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Summary

At the beginning of the article, the simple and inverse problem in field theory is described

and the term tomography is explained. There are also examples of the use of gravitational

tomography and its significance in Earth sciences. The main purpose of the article is to

present two practical calculation procedures intended to determine the spatial distribution

of density in objects with spherical-symmetrical mass distribution. In the first procedure,

the object is divided into concentric spheres of equal thickness. In the second procedure,

the object is divided into concentric spheres of equal volume, which provides more precise

information about the distribution of density in the outer layers of the object. The den-

sity values are obtained by solving a system of linear equations with introduced results of

measurements of gravity acceleration performed with a gravimeter outside the object.

Keywords and phrases: gravity, tomography, acceleration, spatial distribution, density, com-

putation

1. Introduction

A simple problem in the field theory is that the given data are the values character-

izing the sources of this field, and while using them, we need to determine the values

describing the considered field in the space that surrounds its sources. In turn, the

inverse problem in the theory emerges when having values that describe the field in

space we need to calculate the values characterizing the sources of this field [1]. In the
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case of the gravitational field, the inverse problem is that knowing the gravitational

potential values or gravity acceleration values and directions, we need to determine

the position of masses or the spatial distribution of densities of this mass [2]. The

word tomography comes from Greek. It was created by combining two words: tho-

mos and grapho, meaning respectively: cutting and image. Accordingly, tomography

mans a method of obtaining images from the internal structure of a studied object as

a result of its intersecting with selected planes. Nowadays, tomography is most often

associated with a method of the so-called medical imaging diagnosis, which consists

in obtaining cross-sectional images of selected parts of a body using e.g. X-rays

emitted from a moving lamp or magnetic resonance [3].

However, as a research method, tomography has a much broader application,

also in Earth sciences. In geophysics, geology and surveying information about spa-

tial distribution of mass density inside Earth is crucial. In the case of geophysics,

this information is critical to understand the phenomena taking place inside our

planet [4, 5]. In the case of geology, it allows to detect some useful fossil raw mate-

rials. And in the case of surveying, it allows to determine the deviation value and

direction from the vertical line of the gravity acceleration in a particular place on

Earth, and thus to develop a model of its surface (a geoid) and to establish gravi-

metric surveying points [6, 7]. It is essential to ensure the necessary accuracy of

almost all measurements carried out by surveyors [8, 9]. Specialists that deal with

the so-called higher surveying measure the gravitational anomalies, among others of

anthropogenic origin, e.g. arising from closed mine pavements, tunnels, shelters [10].

Results of those measurements are broadly used, also for military purposes. Thus,

the gravitation tomography becomes useful in each of these sciences. Hence, this

method is currently the object of interest of numerous researchers [11, 12].

This paper is intended to provide practical calculation procedures of gravitation

tomography, applicable to determine the spatial distribution of mass density for

spherical-symmetrical objects. In such an object, the density depends solely on the

distance from its center. Two variants of object division will be considered. The first

one is a division into spheres of equal thickness, and the second one is the division

into spheres of equal volume.

2. Division of the object into spheres of equal thickness

A given object is a sphere with external radius of r0, and a fragment of its cross-

section in presented on Fig. 1. This object will be divided into m of concentric spheres

of equal thickness ∆r, meeting the condition ∆r � r. Then it can be assumed that

the density of matter dj in each of these spheres is constant (j is the number indicator

of the sphere and it fulfills the condition (j = 1, 2, . . .m). According to the accepted

assumptions, the thickness of each sphere ∆r and its radii: internal rwj , external rzj
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and average rsj are expressed in the following formulas:

∆r =
r0
m
, (1)

rwj =
r0
m

(j − 1), (2)

Fig. 1. Scheme of division of an object with spherical-symmetrical distribution of mass into
spheres of equal thickness; r0 – object radius, rwj , rsj , rzj – radii of j-th sphere respectively:
internal, average and external, ∆r – thickness of each sphere, dj – mean mass density in
j-th sphere, ∆gj – contribution to gravity acceleration produced by mass contained in j-th
sphere at distance Ri from the centre of object O.

rzj =
r0
m
j, (3)

rsj =
r0
m

(
j − 1

2

)
. (4)

