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2019 Vol. LXIX

Recherches sur les déformations no. 1
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Summary

In this paper we study separation axioms for S-density topology, which is a general-

ization of the classical density topology. Namely, we prove that if the sequence of sets is

regular, then the topology generated by it is completely regular, but is not normal.
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1. Introduction

Let R be the set of reals fg and N be the set of natural numbers. The symbol λ stands

for the Lebesgue measure. We use the symbols L and L to denote the σ-algebra of

Lebesgue measurable subsets of R and the σ-ideal of Lebesgue null sets, respectively.

For any set A ⊂ R we denote by A its closure in the natural topology on R.

In this paper we study a generalization of density points, called S-density points,

introduced by F. Strobin and R. Wiertelak in the paper [5].

Definition 1.1. Let S = {Sn}n∈N, where Sn ∈ L for every n ∈ N. We shall say that

the sequence S is converging to zero, if

lim
n→∞

diam ({0} ∪ Sn) = 0.
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Let us denote by S the family of all sequences of bounded sets with positive measure

convergent to zero.

Definition 1.2. Let S = {Sn}n∈N ∈ S. We shall say that x ∈ R is an S-density

point of the set A ∈ L, if

lim
n→∞

λ ((A− x) ∩ Sn)

λ(Sn)
= 1.

Observe, that for the sequence S =
{[
− 1
n ,

1
n

]}
n∈N we get the ordinary density

points (see [6]).

However, in this paper we shall focus on a special case of sequences of sets, so

called regular sequences.

Define for every sequence S ∈ S and for every set A ∈ L an operator

ΦS(A) = {A ∈ L : x is a S-density point of A}
.

In order to correctly define the regular sequences of sets, we use the following

property from the paper [5].

Proposition 1.3. Let S = {Sn}n∈N ∈ S. There exists a convergent to zero sequence

I = {In}n∈N ∈ I<ω, such that ΦS = ΦI , where I<ω stands for the family of all

sequences I = {In}n∈N, such that each In is a finite sum of pairwise disjoint closed

intervals.

Let us define for every sequence S = {Sn}n∈N ∈ S

α(S) = lim sup
n→∞

diam ({0} ∪ Sn)

λ(Sn)
.

Definition 1.4. We shall say that a sequence S = {Sn}n∈N ∈ S is regular, if there

exists a sequence I = {In}n∈N ∈ I<ω such that α(I) <∞ and ΦS = ΦI . Otherwise

we say that sequence S = {Sn}n∈N is irregular.

The regular sequences of sets had been studied in paper [6]. Now we recall some

properties of such sequences, involved in further investigation in this paper.

Theorem 1.5 ([5],[6]). Let S = {Sn} ∈ S be a regular sequence of measurable sets

and let A,B ∈ L. Then the operator ΦS has following properties:

1. ΦS(∅) = ∅, Φ(R) = R;

2. if λ(A M B) = 0, then ΦS = ΦS ;

3. ΦS(A ∩B) = ΦS(A) ∩ ΦS(B);

4. λ(ΦS(A) M A) = 0.

Recall, that an operator satisfying above conditions is called the lower density

operator. In this case (see [4]) the family

TS = {A ∈ L : A ⊂ ΦS(A)}
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is a topology on R, called S-density topology(or the topology generated by the se-

quence S). Moreover, the paper [6] contains a theorem that there exists a regular

sequence of measurable sets such that the topology generated by it contains the ordi-

nary density topology and is essentially stronger than the ordinary density topology.

2. An analogue of Lusin-Menchoff theorem

In this section we will prove an analogue of Lusin-Menchoff theorem in the case of

the S-density topology. The ideas of proofs are taken from the book [1] (see also [3]),

however they need to be modified to the case of S-density.

Lemma 2.1. Let S = {Sn} ∈ S be a regular sequence of measurable sets and B be

a Borel set. Then for every x ∈ B ∩ ΦS(B) there exists a perfect set K such that

x ∈ K ⊂ B.

Proof. Let S = {Sn} ∈ S and B be a Borel set. Let x ∈ B ∩ΦS(B). Because x is an

S-density point of the set B, the equality λ (B ∩ Sn) = 0 is possible for only finite

amount of n ∈ N. Hence we can assume that λ (B ∩ Sn) 6= 0 for every n ∈ N. For

every n ∈ N there exists nonempty perfect set Kn ⊂ B ∩ Sn. Let

K = {x} ∪
⋃

n∈N
Kn.

