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Summary

In a series of papers [19, 20, 21] and [11], a concept of non-commutative Galois theory
is introduced and the evolutional system in physics, cosmology, biology and language are
described in terms of the theory in a unified manner under the condition that the Galois
group is solvable. Then in the evolutions the hierarchy structure can be realized by the
following successive extensions of binary and ternary extensions: Namely, we have the
following BTBB-structure:

B ⇒ T ⇒ B ⇒ B ⇒ B,

where B (resp. T ) is the binary (resp. ternary) extension and ⇒ means the successive
extensions. In this part a mathematical theory on non-commutative Galois extension is
presented and the mathematical foundations are given. The BTBB-structure and its com-
plexity system are discussed mathematically.
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Introduction

In Part I and II, we have given the definition of concepts of non-commutative bi-
nary and ternary extensions for several basic evolutions in this world and we have
introduced concepts of a BTBB-structure and its complexity system. In part III,
we have given a description of Chomsky theory in terms of non-commutative Galois
theory. In Part IV we have given the description of complexity systems in terms of
Galois theory. But till now we have not given its mathematical theory.

In this Part V, we introduce a concept of non-commutative Galois extension and
give the BTBB-structure and its complexity system in a mathematical manner.

In Section 1, we recall basic facts on the classical Galois theory for an algebraic
equation. In Section 2 we introduce a concept of non-commutative Galois theory and
give the fundamental theory on the non-commutative Galois extensions. In Section 3
we give several examples of construction of non-commutative extensions. In Section
4 we restrict ourselves to the condition that the Galois group is solvable, we will
determine its hierarchy structure. Namely we obtain the BTBB-structure and give
its realization scheme. In Section 5, we will give examples of BTBB-structures in
mathematics. The first one is just the classical Galois theory and the second one
is the formal language theory. Here we will be concerned with with the evolution
theory of the knot theory. In Section 6, we proceed to the complexity system of the
BTBB-structure. Its Galois extension structure is quite simple and it is given by
the successive binary extensions. We give several types of the basic types of binary
extensions and show that the evolutionary system generates a fractal structure. We
notice that we can see the table of the BTBB-structures and the complexity systems
in Parts III, IV.

1. The classical Galois theory

We recall some basic facts on the classical Galois theory [36].
The classical Galois theory
We start with the solutions of an algebraic equation. We take a polynomial of degree
n:

fn(x) = a0x
n + a1x

n−1 + . . .+ an

We take the basic field Q of rational numbers. Namely, we assume that a0, a1,...,an
are rational numbers. We consider the solution:

fn(αi) = 0 for i = 1, 2, . . . , n.

At first, we notice that we may assume that a1 = 0 by use of Tschimhaus transfor-
mation. We omit the case n = 1.

(n = 2) We consider the equation: f2(x) = 0, f2(x) = a0x
2+a1x+a2. The solutions

of the equation can be given as follows:

∴ x+
a1
2a0

= ± 1

2a0

√
a21 − 4a0a2.



Here we assume that a0 = 1, a1 = 0. Putting D2 = a21 − 4a2, we have the solutions:

x1 =
√

D2/2 and x2 = −
√
D2/2.

Hence we see that the solutions can be found in the binary extension Q[
√
D2] and the

both solutions introduce the Galois group of the binary extension by
√
D2 ⇔ −

√
D2.

(n = 3) Cardano’s method: Next we consider the equation: f3(x) = 0, f3(x) =
a0x

3 + a1x
2 + a2x + a3. We solve the equation by Cardano’s method: At first

we notice that we may assume a1 = 0, by use of the Tschirnhaus transformation.
Putting x = y − a/3y, we have

y3 − a3

27y3
+ b = 0

Hence we have

y3 =
−b±

√
b2 + 4a3/27

2
= − b

2
±

√(
b

2

)2

+

(
a2

3

)3

.

Putting

u =
3

√√√√− b

2
+

√(
b

2

)2

+
(a
3

)3

, v =
−a

3y
=

3

√√√√− b

2
−

√(
b

2

)2

+
(a
3

)3

,

we have the desired solutions:

x1 = u+ v, x2 = ju+ j2v, x3 = j2u+ jv, (j3 = 1).

Then we can summarize how we can find the solutions in the following manner:
(1) At first we make √

D3, D3 = 4a3 + 27b2.

(2) Next we make

3

√
− b

2
± 1

b
√
3

√
D3.

This implies that the solution can be obtained by adding
√
D3 to Q, and making

the extension field:
F1 =

{
x1 + x2

√
D3 | x1, x2 ∈ Q

}
at first. Then adding 3

√
− b

2 ± 1
b
√
3

√
D3 and making
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we can find the solutions in this field.

(n = 4) Ferrari’s method: We consider the following equation:

f4(x) = 0, f4(x) = a0x
4 + a1x

3 + a2x
2 + a3x+ a4.

We may assume that a0 = 1 and a1 = 0 and we consider

f4(x) = 0, f4(x) = x4 − ax2 − 2bx− c.

We solve the equation by use of Ferrari’s method: Rewriting x4 = ax2+2bx+ c and
adding 2px2 + p2 on the both sides, where p will be determined later, we have

(x2 + p)2 = (a+ 2p)x2 + 2bx+ (c+ p2) (∗)

Here we assume that b2 − (a+ 2p)(c+ p)2 = 0. Then we have

2p3 + ap2 + 2cp+ (ac− p2) = 0.

Solving the equation by Cardano’s method, we have the solutions of p. From (*),
we have

(2 + 2p)x2 +−2bx+ (c+ p2) = (
√
a+ px+

√
c+ p2)2.

