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Summary

We show in a new way that the general relativity action (and Lagrangian) in recent

Einstein-Palatini formulation is equivalent in four dimensions to the action (and Lan-

grangian) of a gauge field.

Firstly, we present the Einstein-Palatini (EP) action with cosmological constant Λ̃ 6= 0

and derive Einstein fields equations from it. Then we consider their action integral in terms

of the corrected curvature Ωcor. We will see that in terms of Ωcor the EP action takes the

form typical for a gauge field. Finally, we give a geometrical interpretation of the corrected

curvature Ωcor.

This paper is a continuation of the previous paper [17] and it also gives an amended

version of the lecture delivered by one of the authors [M.D.] at Hypercomplex Seminar 2017

in Bdlewo.

Keywords and phrases: action integral, fiber bundle, connection in a principal fiber bundle

and its curvature, pull-back of forms, Lie groups and their algebras

1. Einstein-Palatini action for general relativity

The Einstein-Palatini action with cosmological constant Λ̃ 6= 0 in new formulation

[3] reads

SEP =
1

4κ

∫

D

(
ϑi ∧ ϑj ∧ Ωkl +

Λ̃

6
ϑi ∧ ϑj ∧ ϑk ∧ ϑl

)
ηijkl, (1)

where Ω is the curvature of the spin connection ω and κ = 8πG/c4. All indices

take values (0, 1, 2, 3) and D means an established 4-dimensional compact domain

in spacetime. ϑa denote 1-forms of the Lorentzian coreper in terms of which the

[83]
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spacetime looks locally Minkowskian, i.e., g = ηikϑ
i ⊗ ϑk, ηik = diag(1,−1,−1,−1).

ηijkl is completely antysymmetric Levi-Civita pseudotensor: η0123 =
√
|g|, where

g := det(gik). In a Lorentzian coreper |g| = 1. Spin connection ω is a general metric

connection (or Levi-Civita connection) in Lorentzian coreper.

For convenience we will write the cosmological constant Λ̃ 6= 0 in the form Λ̃ = εΛ,

where Λ > 0 and ε = ±1. In conseqence, if ε = 1, then Λ̃ = Λ > 0, and if ε = −1,

then Λ̃ = −Λ < 0.

For the geometrical units G = c = 1 the formula (1) takes the form in terms if ε

and Λ > 0

SEP =
1

32π

∫

D

(
ηijklϑ

i ∧ ϑj ∧ Ωkl +
εΛ

6
ηijklϑ

i ∧ ϑj ∧ ϑk ∧ ϑl
)
. (2)

Adding to the geometric part SEP the matter action

Sm =

∫

D

Lmat(φ
A, DφA, ϑi), (3)

where φA means tensor-valued matter form and DφA its absolute exterior derivative,

we obtain full action

S = SEP + Sm

=
1

32π

∫

D

(
ηijklϑ

i ∧ ϑj ∧ Ωkl +
εΛ

6
ηijklϑ

i ∧ ϑj ∧ ϑk ∧ ϑl
)

+

∫

D

Lmat(φ
A, DφA, ϑi)

(4)

After some calculations one gets that the variation δS = δSEP + δSm with respect

to ϑi, ωij and φA reads

δS =

∫

D

[ 1

8π
δϑi ∧

(1

2
Ωkl ∧ ηkli + εΛηi + 8πti

)

+
1

2
δωij ∧

( 1

8π
Dη j

i + s ji

)
+ δφA ∧ LA + an exact form

]
. (5)

The three-forms: energy-momentum ti, classical spin s ji and LA are defined by the

following form of the variation δLm

δLm = δϑi ∧ ti +
1

2
δωij ∧ s ji + δφA ∧ LA + an exact form. (6)

ηkli, η
j
i , ηi mean the forms introduced in the past by A. Trautman [11].

The variations δϑi, δωij and δφA are vanishing on the boundary ∂D of the com-

pact domain D.

