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Summary

We consider a mathematical model which describes a contact between a nonlinear elastic

body and a foundation. The contact is frictionless with Signorini’s conditions with a gap.

The goal of this paper is to study an optimal control problem which consists of leading the

stress tensor as close as possible to a given target, by acting with a control on the boundary

of the body. We state an optimal control problem which has at least one solution. Also we

prove a convergence result of a penalized control problem.
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1. Introduction

In our daily life and same in industry, the problem of contact between deformable

bodies plays an important role in structural and mechanical systems, contact models

are of great interest .At now considerable efforts have been made in its modelling and

numerical simulations, see [8, 10]. The theory of the optimal control of variational

inequalities is very elaborated, see [2, 4, 9, 12, 15, 16, 17]. Despite their mechanical

importance, optimal control problems for contact models are not too much developed

and represents a difficult task, see [1, 3, 5, 6, 7, 11, 13, 14, 19] . In [13, 14], the authors

have studied respectively an optimal control problem of a three-dimensional elastic

body in frictional contact with normal compliance with a deformable fondation and

an optimal control problem for a nonlinear antiplane of an elastic cylindrical body in

[43]
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frictional contact with a rigid fondation. The optimal control for a bilateral contact

between an elastic body and a rigid foundation was studied in [19]. Here, as in [19],

the goal of this paper is to study an optimal control of contact problem. Indeed, we

consider a nonlinear elastic body wich is in unilateral contact with a rigid fondation.

The contact is frictionless associated with Signorini’s conditions with a gap. We

establish a variational formulation of the mechanic problem and prove the existence

and uniqueness result. The optimal control problem concerning this model is denoted

respectively by C1. This problem consists of minimizing a cost functional wich is

convex and continuous. However, we are interested to led the stress tensor field as

close as possible to a given target when we act with a control on a part of the

boundary.

The paper is structured as follows. In section 2, we describe the mechanical model,

list the assumptions on the data and derive the variational formulation. Then we

prove an existence and uniqueness result, Theorem 2.1. In section 3, we state and

prove the solvability of the optimal control problem C1, Theorem 3.1. In section 4,

we prove the convergence results of the penalized problem, Theorem 4.2. In section

5, we prove that the penalized control problem C1 has at least one solution Theorem

5.1, then we obtain convergence results, Theorem 5.2.

2. Problem statement and variational formulation

Let Ω ⊂ Rd(d = 2, 3) be a domain occupied by a nonlinear elastic body. Ω is sup-

posed to be open,bounded, with a sufficiently regular boundary partitioned into three

measurable parts Γ1,Γ2,Γ3 such that meas (Γ1) > 0. The body is acted upon by a

volume force of density ϕ0 on Ω and a surface traction of density ϕ2 on Γ2. The

body is clamped on Γ1 and, so, the displacement vector u vanishes here. The contact

is frictionless associated to signorini’s conditions. Thus, the classical formulation in

terms of displacement of the mechanical problem is the following.

Problem P1. Find a displacement field u : Ω→ Rd such that

div σ (u) = −ϕ0 in Ω, (2.1)

σ (u) = Fε(u) in Ω, (2.2)

u = 0 on Γ1, (2.3)

σν = ϕ on Γ2, (2.4)

uν ≤ g, σν ≤ 0, σν (uν − g) = 0

στ = 0

}
on Γ3. (2.5)

(2.1) represents the equilibrium equation such that σ = σ (u) denotes the stress field

and ε (u) the strain tensor. Equation (2.2) represents the elastic constitutive law

where F is a given nonlinear function while (2.3) and (2.4) are the displacement
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and traction boundary conditions, respectively, in which ν denotes the unit outward

normal vector on Γ and σν represents the Cauchy stress vector. In condition (2.5)

σν denotes the normal stress, uν is the normal displacement which is limited by

g ≥ 0; στ = 0 defines the frictionless contact. Recall that the inner products and the

corresponding norms on Rd and Sd are given by

u.v = ui.vi, |v| = (v, v)
1
2 , ∀u, v ∈ Rd,

σ.τ = σij.τij |τ | = (τ, τ)
1
2 , ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3). Here and

below, the indices i and j run between 1 and d and the summation convention over

repeated indices is adopted. Now, to proceed with the variational formulation, we

need the following function spaces:

H =
(
L2 (Ω)

)d
H1 =

(
H1 (Ω)

)d
σ =

{
σ = (σij) ;σij = σji ∈ L2 (Ω)

}

Note that H and Q are real Hilbert spaces endowed with the respective canonical

inner products:

(u, υ)H =
∫

Ω
uiυidx, (σ, τ)Q =

∫
Ω
σijτijdx.