Hence, we have x2+ p = ±(
√
a+ 2px+

√
c+ p2)2. Hence we can obtain the desired

solutions:

x =


1
2

(√
a+ 2p±

√
a− 2p+ 4

√
p2 + c

)
,

1
2

(
−
√
a+ 2p±

√
a− 2p− 4

√
p2 + c

) (Ferrari′s formula)

From this we can see that the solution can be obtained in the following process:
(1) At first we make a field of binary extension by adding

√
D4 to Q; where

D4 = 16p4x− 4p3q2 − 128p2r2 + 144pq2r˘27q4 + 256r2,

where we have written f4(x) = x4 + px3 + qx2 + r.

(2) Next we add the 3
√
∗ to the field Q[

√
D4,

3
√
∗ ], where * is defined by the solution

of the intermediate equation of 3rd degree (see: (*)).
(3) Finally we make two times binary extensions and can get the extension fields.
Then we can find the desired solutions in this field.

(n > 4) Abel’s theorem. In this case we see that the solutions can not be obtained
in terms of the successive extension fields:

√
, 3

√
, . . . , m

√
,

which is called Abel’s theorem [36].

Galois theory. Galois analyzed the structure of the solutions and arrived at Galois
theory. We consider the equation:

fn(x) = 0, fn(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . .+ an−1x+ an.



We denote the solutions by α1, α2, . . ., αn. The solutions can be obtained in the
complex number field C which is guaranteed by the famous Gauss theorem. Then
putting fn(x) = a0(x− α1)(x˘α2) · · · (x− αn), we see that

α1 + α2 + . . .+ αn = −a1/a0, α1α2 + . . .+ αn−1αn = a2/a0, . . . ,

. . . , α1α2 · · ·αn = (−1)nan/a0.

(I) The first step to the solutions is to make the determinant Dn of the equation

Dn =
∏
i<j

(αi˘αj)

and to construct the binary extension by adding the Dn to Q. Namely, we construct
Q[Dn].
(II) We consider the group which is defined by the permutation of {α1, α2, . . . , αn}
of the solution f(x) = 0, which is denoted by Sn. We denote the group of the
solutions by Aut0(Q[α1, α2, . . . , αn]) (= Sn). Here Aut0 implies the automorphism
group of the field fixing the base field Q.
(III) The solvability condition can be given in terms of the subgroup structure of
Sn (see Section 2). We notice that the biggest subgroup of Sn is the subgroup which
keeps Dn invariant. We call the subgroup the alternative group and denote it by
An.

2. Non-commutative Galois theory

Here we give a general theory of non-commutative Galois extension. At first we give
its definition and then we give the fundamental theorem.

Binary non-commutative extension

We choose an algebra A (= A0[x1, . . . , xn]) which is generated by x1, . . . , xn over
an algebra A0. For A we introduce algebras A1 (= A[x

(1)
1 , x

(1)
2 , . . . , x

(1)
n ]) and A2 (=

A[x
(2)
1 , x

(2)
2 , . . . , x

(2)
n ]). The pair {A1, A2} is called a binary non-commutative Galois

extension of A, when they satisfy the following conditions:

(B-1): There exists an algebraic homomorphism σi : A → Ai : σi(xk) = x
(i)
k , (i =

1, 2, k = 1, 2, . . . , n). When it is an isomorphism, we call the extension symmetric.
When it is not symmetric, the kernel of σi is called symmetry breaking elements.
When A is generated by σ∗ = (σ

(1)∗
i , σ

(2)∗
i ) with σ

(1)∗
i (∗) = x

(1)
i , σ

(2)∗
i (∗) = x

(2)
i ,

(i = 1, 2, . . . , n) from a single element * ("origin"), we call the σ∗ : {∗} → A1, A2

the generation operator from the origin *.
(B-2): There exists an involution γ(2) : A1 → A2 with (γ(2))2 = 1.
In the following we denote the extension by the following diagram which we have
used in Part III [11]:



Ternary non-commutative extension

In a completely analogous manner, we can introduce the concept of the ternary exten-
sion: We choose an algebra A (= A0[x1, . . . , xm]) which is generated by x1, . . . , xm

over an algebra A0. To A we are choosing three algebras: A1, A2 and A3. We intro-
duce algebra Ai (= Ai[x

(i)
1 , . . . , x

(i)
m ]), (i = 1, 2, 3). The triple {A1, A2, A3} is called

a ternary non-commutative Galois extension of A, when they satisfy the following
conditions:

(T-1): There exists an algebraic homomorphism σi : A → Ai : σi(xk) = x
(i)
k ,

(i = 1, 2, 3, k = 1, 2, . . . , n). When it is an isomorphism, we call the extension
symmetric. When it is not symmetric, the kernel of σi is called a symmetry breaking
element. When A is generated by σ∗ = (σ

(1)∗
i , σ

(2)∗
i , σ

(3)∗
i ) with σ

(1)∗
i (∗) = x(1),

σ
(2)∗
i (∗) = x(2), σ(3)∗

i (∗) = x(3), (i = 1, 2, . . . , n) from a single element * ("origin"),
we call the σ∗ : {∗} → A1, A2, A3 the generation operator from the origin *.

(T-2): There exists a ternary involution γ(3) : A1 → A2, γ(3)2 : A2 → A3, with
γ(3)3 = 1.

We can also introduce symmetry breaking elements. The succesive extension of
binary/ternary extension can be introduced. We give several examples of construc-
tions in Section 3.

