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Summary

In this paper we present some generalization of the Cox-Ross-Rubinstein (CRR) option

pricing model. We assume that two parameters of the model (an interest rate of a bank

account and a volatility of the logarithm of the stock price’s changes) are different in each

of two analyzed periods of time.
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1. Introduction

A European call option is a security that gives the holder the right to buy a stock on

a particular date T (expiry date) for a predetermined price K (the strike price). The

holder has to pay a premium for getting this right (the option price). The difference

between the market price of a stock and the exercise price comprises the profit on

this option investment. That is why the holder will exercise the option if the market

price of a stock is greater than the strike price K fixed at the moment 0. In another

case he will not do it because an exercising option will not give him the profit.

Formally, a European call option is defined as follows.

Definition 1.1. A European call option is a pair (T,CT ) where T > 0 and CT (·) :

[83]
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R+ → R is the function

CT (s) = (s−K)+ =

{
s−K, if s > K

0 if s ≤ K, for some K ∈ R+.

We recall the Black-Scholes formula and the CRR model.

In 1973 Fischer Black and Myron Scholes presented the following formula for the

option pricing for continuous-time market.

In the Black-Scholes model a stock price S(t) at time t is defined as

S(t) = s0 · exp

((
µ− σ2

2

)
t+ σWt

)
, t ≥ 0,

where Wt is a Wiener process, s0 > 0, σ > 0, and µ are constants, s0 is the stock

price observed at time 0 and σ is volatility. Moreover, the instantaneous interest rate

r > 0 of a bank account is also assumed to be constant, i.e. exp(rt) is the value of

the one unit of money in a bank account at time t ≥ 0 (see e.g. [7] for details).

Theorem 1.1. (Black-Scholes option pricing, 1973 [2]). The time 0 fair price

CBS0 (s0) of a European call option with strike price K and expiry date τ in the

Black-Scholes model is given by

CBS0 (s0) = s0φ




ln s0
K + τ

(
r + σ2

2

)

σ
√
τ


− K

erτ
φ




ln s0
K + τ

(
r − σ2

2

)

σ
√
τ


 ,

where φ(·) is the cumulative normal distribution function, σ is volatility of the loga-

rithm of the stock price’s changes (the volatility of the random variable lnS(n)
s0

, where

S(n) is a stock price after n moments portfolio’s change).

Next, in 1979 Cox, Ross and Rubinstein presented a discrete-time option pricing

formula (CRR model). They assumed that in each step the upper and lower stock

prices’ changes are the same. So they got the following possible changes of the stock

price:

S0 = s0, St = u · St−1 or St = d · St−1, 1 ≤ t ≤ T, t ∈ N,

where

T is a fixed natural number of short periods (the expiry date),

t is the number of the present step,

s0 is a positive constant (the stock price at moment 0),

u is the upper stock price’s change during one short period,

d is the lower stock price’s change during one short period

(u and d are the only possible changes of stock prices during one short period).

Cox, Ross and Rubinstein proved the following theorem describing option pricing:
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Theorem 1.2. (CRR option pricing, 1979 [4]). In the CRR model the fair price

C0(s0) at moment 0 of a European call option with expiry date T and strike price

K = s0u
k0dT−k0 for a certain k0 = 0, 1, . . . , T , is given by:

C0(s0) = s0D̄ −
K

r̂T
D∗,

where

D̄ =
T∑

k=k0

(
T

k

)
· p̄k · q̄T−k, D∗ =

T∑

k=k0

(
T

k

)
· p∗K · q∗T−k,

k0 =
ln K

S0
− T · ln d

ln
(
u
d

) , p∗ =
r̂ − d
u− d , q∗ =

u− r̂
u− d , p̄ = p∗ · u

r̂
, q̄ = q∗ · d

r̂
,

r̂ is a bank account and 0 < d < r̂ < u.

Cox, Ross and Rubinstein showed that their formula converges to the Black-

Scholes formula if we take into account the large number of moments of the portfolio’s

change.

In the both presented models all parameters such as an interest rate of a bank

account and a volatility of the logarithm of the stock price’s changes do not vary

from the moment 0 to the expiry date T. This assumption is not realistic, because

these parameters change. That is why in this paper we analyse some generalization

of CRR model in which these parameters are different in each of two period of time.

Next, we demonstrate the convergence of the option price in the presented model to

the formula corresponding to the Black-Scholes formula.

