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Pentacene and other polymers are discussed form the point of view of theoretical dis-
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Introduction and aim of the paper

We are dealing with mathematical aspects of two recent Nobel prizes 2016 in physics

and chemistry, respectively. The Nobel Prize in Physics 2016 was awarded to D. J.

Thouless, F. D. N. Haldane, and J. N. Costerlitz [37] for theoretical discoveries of

topological phase transitions and topological phases of matter. The Nobel Prize in

Chemistry 2016 was awarded to J.-P. Sauvage, Sir J. Frazer Stoddart, and Bernard

L. Pheringa [32] for the design and synthesis of molecular machines.

We study mathematical aspects of these properties in some pentagonal (quinary)

and hexagonal (senary) structures, in pentacene and some other polymer struc-

tures, in particular the rapid changes of hexagonal (senary) structures to pentagonal

(quinary) structures and vice versa. We discuss also the leaves foliation structure

of the objects in question on a silicone background and a slightly wave solitary be-

haviour of the leaves.

1. Choosing suitable algebras and controlling
non-commutativity

Our basic tools for choosing as an algebra suitable for a Dirac-like particle motion

equation are:

1) the Cayley-Dickson process

C = R⊕ Ri H = H⊕Hj, O = H⊕H`, S = O⊕Op, etc.,

where they i, j, `, p are proper units,

2) passing form the complex algebra to a binary and then to a ternary Clifford

algebra [17, 36],

3) passing from the cubic algebra to 3×3-matrix, quaternion-like algebra and then

to 3×3-matrix octonion-like algebra [35, 31, 11, 20],

4) passing form the 3×3-matrix quaternion-like algebra to the nonion algebra,

and then, to the duodevicenion algebra [24, 26, 27, 28].

The first two procedures are closely related to an idea of M. Planck (1900) of

controlled noncommutativity: if Q is the operator of positon, and P operator of

momentum, then already for quaternions, where we are loosing commutativity, it is

natural to demand that

PQ−QP = nhIn, n ∈ Z, (1)

and In being the n × n unit matrix and n being a positive small constant. In the

physical reality it is indispensable to take h ≈ 6.626 · 10−34J · s.
The second two procedures are closely related to the idea of Sylvester

PQ− λQP = 0, λ ∈ C (2)

instead of (1).
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2. The binary ternary quaternary structure correspondences

As far as the correspondence of binary and ternary structures is concerned, the main

idea is explained in [23](cf. Fig. 5): 18 triangles of the basic region in the fractal

representation may be groupped as two collections of three equivalent triangles or,

equivalently, by three collections of two equivalent triangles [21, 22].

Now passing from the complex to quaternion algebra is connected with taking

λ2 = 1 in (2), yet taking λ3 = 1, λ 6= 1 we arrive at the construction of the cubic

algebra, nonion algebra, and duodevicenion algebra (18 generators), cf. Fig. 10 in

[20], where j3 = 1, j 6= 1. The passage

cubic algebra ↔ nonion algebra ↔ duodevicenion algebra

corresponds to the passage [24]

binary structures ↔ ternary structures ↔ quaternary structures.

It is important to notice that, mathematically, the passages of (3 × 3)-matrices

algebras:

quaternion-like algrebras → octonion-like algebras

and

nonion algebra → duodevicenion algebra

are related with 1/2π turn around the origin transformation

aαβ = aβ,4−α, α, β = 1, 2, 3,

α, β = 1, 2, 3, which in an elegant way may be visualized on the four sheeted or

two-sheeted Riemann surface models [20], Figs 8 and 9.

3. Passing from a hexagonal (senary) structure to a pentagonal
(quinary) structure in a molecular nanoengine

In contrast to a ternary structure, where the passage to a binary structure might be a

purely mathematical construction, in case of pentacene Fig. 3 in [6], Fig. 2 in [33] and

some other polymers this might be connected with drastic passage of hexagonal to

pentagonal structure in a high energy in the molecular nanoengine. There are several

possibilities for a new pentagonal structure [6] which arises with some probability [8]

and the opposite change from a pentagonal to hexagonal structure if possible as well

because the absorbance representing the total energy has two closely related nearby

sharp maxima, Fig. 2 in [6], Fig. 4 in [33].

The same situation is connected with the infrared activity (Fig. 5 in [33] and

Raman activity Fig. 6 in [33]). For polymers (which of course include pentacene) we
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have a general problem of evolution of binary and ternary systems, namely, de Gennes

developed the theory on polymers [1]. The main idea is the scaling assumption on the

distribution of polymers. The heart of the theory is the application of the self-avoiding

random walk.

In this connection let us first notice the electronic structure of carbon:

Considering binary bonds of carbon:

In this way we obtain a polymer

and below we have an example

Considering ternary bonds of carbon:

In this way we obtain a polymer

and below we have an example
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Fig. 1. Tryptophane amino acid having both pentagonal and hexagonal subsystems.

We have

Theorem 1. In polymers we have either binary or ternary bonds. (koniec 9-3) The

binary and ternary extension type leading to polymer are shown in Figs 7 and 8,

respectively, in [33].

In such a way a quinary subsystem in a polymer can easily be decomposed into

binary systems and a senary subsystem can be easily decomposed into ternary sys-

tems. The situation becomes more complicated in some proteins, where we have

both a pentagonal and hexagonal subsystems. Then the problem of decomposition

becomes more complicated and requires further investigation.

4. Zigzags, meanders, and solitary leaves of the polymer folia-
tion

Within the structure of polymer and its leaves often starting with a silicone back-

ground (e.g. SiO2 [33]) one may observe the sine-like or cosine-like soliton behaviour

which affects the whole foliation.

It is interesting to notice the foliations with left-twisted and right-twisted leaves.

Fig 2 and cf. Figs 11 and 13 of [33].

Solitary equations of the mentioned leaf borders will be developed in a future

research.

Perspectives for further research

It seems important to analyze for a given polymer with a hexagonal structure a

possibility of the corresponding pentagonal structures. The other important direction

is to find within pentagonal and hexagonal structures those that can be reduced to

the binary structures only or to ternary structures only.
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Fig. 2. Left and right twisted foliation pentacene leaves.
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[26] M. Nowak-Kȩpczyk, An algebra governing reduction of quaternary structures to



40 J.  Lawrynowicz, M. Nowak-Kȩpczyk, and M. Zubert
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MATEMATYCZNE ZAPLECZE DWÓCH POWIA̧ZANYCH ZE SOBA̧

NAGRÓD NOBLA Z ROKU 2016: Z FIZYKI TOPOLOGIA

STANOWIA̧CA PODSTAWȨ FIZYKI PRZEJŚĆ FAZOWYCH;

Z CHEMII - GEOMETRIA MOLEKULARNYCH NANOSILNIKÓW

S t r e s z c z e n i e
Praca omawia pentacen i inne polimery z punktu widzenia topologii stanowia̧cej pod-

stawȩ fizyki przej́sć fazowych i stanów materii (nagroda Nobla z fizyki w 2016r.) oraz uk-
szta ltowania i syntezy silników molekularnych (nagroda Nobla z chemii w 2016r.), a w
szczególności, zmiany struktur senarnych w kwinarne i odwrotnie.

S lowa kluczowe: topologiczne przej́scia fazowe materii, fazy topologiczne materii, moleku-

larne nanosilniki, pentacen, polimer, struktura piȩcioka̧tna (pentagonalna), struktura

sześcioka̧tna (hexagonalna)