General non-commutative extension

We choose an algebra A (= A0[x1, . . . , xm]) which is generated by x1, . . . , xm over
an algebra A0. For A, choosing algebras: A1, A2, . . . and An we introduce algebra
A1 (= A0[x

(1)
1 , x

(1)
2 , . . . , x

(1)
m ]), . . ., and An(= A0[x

(n)1 , x
(n)
2 , . . . , x

(n)
m ]). The n-ple

{A1, . . . , An} is called a n-nary non-commutative Galois extension of A, when they
satisfy the following conditions:

(G-1): There exists an algebraic homomorphism σ(i) : A → Ai, (i = 1, 2, . . . , n).
When it is an isomorphism, we call the extension symmetric. When it is not symmet-
ric, the kernel of σ(i) is called a symmetry breaking element. When A is generated
by σ(n)∗ = (σ

(1)
i , . . . , σ

(n)
i ) with σ

(1)
1 (∗) = x

(1)
1 , . . ., σ

(n)
m (∗) = x

(n)
m from a single

element * ("origin"), we call the σ(i) : A → Ai the generation operator of seeds.

(G-2): There exists an involution γ(i) : Ai → Ai+1 with γ(1) · · · γ(n) = 1.
In the following we denote the extension by the following diagram which we have
used in Part III.



Fundamental theorem of non-commutative Galois extension

We proceed to the hierarchy structure of the extensions. We consider the suc-
cesive extensions adding Qi (i = 1, 2, . . . , n). Putting Ak = A[Q1, Q2, . . . , Qk]
(k = 1, 2, . . . , n), we consider the sequence:

(A =)A0 A1 A2 . . . Ak . . . An (= A[Q1, Q2, . . . , Qn]).

Then we have the sequence of Galois groups {Gj : j = n, n − 1, . . . , 0} which is
called the tower of subgroups of Sn:

(Sn) = Gn ⊐ Gn−1 ⊐ Gn−2 ⊐ . . . ⊐ Gk ⊐ . . . ⊐ G0(= E)

when the following conditions are satisfied: (1) GkAk ⊂ Ak (2) g|Ak−1 = identity
(g ∈ Gk). We denote the duality between the above structures as follows:

{A0 : A1 : A2 : . . . : Ak : . . . : An} ↔ {Gn : Gn−1 : Gn−2 : . . . : Gk : . . . : G0}

A1/I(A0) ⇔ Gn/Gn−1, . . . , Ak+1/I(Ak) ⇔ Gk/Gk−1, . . . , An/I(An−1) ⇔ G1/G0,

where I(Ak) is an ideal generated by Ak.

Remark (Classical vs non-commutative Galois extension)
At first we notice that a non-commutative Galois extension can be reduced to a
classical one, when Q1 = x1 ⊗ En and the solution of F (x) = f(x) ⊗ En. Only
because of this reason, we call our theory non-commutative Galois theory. We see
that the characters are quite different from each other.

The fundamental theorem of non-commutative Galois theory

We can state the fundamental theorem in our Galois theory which can describe the
hierarchy structures not only in mathematics, but also in other fields in the real
world.

Fundamental theorem
We can prove the following assertions:

(i) If n > 5, then Sn has only non trivial subgroup An, the alternating subgroup.

(ii) If n = 4, we have the following sequence of subgroups:

S4 ⊐ A4 ⊐ V4 ⊐ Z2 ⊐ E,

where V4 is the Klein group and Z2 is the cyclic group of order 2

(iii) If n = 3, we have the following sequence:

S3 ⊐ A3 ⊐ E

(iv) If n = 2, we have the following sequence: S2(= A2) ⊐ E



3. Several constructions of non commutative Galois
theories
Here we give several constructions of non-commutative extensions.
Construction 1 (Extension of polynomial type)
We take an algebra A and consider a polynomial with coefficients in A:

F ∗
n(x) = F0x

n + F1x
n−1 + F2x

n−2 + . . .+ Fn−1x+ Fn (F0, F1, . . . .., Fn ∈ A)

We assume the following decomposition holds:

F ∗
n(x) = F0(x⊗ E −Q1)(x⊗ E˘Q2) . . . (x⊗ E˘Qn).

Here we assume that there exists at least one Qi with Qi /∈ A. We call the algebra
A[Q1, . . . , Qm] which is generated by A and Q1, Q2, . . ., Qn non-commutative Galois
extension of A of polynomial type. We consider the substitution: Qi ↔ Qj . Then we
can introduce the concept of Galois group for the non-commutative Galois extension.
In order to make our idea clear, we propose the following table:

Comparisons of commutative vs non-commutative Galois theory
Classical Galois theory Non-commutative Galois theory

a0, a1, . . . , an ∈ Q F0, F1, . . . , Fn ∈ A(⊂ Mn(R)

f(x) = a0 + a1x+ a2x
2a+ · · ·+ anx

n F ∗(x) = F0 + F1x+ F2x
2 + . . .+ Fnx

n,
(|F0| ̸= 0)

f(x) = an(x− α1)(x˘α2) · · · (x− αn) F (x) = An(x⊗ E −Q1)(x⊗ E −Q2) · · ·
· · · (x⊗ E −Qn).

Sn = {αi → αj} Sn = {Qi → Qj}

The group Sn is called the Galois group of the extension.

Binary and ternary extensions
Next we proceed to binary and ternary extensions which will play the basic roles in
the applications. We take an algebra A = A0[a1, a2, . . . , an] and consider binary and
ternary extensions.

(1) Binary extension: We consider the binary extension:

(x˘Q1)(x˘Q2) = x2˘x(Q1 +Q2) +Q1Q2,

where Q1 +Q2 ∈ A, Q1Q2 ∈ A. Here we write x⊗ 1 as x simply and we denote Q2

by Q∗
1.

In this case the Galois group is generated by γ(2) : A → A, γ(2)(Q1) = Q∗
1.