2. CRR model with time dependent parameters for two periods
of time, notation and formulation of main result

We now present some generalization of CRR model. We consider two periods of time

(for example two months) in which we have n moments of the portfolios change and

assume that in each period of time the parametres: an interest rate of a bank account

and the volatility σ are constant. However these parameters depend on periods of

time (these parameters are different in the first and in the second period of time).

In the CRR model the authors considered only one period of time with constant

parameters.

We denote

K - the strike price,

si−1 - the stock price at the begining i-th month, i = 1 or i = 2 (s1 is the random

variable), s0 is a positive constant (the stock price at moment 0),

ri - an interest rate of a bank account for i-th month,

σi - the volatility of the logarithm of the stock price’s changes for i-th month,
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r̂i,n = e
ri
n - an interest rate in i-th month between the stock price’s changes (an

interest rate for one short period),

ui,n = e
σi√
n - the upper possible price change in i-th month between the stock price’s

changes,

di,n = e
− σi√

n - the lower possible price change in i-th month between the stock price’s

changes,

p∗i,n =
r̂i,n−di,n
ui,n−di,n - the martingale probability of the stock price’s growth in i-th month

between the stock price’s changes, q∗i,n = 1− p∗i,n,
where i = 1 or i = 2.

Let us note that at the beginning of the second period of time the stock price

takes the value: s0 · ul1,n · dn−l1,n , where l is a natural number. In the first period of

time the stock price increases l times. When we price a European call option at the

beginning of the second period of time we take into account the beginning stock price

s1 for this period, where s1 = s0 · ul1,n · dn−l1,n . So the option price at the beginning of

the second period of time is given by the formula:

(2.1) C1,n(s1) =
1

er2

n∑

l=0

(
n

l

)
· p∗l2,n · q∗n−l2,n · (s1 · ul2,n · dn−l2,n −K)+, s1 ∈ (0,∞)

and the option price at the time 0 is given by the formula:

(2.2) C0,n(s0) =
1

er1

n∑

l=0

(
n

l

)
· p∗l1,n · q∗n−l1,n · C1,n(s0 · ul1,n · dn−l1,n ).

Our result is the following:

Theorem 2.1. Under the previous assumptions and notation p∗i,n , q∗i,n, ui,n, di,n,

ri, σi, i = 1, 2, ..., for a fixed K > 0 and C1,n(s1) given by (2.1) the following

convergence holds: for any s0 > 0 the limit option price at the time 0 is given by the

formula:

lim
n→∞

C0,n(s0) := lim
n→∞

1

er1

n∑

l=0

(
n

l

)
· p∗l1,n · q∗n−l1,n · C1,n(s0 · ul1,n · dn−l1,n ) =

= s0 · φ(A · ln s0 +B)− K

er1 · er2
· φ(A · ln s0 + B̃)

where φ(·) is the cumulative normal N(0, 1) distribution function, A = 1√
σ2
1+σ2

2

,

B = A · (− lnK+r1 +r2 +0, 5 · (σ2
1 +σ2

2)), B̃ = A · (− lnK+r1 +r2−0, 5 · (σ2
1 +σ2

2)).

Let us see that the right hand side of the above equality is an analogue of the

Black-Scholes formula. In particular, taking r = r1 = r2 and σ = σ1 = σ2 we get

Black-Scholes option pricing for τ = 2 that is given in Theorem 1.1.
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3. Auxiliary facts

In the proof of Theorem 2.1 we use a few lemmas, theorems and remarks.

Lemma 3.1. Under the previous notation, let for any s0 > 0

(3.1.1) C0,n(s0) :=
1

er1

n∑

l=0

(
n

l

)
· p∗l1,n · q∗n−l1,n · C̃1,n(s0 · ul1,n · dn−l1,n ),

where now (C̃1,n(·))n∈N is a sequence of nonnegative functions C̃1,n(s1) ≥ 0 for any

s1 > 0. If every term of sequence (C̃1,n(·))n∈N is estimated from below by a step

function (independent of n) that takes a finite number of values:

(3.1.2)
∞∑

k=1

xk · I(s‘1,k,s“1,k](s1) ≤ C̃1,n(s1) ∀s1 > 0,

where xk ≥ 0, k = 0, 1, ..., and intervals (s‘
1,k, s

“
1,k] are mutually disjoint,

then for any s0 > 0 we have:

lim
n→∞

C0,n(s0) ≥ 1

er1

∞∫

−∞

f

(
t− ln s0

σ1
− r1

σ1
+
σ1

2

) ∞∑

k=1

xkI( 1
σ1

ln s‘1,k,
1
σ1

ln s“1,k](t)dt,

where f(·) is the density of the standard normal distribution.