In order to determine the density of dj , the values of gravity acceleration gi at

distances Ri from the center of the object (i is an indicator that numbers these

distances and at the same time the measurement points i = 1, 2, . . . n, and also

n = m) were measured. Due to the spherical-symmetrical distribution of density in

the object, the gi vectors are of a radial direction. For an unambiguous determination

of dj it is necessary to take n = m measurements at different points. According to

the Newton’s law of gravitation, the j-th sphere provides contribution to acceleration

∆gij at a selected distance Ri from the center of the object, expressed with the

following formula [2]

∆gij =
4
3πG(r3zj − r3wj)dj

R2
i

, (5)
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where G is the gravity constant (G = 6.67 ·10−11 (Nm2)/kg2). The resultant acceler-

ation gi at each point is the sum of these contributions and is given by the following

formula

gi =

j=m∑

j=1

∆Gij . (6)

The proportionality coefficient kij may be entered into formula (5) and written down

in the following form

∆gij = kijdj , (7)

where the kij is expressed by the formula

kij =
4
3πG

(
r3zj − r3wj

)

R2
i

. (8)

Using formulas (6) and (7) for each of the points of measurement of the resultant

acceleration gi the following system of equations is obtained




k11d1 + k12d2 + . . .+ k1jdj = g1,

k21d1 + k22d2 + . . .+ k2jdj = g2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

ki1d1 + ki2d2 + . . .+ kijdj = gi.

(9)

Since it is a system of linear equations, it can be written down in a matrix form

KD = G. (10)

The matrices K, D and G in the system (10) are in the form of

K =




k11 k12 . . . k1j
k21 k22 . . . k2j
. . . . . . . . . . . .

ki1 ki2 . . . kij


 , D =




d1
d2
. . .

dj


 , G =




g1
g2
. . .

di


 . (11)

The purpose of further proceedings in this case of gravitation tomography is to

calculate the density of masses of di in individual spheres, which is brought down

to solving the system of equations (10) and determining the elements of the single-

column matrix D. Standard procedure, employed in the theory of linear equations

provides the following formula

D =
1

det K
(Ks)TG, (12)

where det K is the determinant of matrix K and (Ks)T is the matrix transposed to

the complement matrix K.

An example of applying the described procedure will be the conduct where the

spherical-symmetrical area is divided into 8 spheres. In such a case, the system of
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equations (9) takes the following form:




k11d1 + k12d2 + . . .+ k18d8 = g1,

k21d1 + k22d2 + . . .+ k28d8 = g2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

k81d1 + k82d2 + . . .+ k88d8 = g8.

(13)

and the contributions to the acceleration ∆gij and the coefficients of proportionality

k − ij are calculated from the following formulas respectively:

∆gij =

4
3πG

[(
r0
m j
)3 −

(
r0
m (j − 1)

)3]
dj

R2
i

, (14)

kij =

4
3πG

[(
r0
m j
)3 −

(
r0
m (j − 1)

)3]

R2
i

. (15)

After applying the formula (15) for the distance Ri and taking into account the

relation (1), the following sequence of formulas for the proportionality coefficients

kij is obtained:

ki1 =
4πG∆r3

3R2
i

=
0.0026πGr30

R2
i

, (16)

ki2 =
28πG∆r3

3R2
i

=
0.0182πGr30

R2
i

, (17)

ki3 =
76πG∆r3

3R2
i

=
0.0494πGr30

R2
i

, (18)

ki4 =
148πG∆r3

3R2
i

=
0.0969πGr30

R2
i

, (19)

ki5 =
244πG∆r3

3R2
i

=
0.1589πGr30

R2
i

, (20)

ki6 =
364πG∆r3

3R2
i

=
0.2370πGr30

R2
i

, (21)

ki7 =
508πG∆r3

3R2
i

=
0.3307πGr30

R2
i

, (22)

ki8 =
676πG∆r3

3R2
i

=
0.4401πGr30

R2
i

. (23)

In the case of spheres located at a large distance from the center of the object,

i.e. for j � 1, it is possible to calculate the approximate values of proportionality

coefficients kij from simplified formulas. For this purpose, the volume of a sphere will

be calculated not as the difference in volume of spheres of adjacent rwj , rzj radii but
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as the product of the surface area of a sphere of medium rsj radius and its thickness

∆r. The following is obtained then

kij ≈
4πGr2si∆r

R2
i

. (24)

After substituting the formula (4) to the formula (24), we can write down what

follows

kij ≈
4πGr30
R2
im

3

(
j − 1

2

)2

. (25)

Because j � 1, formula (25) can be simplified even more and then

kij ≈ 4πG
r30j

2

R2
im

3
. (26)

To check the difference between the approximate and the exact value, formula (26)

will be applied for j = m = 8. In such a case we will obtain what follows from the

formula (26)

ki8 =
0.4688πGr30

R2
i

. (27)

Comparing this value with the exact value ki8 calculated from formula (23) leads to

the conclusion that the relative error of this approximation does not exceed 0.03.