(2) Ternary extension: Next we proceed to the ternary extension:

(x˘Q1)(x˘Q2)(x˘Q3) =

= x3˘x2(Q1 +Q2 +Q3) + x(Q1Q2 +Q1Q3 +Q2Q3)−Q1Q2Q3,



where Q1 + Q2 + Q3 ∈ A, Q1Q2 + Q1Q3 + Q2Q3 ∈ A, and Q1Q2Q3 ∈ A. Then:
Putting Q2 = Q∗

1, Q3 = Q∗
2(= Q∗∗

1 ), Q1 = Q∗
3, we can define the ternary involution:

γ(3) : A → A, γ(3)(Q1) = Q∗
1, γ(3)(Q∗

1) = Q∗∗
1 , γ(3)(Q∗∗

1 ) = Q1, and γ(3)3 = 1.

Examples
We give examples of simple binary and ternary non-commutative extensions of poly-
nomial type: We choose

s1 =

(
0 1
1 0

)
, s2 =

(
0 −1
1 0

)
, s3 =

(
1 0
0 −1

)
.

Then we have
(1) s2i = 1, (i = 1, 2, 3),
(2) s1s2 = −s2s1 = s3, s1s3 = −s3s1 = s2, s2s3 = −s3s2 = s1.

(1) A binary extension: We consider the following non-commutative polynomial:

F2(x) = (x˘s1)(x˘s2) = x2˘x(s1 + s2) + s1s2.

We put

T =

{(
a 0
b c

)
: a, b, c ∈ R

}
.

Since
s1 + s2 =

(
0 0
2 0

)
, s1s2 =

(
1 0
0 −1

)
,

we see that F2(x) is a polynomial on T . We put

T1 = s1T and T2 = s2T

(
=

{(
a b
0 c

)
| a, b, c ∈ R

})
.

Hence putting Q1 = s1 and Q2 = s2, we have a binary extension:

The Galois group is generated by Ad s3.

(2) Ternary extension: We consider the following non-commutative polynomial:

F3(x) = (x˘s1)(x˘s2)(x˘s3) = x3I2˘x
2(s1+s2+s3) + x(s1s2 + s1s3 + s2s3) + s1s2s3.

Since

s1+s2+s3 =

(
1 0
2 −1

)
, s1s2+s1s3+s2s3 =

(
1 0
2 −1

)
, s1s2s3 =

(
1 0
0 1

)
,

we see that each element is in T . Putting Q1 = s1, Q2 = s2 and Q3 = s3, where
Ti = siT , (i = 1, 2, 3), we have the following ternary extension:



The Galois group is given by Ad s3 : T1 → T2, Ad s1 : T2 → T3, Ad s2 : T3 → T1.

Construction 2 (Extension of Clifford algebra type)
We show that the usual Clifford algebra, which is called binary Clifford algebra here
and the ternary Clifford algebra, which is introduced by J. Sylvester and rediscovered
by R. Kerner give examples of non-commutative Galois extensions.

(1) Binary Clifford algebra:
We take the Quaternion numbers H:

H = {x01 + x1i+ x2j+ x3k : x0, x1, x2, x3 ∈ R}

satisfying
(1) i× j = −j× i = k, j× k = −k× j = i, k× i = −i× k = j,
(2) i2 = j2 = k2 = −1.

We have the following matrix representation:

Putting

Q = {x1i+ x2j+ x3k : x1, x2, x3 ∈ R}, Q∗ = {−x1i− x2j− x3k : x1, x2, x3 ∈ R}

we consider the following non-commutative polynomial:

(x0˘Q)(x0˘Q
∗) = x2

0 + x0(Q+Q∗) +QQ∗ = (x2
0 + x2

1 + x2
2 + x2

3).

Then we have the extension of binary Clifford type over the polynomial algebra
R[x1, x2, x3]

The Galois group becomes Q∗ = −Q. Hence we have an example of binary non-
commutative Galois extensions.

Remark: Binary Dirac operator and Klein-Gordon operators

D = i
∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
, D = i

∂

∂x1
− j

∂

∂x2
− k

∂

∂x3



and

DD =

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
⊗ I4.

(2) Ternary Clifford algebra: The algebra, which is generated by

Q1 =

 0 1 0
0 0 1
1 0 0

 , Q2 =

 0 j2 0
0 0 j
1 0 0

 , Q3 =

 0 j 0
0 0 j2

1 0 0


is called ternary Clifford algebra or Sylvester-Kerner algebra. We have

Q3
1 +Q3

2 +Q3
3˘3j

2Q1Q2Q3 = 0.

Putting

R1 = {x1Q1 + x2Q2 + x3Q3 : x1, x2, x3 ∈ R},
R2 = {x1Q1 + x2j

2Q2 + x3jQ3 : x1, x2, x3 ∈ R},
R3 = {x1Q1 + x2jQ2 + x3j

2Q3 : x1, x2, x3 ∈ R},

we can obtain an example of ternary non-commutative Galois extension: we have

R1R2R3 = x3
1 + x3

2 + x3
1˘3x1x2x3

The Galois group is denoted by

γ(1) : R1 → R2, γ(2) : R2 → R3, γ(3) : R3 → R1.

Remark: Ternary Dirac and Klein-Gordon operators
Here we make a short comment on the ternary Dirac operator and ternary Klein-
Gordon operator. Making the Fourier transform, we have the operators:

D = Q1
∂

∂x1
+Q2

∂

∂x2
+Q3

∂

∂x3

D = Q1
∂

∂x1
+ j2Q2

∂

∂x2
+ jQ3

∂

∂x3

D = Q1
∂

∂x1
+ jQ2

∂

∂x2
+ j2Q3

∂

∂x3

and

DDD =

[
∂3

∂x3
1

+
∂3

∂x3
2

+
∂3

∂x3
3

− 3
∂3

∂x1∂x2∂x3

]
⊗ I3.