Lemma 3.2. Under the previous assumptions and notation let C1,n(s1) ≥ 0, s1 > 0,

be the functions given by the formula (2.1) and C0,n(s0), s0 > 0 be the functions

defined by (2.2), n = 1, 2, .... Let 0 = s
′
1,0 < s

′′
1,0 = s

′
1,1 < s

′′
1,1 =..., limk→∞ s

′
1,k =∞.

Additionally, suppose that every function C1,n is estimated from above by a step

function independent of n:

(3.2.1)

∞∑

k=1

x̃k · I(s′1,k,s′′1,k](s1) ≥ C1,n(s1) ∀s1 > 0,

where x̃k ≥ 0, k = 0, 1, ....

Then for any s0 > 0 we have:

lim
n→∞

C0,n(s0) ≤ 1

er1

∞∫

−∞

f

(
t− ln s0

σ1
− r1

σ1
+
σ1

2

) ∞∑

k=1

x̃kI( 1
σ1

ln s
′
1,k,

1
σ1

ln s
′′
1,k](t)dt,

where f(·) is the density of the standard normal distribution.

Corollary 3.1. If we take for fixed K > 0

(3.1) C1,n(s1) =
1

er2

n∑

l=0

(
n

l

)
· p∗l2,n · q∗n−l2,n · (s1 · ul2,n · dn−l2,n −K)+, s1 > 0
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for C̃1,n(·) in Lemma 3.1,

then we have the following lower bound:

lim
n→∞

C0,n(s0) ≥ sup
ε>0,ϕ∈Φε

1

er1

∞∫

−∞

f

(
t− ln s0

σ1
− r1

σ1
+
σ1

2

)
ϕ(t)dt

where, for fixed ε > 0,Φε(·) is the set of step functions defined on R that take a finite

number of values and bound from below the function (ĉ1(·)− ε)+, where

(3.2) ĉ1(t) := eσ1tφ

(
σ1t− lnK + r2 +

σ2
2

2

σ2

)
− K

er2
φ

(
σ1t− lnK + r2 − σ2

2

2

σ2

)
,

t ∈ R, f(·) is the density of the standard normal distribution, φ(·) is the cumulative

normal distribution function.

Corollary 3.2. The following upper bound is true

lim
n→∞

C0,n(s0) ≤ inf
ε>0,ψ∈Ψε

1

er1

∞∫

−∞

f

(
t− ln s0

σ1
− r1

σ1
+
σ1

2

)
ψ(t)dt,

where, for fixed ε > 0,Ψε(·) is the set of step functions defined on disjoint intervals

in R, (t
′
1,k, t

′′
1,k] which satisfy the assumptions of Lemma 3.2 with t

′
1,0 = −∞ and

bound from above the function ĉ1(·) + ε, where ĉ1()̇ is given by (3.2).

Theorem 3.1. Under the previous notation and assumptions, for a fixed K > 0 and

C1,n(s1) given by (3.1), for any s0 > 0 we have the following equality:

lim
n→∞

C0,n(s0) =
1

er1

∞∫

−∞

f

(
t− ln s0

σ1
− r1

σ1
+
σ1

2

)
·

·
[
eσ1tφ

(
σ1t− lnK + r2 +

σ2
2

2

σ2

)
− K

er2
φ

(
σ1t− lnK + r2 − σ2

2

2

σ2

)]
dt,

where f(·) is the density of the standard normal distribution, φ(·) is the cumulative

normal distribution function.
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Warszawa 2000.

[10] M. Musiela and M. Rutkowski,Martingale Methods in Financial Modelling, Springer-

Verlag, Berlin 2005.

Emilia Fraszka-Sobczyk
Faculty of Economics and Sociology
University of  Lódź
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WYCENA OPCJI W MODELU CRR Z PARAMETRAMI ZALEŻNYMI

OD CZASU DLA DWÓCH JEDNOSTEK CZASU - CZȨŚĆ I

S t r e s z c z e n i e
W pracy przedstawiono pewien uogólniony model Coxa-Rossa-Rubinsteina na wycenȩ

opcji. Za lożono, że dwa parametry modelu (stopa procentowa oraz wspó lczynnik zmienności
logartymu cen akcji-volatility) zmieniaja̧ siȩ w każdej z dwóch jednostek czasu.

S lowa kluczowe: model Coxa-Rossa-Rubinsteina, model CRR, wzór Blacka-Scholesa, wycena

opcji




