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Summary

(1) The non-commutative Galois theory of languages is presented and the universal

language of natural languages is constructed. (2) The Galois theory for natural languages

is given. (3) The Galois theory for the formal language theory is given. (4) Finally, we find

intimate connections between language and physics and discuss the anthropological problem

in physics from the point of view of our language theory. (5) In Appendix we give a virtual

language defined by Fibonacci and Tribonacci sequences.
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Introduction

This paper is the third part of papers which are written under the same title. In

([18]) and ([19]) a survey on the evolution of the universe is given in terms of binary

and ternary extensions. In this paper we will discuss the evolution of languages in

more details and point out its intimate connection to physics.

At first we shall find the structure of a non-commutative Galois theory for lan-

guages. Then we can find the concept of the ”universal language” which has been

introduced by N. Chomsky ([2]) and we can discuss natural languages and computer

languages in a unified manner. We notice that we can discuss the possibilities of the

communication (translation) between different languages, intelligence and memories

[11]
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in terms of languages. This will be discussed in our next paper. Finally, we are go-

ing to the intimate connection between language and physics. We can obtain the

following results:

(1) We can construct the Galois theory of the universal language which can describe

the hierarchy structure of the language. Then we see that the hierarchy structure

can determine sentences of natural languages strictly. Namely, we can observe basic

sentences in any natural language, which are common in English as follows:

S + V, S + V +O, S + V + C, . . .

(2) We can discuss the possibility of communication in languauges and intelligence

in terms of the universal language (in our next paper ).

(3) We introduce the Shannon entropy of natural languages and give the grammar

which judges wheather the sentence is correct or not ([21]). Moreover, we can describe

memories in terms of the entropy. Then the Boltzmann principle for Shannon entropy

can tell why the memories become weaker when time passes (in our next paper).

(4) We can discuss languages of other types: for example animal languages, primitive

human languages, for example: pidgins and kleole and computer languages in a uni-

fied manner. We can treat them in terms of the concept of ”level” of sentences which

can make the differences between these languages and compare their intelligencies

(in our next paper).

(5) Finally we will describe the connections between language and physics. The

present orthodox trend in physics is the reductionism. But, recentely we have No-

Go-Theorem in physics. In fact, we can not observe smaller lengths of time and

distance than the Planck time and distance respectively ([1]). Also, the reductionism

makes the materials in the reference finer and finer. But we have very big difficulties

in integrating the divided materials to the originally given materials. This difficulity

appears in the unification problem of 4 kinds of interactions. It asks how we can

control from the small size of atoms, 10−33, to the big size of the universe, 1022,

(meter, second, for example) in a unified manner. In the evolutions of biology or

geography the difference in these sizes are not surprise in the usual research. Here

we shall introduce an evolutional method for language. Then we can find remarkable

similarities in the evolution in both physics and in language (the comparison table will

be given in Section 5). This similarity indicates us a concrete approach to ”anthropic

principle” in physics ([1], etc.). This will be discussed in another paper in a more

realistic manner.
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1. The Galois theory of evolutional system (Binary and ternary
extensions)

Here we recall the evolutional method of generations of systems ([18], [19]). The

generation is performed in the following steps.

(I) The big explosion (Step 1)

We denote the origin of the evolution by *. Then we have a big explosion and obtain

”seeds ”of the evolution. We denote the seeds by ”x...x ”:

We assume that seeds make a simple random walk. The entropy of the states of the

seeds is called the entropy of the evolution.

(II) The binary and ternary extensions

The system is generated by the binary and ternary extensions successively.

(1) Binary extension: The seeds create a set of pairs which are called conjugate

to each other.

(2) Ternary extension: The seeds create a set of triples which are called conjugate

to each other.

Remark: In the both extensions, not necessarily all seeds create pairs or triples.

Such seeds are called ”symmetry breaking elements”.

(III) BTBB-structure

The evolutional system is called to have a BTBB structure, when it evolutes in the

following process:
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(1) The first binary extension happens (Step 2).

(2) The ternary extension happens (Step 3).

(3) The second binary extension happens (Step 4).

(4) The final binary extension happens and the the entropy is introduced and the

direction of evolutions is determined (Step 5).

Remark. By step 5, we create the evolutional system Xin and its ambient system

Xout. We notice, that when the entropy Sin of Xin decreases, the entropy Sout of

Xout increases automatically (Boltzmann-principle).

Explicit construction of evolutions

Following the evolution scheme, we can give the explicit construction in Fig. 1.

Fig. 1. Explicit construction of evolutions.
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At this stage, the BTBB-system is constructed. Hence the basic system is ob-

tained. Then we can obtain a much more complicated system - ”Complexity system”.

From this system we can derive chaotic systems and complex systems. This will

be discussed in Part IV of our paper.