The strain tensor is defined as

ε (u) = (εij (u)), εij (u) =
1

2
(ui,j + uj,i) ;

div σ = (σij,j) is the divergence of σ. For every v ∈ H1, we also write v for the trace

of v on Γ and we denote by vν and vτ the normal and the tangential components

of v on the boundary Γ given by υν = υ · ν, υτ = υ − υνν. Also, for a regular

function (say C1) σ ∈ Q, we define its normal and tangential components by σν =

(σν) .ν , στ = σν − σνν and we recall that the following Green’s formula holds:

(σ, ε (υ))Q + (div σ, υ) =

∫

Γ

σν.υda ∀υ ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1 defined

by

V = {υ ∈ H1; υ = 0 on Γ1} .
Since meas (Γ1) > 0, the following Korn’s inequality holds [8],

‖ε (υ)‖Q ≥ cΩ ‖υ‖H1
∀υ ∈ V. (2.6)

where the constant cΩ > 0 depends only on Ω and Γ1. We endow V with the inner

product

(u, υ)V = (ε (u) , ε (υ))Q ∀u, υ ∈ V,
and ‖.‖V is the associated norm. It follows from Korn’s inequality (2.6) that the

norms ‖.‖H1
and ‖.‖V are equivalent on V . Then (V, ‖.‖V ) is a real Hilbert space. In
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te next, we introduce the convex of admissible displacements defined as

K = {υ ∈ V ; υν ≤ g a.e. on Γ3} .
g is assumed to satisfy

g ∈ L2 (Γ3) and g ≥ 0 a.e. on Γ3. (2.7)

We assume that the body forces and surface tractions have the regularity

ϕ0 ∈ H, ϕ ∈ (L2 (Γ2))d. (2.8)

Next, In the study of Problem P1 we assume that the nonlinear elasticity operator

F satisfies the following assumptions.




(a) F : Ω× Sd → Sd;

(b) there exists M > 0 such that

|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2| ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) there exists m > 0 such that

(F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2
∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω;

(d) the mapping: x→ F (x, ε) is Lebesgue mesurable on Ω

for any ε ∈ Sd,
(e) F (x, 0Sd) = 0 for a.e. x ∈ Ω.

(2.9)

Now by assuming the solution to be sufficiently regular, we obtain by using

Green’s formula that the problem P1 has the following variational formulation.

Problem P2. Find a displacement field u ∈ K such that

(Fε(u), ε(υ − u))Q
≥ (ϕ0, υ − u)H + (ϕ, υ − u)(L2(Γ2))d ∀v ∈ K.

(2.10)

Theorem 2.1. Assume (2.7), (2.8) and (2.9). Then there exists a unique solution

of Problem P2.

Proof. We define the operator A : V → V by (Au, v)V = (Fε(u), ε(υ))Q, ∀u, v ∈
V . By (2.9), it follows that the operator A is Lipschitz continuous and strongly

monotone; (2.7) and the definition of K imply that K is a nonempty, closed and

convex subset of V , then moreover by using (2.8), it follows from [27] that the

inequality (2.10) has a unique solution. �

3. The optimal control problem

We now suppose that ϕ0 ∈ H is fixed and consider the following state variational

problem.

Problem Q1. For a given ϕ ∈ (L2 (Γ2))d (called control), find u ∈ K such that
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(Fε(u), ε(υ − u))Q
≥ (ϕ0, υ − u)H + (ϕ, υ − u)(L2(Γ2))d ∀v ∈ K.

(3.1)

Following the existence and uniqueness of Problem P2, we deduce that for every

control ϕ ∈ (L2 (Γ2))d, the state variational problem Q1 has a unique solution u ∈ K,

u = u (ϕ).