A flaw of the described procedure, which is based on dividing the sphere of equal

thickness ∆r, is that the volume of spheres that are increasingly more distant from

the center of the object grows rapidly. This is indicated by the sequence of values of

proportionality coefficients kij , expressed in formulas (16–23). According to formula

(26) this growth is approximately proportional to the square of index j, meaning

the sphere. As a result, the calculated density dj is assigned to areas with increasing

volume, and the structure of external layers of the objects is identified with decreasing

resolution.

3. Division of the object into spheres of equal volume

The flaw described in the above part of the paper can be avoided by dividing the

examined object into m concentric spheres of equal volumes Vj (Fig. 2). Accordingly,

the volume of each sphere is expressed with the following formula

Vj =
V0
m

= const. (28)

where V0 is the volume of the entire spherical object, calculated from the formula

V0 =
4

3
πr30. (29)
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After substituting formula (29) to formula (28) the volume of each sphere Vj is given

by the formula

Vj =
4

3

πr30
m

. (30)

The contributions to the acceleration from each of the spheres ∆gij and the propor-

tionality coefficients ∆gij for each of the spheres will be calculated in the same way

as previously by adapting formulas (7) and (8). The following is obtained then

Fig. 2. Scheme of division of an object with spherical-symmetrical distribution of mass into
spheres of equal volume; ∆rj – thickness of j-th sphere, the other symbols have the same
meaning as given in the description in Fig. 1.

∆gij =
GVjdj
R2
i

, (31)

kij =
4πGr30
3mR2

i

. (32)

Formula (31) shows that the contributions to the acceleration ∆gij from each sphere

are the same, while the proportionality coefficients of kij do not depend on j and

are constant for all values of Ri. The procedure is afterwards the same as before;

we write down the system of linear equations (9), introducing the proportionality

coefficients expressed with formula (29). Then, the system is solved with formulas

(10–12).

Division of the object concerned into concentric spheres of equal volumes causes

that the radii of the spheres located in the internal part of the object grow slower

and slower. The dimensions of these spheres will now be calculated for the mentioned
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division. The contribution to the acceleration ∆gij from the j-th sphere can be

calculated using its radii: internal rwj and external rzj , using the formula

∆gij =
4
3πG

(
r3zj − r3wj

)
dj

R2
i

. (33)

On the other hand, the volume of a sphere with a radius equal to the external radius

of the of rzj , fulfills the equation

4

3
πr3zj =

4

3
πr30

j

m
, (34)

which the following formula for this radius is obtained from

rzj =
3

√
j

m
r0. (35)

Similarly, the volume of a sphere with a radius equal to the internal radius of the of

rwj , fulfills the equation
4

3
πr3wj =

4

3
πr30

j − 1

m
, (36)

which, when transformed, gives the following formula for this radius

rwj =
3

√
j − 1

m
r0. (37)

The thickness of the j-th ∆rij sphere is equal to the difference between its outer

radius and inner rvj and is given by the formula

∆rj =

(
3

√
j

m
− 3

√
j − 1

m

)
r0. (38)

The mean radius of the j-th sphere rsj will be the arithmetic mean of the outer radii

of the outer rzj and inner rwj . The mean radius defined in this way is expressed by

the formula

rsj =
1

2

(
3

√
j

m
+

3

√
j − 1

m

)
r0. (39)

Moreover, between the following radii: the inner j-th rvj sphere and the outer rwj
sphere with the number (j − 1) there is equality, i.e

rwj = rz(j−1). (40)