The total hierarchy structure of evolutions

The repetition of the generations of the BTBB system and the complexity system

create the total hierarchy structure of the evolutional system:

(1) We denote the set of seeds by L0.

(2) We denote the system which is generated by the BTBB-structure by L1.

(3) Replacing L0 with L1, we follow the process (1), (2). Then we obtain the system

L2.

(4) In the same manner we can obtain L3 from L2. Repeating this process we can

obtain Ln (n = 1, 2, . . .). We call the system Ln evolutional system of level n.

Permutation of elements in evolutional system

In the Galois theory of extensions, we have a concept of permutations between ele-

ments of extensions which make a group. This is called Galois group ([23]). Here we

introduce a conceptof permutations between elements of the system. The permuta-

tions are neccessary to create question forms from sentences and in translations of

sentences trom one natural language to another. We describe it by a simple example.

Example (Small permutation) The per-

mutation on each end of the branch of the

extension, for example, the permutation in

{b1, b2, b3} or {b′1, b′2, b′3} is called a small per-

mutation.

Example (Big permutation) The permutation {a1, a2} is called a big permutation

because it gives rise to permutations {b1, b2, b3} ⇒ {b′1, b′2, b′3} automatically.

By this example, we see that the big permutation gives a big change of sentences.

Non-commutative Galois theory for an evolutional system

Here we make a comment on the mathematical theory of the evolutional system. The

classical Galois theory tells that the group of permutations of the roots of a general

algebraic equation is solvable. Moreover, if they include not only binary extension

but also other extensions, then it has the following sequence of extensions ([23]):
√ ⇒ 3

√ ⇒ √ ⇒ √
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i.e. the extension structure has the BTBB-structure. Applying this theory, we may

prove the following theorem:

Theorem. When an evolutional system is generated by successive non-commutative

Galois extensions, we can prove the following assertion: When the system has not

only binary extensions but also other type extensions, for example, ternary exten-

sions, then we see that the system has the BTBB-structure.

The proof of Theorem will be given in the part V of the series of this paper.

2. The universal language

We introduce a concept of the universal language. We will show that we can de-

rive natural languages from the universal language (Section 3). We notice that we

can describe the universal language independently from some especially chosen lo-

cal natural language, for example, English. We follow the scheme of generations of

evolutional systems.

The birth of the universal language.

We can choose the origin of the universal languauge which is denoted by *. We take

words which are finite sequences of arbitrary alphabets, for example: x, &, y, %, . . .

and consider a free algebra which is generated by words. The algebra of the words

is denoted by W. We may choose the seeds {x} as words.

Next we introduce concepts of binary and ternary and their succesive extensions

on ”words” and obtain sentences of the universal language.

(Step 1). The first binary extension

Introducing the conjugate algebra W* (resp. W) of W (resp. W*), we can define the

first binary extension and obtain a sentence.

We call the sentence Type I sentence. We denote this as follows:

We write the scheme in the following manner

Here the right side is called ”the box representation of the sentence”.
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Remarks. (1) The sentence given in the above corresponds to Type 1 sentence of

the basic five sentences: S + V , where S is the subject, V is the verb in a natural

language, and (2) We may assume that symmetry breaking elements may exist.

(Step 2) The ternary extension

Next we proceed to the ternary extension. As in the binary extension, we consider

the triple W, W*, W** for the words W which are ternary conjugate to each other.

Namely, there exists a ternary involution s:

s : W →W ∗, s : W ∗ →W ∗∗, s : W ∗∗ →W,

with s3 = 1. In the same manner to the binary extension we prepare the origin * of

the extension and the seeds W, W*, W**. We introduce a ternary sentence in the

following diagram:

The right side is called ”the box representation of the sentence”. When we make

the ternary extension for the symmetry breaking element ⊗ we can also consider the

box representation

(Step 3) The final binary extension (The generation of the basic sentences)

Next we proceed to considering the succesive extensions of binary and ternary exten-

sions and obtain basic sentences for the universal language by the following succesive

extensions (Type III), ... , (Type VI):

(1) We begin with Type III (Binary extension ⇒ Ternary extension) sentence. Here

we consider the extension which begins with origin * and making the succesive ex-

tensions of binary and ternary extensions, we have the sentence:

Next we proceed to the Type IV (Binary extension ⇒ Binary extension) sentence.
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Here and are symmetry breaking elements for the ternary extension ([19]).

Next we proceed to the Type V (Ternary extension ⇒ Binary extension) sen-

tence. Here we consider the extensions which we begin with origin * and making the

succesive extensions of ternary and binary extensions:

Remark. We may consider the partial extension of the above extension and realize

it in terms of the succesive extension of the partial extensions.