Now, for a given ud ∈ K, we define the cost functional

L: K × (L2 (Γ2))d → R+,

by

L (u, ϕ) =
α

2
‖u− ud‖2V +

β

2
‖ϕ‖2(L2(Γ2))d ,

where α, β > 0. Next, we define the set of admissible pairs Uad by

Uad =
{

(u, ϕ) ∈ K × (L2 (Γ2))d, such that (3.1) is satisfied
}
,

and we consider the optimal control problem below.

Problem C1. Find (u∗, ϕ∗) ∈ Uad such that

L (u∗, ϕ∗) = min
(u,ϕ)∈Uad

L (u, ϕ) .

Theorem 3.1. Assume (2.7), (2.8), (2.9) and (2.10). Then Problem C1 has at least

one solution.

Proof. We put v = 0V in (3.1), then, using (2.8) and (2.10) (c), we deduce that the

solution u of Problem Q1 is bounded in V as

‖u‖V ≤
‖ϕ0‖H + c ‖ϕ‖(L2(Γ2))d

m
,

where c > 0. This inequality implies that

inf
(u,ϕ2)∈Uad

{L (u, ϕ)} ∈ R.

Now, let us denote

inf
(u,ϕ2)∈Uad

{L (u, ϕ)} = θ. (3.2)

Then, there exists a minimizing sequence (un, ϕn) ⊂ Uad such that

lim
n→∞

L (un, ϕn) = θ. (3.3)

The sequence (un, ϕn) is bounded in V × (L2 (Γ2))d, so there exists an element

(u∗, ϕ∗) ∈ V × (L2 (Γ2))d,

such that passing to a subsequence still denoted by (un, ϕn), we deduce that as

n→∞,

un → u∗ weakly in V, (3.4)
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ϕn → ϕ∗ weakly in (L2 (Γ2))d. (3.5)

To prove that u∗ ∈ K, we have that unν ≤ g a.e. on Γ3 and as (3.4) implies

unν → u∗ν strongly in L2 (Γ3), it follows that there exists a subsequence still denoted

(unν ) such that unν → u∗ν a.e.on Γ3 which implies that u∗ν ≤ g a.e. on Γ3.

Now to end the proof we need to prove that

un → u∗ strongly in V as n→∞. (3.6)

Indeed, as (un, ϕn) ∈ Uad , then un satisfies the inequality:

(Fε(un), ε(υ − un))Q
≥ (ϕ0, υ − un)H + (ϕn, υ − un)(L2(Γ2))d ∀υ ∈ K.

(3.7)

Using (2.9) (c) and (3.7), we deduce that

m ‖un − u∗‖2V ≤ (Fε(un)− Fε(u∗), ε(un − u∗))Q
≤ (Fε(un), ε(un − u∗))Q − (Fε(u∗), ε(un − u∗))Q
≤ − (Fε(u∗), ε(un − u∗))Q +

+ (ϕ0, u
n − u∗)H + (ϕn, un − u∗)(L2(Γ2))d

(3.8)

Using (3.4), we have that

lim
n→∞

(Fε(u∗), ε(un − u∗))Q = lim
n→∞

(Au∗, un − u∗)V = 0.

On the other hand, since (ϕn) is bounded in (L2 (Γ2))d, by (3.4) we get

lim
n→∞

(ϕn, un − u∗)(L2(Γ2))d = 0.

Using (2.8) and (3.4), it follows

lim
n→∞

(
(ϕ0, u

n − u∗)H + (ϕn, un − u∗)(L2(Γ2))d
)

= 0.

Consequently we deduce that the right hand side of the inequality (3.8) tends to

zero as n→ +∞ and then we get (3.6) . Moreover, using (3.5) and (3.6), we pass to

the limit as n → +∞ in (3.7), to obtain that (u∗, ϕ∗) satisfies the inequality (3.1) .