Einstein’s equations like all the other physical field equations arise due to vari-

ational principle, which is called the Principle of Stationary Action or Hamiltonian
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Principle. In our case it has the following form:

δS = 0, (7)

It leads us to the following sets of the field equations

1

2
Ωkl ∧ ηkli + εΛηi = −8πti (8)

Dη j
i = −8πs ji (9)

and

LA = 0. (10)

LA = 0 represent equations of motion for matter field. These equations are not

intrinsic in further our considerations, so we will omit them. We are interested only

in the gravitational field equations which are given by the equations (8)-(9).

In vacuum where ti = s ji = 0 also Dη j
i = 0 and we get standard vacuum

Einstein’s equations with cosmological constant Λ̃ = εΛ

1

2
Ωkl ∧ ηkli + εΛηi = 0 (11)

and pseudoriemannian geometry.

In general, we have the Einstein-Cartan equations and Riemann-Cartan geometry

(a metric geometry with torsion, see e.g. [11]).

The standard GR we obtain also if δLm

δωi
k

= 0 =⇒ s ki = 0 =⇒ Dη k
i = 0, i.e., if we

confine to spinless matter.

Namely, one has in the case the following gravitational equations

1

2
Ωkl ∧ ηkli + εΛηi = −8πti. (12)

One can show that 1
2Ωkl ∧ ηkli = −Gsiηs, where the Einstein tensor Gsi is defined

as follows

Gsi = Rsi −
1

2
δsiR. (13)

Putting ti = T s
i ηs we get from (12)

−G s
i ηs + εΛδsi ηs = −8πT s

i ηs. (14)

or

G s
i − εΛδsi = 8πT s

i . (15)

(15) are standard Einstein equations with cosmological constant Λ in tensorial no-

tation with symmetric matter tensor: T ik = T ki.
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2. Einstein-Palatini action integral for General Relativity in

vacuum and with nonzero cosmological constant Λ̃ as inte-
gral action for a gauge field

Now, getting back to Einstein-Palatini action in vacuum

SEP =
1

4κ

∫

D

(
ϑi ∧ ϑj ∧ Ωkl +

εΛ

6
ϑi ∧ ϑj ∧ ϑk ∧ ϑl

)
ηijkl

=
1

4κ

∫

D

(
ϑi ∧ ϑj ∧ Ωklηijkl +

εΛ

6
ϑi ∧ ϑj ∧ ϑk ∧ ϑlηijkl

)
(16)

and defining the duality operator ? [1]

? := −ηijkl
2

=⇒ ηijkl = −2? (17)

one gets

ηijklΩ
kl = −2 ? Ωij , (18)

ηijklϑ
k ∧ ϑl = −2 ?

(
ϑi ∧ ϑj

)
. (19)

Thus the Einstein-Palatini action has the following form

SEP = − 1

2κ

∫

D

[
ϑi ∧ ϑj ∧ ?Ωij +

εΛ

6
ϑi ∧ ϑj ∧ ?

(
ϑi ∧ ϑj

)]

= − 1

2κ

∫

D

tr
[
ϑ ∧ ϑ ∧ ?Ω +

εΛ

6
ϑ ∧ ϑ ∧ ?

(
ϑ ∧ ϑ

)]
. (20)

Let us introduce the corrected curvature Ωcor

Ωcor := Ω +
εΛ

3
ϑ ∧ ϑ =⇒ ϑ ∧ ϑ = − 3

εΛ

(
Ω− Ωcor

)
. (21)

Substituting the last formula into Einstein-Palatini action we get

SEP =
−1

2κ

∫

D

tr
[
ϑ ∧ ϑ ∧ ?Ω +

εΛ

6
ϑ ∧ ϑ ∧ ?

(
ϑ ∧ ϑ

)]

=
1

2κ

∫

D

tr
[ 3

εΛ

(
Ω− Ωcor

)
∧ ?Ω− εΛ

6

9

ε2Λ2

(
Ω− Ωcor

)
∧ ?
(
Ω− Ωcor

)]

=
3

4Λκε

∫

D

tr
(

2
(
Ω− Ωcor

)
∧ ?Ω−

(
Ω− Ωcor

)
∧ ?
(
Ω− Ωcor

))

(22)
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=
3

4Λκε

∫

D

tr
[
2Ω ∧ ?Ω− 2Ωcor ∧ ?Ω− Ω ∧ ?Ω + Ωcor ∧ ?Ω+ (23)

