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Summary

We prove a mean value theorem that characterizes continuous weak solutions of homoge-

neous linear partial differential equations with constant coefficients in Euclidean domains. In

this theorem the mean value of a smooth function with respect to a complex Borel measure

on an ellipsoid of special form is equal to some linear combination of its partial derivatives at

the center of this ellipsoid. The main result of the paper generalizes a well-known Zalcman’s

theorem.
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1. Introduction

Let P (D) be a linear partial differential operator with constant coefficients in the

Euclidean space Rn, n ≥ 1, and let µ be a complex Borel measure supported in

the closed unit ball B of Rn. Zalcman [1] proved the equivalence of the following

assertions: (a) for any domain G ⊂ Rn and for any complex-valued function u ∈
C(G), ∫

u(x + rt) dµ(t) = 0

[13]
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for all x ∈ G and r ∈ (0, dist(x, ∂G)) if and only if u is a weak solution of the

equation P (D)f = 0 in G; (b) the operator P (D) is homogeneous and the functional

Fµ(ϕ) :=
∫
ϕ(t) dµ(t), ϕ ∈ C∞0 (Rn), in the space E ′(Rn) is represented in the form

Fµ = P (D)T for some distribution T ∈ E ′(Rn) supported in B with T̂ (0) 6= 0,

where T̂ is the Fourier–Laplace transform of T . This result was the first general

mean value theorem for solutions of linear partial differential equations, which con-

tains the classical Gauss characterization of harmonic functions by spherical means,

the Morera–Carleman characterization of analytic functions of a complex variable

by zero integrals
∫
f(z) dz over circles, and some other concrete mean value theo-

rems as special cases. The first author [2] generalized Zalcman’s result for the case of

quasihomogeneous operators and applied this generalization to the study of remov-

able singularities of solutions of the equation P (D)f = 0 with quasihomogeneous

semielliptic operator P (D) [3].

On the other hand, the second author studied classes of smooth functions defined

in a disk B(0, R) := {z ∈ C : |z| < R} that satisfy the condition

m−1∑

p=s

r2p+2

(2p+ 2)(p− s)!p!∂
p−s∂̄pf(z) =

1

2π

∫∫

|ζ−z|≤r

f(ζ)(ζ − z)sdξdη, (1)

where R > 0, s ∈ N0, m ∈ N, s < m, z = x + iy, ζ = ξ + iη (x, y, ξ, η ∈ R), i is the

imaginary unit,

∂f =
∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
, ∂̄f =

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

She proved [4] as a special case of more general result that each function f ∈
C2(m−1)−s(B(0, R)) satisfying this condition for all r ∈ (0, R) and z ∈ B(0, R − r)
is a solution of the equation ∂m−s∂̄mf = 0.

In the present paper we prove a mean value theorem of Zalcman type that contains

all the mentioned results as special cases.

2. Formulation of the main result

Let n ∈ N := {1, 2, . . .} and let M = (M1, . . . ,Mn) be a vector with positive in-

teger components, |M| = M1 + . . . + Mn. To each polynomial P = P (z), z =

(z1, . . . , zn) ∈ Cn, with complex-valued coefficients and to each r > 0 we assign the

differential operator P (rMD), in which zk, k = 1, . . . , n, is replaced by −irMk∂/∂xk.

If M = (1, . . . , 1), then P (rMD) =: P (rD). A polynomial P (z) (an operator P (D) :=

P (1MD)) is said to be M-homogeneous if there is an l ∈ N0 := {0, 1, 2, . . .} such that

P (z) ≡∑k akzk, where zk := zk11 . . . zknn and the sum is taken over the set of all mul-

tiindices k = (k1, . . . , kn) ∈ Nn0 with |kM| := k1M1+. . .+knMn = l. For any polyno-

mial P (z) ≡∑k akzk we denote by degM P the number sup |kM|, where the supre-

mum is taken over all multiindices k ∈ N0 with ak 6= 0. For x = (x1, . . . , xn) ∈ Rn
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and r > 0 we use the following notation: rMx := (rM1x1, . . . .r
Mnxn), BM(x, r) :=