Then

(u∗, ϕ∗) ∈ Uad. (3.9)

We now use the weakly lower semicontinuity of L to deduce that

lim inf
n→+∞

L (un, ϕn) ≥ L (u∗, ϕ∗) . (3.10)

It follows now from (3.3) and (3.10) that

θ ≥ L (u∗, ϕ∗) . (3.11)

In addition (3.2) and (3.9) yield

L (u∗, ϕ∗) ≥ θ. (3.12)

Then to end the proof, it suffices to combine the inequalities (3.11) and (3.12). �
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4. A penalized problem

In this section, we define the functional jδ : V × V → R by

jδ (u, v) =
∫

Γ3

1

δ
(uν − g)+ vνda, ∀ (u, v) ∈ V × V,

where δ > 0 is the parameter of penalization. Then, the variational formulation

of the penalized problem with frictionless contact is the following.

Problem Pδ. Find a displacement uδ ∈ V such that

(Fε (uδ) , ε (v))Q + jδ (uδ, v) = (f, v)V , ∀v ∈ V . (4.1)

We have the result below.

Theorem 4.1. Assume that (2.7), (2.8) and (2.9) hold. Then, Problem Pδ has a

unique solution.

Proof. We define the operator A : V → V by

(Au, v)V = (Fε (u) , ε (v))Q + jδ (u, v) ∀u, v ∈ V.
Using (2.7), (2.8), (2.9), and that for r, s ∈ R, (r − s) (r+ − s+) ≥ (r+ − s+)

2
and

|r+ − s+| ≤ |r − s|, where we use the notation that for a ∈ R, a+ = max (a, 0), then

A is strongly monotone and Lipschitz continuous. So, Problem P2δ has a unique

solution. �
Now, we study the convergence of the sequence (uδ), as δ → 0 in the following

theorem.

Theorem 4.2. Assume (2.7), (2.8) and (2.9). Then, the following strong conver-

gence holds:

uδ → u strongly in V. (4.2)

Proof. The proof is carried out in several steps. In the first step, we shall prove that

there exists ū ∈ K such that after passing to a subsequence still denoted (uδ), such

that we have

uδ → ũ weakly in V. (4.3)

Indeed, take v = uδ in (4.1), we have

(Fε (uδ) , ε (uδ))Q + jδ (uδ, uδ) = (f, uδ)V . (4.4)

As jδ (uδ, uδ) ≥ 0, it is easy to deduce by (2.9) (c) that

‖uδ‖V ≤ ‖f‖V /m. (4.5)

Then, there exists an element ũ ∈ V and a subsequence still denoted uδ such that

(4.3) holds. On the other hand from (4.4), we get the inequality
∫

Γ3

(
uδν − g

δ

)

+

(uδν − g) da ≤ (f, uδ)V ,
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which implies that ∥∥(uδν − g)+

∥∥2

L2(Γ3)

≤ δ ‖f‖2V /m.

Then, we obtain
∥∥(ũ ν − g)+

∥∥
L2(Γ3)

≤ lim inf
δ→0

∥∥(uδν − g)+

∥∥
L2(Γ3)

= 0. (4.6)

Moreover we conclude by (4.6) that (ũν − g)+ = 0, i-e. ũ ν ≤ g a.e. on Γ3 and then

ũ ∈ K. Now, in the second step we shall prove that ũ = u.

In fact, Let v ∈ K and take v − uδ in (4.1), we have

(Fε (uδ) , ε (v − uδ))Q + jδ (uδ, v − uδ)
= (f, v − uδ)V ∀v ∈ K.

(4.7)

Then, as

jδ (uδ, v − uδ) =
∫

Γ3

(
uδν − g

δ

)

+

(vν − uδν) da ≤ 0,

we get

(Fε (uδ) , ε (v − uδ))Q ≥ (f, v − uδ)V ∀v ∈ K. (4.8)

Moreover, take v = ũ in the inequality above yields

(Fε (uδ) , ε (uδ − ũ))Q ≤ (f, uδ − ũ)V ,

so we deduce that

lim sup
δ→0

(Fε (uδ) , ε (uδ − ũ))Q ≤ 0. (4.9)

Therefore, using (2.9) (c) and the convergence (4.3), we deduce that

lim inf
δ→0

(Fε (uδ) , ε (uδ − v))Q ≥ (Fε (ũ) , ε (ũ− v))Q ∀v ∈ K. (4.10)

On the other hand, using (4.3) and (4.8), yields

lim sup
δ→0

(Fε (uδ) , ε (uδ − v))Q ≤ (f, ũ − v)V ∀v ∈ K. (4.11)