Here we mean e as the empty element. Each permutation on the right hand side is

called a partial extension. We see that any extension can be realized as a succesive

partial extensions.

Finally we treat the general extension Type VI (Binary extension ⇒ Ternary

extension ⇒ Binary extension).
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(Step 4) Introduction of entropy

To complete the construction of BTBB-structure, we proceed to the construction of

the final binary extension. Here we introduce the entropy. The entropy is Shannon

entropy. This gives the separation of sentences into correct sentences and incorrect

sentences and describes the process of the creation of sentences. We notice that this

entropy gives the grammar of the language. When a given sentence is acceptable,

then entropy attains the minimum, because it needs no more information ([21]).

The grammar of the universal language

The grammar of the universal language is given as follows:

A sequence of words is acceptable for the grammar if and only if the two conditions

are satisfied:

(1) The sequence constitutes the binary and ternary and their successive extension

structure,

(2) Permutations may happen.

Complex sentences

Making indefinite times binary extensions, we can create much more complex sen-

tences. This can be analysed in the total hierarchy structure of the universal language.

The total hierarchy structure of the universal language

Finally, we make the total set of sentences of the universal language. The total set of

sentences which are constructed as in Section 1 is called the level one sentence and

are denoted by L1. We denote the set of words by L0.

Replacing L0 with L1, and following the scheme of generation of sentences for

L1, we make the set of sentences which is denoted by L2. Repeating this precess,

we can obtain the total set of sentences:

L0, L1, . . . ,Lk, . . .

The classification of sentences

(1) The sentences L1 which are created in the BTBB-generations from L0 are called

”basic sentences”.

(2) The other sentences in Lk (k > 1) are called ”complex sentences of level k.
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3. Natural languages

We will derive natural languages from the universal language. Here we describe it

in terms of English. We notice that the same discussions hold for other languages.

We follow the generation scheme of the universal language. Here we notice that we

inlude the empty word ”e” as a word.

(Step 1) The birth of natural languages

This step is almost the same as in the universal language. We treat the sentences in

the following order:

Type I ⇒ Type II ⇒ Type V ⇒ Type IV ⇒ Type III.

In the case of English, we choose English alphabets and make words W which is

called ”non-ending words” (we may add e (empty word)).

(Step 2) The first binary extension

Introducing ”ending words W*” as the conjugate words, we have

W̃ = W ∪W ∗ (W: non-ending words, W*: ending words).

We can create the sentences of the following type:

This sentence is then so called S+V sentences.

Here we notice that the symmetry breaking between W and W* always happens: a

dog runs, a dog sleeps, a dog comes, a cat runs, a rat runs.

Remark (Natural languages in biology and in physics). We make a comment

on the language structures in biology and physics. We can find an intimate analogy

between natural languages and biology, physics. This will be discussed in our next

paper.

(1) In molecular biology, RNA and DNA are tapes which are written by 4 words:

{A, T,G,C}, {A,U,G,C}, respectively. Hence we may take

W={A, T,G,C} for RNA, W=W*={A, T,G,C} for DNA, respectively.
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We have the duality T⇔ A, C⇔ G between W and W* in DNA. Hence we have no

symmetry breaking. DNA can be regarded as the binary extension on RNA through

identification of C with G. Proteins can be regarded as the ternary extension on RNA.

Then we may expect to obtain the languages by the successive binary extensions.

The acceptable sentences can be discussed from the body constructions. The Galois

group can be treated as mutations. These topics will be discussed in Part IV.

(2) In the theory of elementary particles, we have W⇔ particles, W*⇔ anti-particles

as binary extension. The symmetry breaking creates mass of particles. Here we notice

that we have the duality between Wand W* by q ⇒ q* + γ, where γ is the photon.

The ternary extension creates the colors of quarks. These will be discussed in Part

IV of our paper.

(Step 3) The ternary extension

Following the scheme, we introduce a concept of ternary conjugate triples W, W*,

and W** and we introduce the following types of sentences

We have the following two types: (1) S+V+O, S+V+C (standard type) (2)

S+V+A (non-standard type).

We give the background on the constructions of sentences:

The Galois theoretic understanding on the construction of Type II sen-

tences

At first we recall how we construct ternary sentences:

I have ⇒ ”What do you have? ⇒ ” I have books.

She is ⇒ ”How is she?” ⇒ She is pretty.

I live ⇒ ”Where do you live?” ⇒ I live in Tokyo.

Then we see that the sentences can be constructed by the ternary generations.

Namely two words, for example, ”I + have” are not enough and the entropy is not

minimum and demands more words. Then we choose a book and put ”I+have+a
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book”. Then the entropy is minimized and complete the sentence: I have a book. In

the case of other languages, we may make permutations, if we need:

b1, b2, b3 ⇒ b1, b3, b2 ⇒ . . . (b1 ∈W, b2 ∈W ∗, b3 ∈W ∗∗).