{x + rMt : t ∈ Rn, |t| ≤ 1}. If M = (1, . . . , 1), then degM P =: degP , BM(x, r) =:

B(x, r). Recall that the Fourier–Laplace transform of a distribution f ∈ E ′(Rn)

is defined by the formula f̂(z) := f(e−i(x·z)), where z = (z1, . . . , zn) ∈ Cn, x =

(x1, . . . , xn) ∈ Rn, x · z = x1z1 + . . .+ xnzn, and the distribution f acts on the func-

tion e−i(x·z) in x. As usual, δ is the Dirac measure, i.e., the unit measure concentrated

at the origin.

Let µ be a complex Borel measure supported in B := B(0, 1) and let P = P (z)

and Q = Q(z) be polynomials with complex-valued coefficients (z ∈ Cn). Denote by

Fµ the functional corresponding to the measure µ in the space E ′(Rn), i.e., Fµ(ϕ) :=∫
ϕ(t) dµ(t) for all ϕ ∈ C∞0 (Rn), µ̂(z) := F̂µ(z).

Definition 1. We say that a triple (M, µ,Q) characterizes continuous weak so-

lutions of the equation P (D)f = 0 if for any domain G ⊂ Rn and for any function

u ∈ C(G) the following conditions are equivalent:

(a) u is a weak solution of the equation P (D)f = 0 in G;

(b) for all ϕ ∈ C∞0 (G) and r > 0 such that suppϕ+BM(0, r) ⊂ G we have
∫

G

u(x)
(∫

ϕ(x− rMt) dµ(t)−Q(−rMD)ϕ(x)
)
dx = 0.

Here, as usual,

suppϕ+BM(0, r) := {x + y : x ∈ suppϕ, y ∈ BM(0, r)}.
The main result of this paper is the following theorem.

Theorem 1. A triple (M, µ,Q) characterizes continuous weak solutions of the

equation P (D)f = 0 if and only if the polynomial P is M-homogeneous and there is

a distribution T ∈ E ′(Rn) supported in B such that T̂ (0) 6= 0 and Fµ = P (−D)T +

Q(−D)Fδ.

3. Auxiliary results

The proof of Theorem 1 is essentially based on Zalcman’s arguments [1] and uses the

following lemmas.

Lemma 1 [5, Theorem 7.3.2]. Suppose that f ∈ E ′(Rn) and P (D) is a linear

differential operator with constant coefficients. The equation P (D)u = f has a dis-

tributional solution u ∈ E ′(Rn) if and only if f̂(z)/P (z) is an entire function. In this

case the solution is determined uniquely, and the closure of the convex hull of the

support of the distribution u coincides with that of the distribution f .

Suppose that polynomials Pk, k ∈ N0, are given. If a function u satisfies the
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equalities Pk(D)u = 0 in Rn for each k ∈ N0 and

u(x) ≡ g(x)e−i(z·x) (2)

for some polynomial g(x) and z ∈ Cn, then we say that u is an exponential solution

of the system Pk(D)f = 0, k ∈ N0.

Lemma 2 [5, Lemma 7.3.7]. Suppose that P (D) is a linear differential operator

with constant coefficients. If ν ∈ E ′(Rn) is a distribution such that ν(u) = 0 for each

exponential solution u of the equation P (D)f = 0, then ν̂(z)/P (−z) is an entire

function.

Lemma 3 [6, Theorem 7.6.14]. Suppose that G is a convex domain in Rn, q ∈ N0,

and Pk(D), k = 0, . . . , q, is a finite set of linear differential operators with constant

coefficients. Then each continuous weak solution of the system Pk(D)f = 0, k =

0, . . . , q, in G can be represented in the form of the limit of some sequence of finite

linear combinations of exponential solutions of this system, uniformly converging on

compact subsets of G.