Then x ∈ K ⊂ B and the set K is perfect. �
Lemma 2.2. Let S = {Sn} ∈ S be a regular sequence of measurable sets and B be

a Borel set. Then for every countable set C = {xi : i ∈ N} such that C ⊂ B ∩ΦS(B)

there exists a perfect set K such that C ⊂ K ⊂ B.

Proof. Let S = {Sn} ∈ S and B be a Borel set. Moreover, let C = {xi : i ∈ N}
be a countable set such that C ⊂ B ∩ ΦS(B). Define for every i ∈ N sets Bi =

B ∩
[
xi − 1

n , xi + 1
n

]
. Observe that for every i ∈ N we have x ∈ ΦS (Bi). hence, by

previous lemma for every i ∈ N there exists a perfect set Ki such that x ∈ Ki ⊂ Bi.
Let

K = C ∪
⋃

i∈N
Ki.

Then the set K is perfect and C ⊂ K ⊂ B. �
Lemma 2.3. Let S = {Sn} ∈ S be a regular sequence of measurable sets and E ∈ L.

Then for every Tnat-closed set X such that X ⊂ E ∩ΦS(E) there exists a perfect set

K such that X ⊂ K ⊂ E.

Proof. Let S = {Sn} ∈ S and E be a Lebesgue measurable set and let X be a

Tnat-closed set such that X ⊂ E ∩ ΦS(E). There exists an Fσ set A ⊂ E such that

λ(E \ A) = 0. Hence ΦS(E) = ΦS(A). Let B = A ∪X. Then B is a Borel set and

X ⊂ B∩ΦS(B). By Cantor-Bendixon Theorem X = K1∪C, where K1 is perfect and
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C is countable set. Moreover, the set C consists only of isolated points, so C = C.

From the previous lemma there exists a perfect set K2 such that C ⊂ K2 ⊂ B. Put

K = K1 ∪K2. Then K is a perfect set such that X ⊂ K ⊂ B ⊂ E. �
Theorem 2.4. Let S = {Sn} ∈ S be a regular sequence of measurable sets and

E ∈ L. Then for every Tnat-closed set X such that X ⊂ E ∩ ΦS(E) there exists a

perfect set P such that X ⊂ P ⊂ E and X ⊂ ΦS(P ).

Proof. Because the sequence S is regular, there exists a sequence I = {In} ∈ I<ω
such that α(I) = lim supn→∞

diam(In∪{0})
λ(In) <∞ and ΦS = ΦI .

We can assume that In ⊂ [−1, 1] for every n ∈ N. Let F = E∩⋃x∈X [x−1, x+1].

Then X ⊂ F ∩ ΦI(F ). By Lemma 2.3 there exist a perfect set K such that X ⊂
K ⊂ F . Let us define for every n ∈ N

Rn =

{
x ∈ F :

1

n+ 1
< dist(x,X) ≤ 1

n

}
.

Observe that F = X ∪⋃n∈NRn. For every n ∈ N, let Pn be a perfect subset of Rn
such that λ(Rn \ Pn) < 1

2n+1 . Let

P = K ∪
⋃

n∈N
Pn.

Observe that P is a nonempty perfect set such that X ⊂ P ⊂ F .

We will show now, that X ⊂ ΦI(P ). Let x ∈ X.

Case 1. There exists n0 ∈ N such that x + In ⊂ P for every n > n0. Then we

have λ (E ∩ (x+ In)) = λ (P ∩ (x+ In)) for every n > n0. Because x ∈ ΦI(E), so

x ∈ ΦI(P ).

Case 2. Assume that for every n ∈ N there exists j ∈ N such that (x+In)∩Rj 6= ∅.
Define

r(n) = min {j ∈ N : (x+ In) ∩Rj 6= ∅} .
Since limn→∞ diam ({0} ∪ In) = 0, we have limn→∞ r(n) =∞. It is also true that

(F \ P ) ∩ (x+ In) ⊂
⋃

j≥r(n)

(Rj \ Pj) .

We have

λ ((F \ P ) ∩ (x+ In)) ≤ λ


 ⋃

j≥r(n)

(Rj \ Pj)


 ≤

∑

j≥r(n)

λ (Rj \ Pj) <
1

2r(n)
.