Now, by combining (4.10) and (4.11), we see that

(Fε(ũ ), ε (v − ũ ))Q ≥ (f, v − ũ )V ∀v ∈ K. (4.12)

Moreover, we take v = u in (4.12) and v = ũ in (2.11) and we add the resulting

inequalities to obtain by using (2.9) (c) that

m ‖ũ − u‖2V ≤ 0, (4.13)

and then from (4.13), we get

ũ = u. (4.14)

In the third step, we shall prove (4.2). For thus, from the arguments used above

we see that any weakly convergent subsequence of the sequence (uδ) ⊂ V converges

weakly to the unique solution u of Problem P2. The estimate (4.5) implies that the
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sequence (uδ) is bounded in V . Thus, using a standard compactness argument, we

conclude that the whole sequence (uδ) converges weakly to u.

Next, we use (2.10) (c) to find that

m ‖uδ − u‖2V ≤ (Fε (uδ) , ε (uδ − u))Q − (Fε (u) , ε (uδ − u))Q .

We now pass to the limit in this inequality and use (4.3), (4.9) and (4.14) to

deduce (4.2). �

5. A penalized control problem

Now, for δ > 0 and a fixed ϕ0 ∈ H, we introduce the following penalized state

problem.

Problem Q2. For a given ϕ ∈ (L2 (Γ2))d (called control), find uδ ∈ V such that

(Fε (uδ) , ε (v))Q + jδ (uδ, v) = (ϕ0, v)H + (ϕ, v)(L2(Γ2))d , ∀v ∈ V . (5.1)

By Theorem 4.1, for every ϕ ∈ (L2 (Γ2))d, the problem Q2 has a unique solution

uδ ∈ V, uδ = uδ (ϕ) . In addition, we have

‖uδ‖V ≤
1

m

(
‖ϕ0‖H + c ‖ϕ‖(L2(Γ2))d

)
.

Furthermore, we define the set Uδad as

Uδad =
{

(u, ϕ) ∈ V × (L2 (Γ2))d, such that (5.1) is satisfied
}
.

Using the functional L, given by (3.2) , we introduce the following optimal control

problem associated to the penalized contact problem.

Problem C2. Find (ū, ϕ̄) ∈ Uδad such that L (ū, ϕ̄)) = min
(u,ϕ)∈Uδad

{L (u, ϕ))} .
With arguments similar to those used in Theorem 3.1, the following result can

be proved.

Theorem 5.1. Assume that (2.7) , (2.8) and (2.9) hold. Then Problem C2 has at

least one solution.

Now, we have the convergence result below.

Theorem 5.2. Assume that (2.7), (2.8) and (2.9) hold, and let (ūδ, ϕ̄δ) be a solution

of Problem C2. Then, there exists a solution (u∗, ϕ∗) of Problem C1 such that passing

to a subsequence of (ūδ, ϕ̄δ) still denoted (ūδ, ϕ̄δ), the following convergences hold:

ūδ → u∗ strongly in V , as δ → 0,

ϕ̄δ → ϕ∗ weakly in (L2 (Γ2))d, as δ → 0.

Proof. Let uδ0 ∈ V be the unique solution of Problem Q2 with ϕ = 0(L2(Γ2))d .

L
(
uδ0, 0(L2(Γ2))d

)
=
α

2
‖uδ0 − ud‖2V ≤ α

(
‖uδ0‖2V + ‖ud‖2V

)
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and since,

‖uδ0‖V ≤
1

m
‖ϕ0‖H

we deduce, that there exists a constant c > 0 such that

L (ūδ, ϕ̄δ) ≤ L
(
uδ0, 0(L2(Γ2))d

)

≤ α
(
‖ϕ0‖2H + ‖ud‖2V

)
.

Therefore, (ūδ, ϕ̄δ) is a bounded sequence in V × (L2(Γ2))d.

Consequently, passing to a subsequence still denoted
(
ūδ, ϕ̄δ

)
, it follows that there

exists an element (u∗, ϕ∗) ∈ V × (L2(Γ2))d such that

ūδ → u∗ weakly in V as δ → 0,

ϕ̄δ → ϕ∗ weakly in (L2(Γ2))d as δ → 0.