Lemma 4 [1, Theorem 3], [2, Lemma 1]. Suppose that polynomials P (z) and

Pj(z), j ∈ N0, are such that, for each j ∈ N0, either Pj(z) is an M-homogeneous

polynomial with degM Pj = j or Pj(z) ≡ 0 (z ∈ Cn). Moreover, let Pj(z) 6≡ 0

for at least one j ∈ N0. The system of differential equations Pj(D)f = 0, j ∈ N0,

is equivalent to the equation P (D)f = 0 is and only if each of the polynomials

Pj(z), j ∈ N0, is divisible by the polynomial P (z) and for some number k ∈ N0 the

polynomial Pk(z) coincides with the polynomial P (z) up to a nonzero constant factor.

4. Proof of Theorem 1

Suppose that M = (M1, . . . ,Mn) (n ≥ 1) is a vector with positive integer compo-

nents, µ is a complex Borel measure supported in B, Q(z) (z ∈ Cn) is a polynomial,

and u is a function of the form (2) in Rn satisfying the condition
∫
u(x + rMt) dµ(t) = Q(rMD)u(x) (3)

for all x ∈ Rn and r > 0. Let us choose a point x ∈ Rn and expand the function u

in the Taylor series around x. Collecting M-homogeneous polynomials in this series,

we obtain

u(x + y) =
∞∑

j=0

Uj(y), (4)

where

Uj(y) :=
∑

|kM|=j
(k!)−1∂ku(x)yk,
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k! := k1! . . . kn!, yk := yk11 . . . yknn , ∂k :=
∂|k|

∂xk11 . . . ∂xknn
.

Similarly, we represent the polynomial Q in the form of the finite sum of M-homoge-

neous polynomials:

Q(y) =

d∑

j=0

Qj(y), (5)

where d = degMQ, Qj(z) is either an M-homogeneous polynomial with degMQj = j

or Qj(z) ≡ 0, Qj(z) ≡ 0 for all j > d (z ∈ Cn). The series in (4) converges to u(x+y)

uniformly on compact sets in Rn. Let us choose an arbitrary r > 0 and set y = rMt,

where t ∈ B. Since the series in (4) converges uniformly, we can integrate both sides

of the resultant relation with respect to the measure µ term by term. This yields
∫
u(x + rMt) dµ(t) =

∞∑

j=0

Uj(r
Mt) dµ(t) =

∞∑

j=0

rj(Rj(D)u)(x), (6)

where

Rj(z) =
∑

|kM|=j
(k!)−1(iz)k

∫
tkdµ(t), j ∈ N0, z ∈ Cn. (7)

Let Pj(z) := Rj(z)−Qj(z), j ∈ N0. Then it follows from (4)-(6) that
∫
u(x + rMt) dµ(t)−Q(rMD)u(x) =

∞∑

j=0

rj(Pj(D)u)(x). (8)

Since the condition (3) holds for any x ∈ Rn and r > 0, we have Pj(D)u(x) = 0 for

all x ∈ Rn and j ∈ N0.

Let G be a domain in Rn and let ϕ ∈ C∞0 (G). Take x ∈ G and r > 0 such that

BM(x, r) ⊂ G. By the Taylor formula with reminder in integral form, for each l ∈ N
and for all y ∈ BM(0, r), we have

ϕ(x + y) =
∑

|k|<l
(k!)−1∂kϕ(x)yk

+ l

∫ 1

0

(1− s)l−1
(∑

|k|=l
(k!)−1∂kϕ(x + sy)yk

)
ds.

By setting y = −rMt, t ∈ B, and rearranging the terms, we obtain

ϕ(x− rMt) =

p∑

j=0

rj
( ∑

|kM|=j
(−1)|k|(k!)−1∂kϕ(x)tk

)
+ Vp(r,x, t), (9)

where p = p(l) is the largest of numbers such that |kM| ≤ p implies |k| < l for any

multiindex k; Vp(r,x, t) = o(rp) as r → 0 uniformly in x ∈ suppϕ and t ∈ B. It is

clear that (9) holds for each p ∈ N0. Integrating both sides of (9) with respect to the
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measure µ, we obtain
∫
ϕ(x− rMt) dµ(t)

=

p∑

j=0

rj
( ∑

|kM|=j
(−1)|k|(k!)−1∂kϕ(x)

∫
tkdµ(t)

)
+Wp(r,x),

or ∫
ϕ(x− rMt) dµ(t) =

p∑

j=0

rj(Rj(−D)ϕ)(x) +Wp(r,x), (10)

where

(Rj(−D)ϕ)(x) =
∑

|kM|=j
(−1)|k|(k!)−1(−1)|k|∂kϕ(x)

∫
tkdµ(t), j ∈ N0.

