functions Φ : Qξ → FC the following Morera theorem can be established in

the usual way.

Theorem 3. If a function Φ : Qξ → FC is continuous in a domain Qξ and satisfies

the equality (10) for every triangle 4ξ such that 4ξ ⊂ Qξ , then the function Φ is

monogenic in the domain Qξ.

Let τ := we1 + ŷe2 + ẑe3 where w ∈ C and ŷ , ẑ ∈ R. Generalizing a resolvent

resolution (cf. the equality (5) in [8]), we obtain

(τ − ξ)−1 =
1√

(w − τ1)(w − τ2)

(
e1 +

∞∑

k=1

ik
(
u−k2 + uk1

)
e2k+1+

+
∞∑

k=1

ik−1
(
u−k2 − uk1

)
e2k

)
, w 6∈ s[τ1, τ2], (11)

where

τ1 := x+ is− i
√

(y − ŷ)2 + (z − ẑ)2, τ2 := x+ is+ i
√

(y − ŷ)2 + (z − ẑ)2,

u1 :=
(w − x− is)−

√
(w − τ1)(w − τ2)

(y − ŷ) + i(z − ẑ) ,

u2 :=
(w − x− is) +

√
(w − τ1)(w − τ2)

(y − ŷ) + i(z − ẑ) ,

s[τ1, τ2] is the segment connecting the points τ1, τ2, and
√

(w − τ1)(w − τ2) is that

continuous branch of the function

G(w) =
√

(w − τ1)(w − τ2)

analytic outside of the cut along the segment s[τ1, τ2] for which G(w) > 0 for any

w > x. Let us note that one should to set uk1 = 0 and u−k2 = 0 by continuity in the

equality (11) for that w 6∈ s[τ1, τ2] for which ŷ = y and ẑ = z.

Thus, for every ξ the element
(
τ − ξ

)−1
exists for all

τ 6∈ S(ξ) :=
{
τ = we1 + ŷe2 + ẑe3 :

Rew = x, |Imw − s| ≤
√

(y − ŷ)2 + (z − ẑ)2
}
.

Now, the next theorem can be proved similarly to Theorem 5 [12].
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Theorem 4. Suppose that Q is a domain convex in the direction of the axes Oy, Oz.

Suppose also that Φ : Qξ → FC is a monogenic function in the domain Qξ and the

functions Uk : Q→ C from the decomposition (4) have continuous partial derivatives

in Q. Then for every point ξ ∈ Qξ the following equality is true:

Φ(ξ) =
1

2πi

∫

Γξ

Φ(τ)
(
τ − ξ

)−1
dτ , (12)

where Γξ is an arbitrary closed Jordan rectifiable curve in Qξ, which surrounds once

the set S(ξ) and is homotopic to the circle {τ = we1 + ŷe2 + ẑe3 : |w − x − is| =

R, ŷ = y, ẑ = z} contained completely in Ωξ.

Using the formula (12), we obtain the Taylor expansion of monogenic function

Φ : Qξ → FC in the usual way (see., for example, [13, p. 107]) in the case where the

conditions of Theorem 4 are satisfied. Thus, in this case, Φ : Qξ → FC is an analytic

function. In addition, in this case, an uniqueness theorem for monogenic functions

can also be proved in the same way as for holomorphic functions of the complex

variable (cf. [13, p. 110]).

Thus, the following theorem is true:

Theorem 5. Let Φ : Qξ → FC be a continuous function in a domain Qξ and the

functions Uk : Q→ C from the decomposition (4) have continuous partial derivatives

in Q. Then the function Φ is monogenic in Qξ if and only if one of the following

conditions is satisfied:

(I) the conditions (5) are satisfied in Qξ and the relations (6), (7) are fulfilled in

Q;

(II) the function Φ satisfies the equality (10) for every triangle 4ξ such that

4ξ ⊂ Qξ ;

(III) the function Φ is analytic in the domain Qξ .