+ Ω ∧ ?Ωcor − Ωcor ∧ ?Ωcor
]

=
3

4Λκε

∫

D

tr
[
Ω ∧ ?Ω− Ωcor ∧ ?Ω + Ω ∧ ?ΩCor − Ωcor ∧ ?Ωcor

]
(24)

Because −Ωcor ∧ ?Ω + Ω ∧ ?Ωcor reduces, then we finally have

SEP =
3

4Λκε

∫

D

tr
[
Ω ∧ ?Ω− Ωcor ∧ ?Ωcor

]
. (25)

The expression tr
(
Ω ∧ ?Ω

)
= ηijklΩ

ij ∧ Ωkl is in four dimensions a topological

invariant called Euler’s form, which does not influence the equations of motion [12].

Hence, in 4-dimensions the Einstein-Palatini action is equivalent to

SEP = − 3

4Λκε

∫

D

tr
(

Ωcor ∧ ?Ωcor
)
, (26)

where ε = ±1.

We see that the Einstein-Palatini action in 4-dimensions is efectively the func-

tional which is quadratic function of the corrected Riemannian curvature, i.e., it has

the form of the action for a gauge field.

Only one difference is that in (24) we have the star operator ?, which is different

from Hodge star operator. Namely, our star operator acts onto ”interior” indices

(tetrad’s indices), not onto forms as Hode duality operator does [2, 12].

It is interesting that Ωcor = 0 for the de Sitter spacetime which is the fundamental

vacuum solution to the Einstein equations (8) if ε = 1 and Ωcor = 0 for the AdS

spacetime if ε = −1. The AdS spacetime is the fundamental solution of the equations

(8) if Λ̃ = εΛ < 0.

We would like to emphasize that in the case Λ̃ = εΛ = 0 ⇐⇒ R =∞ the above

trick with Ωcor breaks. Namely, we have in this case Ωcor = Ω. This result formally

trivializes SE−P action (see formula (22)) to the strange form SE−P = 0 and has

no physical meaning. The case Λ̃ = εΛ < 0 needs introducing of the anti de Sitter

spacetime (AdS) and its isometry group SO(2,3) (see Section 3). The anti de Sitter

spacetime has very strange casual properties (see e.g. [18]). In consequence, it seems

that the physical meaning of the case Λ̃ = εΛ < 0 is problematic.

3. Geometrical interpretation of the corrected curvature Ωcor

We begin from ε = 1, i.e., from Λ̃ = εΛ = Λ > 0. This is de Sitter case because for

Λ̃ > 0, the Einstein equations (11) admit the de Sitter spacetime as fundamental
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solution (see,e.g. [18]). This spacetime is realized as hyperboloid

(χ0)2 − (χ1)2 − (χ2)2 − (χ3)2 − (χ4)2 = −R2 (27)

with radius R in the 5-dimensional pseudoeuclidean spacetime M(1, 4) endowed with

metric ηAB = diag(1,−1,−1,−1,−1)[18].

Let P (M4, GdS) denotes the principal bundle of de Sitter basis over a manifold

M4 (spacetime) with de Sitter group(GdS) [5, 13] as a structure group. The de Sitter

group is isomorphic to the group SO(1, 4) which acts on the spacetime M(1, 4) as

rotations group.

Let ω̃ be 1-form of connection in the principle fibre bundle P (M4, GdS). The

form ω̃ has values in the algebra g of the group GdS. The algebra g is identic with

the group SO(1, 4). This algebra splits (as a vector space) into direct sum

g = so(1, 3)⊕R(1,3). (28)

Here so(1, 3) denotes the algebra of the group SO(1, 3) isomorphic to Lorentz group

L, and R(1,3) is a 4-dimensional vector space of generalised translations (translations

in the curved de Sitter spacetime). One can identify the de Sitter spacetime with the

quotient SO(1,4)/SO(1,3).

Let us define so(1, 3) =: h, R1,3 =: p. Then we have [1,2]

g = h⊕ p, (29)

and

[h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h. (30)

This means that the Lie algebra g is a symmetric Lie algebra [1,2].