Hence

λ (F ∩ (x+ In)) ≤λ (P ∩ (x+ In)) + λ ((F \ P ) ∩ (x+ In))

<λ (P ∩ (x+ In)) +
1

2r(n)
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Since α(I) = lim supn→∞
diam(In∪{0})

λ(In) < ∞, we can assume that for every k ∈ N
there is diam (Ik ∪ {0}) ≤ 2α(I)λ(Ik). By the definition of the sets Rn we have that

diam (In ∪ {0}) ≥ 1
r(n)+1 . Hence

λ(In) ≥ 1

2α(I)(r(n) + 1)
.

Finally
λ (F ∩ (x+ In))

λ(In)
≤ λ (P ∩ (x+ In))

λ(In)
+

2α(I)(r(n) + 1)

2r(n)
.

It means that x ∈ ΦI(P ). �

3. The main result

In this section we will show that the topology generated by a regular sequence of

sets is completely regular, but it is not normal. First, we need the definition of

S-approximately continuous function and some its properties.

Definition 3.1. Let S ∈ S. We say that a function f : R → R is S-approximately

continuous at a point x0 ∈ R, if there exists a set Ux0
∈ L such that x0 ∈ Φ (Ux0

) and

limx→x0,x∈Ux0 f(x) = f(x0). We say that a function f : R → R is S-approximately

continuous, if it is approximately continuous at every point x ∈ R.

Similarly as in paper [3] we can prove the following

Proposition 3.2. Let S ∈ S and let f, g : R → R be S-approximately continuous

functions. Then the functions f + g and f · g are S-approximately continuous func-

tions. Moreover, if f(x) 6= 0 for every x ∈ R, the function 1
f is also S-approximately

continuous.

Definition 3.3. Let S ∈ S. We say that a function f : R → R is S-approximately

upper semi-continuous at a point x0 ∈ R, if for every a > f(x0) there exists a set

Ux0 ∈ L such that x0 ∈ Φ (Ux0) and f(x) > a for every x ∈ Ux0 . We say that a

function f : R→ R is S-approximately upper semi-continuous, if it is approximately

upper semi-continuous at every point x ∈ R.

Let S ∈ S. We say that a function f : R → R is S-approximately lower semi-

continuous at a point x0 ∈ R, if for every a < f(x0) there exists a set Ux0 ∈ L
such that x0 ∈ Φ (Ux0

) and f(x) < a for every x ∈ Ux0
. We say that a function

f : R → R is S-approximately lower semi-continuous, if it is approximately upper

semi-continuous at every point x ∈ R.

The proof of the next proposition is analogous to the case of J -density (see [3]).

Proposition 3.4. Let S ∈ S. A function f : R→ R is S-approximately continuous if

and only if it is S-approximately upper and S-approximately lower semi-continuous.
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Theorem 3.5. Let S = {Sn} ∈ S be a regular sequence of measurable sets and E

be a Fσ set such that E ⊂ ΦS(E). Then there exists a S-approximately continuous

function f such that

1. 0 < f(x) ≤ 1 for x ∈ E,

2. f(x) = 0 for x /∈ E.

Proof. Let S ∈ S be a regular sequence of sets and E be a Fσ set such that E ⊂
ΦS(E). Assume that E =

⋃∞
n=1 Fn, where each of the sets Fn is a Tnat-closed set.

Theorem 2.4 implies (see [1]) the existence of the family {Pα : α ∈ [1,∞)} of Tnat-

closed sets such that

1. if α1 < α2, then Pα1 ⊂ Pα2 ∩ ΦS(Pα2),

2.
⋃∞
n=1 Pn = E.

Let

f(x) =

{
1

inf{α:x∈Pα} for x ∈ E
0 for x /∈ E

.

Observe that the function f fulfils the conditions (1), (2).

Now we will show that f is continuous at every point x /∈ E. Let x0 /∈ E and

n ∈ N. From (2) we have that x /∈ Pn for every n ∈ N. Since the sets Pn are Tnat-

closed, there exists a number δ > 0 such that (x0 − δ, x0 + δ) ∩ Pn = ∅. Moreover,

because of (1), we have that (x0 − δ, x0 + δ) ∩ Pα = ∅ for every α ≤ n. Hence, if

x ∈ (x0 − δ, x0 + δ) then inf{α : x ∈ Pα} ≥ n. Consequently f(x) ≤ 1
n for every

x ∈ (x0 − δ, x0 + δ). Since f(x0) = 0, the function f is continuous at point x0.

Similarly one can show that f upper semi-continuous at every point x ∈ E.

In order to end the proof, we will show that f is S-approximately lower semi-

continuous at every point x ∈ E. Let x0 ∈ E and a < f(x0) be chosen arbitrarily.