This shows that we need the Galois group.

(Step 4) The successive extensions

We begin the succesive extensions (Ternary extension ⇒ Binary extension).

We see that the following sentences can be realized by this successive extension:

(i) S+V+(O+O), (ii) S+V+(O+C).

The Galois theoretic understanding on the construction of Type V sen-

tences

(i) S+V+(O+O)

We may see that the sentence ”I give you a book” is the combination of the

following two ternary sentences:




I give you

+

I give a book

⇒ I give (you+ a book)⇒ I give you a book.

Hence we may understand that this construction is obtained by successive extensions

of ternary and binary extensions. Hence we may express the sentence in the several

manners:
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Remark. N. Chomsky associates only the binary-binary extension to sentences.

Hence we see that we need some discussions on several possibilities of associations

([2]):

The Galois theoretic construction for the remained sentences is the same and may

be omitted.

(ii-1) S+V+O+(V+O)
We take a sentence: ”I ordered him to cook meat”. We can imagine its construction
as follows:

I ordered him⇒
{

What did you order him? ⇒ I ordered him to cook ⇒

What did you order him? ⇒ I ordered him meat ⇒

⇒ What cook? ⇒ meat

⇒ What with meat? ⇒ cook

{
I ordered him to cook

I ordered him meat
⇒

(ii-2) S+V+O+C
We take a sentence: ”I make you happy”. Then we see its construction as follows:

I make⇒
{

Whom do you make? ⇒ Y ou ⇒ How? ⇒ happy

How do I make? ⇒ Happy ⇒ Whom? ⇒ Y ou

Next we give several examples of Type IV, Type III sentences.

(Type IV) sentences (Binary extension =⇒ Binary extension)
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(Type III) (Binary extension =⇒ Ternary extension)

where e is a blank box.

Remark. If-sentence, when-sentence, because-sentence etc...are typical Type IV, III

sentences.

(Type VI) (Binary extension =⇒ Ternary extension =⇒ Binary extension =⇒
binary extension) This sentence is thought to be so complex that it is might not

easily be constructed.

The total hierarchy structure of a natural language

Finally we can describe the total hierarchy structure of sentences by the following

generation scheme of the sentences of level k: Lk as we have given in Section 2. We

give several examples:

(1) L2 sentences which are not L1 sentences: We can include sentences of ”asym-

metric” type in L2 sentences.

Example: ”When they arrive we prepare our starts”

(2) Lk - sentences for arbitrary k: We can find sentences in Lk for any k which are

correct from grammar but not practical. We give an example:

Example: He knows that he knows that he knows... that he knows him.
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(Step 5) Introduction of entropy

Finally, we introduce the final binary extension. We choose the Shannon entropy

([21]).

However, the grammar for sentences in school texts is not enough to judge

wheather a given sentence is correct or not in daily life. We need help of the cognitive

language theory. This will be discussed in our next paper. Here we consider in what

level sentences, the effect of the entropy appears. When we speak simple sentences,

we do not worry about the grammar, or entropy. In fact, children speak incorrect

sentences frequently. Occasionally even adults do not speak correct sentences, for ex-

ample, in pygin language. In the case of simple sentences, we have not big troubles.

Hence we may assume that the essential effect of entropy appears at the later stage

of BTBB-structure. As for the entropy, we will discuss in our paper Part IV.

Summary We can derive natural languages from the universal language. Then we

can obtain the following results:

(1) The sentences of L1 contain basic sentences which supply enough sentences

in the daily conversation. In fact, so called 5 (or 7) basic sentences in English are

included in L1. Moreover, we see that basic sentences in other natural languages, for

example, in Japanese.

(2) The sentences in BTBB-structures include not only basic sentences but also other

useful sentences If- sentences, when-sentences, . . .

(3) Applying Theorem in Section 1 to natural languages we can produce the basic

sentences. When we have not only binary sentences (S+V) but also ternary sen-

tences (for example, S+V+O), and S+V+O+O. S+V+O+C sentences. Then it has

the BTBB-structure, but no more other sentences, for example, S+V+O+O+O,

S+V.+O+C+O,... cannot exist.
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4. Computer language

In this section we will discuss the evolution of the computer languages. At first we

recall the basic formal languages and give several examples of computer programming

languages ([15]). Then we proceed to the evolution of formal languages and realization

of computer languages in the formal languages and discuss the hierarchy structures.

Finally, we will notice that the compile is nothing but the realization of computer

languages in the context of free language.