Since (ūδ, ϕ̄δ) ∈ Uδad, arguing as in the proof of Lemma 4.3, we deduce that

u∗ ∈ K. Moreover, we have

m ‖ūδ − u∗‖2V ≤ (Fε(u∗)− Fε(ūδ), ε(u∗ − ūδ))Q
≤ (Fε(u∗, ε(u∗ − ūδ))Q + jδ (ūδ, u

∗)− jδ (ūδ, ūδ) +

+ (ϕ0, u
∗ − ūδ)H + (ϕ̄δ, u

∗ − ūδ)(L2(Γ2))d .

≤ (Fε(u∗, ε(u∗ − ūδ))Q + (ϕ0, u
∗ − ūδ)H + (ϕ̄δ, u

∗ − ūδ)(L2(Γ2))d .

(5.2)

On the other hand as ūδ → u∗ weakly in V implies that ūδ → u∗ strongly in (L2(Γ2))d

and uδν → u∗ν strongly in L2(Γ3), then, it follows that the right hand side of (5.2)

converges to zero as δ → 0. Hence we deduce that ūδ → u∗ strongly in V as δ → 0 .

Now, we must prove that (u∗, ϕ∗) ∈ Uad. Indeed, let v ∈ K and put (v − ūδ) in (5.1),

then by using (5.2), it follows that when δ → 0, the following convergences hold:

(Fε(ūδ), ε(v − ūδ))Q → (Fε(u∗), ε(v − u∗))Q,

(ϕ0, v − ūδ)H +
(
ϕ̄δ, v − ūδ

)
(L2(Γ2))d

→ (ϕ0, v − u∗)H + (ϕ∗, v − u∗)(L2(Γ2))d .

On the other hand, as

jδ
(
ūδ, v − ūδ

)
≤ 0,

then, (u∗, ϕ∗) satisfies (3.1) and (u∗, ϕ∗) ∈ Uad.
Now, let (ū, ϕ̄) be a solution of Problem C1 and let us consider the sequence (uδ)

such that, for each δ > 0, uδ is the unique solution of Problem Q2 with the data

ϕ0 ∈ H and ϕ̄ ∈ (L2(Γ2))d.Obviously, for every δ > 0, (uδ, ϕ̄) ∈ Uδad. Using Theorem

5.1 we deduce that

(uδ, ϕ̄)→ (ū, ϕ̄) strongly in V × (L2(Γ2))d as δ → 0. (5.3)
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Since the functional L is convex and continuous, we have

L (u∗, ϕ∗) ≤ lim
δ→0

inf L (ūδ, ϕ̄δ) . (5.4)

Also, since (ūδ, ϕ̄δ) is a solution of Problem C2, we have that

lim
δ→0

supL (ūδ, ϕ̄δ) ≤ lim
δ→0

supL (uδ, ϕ̄) (5.5)

and using (5.3), it follows that

lim
δ→0

supL (uδ, ϕ̄) = L (ū, ϕ̄) . (5.6)

Now, taking into account that (ū, ϕ̄) is a solution of Problem C1, then have that

L (ū, ϕ̄) ≤ L (u∗, ϕ∗) . (5.7)

Consequently, from (5.4)-(5.7) , one obtains

L (ū, ϕ̄) = L (u∗, ϕ∗) .

�
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OPTYMALNE STEROWANIE W ZAGADNIENIU

BEZPOŚREDNIEJ STYCZNOŚCI CIA L STA LYCH

PRZESUWANYCH JEDNOKIERUNKOWO

S t r e s z c z e n i e
Rozpatrujemy model matematyczny określaja̧cy styczność poruszaja̧cego siȩ cia la elasty-

cznego wzglȩdem pod loża. Zak ladamy, że zmiany wzajemnego po lożenia nastȩpuja̧ bez
tarcia z zachowaniem warunków Signoriniego odnośnie do luk. Podjȩte jest zagadnienie
optymalnego sterowania tensorem naprȩżenia cia la wzglȩdem pod loża. Sterowanie dzia la
jednokierunkowo w odniesieniu do brzegu elastycznej tarczy.

S lowa kluczowe: sterowanie optymalne, zagadnienie nieliniowe jednokierunkowego kontaktu

elastycznego