Then f(x0) = 1
inf{α:x0∈Pα} = 1

M and a < 1
M+ε for some ε > 0. From (1) we have

that

x0 ∈ PM+ ε
4
⊂ PM+ ε

2
∩ ΦS(PM+ ε

2
).

Moreover, if x ∈ PM+ ε
2
, then

f(x) ≥ 1

M + ε
2

>
1

M + ε
> f(x0) > a.

Hence PM+ ε
2
⊂ {x ∈ R : f(x) > a} and x0 ∈ ΦS ({x ∈ R : f(x) > a}). Denote Ux0 =

{x ∈ R : f(x) > a}. Then x0 ∈ ΦS (Ux0
) and for x ∈ Ux0

we have f(x) > a. It means

that f is S-approximately lower semi-continuous at the point x0. �
Corollary 3.6. Let S = {Sn} ∈ S be a regular sequence of measurable sets and

E1, E2, H ⊂ R be pairwise disjoint sets such that E1 ∪ E2 ∪ H = R. Moreover,

assume that E1∪H and E2∪H are Fσ sets and E1∪H ⊂ ΦS(E1∪H) and E2∪H ⊂
ΦS(E2 ∪H). Then there exists a S-approximately continuous function f such that
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1. 0 < f(x) < 1 for x ∈ H,

2. f(x) = 0 for x /∈ E1,

3. f(x) = 1 for x /∈ E2.

Proof. By Theorem 3.5 there exist S-approximately continuous functions g, h such

that

1. 0 < g(x) ≤ 1 for x /∈ E1 and g(x) = 0 for x ∈ E1,

2. 0 < h(x) ≤ 1 for x /∈ E2 and h(x) = 0 for x ∈ E2.

Then the function f(x) = g(x)
g(x)+h(x) fulfils conditions (1)-(3) and by virtue of Propo-

sition 3.2 is S-approximately continuous. �
Theorem 3.7. Let S = {Sn} ∈ S be a regular sequence of measurable sets. Then

the topological space (R, TS) is completely regular.

Proof. Let F be a TS -closed set and let x0 /∈ F . There exists a Gδ set K such

that F ⊂ K and λ(F ) = λ(K) and x0 /∈ K. Put E1 = {x0}, E2 = K and H =

R \ (K ∪ {x0}). Then by Corollary 3.6 there exists a S-approximately continuous

function f : R → [0, 1] such that f(x0) = 0 and f(x) = 1 for x ∈ F . Consequently,

the topological space (R, TS) is completely regular. �
Finally, we will show that for every regular sequence S ∈ S the topology TS is

not normal. In the paper [2] authors proved a following theorem:

Theorem 3.8. Let (X,S,J ) be a measurable space, where S is a σ-algebra of subsets

of X and J ⊂ S is a proper σ-ideal. Moreover, let Φ : X → 2X be a semi-lower

density operator on (X,S,J ) (i. e. an operator which satisfies only conditions (1)-(3)

from the Theorem 1.5) generating topology TΦ = {A ∈ L : A ⊂ Φ(A)}. If J contains

a set B such that

card
(
2B
)
> card {B ∩ Φ(A) : A ∈ S}

then (X, TΦ) is not normal.

For every A ∈ L the set ΦS(A) is Borel (see [5]). Moreover, for any A ∈ L, there

exists a Borel set C ⊂ A such that ΦS(A) = ΦS(C). Hence, the assumptions of the

above theorem are satisfied for the measure space (R,L,L), the operator ΦS and the

set B equal to the Cantor set. Thus we have

Corollary 3.9. The topological space (R, TS) is not normal.
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Banacha 22, PL-90-238  Lódź
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O AKSJOMATACH ODZIELANIA TOPOLOGII GENEROWANYCH

PRZEZ REGULARNE CIA̧GI ZBIORÓW MIERZALNYCH

S t r e s z c z e n i e
W przedstawionym artykule badamy aksjomaty oddzielania dla topologii S-gȩstości,

które sa̧ uogólnieniem klasycznej topologii gȩstości. G lównym wynikiem jest ca lkowita reg-
ularność topologii generowanej przez regularny cia̧g zbiorów zbieżny do zera. Pokazujemy
też, że tego typu topologie nie sa̧ normalne.

S lowa kluczowe: operator dolnej gȩstości, topologia generowana przez operator dolnej

gȩstości, topologia gȩstości