Wp(r,x) = o(rp) as r → 0 uniformly in x ∈ suppϕ.

Now we assume that a function u ∈ C(G) satisfies the condition (b) of Definition

1. Then we have from (10) (for sufficiently small r > 0)

0 =

∫

G

u(x)
(∫

ϕ(x− rMt) dµ(t)−Q(−rMD)ϕ(x)
)
dx

=

p∑

j=0

rj
∫

G

u(x)((Rj −Qj)(−D)ϕ)(x) dx + o(rp),

or

0 =

p∑

j=0

rj
∫

G

u(x)(Pj(−D)ϕ)(x) dx + o(rp) as r → 0, (11)

where Pj(−D) = Rj(−D) − Qj(−D), j ∈ N0. Suppose that at least one of the

polynomials {Pj(z)}j∈N0
does not vanish identically and p is the least number such

that Pp(z) 6≡ 0. Dividing both side of (11) by rp and letting r → 0, we obtain∫
G
u(x)(Pp(−D)ϕ)(x) dx = 0. Then, proceeding by induction, we have

∫

G

u(x)(Pj(−D)ϕ)(x) dx = 0 ∀j ∈ N0.

If all the polynomials {Pj(z)}j∈N0 are identically zero, then the last assertion is

obvious.

Since the function ϕ was an arbitrary function from C∞0 (G) in our arguments,

we have that u is a weak solution of the system

Pj(D)f = 0, j ∈ N0. (12)

Conversely, if u is a weak solution of the system (12) in G, then u satisfies the

condition (b) of Definition 1. For exponential solutions this was justified by formula

(8). The general case follows from Lemma 3 and the Hilbert Basis Theorem [7], which
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implies that there is a j0 ∈ N0 such that the system (12) is equivalent to the finite

system of differential equations Pj(D)f = 0, j = 0, 1, . . . , j0.

To complete the proof of Theorem 1 we should investigate conditions of equiva-

lence of the system (12) and the equation P (D)f = 0. The Fourier–Laplace transform

µ̂(z) of the measure µ is an entire function and its Taylor series around the point

z = 0 converges absolutely and uniformly on each compact set in Cn. Therefore, by

arranging of M-homogeneous polynomials Rj(−z) in this series, we obtain a series

that uniformly converges to µ̂(z) on compact sets in Cn as follows:

µ̂(z) =

∫
e−i(z·t)dµ(t) =

∞∑

j=0

Rj(−z),

where the sequence of polynomials {Rj(z)}j∈N0
is defined by (7). Suppose that the

triple (M, µ,Q) characterizes continuous weak solutions of the equation P (D)f = 0.

Then this equation is equivalent to the system (12). If P (z) ≡ 0, then Rj(z) ≡ Qj(z)

for all j ∈ N0 and consequently

µ̂(z) ≡
∞∑

j=0

Qj(−z) = Q(−z).

Hence Fµ = Q(−D)Fδ, which is possible if only if degQ = 0. Now consider the case

P (z) 6≡ 0. Then there is a number p ∈ N0 such that Pp(z) 6≡ 0. Since the divisors of

an M-homogeneous polynomial are also M-homogeneous polynomials, then we have

from Lemma 4 that the polynomial P (z) is M-homogeneous. It follows from the fact

that the triple (M, µ,Q) characterizes continuous weak solutions of the equation

P (D)f = 0 and from Lemma 2 that S(z) := (µ̂(z) − Q(−z))/P (−z) is an entire

function whence Lemma 1 implies that there is a distribution T ∈ E ′(Rn) supported

in B such that

Fµ = P (−D)T +Q(−D)Fδ. (13)

By applying the Fourier–Laplace transform to both sides of (13), we have µ̂(z) ≡
P (−z)T̂ (z) + Q(−z). This means that S(z) ≡ T (z) and we derive the condition

T̂ (0) 6= 0 from the fact that an entire function can be uniquely represented by a

series of M-homogeneous polynomials uniformly convergent on compact subsets of

Cn.