The hierarchy structure of the formal language theory

In the formal language theory we have the following hierarchy structure:

(1) The regular language: F1

(2) The context free language: F2

(3) The context sensitive language: F3

(4) The general language (Turing machine): F4

We have:

F1 ( F2 ( F3 ( F4.

We can describe the same hierarchy structure in terms of computer machines. Cor-

responding to the hierarchy structure of the formal language, we have

(1)’ Finite automaton

(2)’ Push-down automaton

(3)’ Linear bounded automation

(4)’ Turing machine

We notice that (1) ⇔ (1)’, (2) ⇔ (2)’, (3) ⇔ (3)’, (4) ⇔ (4)’. Hence we see that

the formal language is directly connected to mathematics ([15]).

The computer programming languages

We have many computer programming languages. Here we make a classification of

the programming languages and state some basic properties: (i) Lower level language

(ii) Higher level language:

(i) Lower level languages. The languages which are directly connected to com-

puter systems are called of lower level languages.

Examples (1) Machine language (2) Assembly language

(ii) Higher level language The language which is constructed for practical uses.

To perform this language, we have to transform (compile) the language to a lower

level language.
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Examples (1) FORTRAN, BASIC, COBOL, (2) Pascal. C-language, PL/1, (3)

LISP, Scheme, MI. Prolog (4) C++, Smalltalk, Java, C#, PHP, Perl, TD,...

The evolution scheme of the formal languages

We give the evolution of the formal languages.

Remarks: (1) We may expect that this evolution can be described by non-commu-

tative Galois extensions directly. Moreover, we see that the evolution of a language,

even if it is a natural language, has a mathematical character. This is the background

philosophy of this paper. N. Chomsky has already observed this philosophy and

established his language theory ([2]). Unfortunately, he has not found the universal

language. He has described in terms of a proper natural language, English. This is

thought to be a weak point of his theory and this causes misunderstandings on his

philosophy. We can complement his theory by replacing English with our universal

language.

(2) We make a comment on the grammar on the formal language. We may choose the

Montagne grammar as the grammar of the formal language. N. Chomsky established

only the formal language theory, but he has not entered into the grammatical struc-

ture. It seems that the grammatical structure depends on culture, history, characters

of peoples who use the language. This has indicated the necessity of the introduction

of cognitive language.

The universal computer programming language

We proceed to find the universal computer programming language. We have seen

that we have the universal language F* for a natural language F and the realization

f : F ⇒ F ∗. Here we will find the universal computer programming language PL*

for a computer programming language PL and its realization. Since any PL can be

described in the formal language, we can choose a Turing machine as its universal



28 J.  Lawrynowicz , M. Nowak-Kȩpczyk, O. Suzuki, M. F. Othman

language. We see that the so called compiling is one of the realizations in the context

free language.

5. The method of language theory to physics

Here we recall the evolutional methods in physics and we will find the same hierarchy

structure as in the language theory. Hence we may assert that this fact gives a method

of language theory to physics.

The evolution of the universe

We recall the results on the evolution of the universe. Then we can find the BTBB-

structure and its complexity systems.

We assume that the birth of the evolution is given by explosion (for example,

Big-Bang) of the origin (for example the Penrose-Hawking singularity). Then we

have a fluctuation in the initial state. Next the self-organization performs by the

following two processes (E-I) and (E-2):

(E-I) The construction of hierarchy structure (BTBB-structure): The hier-

archy structure is called BTBB-structure when it can be descr?bed by the successive

extensions of the following type:

{0} ⇒ B(a) ⇒ T(b) ⇒ B(c) ⇒ B(d),

where {0} is the initial state and B(∗), T(∗) are the binary and ternary extension

respectively and ⇒ implies the successive extension. We notice that the ternary

extension appears only one time and other extensions are binary extensions.

(E-II) The construction of the complexity system: After the BTBB-structure

is created, the construction of the complexity system begins with the indefinite times

of successive binary extensions:

B(1) ⇒ T(2) ⇒ B(3) ⇒ B(4) ⇒ . . .⇒ {∞},
where {∞} is the final state. This generation process can be described by the in-

definite times successive binary extensions. When it makes a linear (resp. planar)

structure, it is called of linear (resp. planar) type. The linear type can be observed

in DNA, RNA and proteins (resp. in polymers).

(E-III) The total evolution

The total evolution is generated by successive operations of (E-I) and (E-1I) which

create a fractal structure and finally a chaotic structute.

The language method for physics

We will state the following problems and find the language method for physics.
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Figure 2. The evolution of the universe

Problems:

(1) Can we describe the evolution in terms of language?

(2) Is there no phenomena which cannot be described in terms of language?

We will consider the problems in the followirg steps:

Step 1: We recall the evolution of the universe which is given in Part I ([18]). We

can summarize the evolution in the Figures 1. Then we can observe the evolution

processes E-I, E-II, E-III.
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Figure 3. The Total Evolutionary Tree

Step 2: We consider the evolution in the language. We can observe also the evolution

processes E-I, E-II, E-III.