Construction 3 (Primitive construction)
In order to apply our non commutative Galois theory to evolutions in this real world,
we will introduce a concept of primitive construction.

(1) We begin with the algebraic treatment of elements/ words. We make the algebra
without relations, which is called the free algebra W : W = {a1, a2, . . . , an}. Next we
proceed to the algebraic description of an evolution. At first we give the algebraic de-
scription of seeds from the origin * as the free algebra: {∗} = {∗1, ∗2, . . . ∗n}(= W0).
Next we describe the evolution in terms of creation operator γj and its annihilation
operators γ∗

j as follows:
γj(∗) = aj (j = 1, 2 . . . , n), (or γj(∗k) = δikaj)

γ∗
j (ak) =

{
∗k (j = k)
0 (otherwise)

Then we can introduce elements of evolutions W = {a1, a2, . . . , an} which are gen-
erated by

γjk ◦ γjk−1 ◦ . . . ◦ γj1(∗) = ajk . . . aj1 (= γ).

(2) Next we proceed to the binary extension over W . At first we introduce a
conjugate algebra W ∗ = {a∗1, a∗2, . . . , a∗n} of W . The conjugation is denoted by
s : W → W ∗ and s∗ : W ∗ → W . In order for our scheme to include many
examples, we need not assume that the conjugation is necessary involutive. When
they are involutive, i.e., ss∗ = s∗s = E we call the system symmetric. If not, the
elements in W (resp. W ∗) are called symmetry breaking elements. We extend the
operation to the conjugate algebra W ∗ in an analogous manner: creation operator
γ∗
j and annihilation operators γj as follows:

γ∗
j (∗) = a∗j (j = 1, 2, . . . , n), (or γ∗

j (∗k) = δika
∗
j )

γj(a
∗
k) =

{
∗k (j = k)
0 (otherwise).

Then W ∗ is generated by

γ∗
jk ◦ γ∗

jk−1 ◦ . . . ◦ γ∗
j1(∗) = a∗jk · · · a∗j1 (= γ∗)

and s(aj) = a∗j , s∗(a∗j ) = aj for symmetric elements. Then we can create the binary
extension as follows:

where ⊗ is a symmetry breaking element. We denote the extension by W0[γ, γ
∗].

The characterization of elements of the evolution: We write aj or a∗j as αj .
Then αm . . . . . . αi . . . . . . αk . . . . . . α1 is an acceptable element if and only if (i). At



any step of the generation, #(aj) > #(a∗k), where # is the number of elements and
(ii). At the final step, #(aj) = #(a∗k).

Examples: a1a
∗
2 and a1a2a

∗
3a

∗
4 are acceptable and a∗1a2, a∗1a∗2a3a4 are not accept-

able.
(3) In a completely analogous manner we can introduce the ternary element and
construct ternary extensions. We introduce W0, W , W ∗, W ∗∗:

W0 = {∗1, ∗2, . . . , ∗n},
W = {γ = γjk ◦ γjk−1 ◦ . . . ◦ γj1(∗) = ajk . . . . . . aj1},
W ∗ = {γ∗ = γ∗

jk ◦ γ∗
jk−1 ◦ . . . ◦ γ∗

j1(∗) = a∗jk . . . . . . a
∗
j1},

W ∗∗ = {γ∗∗ = γ∗∗
jk ◦ γ∗∗

jk−1 ◦ . . . ◦ γ∗∗
j1 (∗) = a∗∗jk . . . . . . a

∗∗
j1}.

Then we can create ternary extensions as follows:

We denote the extension by W0[γ, γ
∗, γ∗∗]. The characterization of acceptable ele-

ments can be given in an analogous manner.

(4) In a completely analogous manner, we can define the successive extension of the
binary and ternary extension: W0[γ, γ

∗] → W1[γ
′, γ′∗, γ′∗∗], where W1 = W0[γ, γ

∗].
For general extensions can be considered in an analogous manner. The extensions
and their Galois group will be given in the next Section.

Remark (1) Putting ∗ = E2, {∗} = T, γ1(E) = s1, γ2(E) = s2, γ3(E) = s3,
Tk = sk(T ), (k = 1, 2, 3), we can realize the examples in constructions 1. (2)
Putting ∗ = E4, {∗} = R3, γ1(E4) = i, γ2(E4) = j, γ3(E4) = k, we can realize the
examples in construction (2).

4. BTBB-structure
In this Section we take an algebra, mainly free algebra A[a1, . . . , an], which is gen-
erated by n-elements a1, . . . , an and consider a non-commutative Galois extension.
Here we formulate the following hypothesis:

"The Galois group of the extension is a solvable group."

Then we have the following hierarchy structure:
(I: n = 2) S2(= A2) ⊐ E2

(II: n = 3) S3 ⊐ A3 ⊐ E3

(III: n = 4) S4 ⊐ A4 ⊐ V4 ⊐ Z2 ⊐ E4

(IV: n > 5) Sn ⊐ An ⊐ En



The construction of the BTBB-structure. Following the hierarchy structure,
we make the BTBB-structure:

(0) The trivial extension: The algebra A[a1, . . . , an] itself gives the trivial extension.

(1) (I: n= 2) The binary extension:

[I]

We take a binary extension A1 of A[a1, . . . , an] by
Q1, Q

∗
1 : A1 = A[Q1, Q

∗
1]. We denote the extension as in the

left side configuration. The Galois group of the hierarchy
structure is [A : A1] ↔ [G2 : G1] where G2 = S2(= A2),
G1 = E. Hence we have G1/G0 = S2.