5. Monogenic functions with values in a topological vector

space F̃C containing the algebra FC

Let us insert the algebra FC in the topological vector space

F̃C :=
{
g =

∞∑

k=1

ckek : ck ∈ C
}

with the topology of coordinate-wise convergence. Note that F̃C is not an algebra

because the product of elements g1, g2 ∈ F̃C is defined not always. At the same time,

for each g =
∞∑
k=1

ckek ∈ F̃C and ξ = (x+ is)e1 +ye2 + ze3 with x, s, y, z ∈ R it is easy
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to define the product

g ξ ≡ ξ g := (x+ is)
∞∑

k=1

ckek + y

(
−c2

2
e1 +

(
c1 −

c5
2

)
e2 −

c4
2
e3+

+
1

2

∞∑

k=2

(c2k−1 − c2k+3) e2k −
1

2

∞∑

k=2

(c2k−2 + c2k+2) e2k+1

)
+

+z

(
−c3

2
e1 −

c4
2
e2 +

(
c1 −

c5
2

)
e3 +

1

2

∞∑

k=4

(ck−2 − ck+2) ek

)
.

In the paper [8], we proved that monogenic functions given in domains of the

linear manifold {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} and taking values in the space

F̃C can be extended to monogenic functions given in domains of the linear manifold

E4.

We shall consider functions Φ : Qξ → F̃C for which the functions Uk : Q → C
in the decomposition (4) are R-differentiable in the domain Q. Such a function Φ is

continuous in Qξ and, therefore, we call Φ a monogenic function in Qξ if Φ′(ξ) ∈ F̃C
in the equality (3).

The next theorem is similar to Theorem 1, where the necessary and sufficient

conditions for a function Φ : Qξ → FC to be monogenic include additional relations

(6), (7) conditioned by the norm of absolute convergence in the algebra FC.

Theorem 6. Let a function Φ : Qξ → F̃C be of the form (4) and the functions

Uk : Q → C be R-differentiable in Q. In order the function Φ be monogenic in the

domain Qξ, it is necessary and sufficient that the conditions (5) be satisfied in Qξ.

For a continuous function Φ : Γξ → F̃C of the form (4), we define an integral

along a Jordan rectifiable curve Γξ by the equality (8) in the case where the series

on the right-hand side of this equality are elements of the space F̃C.

In the next theorem, for the sake of simplicity, we suppose that the curve Γξ is

the piece-smooth edge of a piece-smooth surface. In this case the following statement

is a result of the Stokes formula and the equalities (5).

Theorem 7. Suppose that Φ : Qξ → F̃C is a monogenic function in a domain Qξ
and the functions Uk : Q → C from the decomposition (4) have continuous partial

derivatives in Q. Suppose also that Σ is a piece-smooth surface in Q with the piece-

smooth edge Γ. Then the equality (9) holds.

Let us define the product gh ≡ hg for each g =
∞∑
k=1

ckek ∈ F̃C and h =
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∞∑
k=1

tkek ∈ FC in the case where the sequence {ck}∞k=1 is bounded:

gh ≡ hg :=

(
c1t1 +

1

2

∞∑

k=2

(−1)[k/2]cktk

)
e1+

+

(
c2t1 +

(
c1 +

c5
2

)
t2 +

−c4
2

t3 +
1

2

∞∑

k=4

(−1)[
k−1
2 ]
(
ck−2+(−1)k + ck+2+(−1)k

))
e2+

+

(
c3t1 +

−c4
2

t2 +
(
c1 −

c5
2

)
t3 +

1

2

∞∑

k=4

(−1)[
k−2
2 ]
(
ck−2 − ck+2

))
e3+

+

∞∑

m=4

Υm em ,

where the constants Υm are defined by the next relations in four following cases:

1) if m is of the form m = 4r with natural r, then

Υm = cmt1 +
1

2

m−1∑

k=2

(
cm−k+1 + (−1)[

k−1
2 ]cm+k+(−1)k

)
tk+

+
(
c1 −

c2m+1

2

)
tm +

c2m
2

tm+1+

+
1

2

∞∑

k=m+2

(−1)[
k+1
2 ] (ck−m+(−1)k − ck+m+(−1)k

)
tk ;