Step 3: Then we compare the both evolutions. We have introduced the concept of

the level of the evolutions. We compare the evolution of the universe with that of

language in each level k (see p. 9, 13). We can give the results in Table 1.

Then we can observe the following facts:

(1) We see that the generations of the universe and that of sentences have the same

characters i.e. the BTBB- structure and the complexity systems.

(2) In each evolution stage, we can find only one ternary extension and other exten-

sions are binary extensions. Hence, finding the ternary extension, we can divide the

evolution process into each stage of the evolution (see Figure 3).

The anthological problems in physics

With these observations, we will discuss the problems. The motivation of the con-

sideration on the problems can be stated as follows:

(1) Can other animals describe or understand this universe as human being? It seems

that they cannot discuss the evolution of the universe, because their language ability

is too poor to describe it.
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(2) We know that we (want to) describe the universe in our way. We do not know

whether our language ability is perfect or not. If not, we can have only the incomplete

knowledge on the universe.

(3) If there would exist life things, we may call ”hyper human being”, who have

hyper ability, then they can understand the universe much more exactly. Then we

see that there exist unknown phenomenon forever, for us.

Table 1. The comparisons of Lk structures in language and physics.

generation language physics remark

L1

(0) Alphabets (or words) (0) photons

BTBB-
structure

(1) binary sentence (1’) quarks and anti-quarks
(S+V) (q and q*)
(2) ternary sentences (2’) quarks with colors
(S+V+O, S+V+A) (q(r), q(b), q(y))
(3) basic sentence (3’) quark family
(S+V+O+O, S+V+O+A) t, b, s, c, u, d
(4) complex sentences (4) statistical particles complexity

structure

L2

(0’) L1-sentences (0’) proton and neutron

BTBB-
structure

(1) Binary L1-sentences (1’) H2, H4 (Gamov process)
(L1 + L1)
(2) Ternary L1 sentences (2’) He+He+He=C
(L1 + L1 + L1) (Salpter process)
(3) L1 basic type sentences (3’) a-process, b-process
(L1 + L1 + (L1 + L1)) generation
(4) L1-complex sentences (4’) Generation of stars complexity

structure

L3

(0) L2-sentences (0’) The equilibrium state of

BTBB-
structure

(1) Binary L2-sentences matters and emissions
(L2 + L2) (1’) Light stars (M≤4Ms)
(2) Ternary L2 sentences (Gamov process)
(L2 + L2 + (L2 + L2)) (2’) Heavy stars (M≥13Ms)

(Salpter process)
(3) L2 basic type sentences (3’) Hyper Nova (M≥13Ms)
(L2 + L2 + (L2 + L2))
(4) L2-complexity structure (4’) The creation of galaxies complexity

and black holes structure

We give some explanations on the table. Here we give intimate analogies between

physics and language theory

(1) S+V ⇔ q + q∗

(2) S+V+O, S+V+C ⇔ q(r) + q(g) + q(b), q∗(r) + q∗(g) + q∗(b)

(3) S+V+O+O’, S+V+O+C can be seen as the ”resonance” of two sentences:

S+V+O+O’ ⇔ (S+V+O)+(S+V+O’), S+V+O+C ⇔ (S+V+O)+(S+V+C), For

example
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I give you books ⇔ (I give you) + (I give books)

I grow up him to be a doctor ⇔ (I grow up him)+ (I grow up to be a doctor)

This phenomena can be observed in physics:

q(r) + q(g) + q(b)+ weak boson W ⇔ q(r) + q(g) + q′(b)

q(b) and q′(b) make a resonant state.

Repeating this process, we can obtain the generation of the quark family:

(q(r) + q(g) + q(b)) + (q′(r) + q′(g) + q′(b))⇔ (q′′(r) + q′′(g) + q′′(b))

Hence we can understand that the both baryons make a resonance state by a

weak boson W. We can rewrite the above sentences in a physical manner:

I give you + I give books ⇔ I give you books + emitted entropy

We can see that the role of weak bosons and leptons is emitting the entropy

compensating the decrease of the entropy for the self organizations.

(4) We give other examples of binary resonances:

The corresponding sentences might be the change of S, V: S + V ⇔ S’+V’:

I walk ⇔ I will walk, I walk ⇔ He walks.