On the other hand, the spaces which satisfy (27)-(28) are called globally symmetric

Riemannian spaces [13].

Let P (M4,L) denotes the principal bundle of Lorentz basis over the manifold

M4. There exists a morphism of principal bundles

f : P (M4,L) −→ P (M4, GdS) (31)

analogical to the morphism of the bundle linear frames and the bundle affine frames

[4]. This morphism is created by embedding of the SO(1, 3) group into SO(1, 4).

It creates pull-back f∗ω̃ of the form ω̃ onto the bundle P (M4,L). Here ω̃ is the

connection 1-form in the bundle P (M4, GdS).

Let us denote this pull-back by A. A is a 1-form on P (M4,L) with values in the

direct sum [4]

so(1, 3)⊕R(1,3). (32)

Hence, we have a natural decomposition [2,3,4,13]

A = f∗ω̃ = ω +
θ

R
, (33)
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where ω is a 1-form on P (M4,L) with values in the algebra so(1, 3) and θ is a 1-form

on P (M4,L) with values on R(3,1). ω is a connection on the bundle P (M4,L). R is

the radius of the de Sitter spacetime (see e.g. [18]).

On the base M4 the 1-form θ can be identified with 1-form ϑ already used in this

paper: θ = ϑ. In the following we will work on the base space M4 and write (31) in

the form

A = ω +
ϑ

R
.

Let us compute the curvature 2-form Ω̃ of the pulled back A, where

AAB =

{
Aab = ωab A,B=0,1,2,3,4

Aa4 = 1
Rϑ

a;A4
a = 1

Rϑa a,b=0,1,2,3
, (34)

and AAB = −ABA.

From the definition we have

Ω̃AB = dAAB +AAK ∧AKB . (35)

Hence

Ω̃ab = dAab +AaK ∧AKb = dωab +Aad ∧Adb +Aa4 ∧A4
b

= Ωab +
1

R
ϑa ∧ 1

R
ϑb = Ωab +

1

R2
ϑa ∧ ϑb (36)

because in this case A4
b = 1

Rϑb, A
a
4 = 1

Rϑ
a.

Ω̃i4 = dAi4 +AiK ∧AK4 =
1

R
dϑi +Aib ∧Ab4

=
1

R
(dϑi + ωib ∧ ϑb) =

1

R
Dωϑi =

1

R
Θi
ω. (37)

In the last formula we have usual the antysymmetry of the connection form

ABC = −ACB → A4
4 = A44 = 0 (38)

(Indices A, B, C, ... are raised and lowered with the pseudoeuclidean metric

ηAB = ηAB = diag(1,−1,−1,−1,−1) and the indices a, b, c, ... are raised and

lowered with the metric ηab = ηab = diag(1,−1,−1,−1)). So, we have obtained the

final result

Ω̃AB =

{
Ω̃ab = Ωaω b + 1

R2ϑ
a ∧ ϑb = Ωaω b + Λ

3 ϑ
a ∧ ϑb

Ω̃i4 = 1
RDωϑi = 1

RΘi
ω

. (39)

The cosmological constant Λ = 3
R2 > 0 and Θ means the torsion 2-form of the

connection ω.

In the Section 2 we gave the definition of the corrected curvature Ωcor for the case

εΛ = Λ > 0 as follows

Ωcor := Ω +
Λ

3
ϑ ∧ ϑ. (40)
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As one can see this curvature is the so(1,3) part of the curvature Ω̃ of the con-

nection A = f∗ω̃ = ω + ϑ. If the torsion Θ of the connection ω is 0, then Ωcor = Ω̃.