Remark. Choosing several binary extensions: A[Qi, Q
∗
i ] (i = 1, 2, . . . ,m) we

make the algebra which is generated by these extensions, which is denoted by
A[Q1, Q2, . . . , Qm, Q∗

1, Q
∗
2, . . . , Q

∗
m] which is denoted as follows:

(2) (II: n= 3) We proceed to the ternary extension.

We take a ternary extension of A[a1, . . . , an] by
Q,Q∗, Q∗∗ : A3 = A[Q1, Q2, Q3]. We express the extension
as in the left side configuration. The Galois group is S3.

We consider the successive extension of binary extension → ternary extensions:

A → A[Q1, Q
∗
1] → A1[Q2, Q

∗
2, Q

∗
2](A1 = A[Q1, Q

∗
1])

The hierarchy structure of Galois groups of each extension can be described as
follows:

{A : A1 : A2} ⇔ {G3 : G2 : G1}

where A1 = A[Q1, Q
∗
1] and A2 = A1[Q2, Q

∗
2, Q

∗∗
2 ] and G3 = S3, G2 = A3, G1 = E.

Then we see that G3/G2 = S2 and G2/G1 = S3.

(3) (III: n=4) We continue the extension and have the hierarchy structure: E4 ⊏
Z2 ⊏ V4 ⊏ A4 ⊏ S4.



Then we have the following correspondence of the hierarchy structure

{A : A1 : A2 : A3 : A4} ⇔ {G4 : G3 : G2 : G1 : G0},

where A1 = A[Q1, Q1], A2 = A1[Q2, Q
∗
2, Q

∗∗
2 ], A3 = A2[Q3, Q

∗
3], A4 = A3[Q4, Q

∗
4]

and G4 = S4, G3 = A4, G2 = V4, G1 = Z2, G0 = E. The hierarchy structure of
Galois group of each extension can be described as follows:

S2 = G4/G3, S3 = G3/G2, S2 = G2/G1, S2 = G1/G0.

The role of the Galois groups in the evolutions

Finally we give the roles of Galois groups in the evolution. At first we notice that
the Galois group in the classical Galois theory tells the structure of solutions in
terms of the permutation group independently from the proper form of the solution
of the given equation. Here we shall show that the Galois group of BTBB-structure
characterizes the evolution independently from deformations and mixing in the evo-
lution. Hence we see that the Galois group governs the evolution. We give several
examples:
(1) We can describe the change of sentences in terms of the deformation of the Galois
group.

I read a book → He reads a book, She is pretty → Is she pretty?

Hence we see that the binary and ternary structures are preserved under the changes
of sentences.
(2) The mutation on proteins in molecular biology, for example, XYZ ↔ XY’Z can
be described in terms of the deformation of the Galois group.



(3) In the theory of quark physics, the roles of leptons and weak bosons are describing
the interacting particles, for examples, in (i) the change udu ↔ udd and (ii) the
change of colors. These interactions can be described in the Galois group:

(i) The udu ↔ udd process (ii) The change of colors

5. BTBB-structures in mathematics
We are going to the BTBB structures in mathematics. We have not treated the
evolutions in mathematics in Parts I∼IV in details. Here we treat three topics. The
first is the structure in algebraic equation, the second one is in the formal language
theory, and the third one is in knot theory. The third topic is essentially new.
(1) The BTBB-structure in algebraic equation
As in Section 1 we can find the BTBB-structure in solving an equation. We can get
the following sequence of the extension. Hence we can obtain the BTBB-structure.

√ ⇒ 3
√ ⇒ √ ⇒ √

(2) The BTBB-structure for formal language theory
Next we will find the BTBB-structure in the formal language theory. (1) The ori-
gin of the formal language theory is the finite automaton defined by set of words:
{a1, a2, . . . , am}. The acceptable sequences constitute sentences. (2) The first bi-
nary extension creates context free sentences. (3) The ternary extension creates
context sensitive sentences. (4) The further binary sentences create general 0 type
sentences. These sentences are equivalent to Turing machines and finally we may
expect to have the universal Turing machines by successive extensions.
(3) The BTBB-structure for knots theory
At first we begin with the description of knots in terms of sequence of intersection
points. Then we proceed to the Reidemeister generations of knots. This gives a
language structure of knots. Finally we shall find the BTBB-structure in the knot
theory. Here we give only the outline without proofs. The complete results will be
given in another paper.
(a) The description of knots:
We choose a knot. Then we have a sequence of m intersection points: A1, A2, . . . , Am:
Putting α1α2 · · ·α2m, we choose α = ak (positive element) when the knot goes over
the knot, and α = a∗k (negative element) when the knot goes under the knot, respec-
tively.



We notice that the knot has the following "cyclic symmetry". Namely, we see

α1α2 · · ·α2m = α2mα1α2 · · ·α2m−1

In the following we restrict ourselves to the trivial knot.

(b) The generation of knots:
We can generate knots by the three kinds of Reidemeister’s generations. We begin
with an introduction of the concept of “k-(referenced) knot”. A knot is called k-knot,
if the knot is expressed in terms of k referenced intersection points α1α2 · · ·α2k

and the remained sequence S1, S2,. . ., Sm. We notice that Si may contain other
referenced intersection points. For example, αkα

∗
kS, αiα

∗
jS1α

∗
iαjS2, are 1-knot,

2-knot, respectively.

(1) Type I Reidemeister’s generations (1-referenced knot)
At first we will obtain 1-indices knots by the successive type I Reidemeister’s gen-
erations:

(i) S → αkα
∗
kS (⇔ S → αkSα

∗
k ⇔ S → Sαkα

∗
k)

We give examples:

Example 1 (Basic 1-knot: αkα
∗
k)

Example 2 (General basic binary 1-knot)

(2) Type II Reidemeister’s generations (2-referenced knot)
Next we are concerned with 2-knot. The knot αiα

∗
iαjα

∗
j is called the basic 2-knot.