(5) We can associate L2 - generations for Gamov process and Salpeter process. We

can associate these process to Type I sentence (S+V-sentences) and Type II sentence

(S+V+O sentences)
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(6) We can associate successive α-process and β-decay process to the following tree

structures;

Remark. By these observations, we can see intimate relationships between physics

and languages. We may complete the following table:

Physics Language

W-boson Change of tense

Change of subjective, objective

Lepton post-positional particle

Photon, neutrino, lepton Junk sentences

Remark: Linguists have paid attentions only to correct sentences, but not incorrect

sentences or junk sentences. The research of molecular biology tells that junks in

DNA play very important hidden roles for the life activity. They keep their freedom

of the choices for survives. In the linguistics, we have the same analogy: Namely such

sentences make the freedom of the human beings. We can not observe the freedoms

directly. It lives in the information space and we can measure them in terms of the

Shannon entropy. Hence we should consider not only the correct sentences but also

non-correct sentences, junk sentences as the origin of the language. Hence by the step

5 (introduction of entropy) in the evolution process of the language, the final binary

extension creates the separation of the correct sentences and incorrect sentences.

We may say that Chomsky has discussed only on the logical side, or mathematical

structure but not on the emotional side. On the base of this observation we may

propose an ambitious proposal on the research on the dark matter, dark energy:
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{
Light matters

dark matter
⇔ correct sentences

non-correct sentences

Appendix: Fibonacci language
(Language defined by Fibonacci and Tribonacci sequences)

We introduce the Fibonacci/Tribonacci sequence and construct a natural language

by these languages ([8]).

Fibonacci and Tribonacci Fibonacci sentences

The following sequences are called Fibonacci sequence/Tribonacci sequence, respec-

tively, when

Fn+2 = Fn + Fn+1 (F1 = F2 = 1),

Gn+3 = Gn +Gn+1 +Gn+2 (G1 = G2 = 1, G3 = 2).

At first we consider sentences which are generated by the Fibonacci sequence. We

assume the existence of the origin of the evolution which is denoted by *. We choose

the seeds of evolution as elements of the Fibonacci sequence:

We assume that they are floating and make a simple random walk: Then the first

binary extension happens and create following pair which is called Fibonacci pair:

{Fi, Fi+1}, (i = 1, 2, . . .).

We introduce the simplest binary sentence by

From these pairs, we will introduce the ”general Fibonacci sentence” by the tensor

product:
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Otherwise (k 6= i + 2) we have a direct product of two pairs which are called

symmetry breaking pair. More generally we take a sequence of pairs

{Fi, Fi+1} ⇒ {Fi+1, Fi+2} ⇒ {Fi+2, Fi+3} . . .
and we can define general sentences by the successive extensions:

”Going up construction”

Next we consider the Tribonacci sequence {Gi}. In the same manner, we have

the explosion:

Then we have the ternary sentences. In a similar manner, we have the successive

temary sentences:

We introduce sentences which are created by the successive binary and ternary

extensions
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Following the converse process we have the transcription mechanism.

The group theoretic generation of Fibonacci and Tribonacci sequences

We introduce a concept of the group structure for the generation of the Fibonacci

sequences at first. For the generation of basic binary sentences, we associate a vector

by

Then we can generate a tower of binary sentences by the Galois group operation

defined by [
Fi+2

Fi+1

]
= F

[
Fi+1

Fi

]
, F =

(
1 1

1 0

)
.

In fact, we have [
Fi+3

Fi+2

]
= F

[
Fi+2

Fi+1

]
= F 2

[
Fi+1

Fi

]
.

In order to extend the product to the group structure, we have to extend the

Fibonacci sequence with negative index by the condition: Fi−1 = Fi+1 − Fi (i < 0).

Then we have the Fibonacci sequence to the negative degree

F−i−1 F−i Fi+1 . . . F−1 F0 F1 F2

Hence we have

. . . . . .− 21 13 − 8 5 − 3 2 − 1 1 0 1 1 . . .

For this sequence we can define Fn (n ≤ −1) as follows:
[

Fi

Fi−1

]
= F−1

[
Fi+1

Fi

]
, F−1 =

(
0 1

+1 −1

)
.

In an analogous manner we generate sentences with negative indices:

Fi+1, Fi−1, Fi, Fi−3, Fi−2, Fi−5, Fi−4, . . .

(Going down generation)
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Next we proceed to the generation of ternary Tribonacci sentences in terms of the

Group generation. For a ternary Tribonacci sequence {Gn} we introduce the Group

structure 

Gi+5

Gi+4

Gi+3


 = G



Gi+2

Gi+1

Gi


 , G =




1 1 1

1 1 0

1 0 0


 .

Then we can generate the ternary sentences by

G n



G3

G2

G1


 .

In a completely analogous manner, we introduce the inverse ternary sentences by

(G−1)n



G3

G2

G1


 .

Then we can make the ”going-up generation” and ”going-down generation” of ternary

sentences. The sentences given by successive extension sentences become

. . .F × G ×F ( |∗ > ⊗ |∗ > ) =

[
F2

F1

]
⊗



G3

G2

G1


 .