To give an example of how to apply the derived dependencies, the division of the

object into m = 8 spheres will be considered. Using formulas (39) and (38) for this

example, the following sequence of equations is obtained, expressing the outer radii

of the spheres of rzj and their thicknesses ∆rj :

rz1 =
3

√
1

8
r0 = 0.5000r0 ∆rj = 0.5000r0, (41)
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rz2 =
3

√
2

8
r0 = 0.6300r0 ∆rj = 0.1300r0, (42)

rz3 =
3

√
3

8
r0 = 0.7211r0 ∆rj = 0.0911r0, (43)

rz4 =
3

√
4

8
r0 = 0.7937r0 ∆rj = 0.0726r0, (44)

rz5 =
3

√
5

8
r0 = 0.8550r0 ∆rj = 0.0613r0, (45)

rz6 =
3

√
6

8
r0 = 0.9086r0 ∆rj = 0.0536r0, (46)

rz7 =
3

√
7

8
r0 = 0.9565r0 ∆rj = 0.0479r0, (47)

rz8 =
3

√
8

8
r0 = 1.0000r0 ∆rj = 0.0435r0. (48)

While analyzing the results obtained, it is easy to notice that the outer radius of

the first sphere of rz1, equals half the radius of the entire area of r0 and also equals

the thickness of ∆r1 of this sphere (see equations (41)). Furthermore, thicknesses of

subsequent spheres decrease quickly.

4. Conclusions

In order to obtain the most accurate information on the internal structure of the ex-

amined object of a spherical-symmetrical mass distribution, it is necessary to divide

it into as many concentric spheres as possible (m� 1). The obtained spatial distri-

bution of mass thickness in the object will be characterized with higher resolution

then. It will be also justified to use the approximation consisting in replacement of

its distribution of mass density with average density dj ascribed to the distance from

the center of the object equal to the average radius of this sphere rsj . Dividing the

object into a large number of concentric spheres causes an increase in the number of

linear equations in the system (9). To ensure solvability of this system it is necessary

to perform gravimetric measurements of gravity acceleration gi also in sufficiently

large and the same number of points (n = m). The simplest division of the object

into concentric spheres of equal thickness ∆r causes the masses of external spheres

to increase rapidly and to give more and more contributions to the gravity acceler-

ation. In situation where it is necessary to investigate the mass distribution more

accurately in the external part of the examined object, e.g. in the case of Earth, a

better solution is to make a division into spheres of equal volume. Then, regarding

the decreasing thicknesses of external spheres, we can obtain greater resolution for
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the density distribution in this part of the object. The spherical-symmetrical distri-

bution of mass densities is a special but often encountered case of distribution. With

a good approximation, such a distribution can be found e.g. in astronomical objects,

including Earth. The most general case of mass distribution, where density in a given

point of the object depends both on the distance of this point from the center of the

object (radius rj) and the polar and azimuthal angles, will be a subject of another

paper.
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mission of the  Lódź Society of Sciences and Arts on January 15, 2019.

TOMOGRAFIA GRAWITACYJNA JAKO PROBLEM ODWROTNY

W TEORII POLA

S t r e s z c z e n i e
Na wstȩpie artyku lu opisano, na czym polega problem prosty i odwrotny w teorii

pola oraz wyjaśniono znaczenie terminu tomografia. Podano też przyk lady zastosowania
tomografii grawitacyjnej i jej znaczenie w naukach o Ziemi. G lównym celem artyku lu jest
przedstawienie dwóch praktycznych procedur obliczeniowych, przeznaczonych do wyznacza-
nia rozk ladu przestrzennego gestości w obiektach o kulisto-symetrycznym rozk ladzie masy.
W pierwszej procedurze obiekt jest dzielony na wspó ĺsrodkowe sfery o równej grubości.
W drugiej procedurze nastȩpuje podzia l obiektu na wspó ĺsrodkowe sfery o równej objȩtości,
co daje dok ladniejsza̧ informacjȩ o rozk ladzie gȩstości w zewnȩtrznych warstwach obiektu.
Wartości gȩstości sa̧ otrzymywane w wyniku rozwia̧zania uk ladu równań liniowych, do
którego zosta ly wprowadzone wyniki pomiarów przyspieszenia si ly ciȩżkości, wykonane
grawimetrem na zewna̧trz obiektu.

S lowa kluczowe: grawitacja, tomografia, przyspieszenie, rozk lad przestrzenny, gȩstość, obli-

czanie