Thus we justify the ’only if’ part in Theorem 1. To prove the ’if’ part of this

theorem suppose that P (z) is an M-homogeneous polynomial, m = degM P , and

T is a distribution supported in B satisfying (13). In this case T̂ (0) 6= 0 need not

hold. Let u be an exponential solution of the equation P (D)f = 0 in Rn. If T̂ (z) =∑∞
j=0 Tj(−z) is the Taylor series of the entire function T̂ around the point z = 0

arranged in M-homogeneous polynomials (degM Tj = j or Tj(z) ≡ 0), then, by
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comparing the equalities

µ̂(z)−Q(−z) = P (−z)T (z), µ̂(z)−Q(−z) =
∞∑

j=0

Pj(−z),

and (8), we see that Pj(z) ≡ 0 for all j < m, Pj+m(z) ≡ P (z)Tj(z) for all j ∈ N0,

and
∫
u(x + rMt) dµ(t)−Q(rMD)u(x) =

∞∑

j=0

rj+m(P (D)Tj(D)u(x) = 0

for all x ∈ Rn. The case of arbitrary continuous weak solutions of the equation

P (D)f = 0 is reduced to the case of exponential solutions by applying Lemma 3,

the Hilbert Basis Theorem, and integration by parts. The proof of Theorem 1 is

completed.

5. Discussion of Theorem 1

Let Q(z) ≡ 0 in Theorem 1. Then the condition (b) of Definition 1 is rewritten in

the form ∫

G

u(x)
(∫

ϕ(x− rMt) dµ(t)
)
dx = 0

for all ϕ ∈ C∞0 (G) and r > 0 such that suppϕ+BM(0, r) ⊂ G whence
∫

G

(∫
u((x + rMt)ϕ(x) dµ(t)

)
dx = 0

for all such ϕ and r. It follows from the Fubini theorem that∫
u(x + rMt) dµ(t) = 0. (14)

This means that the condition (b) of Theorem 1 is satisfied if and only if (14) holds

for all x ∈ Rn and r > 0 such that BM(x, r) ⊂ G. Hence, for Q(z) ≡ 0, Theorem

1 coincides with Theorem 2 from [2], which generalizes the mentioned Zalcman’s

result [1, Theorem 4] corresponding to the case Q(z) ≡ 0 and M = (1, . . . , 1) in

Theorem 1.

Now consider the case n = 2, M = (1, 1), and rewrite (1) in the form

Q(rD) =

∫

B

f(z + rt) dµ(t), (15)

where G is a domain in C, f ∈ C2m−2−s(G), z ∈ G, r > 0, B(z, r) ⊂ G,

Q(z1, z2) =
m−1∑

p=s

(22p−sπ(p+ 1)(p− s)!p!)−1(iz1 + z2)p−s(iz1 − z2)p,

dµ(t) = tsdt1dt2, t = t1 + it2, t1, t2 ∈ R. Introduce the variables w1 = iz1 + z2 and

w2 = iz1− z2. Then z1 = −i(w1 +w2)/2, z2 = (w1−w2)/2, and the Fourier–Laplace
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transform of µ can be expressed as follows:

µ̂(z1, z2) =

∫

B

e−i(z1t1+z2t2)tsdt1dt2

=

∫

B

e−(w1+w2)t1/2−i(w1−w2)t2/2tsdt1dt2

=

∫

B

e−w1(t1−it2)/2−w2(t1+it2)/2tsdt1dt2

=
∞∑

k,l=0

(−2)k+l(k!l!)−1wk1w
l
1

∫

B

(t1 − it2)k(t1 + it2)l+sdt1dt2

=
∞∑

p=s

(−2)2p−ss((p− s)!p!)−1(iz1 + z2)p−s(iz1 − z2)p
∫

B

|t|2pdt1dt2

=
∞∑

p=s

(−2)2p−s((p− s)!p!)−1(iz1 + z2)p−s(iz1 − z2)p2π(2p+ 2)−1.