Hence we can obtain the sentences by operating the group operations.

Galois theory of Fibonacci and Tribonacci sequences

We can give the Galois theory for the tower of tensor products. From the sequence of

tower generation, we have the tower of Galois groups. For this we will introduce per-

mutations for Fibonacci pairs and Tribonacci triples: Fi ⇔ Fi+1, Gi ⇔ Gi+1 ⇔ Gi+2.

Then we can introduce the tower structure of successive extensions and construct

the Galois theory for the tensor products of the generations. When we assume that

the total Galois group is a solvable group, we can find the BTBB structure.

Fibonacci Tribonacci language and their biology

With these preliminaries, we will construct the Fibonacci-Trigonacci language and

their biology:

(1) Fibonacci-Trigonacci language

Here we will find a virtual natural language of Fibonacci and Trigonacci sequences.

Following the generation scheme of several types of sentences of a natural language,

we will produce sentences. We will give the first four types of sequences. The remained

sequences can be given in an analogous manner:
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Type III, IV sentences are given by the tensor product: Gj×Fi |∗ >, Fk⊗Gj⊗Fi |∗ >,

respectively. Other sentences can be given in terms of tensor products.

(2) Fibonacci and Trigonacci biology Here we will give the DNA sequence of

Fibonacci sequence: DNA constitutes with two RNA sequences:

3′ − RNA− 5′ sequence : . . . . . . F−6 F−4 F−2 F0 F2 F4 F6 . . . . . .

5′ − RNA− 3′ sequence : . . . . . . F−7 F−5 F−3 F−1 F1 F3 F5 . . . . . .

with the duality: F2n−1 ⇔ F2n.

Next we will construct the transcription mechanism for Fibonacci-Tribonacci se-

quence. For this we prepare the tensor products of the Fibonacci sequence and Tri-

bonacci sequence Fi ⊗ Gj and Fi ⊗ Gj ⊗ Fk, successively. Here we have the tensor

product in the vertical direction:

. . . . . . F−6 F−4 F−2 F0 F2 F4 F6 . . . . . .

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
. . . . . . G−3 G−2 G−1 G0 G1 G2 G3 . . . . . .

⇒
. . . . . . F−6 F−4 F−2 F0 F2 F4 F6 . . . . . .

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
. . . . . . G−3 G−2 G−1 G0 G1 G2 G3 . . . . . .

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
. . . . . . F−7 F−5 F−3 F−1 F1 F3 F5 . . . . . .

⇔
. . . . . . F−6 F−4 F−2 F0 F2 F4 F6 . . . . . .

. . . . . . F−7 F−5 F−3 F−1 F1 F3 F5 . . . . . .

+ . . . . . . G−3 G−2 G−1 G0 G1 G2 G3 . . . . . .

This process can be identified with the inverse process of the tensor product.

Remark: The Fibonacci-Tribonacci language and biology are non-realistic virtual
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ones. In part VII, we will give model constructions of evolutions. Then we may

survive ”the lost world” or imagine ”the unknown astrobiology”.
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tres  Lódź Sér. Rech. Déform. 62, no. 1 (2012), 33–42.



40 J.  Lawrynowicz , M. Nowak-Kȩpczyk, O. Suzuki, M. F. Othman
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STRUKTURY BINARNE I TERNARNE W EWOLUCJI

WSZECHŚWIATA (ŚWIAT 2× 3× 2× · · · WYMIAROWY) III

TEORIA GALOIS JȨZYKÓW I PROBLEM ANTROPICZNY W FIZYCE

S t r e s z c z e n i e
(1) Przedstawiamy nieprzemienna̧ teoriȩ jȩzyków Galois i skonstruowano uniwersalny

jȩzyk jȩzyków naturalnych. (2) Przedstawiamy teoriȩ Galois dotycza̧ca̧ jȩzyków naturalnych.
(3) Przedstawiamy teoriȩ Galois dla formalnej teorii jȩzyka. (4) Wreszcie znajdujemy bliskie
powia̧zania miȩdzy jȩzykiem a fizyka̧ i omawiamy problem antropologiczny w fizyce z punktu
widzenia naszej teorii jȩzyka. (5) W Dodatku podajemy wirtualny jȩzyk zdefiniowany przez
sekwencje Fibonacciego i Tribonacciego.

S lowa kluczowe: binarna struktura fizyczna, ternarna struktura fizyczna, kwaternarna struk-

tura fizyczna, kwinarna struktura fizyczna, sennarna struktura fizyczna, stop, pentacen,

polimer, bia lko, paptyd, aminokwas, rozszerzenie Galois, powierzchnia Riemanna.