For example:

(ii) S → αiα
∗
iSαkα

∗
k, S1, S2 → αiS1α

∗
iαkS2α

∗
k, . . .

Example 1 (2-knot:) aia
∗
i aja

∗
j

Example 2 (The 2-knots) in (ii)



Example 3 (Non real binary 2-knots)
We will give a criterion whether the given knots of binary type are real knot or not.
Here we give several examples and see the basic idea on the criterion. We begin with
examples

(1) αiα
∗
jα

∗
iαj (2) αiαjα

∗
iα

∗
j (3) . . . αi . . . α

∗
j . . . αk . . . α

∗
i . . . αj . . .

These conditions are called “The entangle knot condition” which describes the non-
existence of real knots. This will be discussed in terms of the ordered brackets in
the context free sentences.

(3) The Type II Reidemeister’s generations (3-referenced knots)
Next we will be concerned with 3-knots. The 3-knot αiαjαkα

∗
iα

∗
jα

∗
k is called the

basic 3 knot. We begin with the Type II Reidemeister generation: For example,

(iii) S → αiα
∗
iS → αiαjS1αkS2α

∗
iS3α

∗
jα

∗
k

Example 1 (The basic 3-knot)

Example 2 (Deformation of the basic 3-knot)



Example 3 (General Reidemeister move of type II)

Example 4 (The knot in (iii))

(4) The Type III Reidemeister’s generations of 3-knots
Next we will be concerned with the Reidemeister generation (deformation) of Type
III. The following slide of a part of a knot curve is called the Reidemeister generation
(deformation) of Type III.



Example 1 (The basic Reidemeister move of type III)

Example 2 (General Reidemeister move of type III)

The “reduction of triple knots” can be observed in the deformation: For example,

αiαjαkα
∗
iα

∗
jα

∗
k → αiα

∗
iαjα

∗
jα

∗
kαk

More generally,

...αi . . . αj . . . αk . . . α
∗
i . . . α

∗
j . . . .α

∗
k . . . ,

→ . . . αi . . . α
∗
i . . . αj . . . α

∗
j . . . α

∗
k . . . αk . . . ,

Next we proceed to the construction of the list of all the 3-knots.

(i) The three 3-indices of basic type:

(1) αiαjαkα
∗
iα

∗
jα

∗
k (The basic 3-knot), (2) αiαjα

∗
kα

∗
iα

∗
jαk,

(3) α∗
iα

∗
jαkαiαjα

∗
k, (4) αiα

∗
jαkα

∗
iαjα

∗
k

We denote the 3-knot of (2) by {αi, αj , αk} → {αi, αj , α
∗
k}, (3) by {αi, αj , αk} →

{α∗
i , α

∗
j , αk} (4) by {αi, αj , αk} → {αi, α

∗
j , αk} simply. The first three knots are

equivalent to (1). The final one is a knot but non-trivial knot. We can not find the
real knots for the following sequences:
αiαjαkα

∗
i′α

∗
j′α

∗
k′ where {i′, j′, k′} are non-trivial permutations of {i, j, k}. Hence we

see that the real trivial knots of 3-knots are essentially unique and equivalent to the
basic knot.

(ii) Degenerate type
The 3-knot is called of degenerate type, when it is obtained from Type I basic knot.
(1) αiα

∗
iαjα

∗
jαkα

∗
k (The basic degenerate type) (2) αiα

∗
iαjαkα

∗
jα

∗
k.



We see that the real knot sequence is only (1). The other knots including (2) have
the entanglements. Hence they are not real knots.

(iii) Intermediate type
The remained knots are called intermediate knots. We give examples.

(1) αiα
∗
jα

∗
iαkαjα

∗
k (2) αiαjα

∗
iαkα

∗
jα

∗
k

Then we see that there do not exist real knots in intermediate type. We will discuss
them in the context of languages given by knots.

(3) The generation of general trivial knots (Reidemeister theorem)

The Reidemeister theorem: Every trivial knot can be generated from the circle
knot by the following three kinds of Reidemeister generations successively:
(1) The basic binary generation (Reidemeister generation of type I)
(2) The ternary generation (Reidemeister generation of type II and III)
(3) The deformation (by the Reidemeister move).

We give several examples of generations. Here we give a successive binary and
ternary generations of a given a knot S.
(1) Binary generation of a given knot S

(2) Ternary generation of a given knot S



(c) The language theory of knots
Next we will give the formal language theory of knots.

(1) Association of context free sentence to 2-trivial knots
We can find context free sentences from knots which are generated by the Type I
generation: We can associate the following diagrams. We give examples:

(1) αkα
∗
k → {αkα

∗
k} (2) αiαkα

∗
kα

∗
i → {αi{αkα

∗
k}α∗

i }

Then we have the following characterization of the acceptable knots, i.e.: The knot is
entangle condition free. Namely, for each step of the generation, we have # ( ) ≥ #(
}) and at the final stage # { ) = #( }). Here we calculate it putting {αiα

∗
j} = δij .

When the zero appears, the sentences are not acceptable. We give examples: {ii},
{ii}{jj} are acceptable and {ik} (i ̸= j), {i{ji}j} are non-acceptable.

(2) Association of context sensitive sentences
We can associate context sensitive sentences to acceptable basic 3-knot sequences
by the generation rules:

{αiαjαk} → {αiαjα
∗
k}, {αiαjαk} → {α∗

iαjαk},

{αiαjαk} → {αiα
∗
jα

∗
k}.

We can associate the following diagram. For general 3-indices knots, we can generate
sentences by use of the generation rules for binary sentences: We can associate
general sentences following the generation scheme.