This chain of equalities shows that there is a distribution T ∈ E ′(Rn) supported in

B such that T̂ (0, 0) 6= 0 and

µ̂(z1, z2)−Q(−z1,−z2) ≡ (−2)−(2m−s)(iz1 + z2)m−s(iz1 − z2)mT̂ (z1, z2).

Theorem 1 implies that the triple (M, µ,Q) characterizes continuous weak solutions

of the equation ∂m−s∂̄mf = 0. Since the differential operator ∂m−s∂̄m is elliptic

and consequently its distributional and classical solutions coincide, then we show

that a function f ∈ C2(m−1)−s(G) satisfies the condition (15) for all z ∈ G and

r ∈ (0, dist(z, ∂G)) if and only if f is a solution of the equation ∂m−s∂̄mf = 0 in G.

Note that the conditions in the ’only if’ part of the last assertion can be essentially

weakened. Namely, let m ∈ N, s ∈ N0, s < m, and let

Js+1(z) :=
(z

2

)s+1 ∞∑

p=0

(−1)p

p!Γ(s+ p+ 2)

(z
2

)2p
(z ∈ C)

be the Bessel function. For r > 0 denote by Zr the set of all zeros of the entire

function

gs,m,r(z) :=
Js+1(zr)

(zr)s+1
−
m−1∑

p=s

(zr)2(p−s)(−1)p−s

(p+ 1)!(p− s)!22p−s+1

belonging to C \ {0}. Let r1, r2, R be positive numbers. The following result was

proved in [4]: (a) if R > r1 + r2, Zr1 ∩ Zr2 = ∅, f ∈ C2m−2−s(B(0, R)), and the

condition (1) holds for all r ∈ {r1, r2} and z ∈ B(0, R − r), then f belongs to

the class C∞(B(0, R)) and satisfies the differential equation ∂m−s∂̄mf = 0; (b) if

max{r1, r2} < R < r1 + r2 or Zr1 ∩ Zr2 6= ∅, then there exists a function f ∈
C∞(B(0, R)) satisfying the condition (1) for all r ∈ {r1, r2} and z ∈ B(0, R−r) that

is not a solution of this equation in B(0, R).
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In the case m = 1 and s = 0 assertions (a) and (b) coincide with assertions (1)

and (4) of Theorem 5.4 from [8, p. 399] for n = 2, respectively, where the local version

of the classical Delsarte’s two-radii theorem [9] characterizing harmonic functions in

Rn is presented.
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TWIERDZENIE O WARTOŚCI ŚREDNIEJ DLA ROZWIA̧ZAŃ

LINIOWYCH RÓWNAŃ RÓŻNICZKOWYCH O POCHODNYCH

CZA̧STKOWYCH O STA LYCH WSPÓ LCZYNNIKACH

S t r e s z c z e n i e
Wykazujemy twierdzenie o wartości średniej, które charakteryzuje cia̧g le s labe rozwia̧za-

nia jednorodnych liniowych równań różniczkowych cza̧stkowych o sta lych wspó lczynnikach
w obszarach euklidesowych. W twierdzeniu tym wartość średnia funkcji g ladkiej wzglȩdem
zespolonej miary borelowskiej na pewnej elipsoidzie specjalnej postaci jest równa pewnej
kombinacji liniowej jej pochodnych cza̧stkowych w środku tej elipsoidy. G lówny wynik pracy
uogólnia znane twierdzenie Zalcmana

S lowa kluczowe: wartość średnia liniowego operatora różniczkowego cza̧stkowego, s labe roz-

wia̧zanie, transformata Fouriera-Laplace’a, dystrybucja