Let us consider now the case ε = −1. Then Λ̃ = εΛ = −Λ < 0. From the beginning

we must remember that this case seems to have smaller physical meaning than the

case Λ̃ > 0. In the case Λ̃ < 0 we have to take into account the principal bundle of the

anti-de Sitter bases over spacetime manifold M4. This principal bundle we will denote

P (M4, AdS), where AdS means anti-de Sitter group. One can identify this group with

the rotation group SO(2,3) in the pseudoeuclidean 5-dimentional spacetime M(2, 3)

with metric GAB = GAB = diag(1,−1,−1,−1, 1). On the other hand, the anti-de

Sitter group is the isometry group of the anti-de Sitter spacetime (see e.g.[18]). The

AdS spacetime is the fundamental solution to the Einstein equations (11) if ε = −1,

i.e., if Λ̃ = −Λ < 0. This solution can be realized as 4-dimensional hyperboloid

(χ0)2 − (χ1)2 − (χ2)2 − (χ3)2 + (χ4)2 = R2 (41)

with imaginary radius iR immersed in 5-dimensional spacetime M(2, 3) with metric

GAB = diag(1,−1,−1,−1, 1) (see e.g.[3,5]).

Let ω̂ be 1-form of connection in the principal bundle P (M4, AdS). The form ω̂

has values in the algebra g̃ of the group SO(2,3). For the algebra g̃ the formulas (27),

(28) are correct.

Let us consider a morphism

f̂ : P (M4,L)→ P (M4, AdS) (42)

generated by embedding Lorentz group L into SO(2,3) group. This morphism creates

pull-back f̂∗ω̂ of the form ω̂ onto the bundle P (M4,L).

Let us denote this pull-back by Â. Â is the 1-form on P (M4,L) with values in the

direct sum

so(1, 3)⊕R(1,3) = g̃. (43)

Hence we have a natural decomposition [analogical to (31)]

Â = f∗ω̂ = ω +
θ

R
. (44)

Here ω determines metric connection on the bundle P (M4,L) and θ is a 1-form on

P (M4,L) with values in the space R(1,3) of the generalized translations in anti de

Sitter spacetime. [θ is analogical to the soldering form on the bundle of the linear

frames P (M4, GL)]. R means the radius of the AdS spacetime. In this case one has

Λ̃ = εΛ = −Λ = −3
R2 .

In the following we once more confine to the base manifold M4 (=spacetime). Then,

as in the case Λ̃ > 0,

θ = ϑ, Â = ω +
ϑ

R
. (45)
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Let us calculate the curvature 2-form Ω̂ of the pulled back Â. Starting with

AAB =

{
Aab = ωab A,B=0,1,2,3,4

Aa4 = 1
Rϑ

a;A4
a = 1

Rϑa a,b=0,1,2,3
. (46)

and AAB = −ABA we obtain, after calculations analogical to calculations performed

in the case Λ̃ = εΛ > 0 [Now, A, B, C, ... are raised and lowered with the metric

GAB = GAB = diag(1,−1,−1,−1, 1)]

Ω̂AB =

{
Ω̂ab = Ωab − 1

R2ϑ
a ∧ ϑb

Ω̂i4 = 1
RΘi

ω

(47)

where Λ = 3
R2 > 0.

Here Ω is the curvature of the connection ω and Θ is its torsion. We see that in

the case Λ̃ = εΛ < 0, the so(1, 3) part of the curvature Ω̃ is equal

Ωab −
1

R2
ϑa ∧ ϑb = Ωab −

Λ

3
ϑa ∧ ϑb (48)

i.e., it is equal to Ωcor given by (21) if ε = −1. By using this Ωcor one can easily

obtain the form (24) (with ε = −1) for the Einstein-Palatini action (16) with ε = −1.

One can write the obtained results for Λ̃ = εΛ 6= 0, Λ > 0, ε = ±1 in the common

form

AAB =

{
Aab = ωab

Aa4 = 1
Rϑ

a;A4
a = ε

Rϑa
. (49)

˜̂
Ω
AB

=

{
Ωab + εΛ

3 ϑ
a ∧ ϑb

Ωi4 = 1
RΘi, Ω4

a = ε
RΘa

. (50)

where

ε =

{
1 for Λ̃ > 0

−1 for Λ̃ < 0
. (51)

In the Section 2 we gave the definition of the corrected curvature Ωcor as follows:

Ωcor := Ω +
εΛ

3
ϑ ∧ ϑ Λ > 0. (52)

One can see that this curvature is a curvature of the connection pulled back from

the bundles P (M4, SO(1, 4)) or P (M4, SO(2, 3)) onto bundle P (M4,L) if Θ = 0.