(3) Association of general sentences of knot sequences

We can identify the 2-knots from the circle knot as the binary extension and the
3-knots from the circle knot as the ternary extension. The successive extension can
be identified with the successive generation of knots. Then we can obtain acceptable
sentences by Reidemeister theorem.
(e) The BTBB-structure of knots
We can find the BTBB- structure of knots.



We can construct the BTBB-structure in the following steps:

The generation scheme of BTBB-structure of knots

(1) The origin of the evolution is the set of finite points {a1, . . . , am}
⇓

(2) The first binary extension creates pairs {ai, a∗i } (t = 1, 2, . . . ,m) by (I):
⇓

(3) The ternary extension. This extension creates a knot of type II and III
from a triple of points {ai, aj , ak}

⇓
(4) The second binary extension

⇓
(5) The final binary extension

Remark. As in the case of language, we may consider the total evolution of the
trivial knot. Then we may expect that any trivial knots can be obtained by this
scheme.

6. The complexity system of BTBB-structure
We have given the generations of a complexity system by the successive binary
extensions in Part IV [?]. Here we recall the generations

Basic generation

We begin with the basic generation:
(1) Generation of tree type



(2) Generation of linear type

We will show that we can generate complexity systems in the nature can be the
successive binary extensions of type (1) and type (2) generations. We demonstrate
simple successive generations.
(1)’ Successive extension of tree type

(2)’ Successive extension of linear type

(3) Generation of mixed type (I)

(Tree type → Linear type)

(3)’ Generation of mixed type (II)

(Linear type → Tree type)



Generation of fractal sets

We will show that we can obtain basic fractal structures by generations of above
types. At first we notice that the basic fractal sets can be realized by the generation
above given.
(1) Fractal set of flower type: We choose a compact set A0, for example, a closed
interval and a system of contractions {sj : A0 → A0}, i = 1, 2, . . . ,M . Then we put
{An : n = 1, 2, . . .M} by

An =

M⋃
j=1

sj(An−1), n = 1, 2, . . .M.

Here we assume the separation condition si(A
0
n−1) ∩ sj(A

0
n−1) = Eo, (i ̸= j), where

Eo is the open kernel of E. Then we have the sequence:

A0 → A1 → A2 → . . . → An → . . .

Putting

A =

∞⋂
n=0

An,

we have the fractal set of flower type. We notice that A is sj-invariant, i.e. sj(A) =
A, (j = 1, 2, . . . ,M).

(2) The fractal set of branch type (or evolution type): Let A0 be a compact
set and let sj (j = 1, 2, . . . ,M) be a system of contractions on A0 with the separation
condition. Also we prepare a shift so with so(A0) = A. Putting

An = A0 ∪ so(

M⋃
j=1

sj(An−1)), n = 1, 2, . . .

we have the sequence

A0 → A1 → A2 → . . . → An → . . .

Putting

A =

∞⋃
n=0

An

we obtain a fractal set of branch type.



We have the following relation between these fractals: We call the boundary of the
set: A \

⋃∞
j=0 Aj main boundary of A which is denoted by bA. Then we can obtain

the fractal of flower type bA of A. For the understanding the relationship between
these two kinds of fractal sets, we give well known fractals of Cauliflower type. We
may say that the boundary of the Cauliflower is just the flower of the Cauliflower.

(Linear type → Tree type)

(3) Complexity type
We see that the generation body A which is generated by the successive binary
extensions is dense in the total fractal set Â, which is the closure of A. We can
find many fractal sets which have the following properties: The boundary bÂ is also
dense in Â. The fractal set with these conditions is called a fractal set of Hilbert
type. The typical mathematical example is the generation of the rational numbers
in the real numbers. In the animal body, the recurrence system of blood or neural
flows makes a Hilbert system. We give other examples of 3th and 4th cells.

We can describe the evolution system in terms of fractals



Fractal description of the evolution

(1) The seeds of the evolution are given
⇓

(2) The complexity system is created by the BTBB-structure and successive
binary extensions. It becomes a fractal set of branch type

⇓
(3) The border of the complexity system admits a simple (fractal) random

walk (We may use the Tsallis entropy here)
⇓

(4) A successive evolution begins from the seeds
⇓

. . . . . .
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STRUKTURY BINARNE I TERNARNE W EWOLUCJI WSZECH-
ŚWIATA (świat 2x3x2x... wymiarowy) (V)
Nierzemienna teoria Galois w ewolucji

S t r e s z c z e n i e
Wprowadzamy koncepcjȩ nieprzemiennej teorii Galois, a system ewolucyjny w

fizyce, kosmologii, biologii i jȩzyku opisano w kategoriach teorii w ujednolicony
sposób w przypadku, gdy grupa Galois jest rozwia̧zalna. W tym przypadku struk-
turȩ hierarchii można zrealizować przez nastȩpuja̧ce kolejne rozszerzenia rozszerzeń
binarnych i ternarnych: Mianowicie,

B ⇒ T ⇒ B ⇒ B ⇒ B

struktura, gdzie B (odp. T ) jest binarnym (lub trójskładnikowym) rozszerzeniem,
a ⇒ oznacza kolejne rozszerzenia (struktura BTBB). W tej czȩści przedstawiono
matematyczną teoriȩ dotycza̧ca̧ nieprzemiennych rozszerzeń Galois oraz podano pod-
stawy matematyczne. Struktura BTBB i jej system złożoności są omówione matem-
atycznie.

Słowa kluczowe: struktura binarna, struktura ternarna, system złożony, rozszerzenie
Galois, grupa Galois.

https://www.youtube.com/watch?v=UW5FHVdvdwM