2) if m is of the form m = 4r − 1 with natural r, then

Υm = cmt1 +
1

2

m−2∑

k=2

(
(−1)k−1cm−k−(−1)k + (−1)[

k
2 ]cm+k−1

)
tk−

−c2m−2

2
tm−1 +

(
c1 −

c2m−1

2

)
tm+

+
1

2

∞∑

k=m+1

(−1)[
k−2
2 ] (ck−m+1 − ck+m−1) tk ;

3) if m is of the form m = 4r − 2 with natural r, then

Υm = cmt1 +
1

2

m−1∑

k=2

(
cm−k+1 + (−1)[

k−1
2 ]cm+k+(−1)k

)
tk+

+
(
c1 +

c2m+1

2

)
tm −

c2m
2

tm+1+

+
1

2

∞∑

k=m+2

(−1)[
k−1
2 ] (ck−m+(−1)k + ck+m+(−1)k

)
tk ;
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4) if m is of the form m = 4r − 3 with natural r, then

Υm = cmt1 +
1

2

m−2∑

k=2

(
(−1)k−1cm−k−(−1)k + (−1)[

k
2 ]cm+k−1

)
tk+

+
c2m−2

2
tm−1 +

(
c1 +

c2m−1

2

)
tm +

1

2

∞∑

k=m+1

(−1)[
k
2 ] (ck−m+1 + ck+m−1) tk .

In the case where Γ is a piece-smooth curve (or Σ is a piece-smooth surface) in

R4 we shall say that Γξ is also a piece-smooth curve (or Σξ is also a piece-smooth

surface, respectively). We say that a domain Q ⊂ R4 is convex in the direction of the

plane {(x̂, ŝ, ŷ, ẑ) : x̂, ŝ ∈ R, ŷ = y, ẑ = z} if Q contains any segment that is parallel

to the mentioned plane and connects two points of the domain Q.

The next theorem can be proved similarly to Theorem 5 in [12].

Theorem 8. Suppose that Q is a domain convex in the direction of the plane

{(x̂, ŝ, ŷ, ẑ) : x̂, ŝ ∈ R, ŷ = y, ẑ = z}. Suppose also that Φ : Qξ → F̃C is a monogenic

function in the domain Qξ , and the functions Uk : Q → C from the decomposi-

tion (4) form an uniformly bounded family and have continuous partial derivatives

in Q. Then for every point ξ ∈ Qξ the equality (12) holds, where Γξ is a piece-

smooth curve that surrounds once the set S(ξ) and, in addition, Γξ and the circle

{τ = we1 + ŷe2 + ẑe3 : |w − x − is| = R, ŷ = y, ẑ = z} are edges of a piece-smooth

surface Σξ contained completely in Ωξ .
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TWIERDZENIA CA LKOWE DLA FUNKCJI MONOGENICZNYCH W

PRZESTRZENI NIESKOŃCZENIE-WYMIAROWEJ Z MNOŻENIEM

PRZEMIENNYM

S t r e s z c z e n i e

Rozpatrujemy funkcje o wartościach w wektorowej przestrzeni topologicznej bȩda̧cej
rozszerzeniem pewnej nieskończenie-wymiarowej przemiennej algebry Banacha stowarzy-
szonej z trójwymiarowym równaniem Laplace’a. Uzyskujemy twierdenia ca lkowe dla funkcji
monogenicznych o wartościach we wspomnianej algebrze i we wspomnianej wektorowej
przestrzeni topologicznej.
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S lowa kluczowe: równanie Laplace’a, potencjaly przestrzenne, algebra harmoniczna, przes-

trzeń wektorowa topologiczna, różniczkowalność w sensie Gâteaux, funkcja monogeniczna,

warunki Cauchy’ego-Riemanna