If Θ 6= 0 e.g. in Einstein-Cartan theory with fermionic sources, then Ωcor is the

so(1, 3)-part of this curvature.

4. Conclusion

In this article we have shown that in four dimensions the action integral for GR with

Λ̃ 6= 0 can be written in very similar form to the form of the action integral for the
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typical gauge field. There is only one difference - the star. Instead of the Hodge star,

we have slightly different star called the duality operator [2, 12].

Our result is important because it shows that there is no need to generalize GR and

construct very complicated gravitational theories to obtain a gravitational theory as

a gauge theory. The ordinary GR formulated in terms of tetrads and spin connection

with cosmological constant Λ̃ 6= 0 is already a gauge theory. The gauge group of this

theory is Lorentz group SO(1, 3) or its double cover SL(2,C). The above facts are

very interesting in connection with universality of the Einstein theory (alternative

theories are not necessary) [15,16] and in connection with trials of quantizing this

theory (gauge field can be successfully quantized).

Some scientists [1, 2, 3] were concerned with this problem and they came to the

similar conclusions as ours, but they applied in their works the Cartan’s approach to

the connection in the principal bundle [2, 13, 14]. This approach is not well known

among geometrists and relativists. We have used only the standard theory of con-

nection in the principal bundle which was created by Ehresmann - Cartan’s student

[4, 8]. His approach is commonly used in differential geometry and in relativity.
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Appendix

η forms and operations with them [11]

Following [11] we define

ηijkl =
√
|g|εijkl (A.1)

where εijkl is Levi-Civita pseudotensor with properties

εijkl =





1 if the sequence of indices ijkl is an even permutation

of the sequence 0, 1, 2, 3;

−1 if it is an odd permutation;

0 if the sequence of indices ijkl is not an even permutation

of the sequence 0, 1, 2, 3

. (A.2)

and we take η0123 =
√
|g|. In Lorentzian coreper |g| = 1.
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One has [11]

ηijk = ϑlηijkl (A.3)

ηij =
1

2
ϑk ∧ ηijk (A.4)

ηi =
1

3
ϑj ∧ ηij (A.5)

η =
1

4
ϑi ∧ ηi (A.6)

ϑnηijkl = δnl ηijn + δnj ηlik − δni ηjkl − δnk ηlij (A.7)

ϑn ∧ ηkli = δni ηkl + δnl ηik + δnk ηli (A.8)

ϑm ∧ ηkl = δml ηk − δmk ηl (A.9)

ϑj ∧ ηi = δji η (A.10)

Dηijkl = 0 (A.11)

Dηijk = 0 (A.12)

Dηij = 0 (A.13)

Dηi = 0 (A.14)

The forms η, ηi, ηij , ηijk are Hodge dual to the forms 1, ϑi, ϑi ∧ ϑj , ϑi ∧ ϑj ∧ ϑk
respectively [11].
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OGÓLNA TEORIA WZGLȨDNOŚCI Z NIEZEROWA̧ STA LA̧

KOSMOLOGICZNA̧ JAKO TEORIA̧ CECHOWANIA

S t r e s z c z e n i e
W pracy pokazano, że klasyczna ogólna teoria wzglȩdności Einsteina (OTW) z nieze-

rowa̧ sta la̧ kosmologiczna̧ może być uważana za teoriȩ cechowania z grupa̧ Lorentza, jako
grupa̧ struktury. Pokazano mianowicie, wykorzystuja̧c teoriȩ Ehresmanna koneksji na wia̧zce
g lównej, że standardowa ca lka dzia lania dla OTW da siȩ zapisać w postaci kwadratowej
funkcji tzw. krzywizny poprawionej, tj., w postaci typowej ca lki dzia lania dla pola cechowa-
nia. Fakt ten może być ważny dla kwantowania klasycznej OTW ponieważ potrafimy efek-
tywnie kwantować klasyczne pola cechowania.

S lowa kluczowe: ca lka dzia lania, g lówna wia̧zka w lóknista, koneksja w g lównej wia̧zce

w lóknistej, formy krzywizny i skrȩcenia koneksji, grupy Lie i ich algebry


